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Lecture 5

★ renormalization group

★ Applications to QED and QCD

★ Anomalies in QFT
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Renormalization Group

For the following considerations it will be convenient to
introduce the one-particle irreducible truncated n-point 
functions defined by removing the propagators on the 
external legs and omitting the delta-function expressing 
the conservation of the four-momentum

(2π )2ωδ (2ω ) ( pi
i=1

n

∑ )Γ(n) (p1, p2 ,, pn ) = G1PI
(n) (p1, p2 ,, pn ) DF

i=1

n

∏ (pi )
−1

DF (p) = d 2ω∫ xeipx 〈0 |T (ϕ(x)ϕ(0)) | 0〉

Here, DF(p) is the exact euclidean propagator. We can 
evaluate the Γ functions both starting from the original 
lagrangian written in terms of bare quantities or expressing 
the bare parameters in terms of the renormalized ones and 
renormalizing the fields ϕB = Zϕ

1/2ϕ
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Therefore the following relation holds

ΓB
(n) (p1, p2 ,, pn;λB ,mB ,ω ) = Zϕ

−n /2Γ(n) (p1, p2 ,, pn;λ,m,µ,ω )

Notice that Zφ-n/2 arises from n factors Zφ1/2 from the 
renormalization of the fields in the connected Green function 
and from n  Zφ-1 factors from the exact propagators. Notice 
also that the renormalized couplings must be though of as 
depending on the bare ones. Notice that ΓB (n) does not 
depend on µ and therefore, requiring that the derivative with 
respect to µ of the right hand side vanishes, we get

µ ∂
∂µ

+ µ ∂λ
∂µ

∂
∂λ

+ µ ∂m
∂µ

∂
∂m

− n
2
µ
∂ logZϕ

∂µ
⎡
⎣
⎢

⎤
⎦
⎥Γ

(n) (p1, p2 ,, pn;λ,m,µ,ω ) = 0

The content of this relation is that a change of the scale µ can 
be compensated by a convenient change of the couplings and 
of the field normalization.
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Defining the following quantities

µ ∂λ
∂µ

= β λ,m
µ
,ω⎛

⎝⎜
⎞
⎠⎟
, 1
2
µ
∂ logZϕ

∂µ
= γ d λ,m

µ
,ω⎛

⎝⎜
⎞
⎠⎟
, µ

m
∂m
∂µ

= γ m λ,m
µ
,ω⎛

⎝⎜
⎞
⎠⎟

the previous equation becomes

µ ∂
∂µ

+ β ∂
∂λ

+ γ mm
∂
∂m

− nγ d
⎡
⎣
⎢

⎤
⎦
⎥Γ

(n) (p1, p2 ,, pn;λ,m,µ,ω ) = 0

It is possible to eliminate the µ-derivative looking at the scale 
dimensions of Γ(n) 

Gc
(n) (p1,, pn ) = d 2ω

i=1

n

∏∫ xi

−2nω
  

ei( p1x1++ pnxn ) 〈0 |T (ϕ(x1)ϕ(xn ) | 0〉conn
n(ω−1)

  

dimGc
(n) = −2nω + n(ω −1) = −n(ω +1)
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(2π )2ω δ (2ω ) ( pi
i=1

n

∑ )

−2ω
  

Γ(n) (p1, p2 ,, pn ) = Gc
(n) (p1, p2 ,, pn )

−n(ω+1)
   DF

i=1

n

∏ (pi )
−1

−n(2(ω−1)−2ω )=2n
  

dimΓ(n) = 2ω − n(ω +1)+ 2n = n + (2 − n)ω

Using again
 = 4 − 2ω

dimΓ(n) = 4 − n + 
2
(n − 2)

Introducing a common scale s for the momenta, we can write 
(using Euler’s theorem)

µ ∂
∂µ

+ s ∂
∂s

+ m ∂
 ∂m

− (4 − n + 
2

(n − 2))⎡
⎣
⎢

⎤
⎦
⎥Γ

(n) (spi;λ,m,µ,) = 0
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−s ∂
∂s

