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The Higgs boson in the Standard Model

Maŕıa José Herrero, IFT-UAM (Madrid)

Madrid, July/2012

1. The gauge symmetry of the electroweak interactions. Why Higgs?.

2. Spontaneous symmetry breaking, the Goldstone Theorem

3. Electroweak symmetry breaking, the Higgs Mechanism

4. Properties of the Higgs particle in the Standard Model
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Current status of knowledge: the Standard Model (SM)

The SM describes with unprecedent precision (0.1%) the properties of all
known elementary particles, Leptons and Quarks, and their fundamental in-
teractions, electromagnetic, strong and weak. Gravity is not included in SM.

⇒ all particles experimentally seen
⇒ the carriers of electromagnetic (photon) and strong interactions (gluons)
are massless gauge bosons . But the carriers of weak interactions, W± and
Z, are massive: Mexp

W = 80.385±0.015 GeV, Mexp
Z = 91.1876±0.0021 GeV
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The problem: how to reconcile gauge invariance and massive gauge bosons

SM: Quantum field theory ⇒ interaction: exchange of field quanta

Construction principle of the SM: gauge invariance

Example: Quantum electro-dynamics (QED)

Fermion Ψ with electric charge Q (in units of e, the electron charge).

Exchanged field: photon Aµ (γ in the figure)

Ψ

Ψ

γ

nucleus

LQED invariant under gauge transformation:

Ψ → ei eQ θ(x)Ψ (spacetime dep. rot. in internal space), Aµ → Aµ − 1
e∂µθ(x)

mass term for photon: m2AµAµ is not gauge invariant (E)

⇒ photon is massless: In agreement with data! .

What about W and Z electroweak gauge bosons?

Why are they massive? How do they get their masses?
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The building of a gauge theory:

The gauge principle:

In order to get a Lagrangian that is invariant under local (gauge) transfor-

mations, massless gauge fields Aµ must be introduced with specific inter-

actions with matter. The concrete prescription is provided by the covariant

derivative. Number of gauge bosons = Number of symmetries= Number

of generators of the symmetry group.

Steps: 1) Start with the Lagragian for propagating fermion fields without

interactions,i.e., for free fields. 2) Replace the usual derivative by the co-

variant derivative. 3) Add the proper invariant kinetic terms for the gauge

fields, such that they can propagate.

QED as an example:

Lfree = Ψ̄(i 6∂ −m)Ψ, 6∂ ≡ ∂µγµ, γµ= Dirac matrices

The corresponding eq. of motion for Ψ is Dirac equation: (i 6∂ −m)Ψ = 0

∂µΨ → DµΨ ≡ (∂µ − ieQAµ)Ψ ; Fµν = ∂µAν − ∂νAµ

⇒ LQED = Ψ̄(i /D −m)Ψ− 1
4FµνFµν invariant Ψ → eieQθΨ, Aµ → Aµ − 1

e∂µθ

Q = generator of U(1)em group; Aµ gauge field ≡ photon
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The Electroweak Theory I:

The gauge symmetry group of electroweak interactions

Gauge group: SU(2)L × U(1)Y : 4 generators

SU(2)L weak isospin group. Non abelian. 3 generators T1,2,3 =
σ1,2,3

2

U(1)Y weak hypercharge group. Abelian. 1 generator Y
2

U(1)em ⊂ SU(2)L × U(1)Y ; Q = T3 + Y
2

Quarks and Leptons transform as:

1) Under SU(2)L: ΨL → ei
~σ
2
~θ(x)ΨL, doublets ; ΨR → ΨR, singlets

2) Under U(1)Y : Ψ → ei
Y
2β(x)Ψ

Lepton T T3 Q Y

νL
1
2

1
2 0 −1

eL
1
2 −1

2 −1 −1

eR 0 0 −1 −2

Quark T T3 Q Y

uL
1
2

1
2

2
3

1
3

dL
1
2 −1

2 −1
3

1
3

uR 0 0 2
3

4
3

dR 0 0 −1
3 −2

3
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The Electroweak Theory II:

The particle content and gauge interactions

Matter

1st family:

(
νe

e−

)

L

, e−R,

(
u

d

)

L

, uR, dR

2nd family:

(
νµ

µ−

)

L

, µ−
R,

(
c

s

)

L

, cR, sR

3rd family:

(
ντ

τ−

)

