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For the following considerations it will be convenient to
introduce the one-particle irreducible truncated n-point
functions defined by removing the propagators on the
external legs and omitting the delta-function expressing
the conservation of the four-momentum

2wy 8%” QY pIT" (py. Py 0,) =G (P Dy P | Dr (P
=1 =1

D, (p)= | d**xe" (01T (9(x)p(0))10)

Here, Dr(p) is the exact euclidean propagator. We can
evaluate the ' functions both starting from the original
lagrangian written in terms of bare quantities or expressing
the bare parameters in terms of the renormalized ones and
renormalizing the fields ¢, =Z ¢
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Therefore the following relation holds

LY (Papyy s Py Ay, @0)=Z" T (py, pyoeee, ps A, 1, @)

Notice that Zy™2 arises from n factors Z,"? from the
renormalization of the fields in the connected Green function
and from n Zy ! factors from the exact propagators. Notice
also that the renormalized couplings must be though of as
depending on the bare ones. Notice that 's (" does not
depend on y and therefore, requiring that the derivative with
respect to y of the right hand side vanishes, we get

0L 9 omd n OlogZ,

u T PPy 5P Asm, @) =0

TR M oom 2

The content of this relation is that a change of the scale u can
be compensated by a convenient change of the couplings and
of the field normalization. ;
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Defining the following quantities

dlog Z
‘ua_)’_ﬁ(l_ wj I‘U 0g szd(laﬂaw)a ﬂa_m:}/m(/l,ﬁ,wj
o u 2" du u

the previous equation becomes

0 0 0 )
“au I ﬁait R T (pyspysees Py Aottt 11, 0) = 0

It_is possible to eliminate the _p-derivative looking at the scale
dimensions of (")

G(”)(pl, D)= deZa) o (PrTH D, )<O 1T (p(x,)@(x, )|O>Conn

y n(w—1)

h'd

—2nw

dim G(”) 2nw+n(w—-1)=—n(w+1)

4
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<2n>2w5<2w><2p>r<"><p1,p2, . P)= G (P ps - ,p>HD (p,)"

N ) —n(a)+1) N J
—20) —n2(w— 1) 20)=2n

dimT" =20 -n(w+1)+2n=n+2 -n)w

Using again
e=4-2w

dimF(”):4—n+§(n—2)

Introducing a common scale s for the momenta, we can write
(using Euler’s theorem)

%+S%+m aam (4—n+§(n—2)) " (sp,; A,m, €)= 0
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Eliminating the y derivative and taking the limit for d = 4

From this equation we can evaluate the I functions at any

value of the momenta, if we know it at some particular value.
In order to use the renormalization group equations we need

to know more about the structure of the functions (3,
vVda and ym. We have seen that the counterterms are

singular expressions in g, therefore we will express them as

a Laurent series

A‘B =
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and let us consider the counterterms at one-loop level.
Recalling that

30° [ 2 2
O = ;Lz -G, |, om* = ;Lzm2 —+F,
3217 | € 321 €

we obtain the bare parameters

2
Ay = 1| A 3 (2 | Gl) +O(17),

| 3277 \ e

A (2
m, =m”| 11 32n2(€ :Fl) +O(1%)

and, comparing with the Laurent expansion

7
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(remember that at this order there is no wave function
renormalization)

32 3)°
a, = A G,, = ,
0 20 YT en?
A A
b. =1 F., b = :
! 272 Y 16rx?

c,=1, ¢, =0

Notice that all the dependence on m/y comes only in the
finite terms. In fact, the divergent terms originate fron the
UV behaviour where masses can be neglected.This is
important since the RG equations are generally difficult to
solve due to the mass dependence. On the other hand one
can devise renormalization conditions where such
dependence disappears ('t Hooft and Weinberg).

8
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By definition, the I' functions are finite. At first order in the
loop expansion the 2 and 4 point functions are given by

FO(p) = p? +m*(14 -2

m2
(Fl—w(2)+log 2]?

