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Lecture 2

★ LSZ formalism and S-matrix

★ Path integral for scalar fields

★ Perturbative expansion and Feynman’s rules
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LSZ formalism
We will need a formulation of field theory showing
that any element of the scattering matrix (S-matrix) can be 
reduced to the evaluation of VEV (vacuum  expectation 
value) of a T-product of field operators. Such a formulation 
is called LSZ  (Lehmann, Symanzik and Zimmermann).
We start using the Heisenberg representation and we will 
assume:
❖ The eigenvalues of the four-momentum lie within the 
forward light cone

p2 = pµ pµ ≥ 0,        p
0 ≥ 0

❖ There exists a non degenerate Lorentz invariant state of 
minimum energy (vacuum state)

Φ0 ≡ | 0〉, Pµ | 0〉 = 0
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❖ For each stable particle of mass m, there exists a stable
single particle state

Φ1 ≡ | p〉
eigenstate of momentum with

p2 = m2

❖ Except for p2 = 0, the 
mass spectrum is discrete 
(vacuum and one particle 
state) + a continuum
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The main tool the scattering experiments. 

In a very sketchy way we consider a system of
free particles at t = - ∞.  These particles  interact with a target 
at some finite time. After  the  scattering has taken place the 
emerging particles  behave again as free particles at t=+ ∞. 

In real life we prepare the beam at some finite time - T, the 
scattering process  occurs around some finite time (say t = 0) 
and  we detect and  measure  some property of the
outgoing particles at a time T. This ideal description
considered before can be considered as correct if the 
interaction time is much smaller than T.

giovedì 12 luglio 2012



5

 Imagine an electron prepared in an eigenstate of momentum 
p, impinging over an atom. Notice that to prepare an 
eigenstate of momentum in a finite volume is an ideal process. 

For this reasons in order to  analyze a scattering process it
is  convenient to quantize in a box of the dimension of the
experiment itself. The same consideration holds  for the 
energy. One has always to remember that the experiment is 
taking place in a finite interval of time (-T, +T).

Therefore we describe the particles at  |t| = + ∞ in terms of 
free fields, except that they will be subject to  self-interaction 
(that cannot be neglected). These  fields will be denoted by   

φin (x), for t→−∞, φout (x), for t→ +∞
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The interacting field          can be thought of as constructed in 
terms of the free fields operators and we will assume that the 
interacting field reduces to the in-out fields for 

φ(x)

t→ ∞
We will require the following properties for the  in-out fields.

1) The in (out) fields should transform as the interpolating 
field w.r. t. the symmetries of the theory. For instance:

[Pµ ,φin (x)] = −i ∂φin (x)
∂xµ

2) The in (out) fields should satisfy the KG equation (or the 
appropriate wave equation for other fields)

(+m2 )φin (x) = 0
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−i ∂
∂xµ p φin (x) 0 = p [Pµ ,φin (x)] 0 = pµ p φin (x) 0

The in (out) field creates the physical one-particle state from 
the vacuum:

Iterating

− p φin (x) 0 = p2 p φin (x) 0

and using the KG equation

(p2 −m2 ) p φin (x) 0 = 0
The in (out) fields are free ones, therefore we can apply the 
standard formalism, e.g.

φin (x) = d 3∫

k ain (


k ) f k (x)+ ain

† (

k ) f k

*(x)⎡⎣ ⎤⎦

fk (x) =
1

(2π )32ω k
e− ikx , 

ω k =

k 2 + m2

⎧

⎨
⎪

⎩
⎪
⎪
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We can derive the creation (annihilation) operators inverting 
the previous relation

ain (

k ) = i d 3∫ x fk

*(x)∂0φin (x)− ∂0 fk
*(x)φin (x)⎡⎣ ⎤⎦

[Pµ ,ain (

k )] = −kµain (


k ), [Pµ ,ain

† )] = kµain
† (

k )

Notice that for any two solutions of the KG equation, f1 and f2

and from this that ain(k) and its h.c. destroy and create 
respectively states with fourmomentum k (k2 = m2) from the 
vacuum.
The interpolating field satisfies a KG equation describing the 
interaction with a source j(x) (including also the self-
interactions)

(+m2 )φ(x) = j(x)

Q = (∫ f1∂0 f2 − f2∂0 f1)

is a conserved charge. One can prove easily that
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★ We need to solve this equation with the boundary
conditions at |t| = ∞ relating the interpolating field with the
in-out fields.