L

, τ−
R ,

(
t

b

)

L

, tR, bR

Gauge

SU(2)L: 3 generators Ti, 3 gauge bosons W µ
i

U(1)Y : 1 generator Y
2
, 1 gauge boson Bµ

W i
µν = ∂µW i

ν − ∂νW i
µ + gǫijkW j

µW k
ν

Bµν = ∂µBν − ∂νBµ

Physical EW bosons

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ )

Zµ = cos θWW 3
µ − sin θWBµ

Aµ = sin θWW 3
µ + cos θWBµ

Introduce interactions by: ∂µΨ → DµΨ = (∂µ − ig ~T . ~Wµ − ig′Y
2
Bµ)Ψ

g = SU(2)L gauge coupling; g′ = U(1)Y gauge coupling

U(1)em ⊂ SU(2)L × U(1)Y ⇒ g = e
sin θW

,g′ = e
cos θW

LEW =
∑

Ψ iΨγµDµΨ− 1
4
W i

µνW
µν
i − 1

4
BµνBµν ; LSM = LEW + LEWSB

Interactions OK in LEW, but fermions and gauge bosons massless yet

mΨΨ = m(ΨLΨR +ΨRΨL); M2
WWµW µ, Not gauge invariant (E) ⇒ need to find LEWSB
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The Electroweak Theory: Feynman Rules I

Interactions in LEW

ΨΨ

γµ

ieQΨγµ

l−νl

W−
µ

i
g

2
√
2
γµ (1− γ5)

q′q

W−
µ

i
g

2
√
2
γµ (1− γ5)Uqq′

νlνl

Zµ

i
g

2cW
γµ

(
1− γ5

2

)

ff

Zµ

i
g

cW
γµ

[
gfL

(
1− γ5

2

)
+ gfR

(
1+ γ5

2

)]

where, gfL = T fL
3 −Qfs2W , gfR = T fR

3 −Qfs2W , sW = sin θW , cW = cos θW

Uqq′ is the qq′ element of CKM matrix. For qq′ = ud, cs, tb, Uqq′ ∼ 1. Others: qq′ = us, ub, cd, cb, td, ts, Uqq′ << 1

Maŕıa José Herrero – TAE-UCM lectures – Madrid, July 2012 IV/8



The Electroweak Theory: Feynman Rules II

Interactions in LEW

W−
λ (K3)W+

ν (K2)

γµ(K1)

−ie
[
(K1 −K2)λ gµν + (K2 −K3)µ gνλ + (K3 −K1)ν gλµ

]

W−
λ (K3)W+

ν (K2)

Zµ(K1)

−igcW
[
(K1 −K2)λ gµν + (K2 −K3)µ gνλ + (K3 −K1)ν gλµ

]
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The Electroweak Theory: Feynman Rules III

Interactions in LEW

W−
ρ

W+
ν

W−
λ

W+
µ

ig2Sµν,λρ

W−
ρ

γν

W−
λ

γµ

−ie2Sµν,λρ

W−
ρ

Zν

W−
λ

Zµ

−ig2c2WSµν,λρ

W−
ρ

Zν

W−
λ

γµ

−ig2sW cWSµν,λρ

where, Sµν,λρ = 2gµνgλρ − gµλgνρ − gµρgνλ
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Electroweak Symmetry Breaking: the building of LEWSB

1. The Phenomenom of Spontaneous Symmetry Breaking

2. Spontaneous Symmetry Breaking: the Goldstone Theorem

3. Electroweak Symmetry Breaking: the Higgs Mechanism
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The Phenomenom of Spontaneous Symmetry Breaking

A simple definition:

A physical system has a symmetry that is spontaneously broken if the in-

teractions governing the dynamics of the system possess such a symmetry

but the ground state of this system does not.

A simple example:

Infinitely extended ferromagnet at T close to Curie temperature TC

⇒ System described by infinite elementary spins. Interactions rotational invariant.