+ β ∂
∂λ

+ (γ m −1)m
∂
∂m

− nγ d + 4 − n
⎡
⎣⎢

⎤
⎦⎥
Γ(n) (spi;λ,m,µ) = 0

Eliminating the µ derivative and taking the limit for d = 4

From this equation we can evaluate the Γ functions at any 
value of the momenta, if we know it at some particular value. 
In order to use the renormalization group equations we need 
to know more about the structure of the functions β,
γd and γm. We have seen that the counterterms are
singular   expressions in ε, therefore  we will express them as 
a Laurent series 

λB = µ a0 +
ak
kk=1

∞

∑⎡
⎣⎢

⎤
⎦⎥
, mB

2 = m2 b0 +
bk
kk=1

∞

∑⎡
⎣⎢

⎤
⎦⎥
, Zϕ = c0 +

ck
kk=1

∞

∑⎡
⎣⎢

⎤
⎦⎥
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and let us consider the counterterms at one-loop level. 
Recalling that

δλ = 3λ2

32π 2
2

+G1

⎡
⎣⎢

⎤
⎦⎥
, δm2 = λ

32π 2 m
2 2

+ F1

⎡
⎣⎢

⎤
⎦⎥

we obtain the bare parameters

λB = µ λ + 3λ2

32π 2
2

+G1

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ +O(λ

3),

mB
2 = m2 1+ λ

32π 2
2

+ F1

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
+O(λ2 )

and, comparing with the Laurent expansion
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a0 = λ + 3λ2

32π 2 G1, a1 =
3λ2

16π 2 ,

b0 = 1+
λ

32π 2 F1, b1 =
λ

16π 2 ,

c0 = 1, c1 = 0

(remember that at this order there is no wave function 
renormalization)

Notice that all the dependence on m/µ comes only in the 
finite terms. In fact, the divergent terms originate fron the 
UV behaviour where masses can be neglected.This is 
important since the RG equations are generally difficult to 
solve due to the mass dependence. On the other hand one 
can devise renormalization conditions where such 
dependence disappears (‘t Hooft and Weinberg).
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Renormalization Conditions
By definition, the Γ functions are finite. At first order in the 
loop expansion the 2 and 4 point functions are given by

Γ(2) (p) = p2 + m2(1+ λ
32π 2 F1 −ψ (2)+ log

m2

4πµ2

⎛
⎝⎜

⎞
⎠⎟
,

Γ(4 ) (p1, p2 , p3, p4 ) = −µλ 1− 3λ
32π 2 ψ (1)+ 2 − log m2

4πµ2 −
1
3
A(s,t,u)−G1

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Of course, there are many different ways to define the 
renormalization. In any case the values chosen for the 
parameters m and λ will be determined by evaluating some 
physical quantity and by comparison with the experiments. 
Let us consider various possibilities
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➡ (A) Renormalization at zero momentum (A(0,0,0)=6)

Γ(2) (p)
p2 ~0

≈ p2 + mA
2 , Γ(4 ) (p1, p2 , p3, p4 ) pi =0 = −µλA

F1
A =ψ (2)− log mA

2

4πµ2 ,   G1
A =ψ (1)− log mA

2

4πµ2

This scheme is somewhat dangerous for massless 
particles since it gives rise to spurious IR divergences.