32717 4
6 32 m_ 1
TP, Dy PasPa) =L }L[l— o [l//(l)+2—log e —EA(S,ZL,M)_GI])

Of course, there are many different ways to define the
renormalization. In any case the values chosen for the
parameters m and A will be determined by evaluating some
physical quantity and by comparison with the experiments.
Let us consider various possibilities

9
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= (A) Renormalization at zero momentum (A(0,0,0)=6)

F(Z)(p) p2~0 =~ p2 + mfh F(4)(p19p2 9p3 9p4 )‘p,:() — _;UEA‘A
2 2
m m
F'=w(2)-log MZQ , G'=y(1)-log 4n;2

This scheme is somewhat dangerous for massless
particles since it gives rise to spurious IR divergences.

= (B) renormalization at an arbitrary scale

T (p)=p +my, p =M", T(p.p,.ps,p,)=—UAy, s=t=u=M"

2 2
1
FP =y (2)-log 4’”32, G? =y (1)+2—log 4’”32 A M M)
Tl Tl

However, the coefficients of the RG equations depend on the
masses

|0
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The most convenient scheme is the one by ‘t Hooft and
Weinberg:

= Take all the arbitrary functions equal to zero. Then, it is easy
to determine the coefficients of the RG equations. As an
example, consider (at the order considered here)

A, = U | AA a,(A)
B |

€

all the coefficients dep_end only o_n the coupling. Differentiating
with respect to p,

i A 04 a (L) da, (1)
0=¢| AA 4( Fu—| 14+ — . al(A)=—2=

| g “au_ e a(4) dA
We have ﬁ:ug_;L
u

finite at d = 4 and therefore we
will expand it as P=A+ Be
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Inserting in the previous equation

— - /

O=¢| A+ - (A + Be) 1+4
B € _ €
we get
B+A=0, a+A+Ba =0
and p p
B=-A, A:_(l_ld_x)al:ﬁ(l):_(l_ldjjal_/k

and, from a, =
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Integration of
M piay=~
5 o 1672

defines how the coupling scale with p (running coupling
constant), and the knowledge of A(u) and m(u) allows to
integrate the RG equations. Let us now show how this works.

We will show that the RG eqgs can be written in the form (sum
over i) R

_F(xivt):ﬁi(xi)iF(xiat)a t =logs
ox,

ot

The general solution to this equation is obtained by using the
method of "characteristics". That is, one considers the

integral curves (the characteristic curves) defined by the
ordinary differential equations

dx,(t)
dt

Bi(x; (1), x,(0)=X

|3
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Then, the general solution is

F(x,.t)=y(x,(). wx)=F(x,0)
as it can be checked immediately
d _dx,(Doy Y
o V= o TRy

In our case there Is a non-derivative term

that is, our equation is of the type

EG(xi )= (xi)iG(xl. 1)+ 7(x)G(x;,t)
ot ox,

l
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but this term can be eliminated by writing
G(Xl- ,I) — ejodt Y (x; (¢ ))F()Ci ,f)
with F satisfying the previous equation, and we get

Gx.) = ™"y (1)

In our case

s ds’
—n | Va6

T (spym, A1) =T (pym(s),A(s), 1)s" e ,

) OA(s) dm(s)

= P(A(s))s, =m(s)(7,,(A(s))—1)

ds ds
This result tells us that when re-scaling the momenta, the
amplitudes do not scale only with the trivial dimensional factor
s#n but that they show also a non trivial scaling, due to the
anomalous dimension y4, necessary to compensate the
variations of A and m with the scale.

|5
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. Properties of the renormalization |
____Qroup equations

Integrating

we get |
A=A ——=7 e A, = AMU,)
1 —log —
167 U

with us a reference scale. From this expression we see that
starting from us, A increases with u. Suppose that we start
with a small A, such that the perturbative expansion holds
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However increasing u we will need to add more and more
terms to the expansion due to the increasing of A. Therefore
this theory allows a perturbative expansion only at small mass
scales, or equivalently at large distances and asymptotic states
have a meaning.

The increasing of A is related to the sign of the [-function. In
this theory and for QED (see later) the 3-function is positive.

However if 3 would be negative, the theory would become
perturbative at large mass scales or at small distances.