★ However  asymptotically the interpolating field  cannot be 
the same as the in-out fields but it differs by a factor Z1/2, 
where Z is the so called wave function renormalization. To 
understand this point consider the following matrix elements

k φin (x) 0 and k φ(x) 0

Both matrix elements are proportional to exp(ikx) due to 
translational invariance and therefore they may differ by a 
constant. This cannot be one, because the in field creates 
only the single particle state, whereas the interpolating field, 
in general, creates also multiparticle states.
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Therefore we will require

lim
t→−∞

φ(x) = lim
t→−∞

Zφin (x),    limt→+∞
φ(x) = lim

t→+∞
Zφout (x)

To be rigorous these relations are valid only in a weak sense, 
that is not among operators but rather among  their matrix 
elements between any two normalizable states
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The S matrix

Let us consider a scattering process. The initial state will be 
described by
| p1,, pn; in〉 = ain

† (p1)ain
† (pn ) | 0; in〉 ≡ |α; in〉

and the final state by

| p '1,, p 'n;out〉 = aout
† (p '1)…a†out (p 'n ) | 0; in〉 ≡ |α;out〉

The corresponding probability amplitude is called the matrix 
element of the S-matrix

Sβα = β;out α; in

or, defining 〈β; in | S = 〈β;out |
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equivalent to

Sβα = β; in S α; in

Properties of the S-matrix

1) Since the vacuum is stable and non degenerate, follows
S00 = 1, implying 0, in S = 0,out = eiθ 0, in
2) For the same reason | p; in〉 = p;out
3) The S-matrix maps in and out fields φin (x) = Sφout (x)S

−1

4) The S-matrix is unitary (probability conservation) SS† = 1
5) The S-matrix is invariant under the symmetry properties of 
the theory (out and in states possess the same symmetries)
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The reduction formalism
This formalism allows to evaluate the S-matrix elements in 
terms of VEV’s of T-products of fields. Consider an in state 
composed by a set of particles + a single particle state of 
momentum p Sβ ,α p = β;out α, p; in

β;out α, p; in = β;out a†in (p) α; in =

= β;out a†out (p) α; in + β;out a†in (p)− aout
† (p) α; in =

= β − p;out α; in −

−i d 3∫ x[ f p (x) ∂0 β;out φin (x)−φout (x) α; in( )−
− ∂0 f p (x)( ) β;out φin (x)−φout (x) α; in ]

The single particle can be ”extracted” from the in state

conserved charge
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The red expression in the previous slide can be evaluated at 
any time and we can use the asymptotic conditions

lim
x0→−∞

φin (x) = lim
x0→−∞

1
Z
φ(x), lim

x0→+∞
φout (x) = lim

x0→+∞

1
Z
φ(x)

obtaining

β;out α, p; in = β − p;out α; in +

+ i
Z

lim
x0→+∞

− lim
x0→−∞( ) d 3∫ x[ f p (x) ∂0 β;out φ(x) α; in( )−

− ∂0 f p (x)( ) β;out φ(x) α; in ]
The 3-dim integral can be written in terms of a 4-dim one, 
using the identity
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I = lim
x0→+∞

− lim
x0→−∞( ) d 3∫ x g1∂0g2 − g2∂0g1[ ] =

= d 4
−∞

+∞

∫ x∂0 g1∂0g2 − g2∂0g1[ ] = d 4
−∞

+∞

∫ x g1(x)g2 (x)− g1(x)g2 (x)[ ]
obtaining

β;out α, p; in = β − p;out α; in +
i
Z

d 4∫ x β;out f p (x)φ(x)− f p (x)φ(x)⎡⎣ ⎤⎦ α; in

using KG for fp and integrating by part

β;out α, p; in = β − p;out α; in +

+ i
Z

d 4∫ xf p (x)(+m
2 ) β;out φ(x) α; in
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This procedure can be iterated. For instance, if the set  
β;out α, p; in = β − p;out α; in +