➡ (B) renormalization at an arbitrary scale
Γ(2) (p) = p2 + mB

2 ,      p2 = M 2 , Γ(4 ) (p1, p2 , p3, p4 ) = −µλB ,   s = t = u = M
2

F1
B =ψ (2)− log mB

2

4πµ2 ,   G1
B =ψ (1)+ 2 − log mB

2

4πµ2 −
1
3
A(M 2 ,M 2 ,M 2 )

However, the coefficients of the RG equations depend on the 
masses
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The most convenient scheme is the one by ‘t Hooft and 
Weinberg:
➡ Take all the arbitrary functions equal to zero. Then, it is easy 
to determine the coefficients of the RG equations. As an 
example, consider (at the order considered here)

λB = µ λ + a1(λ)


⎡
⎣⎢

⎤
⎦⎥

all the coefficients depend only on the coupling. Differentiating 
with respect to µ,

0 =  λ + a1(λ)
ε

⎡
⎣⎢

⎤
⎦⎥
+ µ ∂λ

∂µ
1+ ′a1(λ)

ε
⎡
⎣⎢

⎤
⎦⎥
, ′ak (λ) =

dak (λ)
dλ

We have β = µ ∂λ
∂µ

finite at d = 4 and therefore we
will expand it as β = A + B
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Inserting in the previous equation

0 =  λ + a1


⎡
⎣⎢

⎤
⎦⎥
+ (A + B) 1+ a1

′


⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

we get
B + λ = 0, a1 + A + B ′a1 = 0

and
B = −λ, A = − 1− λ d

dλ
⎛
⎝⎜

⎞
⎠⎟ a1 ⇒β(λ) = − 1− λ d

dλ
⎛
⎝⎜

⎞
⎠⎟ a1 − λ

⇓

β(λ) = − 1− λ d
dλ

⎛
⎝⎜

⎞
⎠⎟ a1

a1 =
3λ2

16π 2
and, from µ ∂λ

∂µ
= β(λ) = 3λ2

16π 2
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Integration of 
µ ∂λ
∂µ

= β(λ) = 3λ2

16π 2

defines how the coupling scale with µ (running coupling 
constant), and the knowledge of λ(µ) and m(µ) allows to 
integrate the RG equations. Let us now show how this works. 
We will show that the RG eqs can be written in the form (sum 
over i) ∂

∂t
F(xi ,t) = βi (xi )

∂
∂xi

F(xi ,t), t = log s

The general solution to this equation is obtained by using the
method of  "characteristics". That is, one considers the
integral curves (the characteristic curves) defined by the
ordinary differential equations

dxi (t)
dt

= βi (xi (t)), xi (0) = xi
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Then, the general solution is

F(xi ,t) =ψ (xi (t)). ψ (xi ) = F(xi ,0)
as it can be checked immediately

∂
∂t
ψ (xi (t)) =

dxi (t)
dt

∂ψ
∂xi

= βi
∂ψ
∂xi

In our case there is a non-derivative term

−s ∂
∂s

+ β ∂
∂λ

+ (γ m −1)m
∂
∂m

− nγ d + 4 − n
⎡
⎣⎢

⎤
⎦⎥
Γ(n) (spi;λ,m,µ) = 0

that is, our equation is of the type
∂
∂t
G(xi ,t) = βi (xi )

∂
∂xi

G(xi ,t)+ γ (xi )G(xi ,t)
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but this term can be eliminated by writing

G(xi ,t) = e
d

0

t

∫ ′t γ (xi ( ′t ))F(xi ,t)
with F satisfying the previous equation, and we get

G(xi ,t) = e
d

0

t

∫ ′t γ (xi ( ′t ))ψ (xi (t))
In our case

Γ(n) (spi;m,λ,µ) = Γ(n) (pi;m(s),λ(s),µ)s
4−ne

−n γ d1

s

∫ (λ ( ′s ))d ′s
′s ,

s ∂λ(s)
∂s

= β(λ(s))s, ∂m(s)
∂s

= m(s)(γ m (λ(s))−1)

This result tells us  that when re-scaling  the momenta, the 
amplitudes do not scale only with the trivial dimensional factor 
s4-n, but that they show also a non trivial scaling, due to the 
anomalous dimension γd, necessary to compensate the 
variations of λ and m with the scale.
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Properties of the renormalization 
group equations

Integrating
µ dλ
dµ

= 3λ2

16π 2

we get
λ(µ) = λs

1

1− 3λs

16π 2 log
µ
µs

, λs = λ(µs )

with µs a reference scale. From this expression we  see that 
starting from µs , λ increases with µ. Suppose that we start 
with a small λ, such  that the perturbative expansion holds
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However increasing µ we will need to add more and more 
terms to the expansion due to the increasing of λ. Therefore 
this theory allows a perturbative expansion only at small mass 
scales, or equivalently at large distances and asymptotic states 
have a meaning.