In this case one could solve the RG equations at large
momenta by using the perturbative expansion and evaluate all
the coefficients. However, the coupling would increase at large
distances and this would create a problem for an approach
based on the in- and out- states.

|7
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This is in fact, as we shall see, the situation in QCD.
The fields useful to describe the dynamics at short distances
(the quark fields) cannot describe the asymptotic states,

which should be rather described by bound states of quarks
as mesons and baryons.

1

From our expression  A(u)= A1

1 3%2 logﬂ
167 U

we see that the coupling, starting at the reference scale
explodes at the scale

1677
3
u=pe™

This is called the Landau pole and it exists also in QED.
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We will consider now a few possible scenarios

= |[f B(A) Is positive for any A, than the running coupling is
always increasing, and it will become infinite at

some value of u. If this happens for a finite y we say

that there i1s a Landau pole at that scale.

= Suppose that 3(A) is positive at small A and that it becomes
negative vanishing at A = Ar .

The point Aris called a fixed
point since, starting

with the initial condition A = Ar,
A remains fixed at that value.
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To study the behaviour of A around the fixed point, let us
expand [3 around its zero

from which
dA
du
and integrating ,
2 AF ( u \ﬁ (AF)

The sign of B’(Ar) plays here an important role. In the present
case the sign is negative since B(A) > 0 for A < Arand B(A) <
for A < Ar

20
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For large values of y we have that A = Arindependently

on the initial value As. For this reason Ar is referred to as a
ultraviolet (UV) fixed point.

Mg i

The large scale behavior of a field theory of this type depends
on the value of Ar . If Ar << 1 and As <Ar the theory is always in
the perturbative regime. Otherwise, starting from As > Ar the
theory will become perturbative at large scales (see figure)

21
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Notice that A = 0 is a fixed point since 3(0) = 0. However
this is an infrared (IR) fixed point, since the coupling goes to

zero for y = 0 independently on the initial value As. We

say also that the fixed point is repulsive since A goes
away from the fixed point for increasing u, whereas a UV

fixed point is said to be attractive.

= |_et us now consider the case of for 3(A) < 0 small values
of A and decreasing monotonically. For instance, suppose
B(A)=-a A2 with a > 0. Integrating the equation for the running
coupling we get 1

AMu) = 4,

1+aAl, logﬂ

M,
In this case A is a decreasing function of the scale and
goes to zero at infinity, thatis A = 0 is a UV fixed point. This
property is known as "asymptoyic freedom" and it holds for

non-abelian gauge theories .,
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Non-abelian gauge theories are the only 4-dimensional
theories enjoying this property. In higher dimensions other
theories are asymptotically free. For instance, in d = 6 the
theory A3 is asymptotically free.

Notice that for these theories the running coupling has a pole,
at a smaller scale than s I

M

and the coupling increases at large distances.

= Finally let us consider the case of 3(A) < O for small
values of A, becoming zero at Ar and then positive. Then
B’(Ar) > 0. By expanding B(A) around Ar we get (by the same

analysis as before) B’ (Ar)
A-A, ()

A‘S_A’F _\JLLS)

23
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Therefore

A—>A., when u—0

whereas it goes away from As for increasing Y. Therefore Ar
Is an IR fixed point

It is possible to determine
the other RG eqgs
coefficients by following
the same procedure, but
we will skip the derivation.

24
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Consider the QED action in D = 2w dimensions (ignoting the
gauge fixing)

0 — — " 1 v
S, = jdz x| y(iy 0" —my — ey Ay — ZFWF“
since
dim[l/_/AI//]=a)—1+2(a)—%j= 3w -2
we have
dim[e]=2-w
and define

B w—2 —e/2
enew o eOld (tu ) T eoldll’t

25
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As before we decompose the original lagrangian as follows
1

L, =y(iy,0" —my —eu" Ay — T F, F",
AT L Smi S e/2.— %4 6Z3 uv
Lct =1 Zzwu Y —-—omyy —e Zlau l//Al// 4 F,qu
giving rise 10 1. = i(1+ 82, )y 0"y — (m+ Sm)py —
—e(1+6Z )"y Ay : +fz “F, F"