+ i
Z

d 4∫ xf p (x)(+m
2 )x γ ;out φ(x) α − ′p ; in +

+ i
Z

⎛
⎝⎜

⎞
⎠⎟
2

d 4∫ xd 4y f p (x) f  ′p
* (y)(+m2 )x (+m

2 )y γ ;out T (φ(y)φ(x)) α; in

β = γ , ′p

More generally if all the final p’s are different by the initial q’s

p1,, pm;out q1,,qn; in =

= i
Z

⎛
⎝⎜

⎞
⎠⎟
m+n

d 4
i, j=1

m,n

∏∫ xid
4yj fqi (xi ) f pj

* (yj ) ⋅

⋅(+m2 )xi (+m
2 )yj 0 T (φ(y1)φ(yn )φ(x1)φ(xm )) 0

T (φ(x)φ)y)) = θ(x0 − y0 )φ(x)φ(y)+θ(y0 − x0 )φ(y)φ(x)
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All the S-matrix elements can be evaluated in terms of VEV’s
of T-products

Analogous reduction formulas hold for all the other fields, 
charged bosons,  vector fields. In the case of Fermi fields the 
only difference is that

i
Z
→− i

Z2
, fermions,

i
Z
→ + i

Z2
, antifermions

where Z2 is the wave function renormalization for the spinor 
fields.

giovedì 12 luglio 2012



18

Path integral in Field Theory
The path-integral quantization can be, in principle, 
extended to field theory. Consider a real scalar field 
in d+1 dimensions. This is a mapping

Rd × R1→ R1

The quantum mechanical case corresponds to d = 0 
(zero spatial dimensions). Quite clearly there is no 
difference in principle with the QM case, we have 
only to choose a lattice in d+1 dimensions and then 
proceed by the same principles. However we will be 
interested also in massless vector theories

Rd × R1→V d+1
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where Vd+1 is a real vector space in d + 1 dimensions. Here 
we will have to be careful since, as we shall see, the 
Feynman integral is not well defined, 
The last case we will be interested about is the one of spinor 
fields, typically 

Rd × R1→ C 4

This case also requires some modification due to the 
anticommuting nature of the quantum spinor fields. We shall 
see that this point will be solved by introducing “classical” 
spinor fields belonging to an infinite dimensional 
Grassmann algebra.
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Path integral for scalar fields

S = d 4
V∫ x 1

2
∂µϕ∂

µϕ − m2ϕ 2⎡⎣ ⎤⎦ ≡ d
t

′t

∫ t d 3∫ x 1
2

∂µϕ∂
µϕ − m2ϕ 2⎡⎣ ⎤⎦

Consider a real scalar field described by the following action

As it is well know, by introducing normal modes, this field can 
be seen as a collection of non-interacting harmonic oscillators

ϕ(x,t) = 1
(2π )3

d 3∫

kei

k ·xq(

k ,t)

S = d
t

′t

∫ t d 3

k

(2π )3∫
1
2
| q(

k ,t) |2 −ω k

2 | q(

k ,t) |2⎡⎣ ⎤⎦,   

ω k
2 = |

k |2 +m2 , q*(


k ,t) = q(−


k ,t)

We get
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We get a continuous infinity of complex harmonic oscillators 
(with mass =1) satisfying the classical eqs. of motion

q(

k ,t)+ω k

2q(

k ,t) = 0

In presence of an external source J

SJ = d 4
V∫ x 1

2
∂µϕ∂

µϕ − m2ϕ 2 + Jϕ⎡⎣ ⎤⎦

SJ = d
t

′t

∫ t d 3

k

(2π )3∫
1
2
| q(

k ,t) |2 −ω k

2 | q(

k ,t) |2 +J(−


k ,t)ϕ(−


k ,t)⎡⎣ ⎤⎦  

The normal modes decomposition gives

By decomposing q and J in their real and immaginary 
components, one can use the QM result by summing over all 
the oscillators, that is

− 1
2

d
t

′t

∫ sd ′s J(s)Δ(s − ′s )J( ′s )→− 1
2

d
t

′t

∫ sd ′s d 3

k

(2π )3∫ J(−

k , s)Δ(s − ′s ;ω k )J(


k , ′s )
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In configuration space we get