⇒ Ground state presents two different situations depending on T :
Situation I: T > TC

spins randomly oriented
ground state rotationaly invariant
Average Magnetization (order parameter)
~Maverage = 0

Situation II: T < TC

spins oriented to some particular (arbitrary) direction
ground state is not rotationaly invariant
~Maverage 6= 0 (Spontaneous Magnetization)
∃ infinite possible ground states, but system chooses one.
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The Theory of Ginzburg-Landau (1950)

For T near TC, the magnetization ~M is small and the free energy density u( ~M) is:

u( ~M) = (∂i ~M)(∂i ~M) + V ( ~M) ; i = 1,2,3 ; here ~M = (MX,MY ) to simplify

V ( ~M) = α1(T − TC)( ~M. ~M) + α2( ~M. ~M)2 ; α1, α2 > 0

The magnetization of the ground state is obtained from the condition of extremum:

δV ( ~M)

δMi
= 0 ⇒ ~M.

[
α1(T − TC) + 2α2( ~M. ~M)

]
= 0 ⇒ two solutions

Situation I: T > TC, Symmetric phase

Unique minimum at ~M = 0 and V (0) = 0

Situation II: T < TC, Non symmetric phase

~M = 0 is a local maximum
infinite degenerate minima all having same | ~M |
α1(T − TC) + 2α2( ~M. ~M) = 0 ⇒ | ~M | =

√
α1(TC−T )

2α2

The choice of a particular minimum (direction)
is what generates the spontaneous breaking.
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Goldstone Theorem (Nambu,Goldstone,1960-1962)

Goldstone Theorem applies to Quantum Field Theories (QFT) with Spontaneous Sym-

metry Breaking (SSB).

SSB stated in simple words:

In QFT, a system is said to possess a symmetry that is spontaneously broken if the

Lagrangian describing the dynamics of the system is invariant under this symmetry trans-

formation, but the vacuum of the theory is not. The vacuum |0 > is the state where the

Hamiltonian expectation value < 0|H|0 > is minimum.

Goldtone Theorem stated in simple words:

If a QFT has a global symmetry of the Lagrangian which is not a symmetry of the vac-

uum ⇒ there must exist one massless boson, scalar or pseudoscalar, associated to each

generator which does not annihilate the vacuum and having its same quantum numbers.

These modes are referred to as Nambu-Goldstone bosons or simply as Goldstone bosons.

Notice that:

U |0 >= |0 > with U = exp(iǫaQa) ⇒ Qa|0 >= 0 ∀ a

and:

U |0 > 6= |0 > with U = exp(iǫaQa) ⇒ ∃ Qa / Qa|0 > 6= 0
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QCD as an example (I)

LQCD = −1

2
TrGµνGµν +

∑

u,d

(iq̄γµDµq −mqq̄q)

where,

Gµν = ∂µAν − ∂νAµ − igs [Aµ, Aν]

Dµq = (∂µ − igsAµ)q

Aµ =

8∑

a=1

1

2
Aa

µλa

Besides the SU(3)C gauge symmetry, and for mu,d = 0, LQCD has a global symmetry:

SU(2)L × SU(2)R ≡ Chiral Symmetry

defined by:

ΨL → Ψ′
L = ULΨL = exp(iαa

LQ
a
L)ΨL ; Q1,2,3

L generators of SU(2)L

ΨR → Ψ′
R = URΨR = exp(iαa

RQ
a
R)ΨR ; Q1,2,3

R generators of SU(2)R

where,

Ψ =

(
u

d

)
; ΨL =

1

2
(1− γ5)Ψ ; ΨR =

1

2
(1 + γ5)Ψ

mu,d 6= 0 breaks explicitly the chiral symmetry, but not much since the masses are small.

Chiral symmetry is not exact but it is a very good approximate symmetry of QCD.
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QCD as an example (II)

In QCD, chiral symmetry is spontaneously broken down to isospin symmetry:

SU(2)L×SU(2)R = SU(2)V×SU(2)A → SU(2)V ; SU(2)V = SU(2)R+L ; SU(2)A = SU(2)R−L

LQCD invariant under SU(2)L × SU(2)R but QCD vacuum is NOT.

The QCD vacuum is only invariant under the subgroup SU(2)V ⊂ SU(2)L × SU(2)R

But, how do we know from experiment that the QCD vacuum is not SU(2)L × SU(2)R
symmetric?

