Exercises
 Advanced Quantum Field Theory TAE - Madrid 2012 R. Casalbuoni

For most of the exercises see
R. Casalbuoni, Lecture notes in

Advanced Quantum Field Theory, http://theory.fi.infn.it/casalbuoni/lezioni99.pdf

Lecture 1

1) Evaluate the Feynman amplitude in the free case and prove that it is given by:

$$
\left\langle q^{\prime}, t^{\prime} \mid q, t\right\rangle=\left[\frac{m}{2 \pi i\left(t^{\prime}-t\right)}\right]^{\frac{1}{2}} e^{i S_{c_{l}}}
$$

where

$$
S_{\mathrm{cl}}=\frac{m}{2} \frac{\left(q^{\prime}-q\right)^{2}}{\left(t^{\prime}-t\right)}
$$

is the classical action for the free particle (see lecture 1).
2)The wave function is determined in this formalism as the ampitude for going to a point starting from a fixed one

$$
\psi\left(q^{\prime}, t^{\prime}\right)=\left\langle q^{\prime}, t^{\prime} \mid 0,0\right\rangle
$$

In the free case evaluate the wave function in momentum space and show that

$$
\psi(p, t)=e^{-i E t}, \quad E=\frac{p^{2}}{2 m}
$$

3) Show that the state $|q, t\rangle$
such that (the operator is in the Heisenberg representation)

$$
q(t)|q, t\rangle=q|q, t\rangle
$$

is given by (q is in the Schrodinger representation)

$$
|q, t\rangle=e^{i H t}|q\rangle, \quad q|q\rangle=q|q\rangle
$$

4) Prove the Feynman formula in configuration space given in page 13.
5) Evaluate the functional derivatives of the functionals defined in the lectures

$$
F_{1}[\eta]=\int_{-\infty}^{+\infty} d x w(x) \eta(x) \quad F_{2}[\eta]=e^{-\frac{1}{2} \int d x \eta^{2}(x)}
$$

$$
F_{3}[\eta]=\eta\left(x_{0}\right)
$$

$$
\text { and of } \quad F_{4}[\eta]=e^{-\frac{1}{2} \int d x d y K(x, y) \eta(x) \eta(y)}
$$

6) If $S[q]=\int_{t}^{t^{\prime}} L(q, \dot{q}) d t$ with $\delta q(t)=\delta q\left(t^{\prime}\right)=0$
prove that $\quad \frac{\delta S}{\delta q(t)}=\frac{\partial L}{\partial q(t)}-\frac{d}{d t} \frac{L}{\partial \dot{q}(t)}$

Lecture 2

1) Assuming that the set of particles prove the following equation using the $\beta=\gamma, p^{\prime}$ procedure outlined in the main text (see lecture 2, pages 13-14)

$$
\begin{gathered}
\langle\beta ; \text { out }| \alpha, p ; \text { in }\rangle=\langle\beta-p ; \text { out }| \alpha ; \text { in }\rangle+ \\
\left.\left.+\frac{i}{\sqrt{Z}} \int d^{4} x f_{\bar{p}}(x)\left(\square+m^{2}\right)_{x}\langle\gamma ; \text { out }| \phi(x) \right\rvert\, \alpha-p^{\prime} ; \text { in }\right\rangle+
\end{gathered}
$$

$\left.+\left(\frac{i}{\sqrt{Z}}\right)^{2} \int d^{4} x d^{4} y f_{\bar{p}}(x) f_{\bar{p}^{\prime}}^{*}(y)\left(\square+m^{2}\right)_{x}\left(\square+m^{2}\right)_{y}\langle\gamma ;$ out $| T(\phi(y) \phi(x)) \right\rvert\, \alpha ;$ in \rangle
2) For a free field, evaluate the momentum operator and show that

$$
\left[P_{\mu}, \varphi(x)\right]=-i \partial_{\mu} \varphi(x), \quad\left[P_{\mu}, a(k)\right]=-k_{\mu} a(k)
$$

where $\mathrm{a}(\mathrm{k})$ is the annihilatiọn operator
3) Evaluate the expression for the action in normal coorfinates given at page 20 in Lecture 2.
4) Evaluate $G_{0}{ }^{(4)}$ in the free case, see lecture 2, page 24.
5) Show that $\mathrm{W}[\mathrm{J}]$ (page 26, lecture 2) generates the connected Green functions (see page 127 of Casalbuoni's lecture notes in the bibliography)
6) Evaluate δ_{1} given in page 30 , lecture 2

Lecture 3

1) Derive thee expression for the normalization factor $N\left(\theta, \theta^{*}\right)$ given in Lecture 3, page 7.
2) Prove the translational invariance of the Grassmann integral, ;ecture 3, page 10.
3) Show that a linear invertible change of the generators does not change the algebraic relations defining a Grassmann algebra (see lecture 3, page 11)
4) Show that a real antisymmetric matrix A can be put in the canonical form given il lecture 3, page 14, through an orthogonal transformation.
5) Using the result of the previous exercise prove the following equation

$$
I=\int d \theta_{n} \cdots d \theta_{1} e^{\theta^{T} A \theta / 2}=\lambda_{1} \cdots \lambda_{\frac{n}{2}}=\sqrt{\operatorname{det} A}
$$

6) In a gauge theory consider the gauge invariant operator

$$
F\left[A^{\Omega}\right]=F[A]
$$

and its expectation value in a given gauge f.

$$
\langle 0| T^{*}(F[\mathbf{A}])|0\rangle_{f}=\int D\left(A_{\mu}\right) \delta[f] \Delta_{f} e^{i S} F[A]
$$

Show that this expression does not depend on the choice of the function f .

Lecture 4

1) Derive the Feynman rules for a non abelian gauge theory, using the functional formalism (see lecture 4, pages 4 and following.
2) In the context of regularization of the scalar theory derive the expressions given in Lecture 4 (pages 23-24) for T_{2} and T_{4}.
3) Perform explicitly the valculations about the one-loop renormalization of the scalar theory discussed in Lecture 4, pages 30-35)
4) Perform the perturbative expansion at second order discussed Lecture 2 and derive the diagrammatic expansion given in Lecture 4, page 36 and the expressions of page 37 .

Lecture 5

1) Derive the expression for the 2 and 4 points Γ functions at given in Lecture 5, page 9, and determine the arbitrary functions F and G in the renormalization schemes A and B in Lecture 5, page 10.
2) In the frameworkof QED derive the expression for the bare electric charge given in lecture 5, page 26 (assume the validity of the Ward identity $Z_{1}=Z_{2}$.
3) Repeat the same exercise as in 2) for QCD, that is evaluate g_{B}.
4) Check that the Ward identity derived, at first order, in lecture 5, page 35 can be derived from the equal time commutation relation

$$
\left[j_{0}^{A}(\vec{x}, t), \varphi_{i}(\vec{y}, t)\right]=-\delta^{3}(\vec{x}-\vec{y})\left(T^{A}\right)_{i j} \varphi_{j}(\vec{x}, t)
$$