The increasing of λ is related to the sign of the  β-function. In 
this theory and for QED  (see later) the β-function is positive.

However if β would be negative, the theory would become 
perturbative at large mass scales or at small distances. 

In this case one could solve the RG equations at large 
momenta by using the perturbative expansion and evaluate all 
the coefficients. However, the coupling would increase at large 
distances and this would create a problem for an approach 
based on the in- and out- states. 
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This is in fact, as we shall see, the situation in QCD. 
The fields useful to  describe the dynamics at short distances 
(the quark fields) cannot describe the asymptotic states, 
which should  be rather described by bound states of quarks
as mesons and baryons.

From our expression λ(µ) = λs
1

1− 3λs

16π 2 log
µ
µs

we see that the coupling, starting at the reference scale 
explodes at the scale

µ = µse
16π 2

3λs

This is called the Landau pole and it exists also in QED.
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We will consider now a few possible scenarios

➡ If β(λ) is positive  for any λ, than the running coupling is 
always increasing, and it will become infinite at
some value of µ. If this happens for a finite µ we say
that there is a Landau pole at that scale.

➡ Suppose that β(λ) is positive at small λ and that it becomes 
negative vanishing at λ = λF .

The point λF is called a fixed 
point since,  starting
with the initial condition λ = λF, 
λ remains fixed at that  value.
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To study the behaviour of λ around the fixed point, let us 
expand β around its zero

β(λ) ≈ (λ − λF ) ′β (λF )
from which

µ dλ
dµ

= (λ − λF ) ′β (λF )+

and integrating

λ − λF

λs − λF

= µ
µs

⎛
⎝⎜

⎞
⎠⎟

′β (λF )

The sign of β’(λF) plays here an important role. In the present 
case the sign is negative since β(λ) > 0 for λ < λF and β(λ) < 0 
for λ < λF. 
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For large values of µ we have that λ → λF independently 
on the initial value λs.  For this reason λF is referred to as a
ultraviolet (UV) fixed point.

The large scale  behavior of a field theory of this type depends  
on the value of λF . If λF << 1 and λs < λF the theory is always in 
the perturbative regime. Otherwise, starting from λs > λF the 
theory will become perturbative at large scales (see figure)
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Notice that λ = 0 is a fixed point since β(0) = 0.  However 
this is an infrared (IR) fixed point, since the coupling goes to 
zero for µ → 0 independently on the initial value λs. We
say also that the fixed point is repulsive since λ goes
away from the fixed point for increasing µ,  whereas a UV
fixed point is said to be attractive.

➡ Let us now consider the case of for β(λ) < 0 small values 
of λ  and decreasing monotonically. For instance, suppose      
β(λ)=-a λ2 with a > 0. Integrating the equation for the running 
coupling we get

λ(µ) = λs
1

1+ aλs log
µ
µs

In  this case λ is a decreasing function of  the scale and
goes to zero at infinity, that is λ = 0 is a UV fixed point. This 
property is known as "asymptoyic freedom" and it holds for 
non-abelian gauge theories
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Non-abelian gauge theories are the only 4-dimensional 
theories enjoying this property. In higher dimensions  other 
theories are asymptotically free. For instance, in d = 6 the 
theory λφ3 is asymptotically free. 
Notice that for these theories the running coupling has a pole, 
at a smaller scale than µs µ

µs

= e
−
1
aλs

and the coupling increases at large distances.