If |0 > is chiral invariant ⇒
UL|0 >= |0 > ; UR|0 >= |0 >⇒ Qa

L|0 >= 0 ; Qa
R|0 >= 0

If |Ψ > is an eigenstate of the Hamiltonian and parity operator such that:

H|Ψ >= E|Ψ > ; P |Ψ >= |Ψ >

then,

∃|Ψ′ >=
1√
2
(Qa

R −Qa
L)|Ψ > / H|Ψ′ >= E|Ψ′ > ; P |Ψ′ >= −|Ψ′ >

But, no such parity doublets in the hadronic spectrum ⇒ SU(2)A is NOT a symmetry

of the vacuum, or equivalently, Qa
A|0 > 6= 0(a = 1,2,3). ⇒ chiral symmetry must be

spontaneously broken to the reduced symmetry of the vacuum, SU(2)V .
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QCD as an example (III)

According to Goldstone Theorem:

If a Theory has a global symmetry of the Lagrangian which is not a symmetry of the
vacuum then there must exist one massless boson, scalar or pseudoscalar, associated
to each generator which does not annihilate the vacuum and having its same quantum
numbers. These modes are referred to as Nambu-Goldstone bosons or simply as Goldstone
bosons.

The spontaneous breaking of the chiral symmetry in QCD:

SU(2)L × SU(2)R → SU(2)V ; with, Qa
A|0 > 6= 0(a = 1,2,3)

⇒ ∃ 3 massless GBs, pseudoscalars, πa(x) a = 1,2,3.

They are identified with the physical pions . More specificaly, their combinations: π+, π−

and π0.

Since, in Nature, mπ 6= 0 ⇒ chiral symmetry is explicitely broken, and the pions are pseudo-
GB. But the hierarchy mπ << mhadrons is explained .

The dynamics of pion interactions is well described by the so-called Chiral Lagrangians .

More in next lectures
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The Higgs Mechanism: I

The Goldstone Theorem is for theories with spontaneously broken global

symmetries but does not hold for gauge theories. When a spontaneous sym-

metry breaking takes place in a gauge theory the so-called Higgs Mechanism

operates:

Many authors involved: Higgs 1964; Englert, Brout 1964; Guralnik, Hagen, Kibble 1964. Inspired in previous

works within Solid State Physics: Anderson 1963. See also Schwinger 1962 where the generation of mass for

gauge fields was already mentioned. See also BCS Theory of Superconductivity, Cooper pairs and absence

of massless GBs in presence of electromagnetic interactions by Nambu 1960.

How to generate mass for gauge bosons in gauge theories:

The would-be Goldstone bosons associated to the global symmetry break-

ing do not manifest explicitely in the physical spectrum but instead they

’combine’ with the massless gauge bosons and as result, once the spec-

trum of the theory is built up on the non-symmetric vacuum, there appear

massive vector particles. The number of vector bosons that acquire a mass

is precisely equal to the number of these would-be-Goldstone bosons.
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The Higgs Mechanism: II

An illustrative example: U(1) gauge symmetry breaking: I

Consider U(1) gauge theory, with one complex scalar Φ = 1√
2
(Φ1 + iΦ2),

one gauge boson Aµ, and a potential of Ginzburg-Landau type:

L = (DµΦ)†(DµΦ)− 1
4FµνFµν − V (Φ)

DµΦ = (∂µ − igAµ)Φ ; Fµν = ∂µAν − ∂νAµ

V (Φ) = µ2Φ†Φ+ λ(Φ†Φ)2 ; λ > 0

L is invariant under U(1) gauge transformations:

Φ → e−iα(x)Φ ; DµΦ → e−iα(x)DµΦ ; e−iα(x) ⊂ U(1)

Aµ → Aµ − 1
g∂µα(x)

Compare V (Φ) with the previous ferromagnet case:

V ( ~M) = α1(T − TC)( ~M. ~M) + α2( ~M. ~M)2 ; α1, α2 > 0

All said applies with the replacements: (MX ,MY ) → 1√
2
(Φ1 + iΦ2)

α1(T − TC) → µ2; α2 → λ; ~Mground state →< 0|Φ|0 >≡< Φ >
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The Higgs Mechanism: II

An illustrative example: U(1) gauge symmetry breaking: II

Situation I: µ2 > 0, Symmetric phase

Unique vacuum (minimum) at < Φ >= 0
and V (Φ) = 0 at < Φ >= 0
The vacuum IS invariant under U(1)

Situation II: µ2 < 0, Non symmetric phase

< Φ >= 0 is a local maximum
infinite degenerate vacua (minima) all having same
| < Φ > | but different complex phases:

| < Φ > | =
√

−µ2

2λ
≡ v√

2
6= 0 ; arg < Φ > arbitrary

A particular vacuum IS NOT invariant under U(1)