− 1
2

d 4∫ xd 4yJ(x) d 3

k

(2π )3∫ Δ(s − ′s ;ω k )e
i

k ·( x− y )J(y) ≡

≡ i
2

d 4∫ xd 4yJ(x)ΔF (x − y;m
2 )J(y)

where

iΔF (x,m
2 ) = − d 3


k

(2π )3∫ Δ(s;ω k )e
i

k ·x = − lim

→0+
i d 4k
(2π )4∫

e− ikx

k2 − m2 + i

Δ(s,ω k ) = lim→0+

i
2π

e− iνs

ν 2 −ω k
2 + i−∞

+∞

∫ dν, ω k
2 =

k 2 + m2

xµ = (x, s), yµ = (y, ′s ), kµ = (ν,

k )

we have made use of (remember that the mass of the 
oscillators is 1) 

and we have defined
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1
0 0

0 T (ϕ(x1)ϕ(x2 )) 0 = − 1
Z[0]

δ 2Z[J ]
δJ(x1)δJ(x2 )

|J=0=
= −iΔF (x1 − x2;m

2 )

Z[J ] = e
i
2

d4∫ xd4yJ (x )ΔF (x−y;m
2 )J (y)

Z[0],

The generating functional is

and the two-point function
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G (N ) (x1,, xN ) =
0 T (ϕ(x1)ϕ(xN )) 0

0 0

In the following we will use the following notation for the n-
point function

and we will use an index 0 for denoting the free case. In 
particular

G0
(2)(x1, x)2) = −iΔF (x1 − x2;m

2 )

It is a simple execise to show that

G0
(4)(x1,, x4 ) =[G0

(2)(x1 − x2 )G0
(2)(x3 − x4 )+

+G0
(2)(x1 − x3)G0

(2)(x2 − x4 )+G0
(2)(x1 − x4 )G0

(2)(x2 − x3)]
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If we associate to a two point function a line

The four point function we have just evaluated can be 
represented by

It is easily shown that all the n-point functions of the free 
case with n odd vanish, whereas the ones sith n even are 
obtained by combining all the points by a single line in all 
the possible ways. In other word, the only non trivial 
element is the 2-point function. All the higher order functions 
correspond to disconnected graphs,
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The previous considerations suggest to define the functional

Z[J ] =  eiW [J ]

W0 [J ] =
1
2 d4∫ xd

4
yJ (x )ΔF (x − y; m

2
)J (y) + W [0]

and, in the free case

1
Z[0]

δ 2Z[J ]
δJ(x1)δJ(x2 )

|J=0= i δ 2W [J ]
δJ(x1)δJ(x2 )

|J=0= iΔF (x1 − x2 )

in particular

One can check that W[J] generates the connected Green’s 
functions through the Volterra expansion

iW [J ] = (i)n

n!n=0

∞

∑ d 4∫ x1d 4xnJ(x1)J(xn )Gc
(n) (x1,, xn )
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where

Gc
(n) (x1,, xn ) = 1

 0 0
0 T (ϕ(x1)ϕ(xn )) 0 conn

is the connected part of the n-point function. In the free case, 
only the two-point function is connected, all the other 
connected functions vanish as it is can be seen immediately.
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S = d 4
V∫ x 1

2
∂µϕ∂

µϕ − m2ϕ 2⎡⎣ ⎤⎦ −V (ϕ )
⎛
⎝⎜

⎞
⎠⎟ , V (ϕ ) = λ

4!
ϕ 4

Perturbative expansion
Let us consider a real scalar field with a self-interaction

We want to evaluate the effects of the potential using a 
perturbative expansion. We start from the following 
identity

D(ϕ )∫ F[ϕ ]eiS+i d4∫ xJ (x )ϕ (x )
= F 1

i
δ
δJ

⎡
⎣⎢

⎤
⎦⎥
D(ϕ )∫ eiS+i d4∫ xJ (x )ϕ (x )

Z[J ] = N D[ϕ ] eiS+i d4∫ xJ (x )ϕ (x )