➡ Finally let us consider the case of β(λ) < 0 for small 
values of λ, becoming zero at λF and then positive. Then 
β’(λF) > 0. By expanding β(λ) around λF we get (by the same
analysis as before)

λ − λF

λs − λF

= µ
µs

⎛
⎝⎜

⎞
⎠⎟

′β (λF )
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λ→ λF , when µ→ 0

Therefore

whereas  it goes away from λs for increasing µ. Therefore λF 
is an IR fixed point

It is possible to determine 
the other RG eqs 
coefficients by following 
the same procedure, but 
we will skip the derivation.
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Application to QED

S2ω = d 2ω∫ x ψ (iγ µ∂
µ − m)ψ − eψ Âψ − 1

4
FµνF

µν⎡
⎣⎢

⎤
⎦⎥

Consider the QED action in D = 2ω dimensions (ignoting the 
gauge fixing)

since
dim[ψ Âψ ] =ω −1+ 2 ω − 1

2
⎛
⎝⎜

⎞
⎠⎟ = 3ω − 2

we have
dim[e] = 2 −ω

and define
enew = eold (µ)

ω−2 = eoldµ
−/2
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Lp =ψ (iγ µ∂
µ − m)ψ − eµ/2ψ Âψ − 1

4
FµνF

µν ,

Lct = iδZ2ψγ µ∂
µψ −δmψψ − eδZ1µ

/2ψ Âψ − δZ3
4
FµνF

µν

As before we decompose the original lagrangian as follows

giving rise to L = i(1+δZ2 )ψγ µ∂
µψ − (m +δm)ψψ −

−e(1+δZ1)µ
/2ψ Âψ − 1+δZ3

4
FµνF

µν

After rescaling the fields one gets the definition of the bare 
electric charge as 

eB = µ/2e (1+δZ1)
(1+δZ2 )(1+δZ3 / 2)

= µ/2e(1−δZ3 / 2)

where we have used the Ward identity saying δZ1 = δZ2
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δZ3 = − e2

6π 2

Therefore the bare electric charge is determined by the wave 
function renormalization of the photon, corresponding to the 
diagram

eB = µ/2e 1+ e2

12π 2

⎛
⎝⎜

⎞
⎠⎟

Using the same notations as in the scalar case we see that

a1 =
e3

12π 2
(the coefficient of 1/ε)

and using β(e) = µ ∂e
∂µ

= − 1
2
1− e d

de
⎛
⎝⎜

⎞
⎠⎟ a1 ⇒β(e) = e3

12π 2
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Integrating the equation for the running coupling 

µ ∂e(µ)
∂µ

= β(e) = e3

12π 2

we get

α(Q2 ) = α(µ2 )

1− α(µ2 )
3π

logQ
2

µ2

showing a Landau pole at

QLP = µe3π /2α (µ )
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Application to QCD
We can evaluate the running of the coupling in QCD using 
the same methods seen before. The relation between the 
bare and the renormalized coupling is the same as in QED

gB = µ/2g Z1
Z2Z3

1/2

with the same definitions of the renormalization factors as in 
QED, i.e., Z1 is the renormalization of the coupling, Z2 of the 
fermion and Z3 of the gluon. However, in this case the 
identity Z1 = Z2  is not valid. So all the three corrections must 
be evaluated. Starting from the self-energy of the fermion

Z2 = 1− g2

8π 2
C2 (F),

C2 (F) = N 2 −1
2N

for fermions in SU(N)
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In dimensional regularization 
the diagrams d) e) and f) are 
proportional to

lim
a→0

d 2ωk
k2 − a2∫ =

= lim
a→0

(−i)πωΓ(1−ω )(a2 )ω−1 = 0 

for ω >1

Z3 = 1+ g2

8π 2

5
3
C2 (G)− 2

3
nF

⎛
⎝⎜

⎞
⎠⎟ ,

f ADC f DBC = −C2 (G)δAB , C2 (G) = N ,

Tr(T AT B ) = 1
2
nFδAB , nf = # fermion fundamental rprs.
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Z1 = 1−
g2