The choice of a particular vacuum (complex phase) is what generates the

spontaneous breaking of U(1)

Building the spectra on top of this non-invariant vacuum (minimum) is

what generates the gauge boson mass (see next)
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The Higgs Mechanism: II

An illustrative example: U(1) gauge symmetry breaking: III

Building the spectra on top of a particular non-invariant vacuum (minimum)

is what generates the gauge boson mass

For instance, let us choose

| < Φ > | =
√

−µ2

2λ 6= 0 ; arg < Φ >= 0 ⇒ < Φ1 >=

√
−µ2

λ = v, < Φ2 >= 0

Then, we change coordinates to new fields (≡ shifting the origen):

Φ′
1 ≡ Φ1 − v; Φ′

2 ≡ Φ2 such that < Φ′
1 >= 0; < Φ′

2 >= 0

Next, write everything in terms of these new Φ′
1,2 fields:

(DµΦ)†(DµΦ) =

(
(∂µ + igAµ)

1√
2
(Φ1 − iΦ2)

)(
(∂µ − igAµ)

1√
2
(Φ1 + iΦ2)

)
= ....

1

2
(∂µΦ

′
1+gAµΦ

′
2)

2+
1

2
(∂µΦ

′
2−gAµΦ

′
1)

2−gvAµ(∂µΦ
′
2+gAµΦ

′
1)+

1

2
g2v2AµA

µ

A mass term for Aµ has appeared, but it is not the physical basis yet...

there is a (unphysical) mixing term ∼ gvAµ∂µΦ′
2 !!!!!
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The Higgs Mechanism: II

An illustrative example: U(1) gauge symmetry breaking: IV

First, choose the good coordinates
We want to remove the (unphysical) mixing term ∼ gvAµ∂µΦ′

2
Choose ’polar’ coodinates to describe ’small oscillations’ around vacuum
configuration:

Φ(x) =
1√
2
(v + η(x))ei

ξ(x)
v

Second, choose the proper gauge , i.e., make a gauge transf. to the unitary
gauge (by fixing the gauge parameter to α(x) = ξ(x)

v ) where the unwanted
mixing terms do not appear:

Φ(x) → e−iξ(x)v Φ(x) =
1√
2
(v + η(x))

Aµ(x) → Aµ(x)−
1

gv
∂µξ(x) ≡ Bµ(x)

In terms of the new fields: Bµ massive gauge , η massive scalar (≡ Higgs)

L =
1

2
(∂µη)

2 + µ2η2 − 1

4
(∂µBν − ∂νBµ)

2 +
1

2
(gv)2BµB

µ + (E)

1

2
g2BµB

µη(2v + η)− λvη3 − 1

4
λη4 ;MBµ = gv ;mη =

√
2|µ|
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The ’nice’ properties of the Higgs Mechanism:

⋆ The gauge symmetry of the interactions (i.e, of L) is preserved

⋆ The renormalizability of the massless gauge theories is preserved

⋆ The total number of polarization degrees is preserved

For instance, in the previous U(1) case:

Before SSB: total polarization degrees = 4 = (2 of Aµ)+(2 of Φ)

After SSB: total polarization degrees = 4 = (3 of Bµ)+(1 of η)

⋆ The unphysical fields (i.e. the would-be-GBs) have dissapeared from the

spectrum. In the previous U(1) case: ξ(x)

⋆ The ner of gauge bosons getting a mass = ner of would-be-GBs= ner of

symmetries of L that are not of vacuum. In the previous U(1) case: 1.

⋆ ”The would-be-GBs combine with the massless gauge bosons to give

them a mass” means the mixing term ∼ gvAµ∂µΦ′
2

⋆ Notice that: The Higgs mechanism does not necessarily imply the exis-

tence of a Higgs particle. It appears JUST when required by the polarization

degrees preservation property.
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The Higgs Mechanism applied to the Standard Model:

We want to generate masses for 3 gauge fields: Z, W+, W−

But we want to keep the photon γ massless.

Strategy: Introduce (ad hoc) a new scalar field, Φ, and a potential of Ginzburg-Landau

type, V (Φ) that make the job:

⇒ It must provide the 3 needed polarization degrees to play the role of the would-be-GBs

⇒ It must have non-zero SU(2)L×U(1)Y quantum numbers, such that the vacuum is not

invariant under the complete symmetry, but just invariant under the subgroup U(1)em.