After rescaling the fields one gets the definition of the bare
electric charge as

€2 (1 + EZI)
(1+8Z,)(1+68Z, /2)

where we have used the Ward identity saying 521 — 522

=u’e(1-67,/2)

26
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Therefore the bare electric charge is determined by the wave
function renormalization of the photon, corresponding to the

diagram
.
wm»wa » 072, =
67T ¢

e—/,te

\ 1271'6/

Using the same notations as in the scalar case we see that

a, = —~  (the coefficient of 1/¢)

1 d 3
and using  f(e) = us—; 5(1 edej%:}ﬁ(e):uenz

27
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Integrating the equation for the running coupling

p2_ pey= ¢

a,u 271

we get

showing a Landau pole at

3r/2o( )

Q,p = Ue

28

giovedi 12 luglio 2012



We can evaluate the running of the coupling in QCD using
the same methods seen before. The relation between the
bare and the renormalized coupling is the same as in QEL

Z,
Z, Z1/2

=u"g

with the same definitions of the renormalization factors as in
QED, i.e., Z1 is the renormalization of the coupling, Z2 of the
fermion and Z3 of the gluon. However, in this case the
identity Z1 = Z> is not valid. So all the three corrections must
be evaluated. Starting from the self-energy of the fermion

k g
/@f’ﬂ“ﬁ-f?‘?@g Z, =1~ Q7r2¢ G (F),
IS % N* -1 .
D —w—= > = P C,(F)= for fermions in SU(N)

p—k 2N

29
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AL
é(» p

— EEETTTETY } 1L % 9”!””” St
G@lza;}

a)

!Bu!na‘wvmms
gﬂ aag\
e s ALLLLLL LA N 111183111 + WMOW -+
s 4 L} m'

b) d)
N £ In dimensional regularization
) *%e%j S the diagrams d) e) and f) are
proportional to
e) f) . d k -
11128_‘. kz _az o
g2 5 2 . . 0] 2\w—1
Z,=1+ —C,(G)——=n, |, =lm(—-i)7z" T (l-w)a )" =0
8r’e\ 3 3 P

fADCfDBC —C (G)5AB’ C (G) N, for w >1

n, = #termion fundamental rprs.

1
Tr(TT)—E s T

30
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A

p'+k p+k p’-k}ég@fe Qeﬁg\p-k
B A sssss5t3\B B 45 P %o ¢
T ags k
p' / K \ P p /

2

_ .8
Z, =1 8ﬂze(cz(F) C,(G))

Adding everything together

. 1 ) a
gB=u/2g(1+AZI—AZZ—5AZg)=u/2(8+:1)

3
¢ (11 >
hT 167r2( 3 Cz(G)_gnFj

31
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Recalling the definition of the beta-function

og(u) 1 d 1
— —— | ] — 00— _ — — — —
ﬁ(g) U a‘u 2( gdgjal 2(01 3611) a,
B g3 11 _2

In QCD the gauge group is SU(3) and C2(G) =3

) 2
:BQCD(g): o (11__’%),

167° 3

33

Pocn(8) <0 forn, < Py

and the theory is asymptotically free.

32
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We have assumed that all the symmetries valid in the
classical case are preserved at the quantum level. In the
path integral formalism it is clear that a symmetry of the
action corresponds to a quantum symmetry only if also the
functional measure of integration is invariant. We first review
the Ward identities (equivalent to a classycal symmetry) in
the path integral formalism. Consider an action invariant
under the global symmetry

¢, — ¢, +0¢,, 0¢,(x)=—ie,(T"),$,(x)

Then, consider the same transformation but with € = g(x). We
get

33
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08 = jd4x[_l_¢l€A(T );i P —la?bi e, (T" ;0,0 —i oL

Since the action is invariant under the global transformation,
the sum of the first two terms vanishes. Therefore