8π 2
C2 (F)+C2 (G)( )

gB = µ/2g(1+ ΔZ1 − ΔZ2 −
1
2
ΔZ3) = µ/2 g + a1


⎛
⎝⎜

⎞
⎠⎟

a1 = − g3

16π 2
11
3
C2 (G)−

2
3
nF

⎛
⎝⎜

⎞
⎠⎟

Adding everything together
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β(g) = µ ∂g(µ)
∂µ

= − 1
2
1− g d

dg
⎛
⎝⎜

⎞
⎠⎟
a1 = − 1

2
(a1 − 3a1) = a1

Recalling the definition of the beta-function

β(g) = − g3

16π 2
11
3
C2 (G)−

2
3
nF

⎛
⎝⎜

⎞
⎠⎟

In QCD the gauge group is SU(3) and C2(G) = 3

βQCD(g) = − g3

16π 2 11− 2
3
nF

⎛
⎝⎜

⎞
⎠⎟ ,

βQCD(g) < 0 for nF <
33
2

and the theory is asymptotically free.
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Anomalies in QFT
We have assumed that all the symmetries valid in the 
classical case are preserved at the quantum level. In the 
path integral formalism it is clear that a symmetry of the 
action corresponds to a quantum symmetry only if also the 
functional measure of integration is invariant. We first review 
the Ward identities (equivalent to a classycal symmetry) in 
the path integral formalism. Consider an action invariant 
under the global symmetry

φi →φi +δφi , δφi (x) = −iA (T
A )ijφ j (x)

Then, consider the same transformation but with ε = ε(x). We 
get
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δS = d 4∫ x[−i ∂L
∂φi
A (T A )ijφ j − i

∂L
∂φi,µ
A (T A )ij∂µφ j − i

∂L
∂φi,µ

(T A )ijφ j  ∂µA]
Since the action is invariant under the global transformation, 
the sum of the first two terms vanishes. Therefore

δS = d 4∫ x∂µA jµ
A , jµ

A = −i ∂L
∂φi,µ

(T A )ijφ j  (Noether's current)

Consider now the generating functional

Z[η] = D∫ (φ)iS[φ ]+i d4∫ xηiφi

and perform the change of variable, assuming the invariance 
of the measure

φi →φi +δφi = φi − iA (x)(T
A )ijφ j

Z[η] = D∫ (φ)eiS[φ ]+i d4∫ xηiφi ei d4∫ x(∂µA jµ
A +Aηi (T

A )ij φ j )
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The first order in the expansion must vanish

0 = D∫ (φ)eiS[φ ]+i d4∫ xηiφi −i∂µ jµ
A +ηi (T

A )ijφ j⎡⎣ ⎤⎦

This generates all the Ward identities differentiating w.r.t. to 
η and putting η = 0. At the lowest order

∂µ 〈0 | jµ
A (x) | 0〉 = 0

At first order

∂x
µ 〈0 |T ( jµ

A (x)φi (y)) | 0〉 = −δ 4 (x − y)〈0 | (T A )ijφ j (y) | 0〉
At the order N

∂x
µ 〈0 |T ( jµ

A (x)φi1 (x1)φiN (xN )) | 0〉 =

= δ 4
p=1

N

∑ (x − xp )〈0 |T (φi1 (x1)(−(T
A )ip jφ j (xp ))φiN (xN )) | 0〉
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Now consider a zero mass fermion interacting with an abelian 
gauge field which, for simplicity, will be considered as external, 
and consider the functional

Z = D∫ ψDψ ei d4∫ xψ iγ µD
µψ , Dµ = ∂µ + igAµ

The action is invariant under the global transformation

ψ → eiαγ 5ψ  (chiral symmetry)
with a Noether current (classically conserved)

Jµ =ψγ µγ 5ψ

Therefore
δS = d 4∫ xα(x)∂µ (ψγ

µγ 5ψ )
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Consider left and right  eigenvectors  of the Dirac operator
iγ µD