⇒ The field component in Φ acquiring a vev must be elect. neutral to preserve U(1)em

Scalar SU(2) doublet: Φ =

(
φ+

φ0

)

T(Φ) =
1

2
, Y (Φ) = 1

V (Φ) = µ2Φ†Φ+ λ(Φ†Φ)2, λ > 0

µ2 > 0 unique minimum at < 0|Φ|0 >= 0

µ2 < 0 infinite degenerate minima at:

| < 0|Φ|0 > | =
(

0
v√
2

)
; arbitrary arg Φ ; v ≡

√
µ2

λ

The choice of a particular arg Φ produces the breaking

µ2 > 0 : SU(2)L × U(1)Y

µ2 < 0 : SU(2)L×U(1)Y → U(1)em

)
V
(|

Φ+ |
0 Φ| ,
|

|Φ +|

Φ0||

µ >02

µ<02

v/ 2
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Getting the proper gauge boson and fermion masses: I

The building of LEWSB: including V (Φ), covariant derivatives of Φ and

Yukawa interactions of Φ with fermions:

LEWSB = LSBS + LYW

LSBS = (DµΦ)†(DµΦ)− V (Φ)

V (Φ) = µ2Φ†Φ+ λ(Φ†Φ)2

LYW = λel̄LΦeR + λuq̄Φ̃uR + λdq̄LΦdR + h.c.+2nd and 3rd families

lL =


 νL

eL


 ; qL =


 uL

dL




Φ =


 φ+

φ0


 ; Φ̃ = iτ2Φ

∗ =


 φ∗0

−φ−




DµΦ = (∂µ − 1

2
ig~τ · ~Wµ − 1

2
ig′Bµ)Φ

LEWSB is gauge SU(2)L × U(1)Y invariant (E)
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Getting the proper gauge boson and fermion masses: II

Follow the steps:

1) Fix a particular non-symmetric vacuum. For instance:

< 0|Φ|0 >=




0

v√
2


 ; argΦ = 0

2) Perform ’small oscillations’ around this vacuum:

Φ(x) = exp

(
i
~ξ(x)~τ

v

)


0
v+H(x)√

2




where ~ξ(x) = (ξ1(x), ξ2(x), ξ3(x)) and H(x) are ’small’ fields.

3) To eliminate the unphysical (would-be-GBs) fields ~ξ make the gauge

transformation (unitary gauge):

Φ′ = U(ξ)Φ =




0

v+H√
2


 ; U(ξ) = exp

(
−i

~ξ~τ

v

)

l′L = U(ξ)lL ; e′R = eR ; q′L = U(ξ)qL ; u′R = uR ; d′R = dR
~τ · ~W ′

µ

2


 = U(ξ)

(
~τ · ~Wµ

2

)
U−1(ξ)− i

g
(∂µU(ξ))U−1(ξ) ; B′

µ = Bµ
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Getting the proper gauge boson and fermion masses: III

4) Rotate the weak eigenstates to the mass eigenstates:

W±
µ =

W ′1
µ ∓ iW ′2

µ√
2

; g =
e

sin θW
; g′ =

e

cos θW

Zµ = cos θW W ′3
µ − sin θW B′

µ

Aµ = sin θW W ′3
µ + cos θW B′

µ

5) Read the (tree level) particle masses from proper terms in LEWSB:

(DµΦ
′)†(DµΦ′) =

(
g2v2

4

)
W+

µ Wµ− +
1

2

(
(g2 + g′2)v2

4

)
ZµZ

µ + ... (E)

V (Φ′) = µ2H2 + ...

LYW = −
(
λe

v√
2

)
ē′Le

′
R −

(
λu

v√
2

)
ū′Lu

′
R −

(
λd

v√
2

)
d̄′Ld

′
R + h.c.+ ...

MW =
gv

2
; MZ =

√
g2 + g′2v

2
; MH =

√
2|µ| ; v =

√
−µ2

λ

me = λe
v√
2
; mu = λu

v√
2
; md = λd

v√
2
; ...

Counting bosonic degrees: before SSB 12 (4x2gauge+4scalar); after SSB 12 (3x3gauge+1x2gauge+1scalar)
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The values of the tree level masses

The vacuum expectation value of the Φ field was known long time ago,

indeed, before the discovery of W± and Z.