5S = Jd“xa“eAj;‘, Ji = iaa¢L (T*),¢; (Noether's current)
i
Consider now the generating functional
iS[p1+i | d*x;0,
zim = [ D)™

and perform the change of variable, assuming the invariance
of the measure

O, —> ¢, + 5¢z =, — ieA(x)(TA)ij¢j
Z[T]] _ JD(¢)ei5[¢]+in xmcbieijd xX(07€eqjy +eam; (T7);;0;)

34
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The first order in the expansion must vanish

This generates all the Ward identities differentiating w.r.t. to
n and putting n = 0. At the lowest order

0" (0| j;‘(x) 10)=0
At first order
0N OIT(j; (x)p,(yN10)y==6"(x—yXOI(T"),¢,(y)10)

At the order N
0, (0| T(]Z1 ()P, (x)--- ¢, (xy))] 0)=

35

= > 8" (x=x, XOIT (9, (x,)-(=(T"), ;0,(x,))--¢, (xy)10)




Now consider a zero mass fermion interacting with an abelian
gauge field which, for simplicity, will be considered as external,
and consider the functional

i _[ d*x iy, D"y

Z=|DyDye , D,=9,+igA,
The action is invariant under the global transformation

v — ey (chiral symmetry)
with a Noether current (classically conserved)
J =YY
Therefore

8S = J'd“xoc(X)au(l?’}’“’}’sl//)

36
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Consider left and right eigenvectors of the Dirac operator
iy, D"$,,(x)= 2,9, (x).

9, iy ,D")==iD,p, (x)7" = 2,9, (x)
For zero gauge field the eigenvalues are
k, > A2 =ki— k= —k;—k’=—k;
We expand in this basis the Dirac field
v(x)= a,9,(x), ¥(x)=b,0,x)

with Grassmann coefficients am and bm. Changing basis
(barring a possible constant)

Dy Dy =] |da,ab,

we can evaluate the effect of the chiral transformation on
the coefficients am and bnm

37
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W' (x) = (1+io(x)y )y (X)) = Y a8, (x)
Using the orthogonality )

|d‘x¢}0, =3,
a, = [d'xe) Oy’ ()=a,+Y, [dx¢) (ia(x)y0,(x)a, =

=a,+Y.C,a, C,=]|dx¢)®ia(x)ys,x)

Changing variables (notice that we wre in the Grassman
case)

1
det | I°

Dy’ Dy’ = DyDy, det|l|=¢e"") = "¢

38
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logdet |11=TrC =i|d*xa(x)y.0, (x)7s6,(x)

The trace of ys over the Dirac indices is zero, but one has to
be careful since the trace is taken all over the Hilbert space.
We will regularize it in the euclidean region in the following
way

ZWL (x)y5¢n (x)= }412}02%( (x)ySgbn ()c).g)“'f/M2 _

) ; UN2 ag2 ] ; UN2 7 ag2
lim Y ¢! (x)yse™” ™ ¢, (x)= lim (x| tr[yse( Ty M }|x>
M —oo . M —oo

We have also
g

(y,D")? = D* - é%[D” D) =D +50,F"

To get a contribution to the trace over the Dirac indices we
need a term with 4 gamma-matrices

2
quT(x)}/Sq)n(x):Al}E}otr Y. : ( : GWF”V) (xle_D/M2 | x)

21 2M°

- 39
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Evaluating the matrix element

4 4 4
<x|e_“/M2 | x) = lim dk ek M’ k(=) =ij d ki e kM — M
Xy (27[)4

(2m)" 167*

we get 2
Z¢T(x)75¢n(x)=}}21ﬂ’ Vsi(_ : %F‘”) (xle®™ Ix)y=

) 2

L8 V 7 pA
tr[YSGqupA]F‘u P = 3277:2 uvp/l

sl 2l
T 8167

4l€uvp/1

2

from which i d4m(x)3§ o FU P
detlll=e

2
([ d*x iy, Dty 1 [d*xaco@, (rysy)+ P

€

40

Z=|DyDye
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After changing variable (as we did before), we get

2
(FHY PRy

i[ategipy i vo(o@, ot ysys

7 = j Dy Dye e o

implying that the axial current is not conserved in the
gquantum case

41
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