µφm (x) = λmφm (x),
φm (iγ µ


Dµ ) ≡ −iDµ

φm (x)γ
µ = λm

φm (x)

For zero gauge field the eigenvalues are
kµ →λm

2 = k0
2− |

k |2⇒−k4

2− |

k |2= −kE

2

We expand in this basis the Dirac field

ψ (x) = am
m
∑ φm (x),    ψ (x) = bm φm (x)

m
∑

with Grassmann coefficients am and bm. Changing basis 
(barring a possible constant)

DψDψ = d
m
∏ amdbm

we can evaluate the effect of the chiral transformation on 
the coefficients am and bm
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′ψ (x) = (1+ iα(x)γ 5 )ψ (x) = ′am
m
∑ φm (x)

Using the orthogonality

d 4∫ xφm
†φn = δmn

′am = d 4∫ xφm
† (x) ′ψ (x) = am + d 4∫

n
∑ xφm

† (x)iα(x)γ 5φn (x)an =

= am + Cmn
n
∑ an , Cmn = d 4∫ xφm

† (x)iα(x)γ 5φn (x)

D ′ψ D ′ψ = 1
det | I |2

DψDψ , det | I |= eTr log(1+C ) ≈ eTrC

Changing variables (notice that we wre in the Grassman 
case)
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logdet | I |≈ TrC = i d 4∫ xα(x) φn
n
∑ †(x)γ 5φn (x)

The trace of γ5 over the Dirac indices is zero, but one has to 
be careful since the trace is taken all over the Hilbert space. 
We will regularize it in the euclidean region in the following 
way

φ
n
∑

n

† (x)γ 5φn (x) = limM→∞
φ

n
∑

n

† (x)γ 5φn (x)e
λn
2 /M 2

=

lim
M→∞

φn
†

n
∑ (x)γ 5e

(iγ µD
µ )2 /M 2

φn (x) = limM→∞
〈x | tr γ 5e

(iγ µD
µ )2 /M 2⎡

⎣
⎤
⎦ | x〉

We have also
(γ µD

µ )2 == D2 − i
2
σ µν[D

µ ,Dν ]− = D
2 + g
2
σ µνF

µν

To get a contribution to the trace over the Dirac indices we 
need a term with 4 gamma-matrices

φ
n
∑

n

† (x)γ 5φn (x) = limM→∞
tr γ 5

1
2!

− g
2M 2 σ µνF

µν⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥ 〈x | e− /M

2
| x〉
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Evaluating the matrix element

〈x | e− /M
2
| x〉 = lim

x→y

d 4k
(2π )4∫ ek

2 /M 2
e− ik (x−y) = i d 4kE

(2π )4∫ e−kE
2 /M 2

= i M
4

16π 2

we get
φ

n
∑

n

† (x)γ 5φn (x) = limM→∞
tr γ 5

1
2!

− g
2M 2 σ µνF

µν⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥ 〈x | e− /M

2
| x〉 =

= ig2

8·16π 2 tr[γ 5σ µνσ ρλ ]
4 iµνρλ

  
FµνFρλ = − g2

32π 2 µνρλF
µνFρλ

det | I |= e
− i d4∫ xα (x ) g2

32π 2
µνρλF

µνFρλ

⇓

Z = D∫ ψDψ ei d4∫ xψ iγ µD
µψ e

i d4∫ xα (x )(∂µ (ψγ
µγ 5ψ )+

g2

16π 2
µνρλF

µνFρλ )

from which
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After changing variable (as we did before), we get

Z = D∫ ψDψ ei d4∫ xψ iD̂ψ e
i d4∫ xα (x )(∂µ (ψγ

µγ 5ψ )+
g2

16π 2
µνρλF

µνFρλ )

implying that the axial current is not conserved in the 
quantum case

∂µ j5
µ = − g2

16π 2 µνρλF
µνFρλ
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