It was obtained from physical observables, well known from experiment:

For instance, from muon decay, µ− → νµν̄ee−

The prediction in V-A Theory (Feynman, Gell-Mann 1958):

1

τµ
= Γ(µ− → νµν̄ee

−) ≃
G2
Fm

5
µ

192π3

Provides the correct muon life time:

τµ = 2.2× 10−6s , for GF = 1.167× 10−5 GeV−2

Within the SM the muon decay proceeds via an intermediate virtual W

exchange: By matching the above Γ to the prediction in the SM:

GF√
2
= g2

8M2
W

= 1
2v2

⇒ v = 246 GeV

By using sin2 θW ≃ 0.23 from e.g. DIS data and g = e/ sin θW
⇒ Mtree

W ≃ 78 GeV , Mtree
Z ≃ 89 GeV... discovered at CERN in 1983 !!

In contrast: exp.fermion masses ⇒ Yukawa couplings

MH and λ unpredicted in SM!!
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SM Higgs boson interactions (Unitary gauge)

W−
νW+

µ

H

igMWgµν

ZνZµ

H

i
g

cW
MZgµν

ff

H

−i
g

2

mf

MW
= −i

λf√
2

HH

H

−ig
3

2

M2
H

MW
= −i6λv

W+
µ

W−
ν

H

H

i
g2

2
gµν

Zµ

Zν

H

H

i
g2

2c2W
gµν

H

H

H

H

−ig2
3

4

M2
H

M2
W

= −i6λ

Higgs boson couplings to particle P larger for larger mP !!!
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Higgs boson role in scattering of longitudinal W bosons:

WLWL → WLWL

TV =

W

W

W

W
γ, Z

+ γ, Z + = −g2 E2

M2
W

+O(1)

for E → ∞
⇒ violation of unitarity

Contribution of a scalar particle with couplings prop. to the mass:

TS =

W

W

W

W
H

+ H = g2WWH
E2

M4
W

+O(1)

for E → ∞

Ttot = TV + TS =
E2

M4
W

(
g2WWH − g2M2

W

)
+ . . .

⇒ compensation of terms with bad high-energy behavior for

gWWH = gMW
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Compare WW scattering with would-be-GB scattering

An interesting comparison is provided by the so-called

Equivalence Theorem (Cornwall et al 1974, Lee et al 1977):

The scattering amplitudes of longitudinal gauge bosons VL (V = W±, Z),

at high energies,
√
s >> MV , are equivalent to the scattering amplitudes of

their corresponding would-be Goldstnone bosons w

|T(V 1
LV 2

L ...V N
L → V 1

LV 2
L ...V N ′

L )| ≈ |T(w1w2...wN → w1w2...wN ′)|
(E)

Use the more general Feynman rules of Rξ gauges to demostrate: 1)

T(W+
L W−

L → W+
L W−

L ) = T(w+w− → w+w−) +O(
M2

s
), for

√
s >> MW ,MZ

and, 2) for MH >> MW,Z:

Γ(H → W+
L W−

L ) = Γ(H → w+w−) +O(
MW

MH
)

Γ(H → ZLZL) = Γ(H → zz) +O(
MZ

MH
)
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Upper Higgs mass bound from unitarity

Study the behaviour of the complete scattering amplitude with MH:

T(W+
L W−

L → W+
L W−

L ) = − 1

v2
{−s− t+

s2

s−M2
H

+
t2

t−M2
H

+ 2M2
Z +

2M2
Zs

t−M2
Z

+
2t

s
(M2

Z − 4M2
W)− 8s2WM2

WM2
Zs

t(t−M2
Z)

}
Decompose T in partial waves aJ:

T(s, cos θ) = 16π

∞∑

J=0

(2J +1)aJ(s)PJ(cos θ) , PJ = Legendre polynomials

Compute cross-section in terms of partial waves:

σtot ≃ σel =
16π

s

∞∑

J=0

(2J +1)|aJ(s)|2

Require Optical Theorem (consequence of unitarity T †T = TT † = 1):

σtot(1 + 2 → anything) =
1

s
Im T(s, cos θ = 1)

In terms of partial waves:

|aJ(s)|2 = Im aJ(s) ; ∀J ⇒ |aJ |2 ≤ 1 ; 0 ≤ Im aJ ≤ 1 ; |Re aJ | ≤
1

2
; ∀J

a0(W
+
L W−

L → W+
L W−

L ) =
1

32π

∫ 1

−1

T(s, cos θ)d(cos θ) ⇒ |a0|
s>>M 2

H ,M
2
V−→ M2

H

8πv2

|Re a0| ≤ 1
2
⇒ MH < 860 GeV (perturb. unitarity bound). Other channels improve this.
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What else do we know about the Higgs boson?