∫ =

= N D[ϕ ]∫ e− i d4∫ xV (ϕ )eiS0 +i d4∫ xJ (x )ϕ (x )
= e

− i d4∫ xV 1
i

δ
δ J (x )

⎛
⎝⎜

⎞
⎠⎟Z0[J ]

from which
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〈F(1,,n) ≡ d 4∫ x1d 4xnF(x1,, xn )

Introducing the notation

one finds

W [J ] = −i logZ[J ] = −i log eiW0 [J ] + e
− i 〈V 1

i
δ

δ J (x )
⎛
⎝⎜

⎞
⎠⎟
〉
−1

⎛

⎝
⎜

⎞

⎠
⎟ eiW0 [J ]

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

=W0[J ]− i log 1+δ[J ][ ]

δ[J ] = e− iW0 [J ] e
− i 〈V 1

i
δ

δ J (x )
⎛
⎝⎜

⎞
⎠⎟
〉
−1

⎛

⎝
⎜

⎞

⎠
⎟ eiW0 [J ]

For the coupling going to zero this expression also vanishes, 
therefore we can perform a series expansion in         .  At  
second order 

δ[J ]
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W [J ] =W0[J ]− i δ − 1
2
δ 2⎛

⎝⎜
⎞
⎠⎟ +

Then, we expand    in a series ofδ λ

δ = λδ1 + λ2δ2 +
getting

W [J ] =W0[J ]− iλδ1 − iλ
2 δ2 −

1
2
δ1
2⎛

⎝⎜
⎞
⎠⎟ +

considering only the first order term

δ1 = − i
4!
e− iW0 [J ]〈 1

i
δ

δJ(x)
⎛
⎝⎜

⎞
⎠⎟
4

〉eiW0 [J ]
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and differentiating

δ1 = − i
4!
[〈Δ(y,1)Δ(y,2)Δ(y, 3)Δ(y, 4)J(1)J(2)J(3)J(4)〉 +

+6i〈Δ(y, y)Δ(y,1)Δ(y,2)J(1)J(2)〉 − 3〈Δ2 (y, y)〉]
This contributes to the two-point connected function

and to the 4-point connected one

Gc
(2) (x1, x2 ) = −i δ 2W [J ]

δJ(x1)δJ(x2 ) J=0
=

= iΔF (x1 − x2 )−
λ
2

d 4∫ xΔF (x1 − x)ΔF (x − x)ΔF (x − x2 )
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Gc
(4 ) (x1, x2 , x3, x4 ) =

δ 4W [J ]
δJ(x)4

= −iλ d 4x∫ [Δ(x,1)Δ(x,2)Δ(x, 3)Δ(x, 4)]
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Feynman’s rules in momentum space

Since the scattering experiments in particle physics are the 
main tool of investigation, it is convenient to work in 
momentum space. Consider, for example, the two-point 
function, and define

Gc
(2) (p1, p2 ) = d 4∫ x1d

4x2Gc
(2) (x1, x2 )e

ip1x1+ip2x2

The result up to first order in the coupling is

Gc
(2) (p1, p2 ) = (2π )

4δ 4 (p1 + p2 )×

× i
p1
2 − m2 + i

−
⎡

⎣
⎢ i λ

2
i

p1
2 − m2 + i

⎛
⎝⎜

⎞
⎠⎟

2
d 4q
(2π )4∫

i
q2 − m2 + i

⎤

⎦
⎥
⎥
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From these examples, it is easy to derive the following rules

‣ For each propagator draw a line with associated 
momentum p

‣ For each factor              draw a vertex with the
convention that the momentum flux is zero

−iλ / 4!
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‣To get Gc(n) draw all the topological inequivalent
diagrams after having fixed the external legs. The number of 
ways of drawing a given diagram is its topological weight. The
contribution of any diagram has to be multiplied by its 
topologicalweight.

‣ After imposing conservation of the four-momentum at
each vertex. integrate over all the independent
internal four-momenta

or, in a more systematic way, associate to each vertex

and integrate over all the internal momenta.

d 4q
(2π )4∫

− iλ
4!
(2π )4δ 4 ( pi

i=1

4

∑ )
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