Running of Higgs self-interaction:

H

H H

H

λ

H

H

H

H

H

H

H

t

H

H

Renormalization group equation:

d λ

d t
=

3

16π2

[
4λ2 +2λg2t − g4t +

1

16

(
2g42 + (g22 + g21)

2
)]

, t = log

(
Q2

v2

)

Two conditions:

1) avoid landau pole/triviality problem (for large λ ∼ M2
H)

2) avoid vacuum instability problem (for small/negative λ)
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Upper Higgs mass bound from triviality

Avoid Landau pole/triviality problem for large λ ∼ M2
H

d λ

d t
=

3

4π2

[
λ2
]

⇒ λ(Q) =
λ0

1− 3λ0
2π2 log

(
Q
Λ

) ; λ0 ≡ λ(Λ)

Taking the Λ → ∞ limit, while fixing λ0 to a finite value

⇒ λ(Q) → 0 (Triviality) ⇒ require ∃Λphys < ∞ such that λ(Q) 6= 0 ⇒

M2
H = 2λ(v)v2 with λ(v) =

λ0

1− 3
2π2λ0 log(

v
Λphys

)

Decreasing (increasing) Λphys ⇒ Increasing (decreasing) MH and they may

cross. This crossing point where MH(Λphys) ≃ Λphys is what gives the upper

bound to MH. It is a cut-off dependent bound.
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Lower Higgs mass bound from vacuum stability

Avoid vacuum instability (for small/negative λ):

The minimum of the effective potential (including loop corrections) changes

with λ(Q) and, a too small or negative λ(Q) may change the true vacuum:

V (v) < V (0) may change to V (v) > V (0) ⇒ EWSB does NOT take place.

It can lead to an effective potential that is not even bounded from below!!

By requiring V (v) < V (0) one gets a lower bound on λ(v) and therefore on

MH which is cut-off dependent

For instance, to one loop:

dλ

d t
=

3

16π2

[
−g4t +

1

16

(
2g42 + (g22 + g21)

2
)]

⇒ λ(Q2) = λ(v2) +
3

16π2

[
−g4t +

1

16

(
2g42 + (g22 + g21)

2
)]

log

(
Q2

v2

)

λ(Λ) > 0 ⇒ M2
H >

3v2

8π2

[
g4t − 1

16

(
2g42 + (g22 + g21)

2
)]

log

(
Λ2

v2

)
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Both limits combined:

mt = 174 GeV

10
3

10
6

10
9

10
12

10
15

Λ (GeV)

0.0

200.0

400.0

600.0

800.0

M
H
 (

G
e

V
)

Landau pole 

Potential bounded from below 

Λ: scale up to which the SM is valid

For instance, if Λ = MGUT ⇒ 130 GeV <∼ MH
<∼ 180 GeV

Recent computations of the stability lower bound include a NNLO analysis of the Higgs potential and
realistic error estimates.
The condition for absolute stability up to the Planck scale is (Degrassi et al 2012):

MH( GeV) > 129.4+ 1.4

(
mt( GeV − 173.1

0.7

)
− 0.5

(
αs(MZ)− 0.1184

0.0007

)
± 1.0th ⇒ MH > 129.4± 1.8 GeV

⇒ vacuum stability of the SM up to the Planck scale is excluded at 2σ(98%CL) for MH < 126 GeV !!!
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Upper Higgs mass bound from radiative corrections

Comparison of electro-weak precision observables (EWPO) with theory:

EW Precision data: Theory:

MW , sin2 θeff , aµ ↔ SM , . . .

⇓
Test of theory at quantum level: Sensitivity to loop corrections, e.g. H

H

⇓
SM: limits on MH

Very high accuracy of measurements and theoretical predictions needed
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Precision observables in the SM

MW , sin2 θeff, Mh, (g − 2)µ, b physics, . . .

Theoretical prediction for MW in terms

of MZ, α,Gµ,∆r:

M2
W

(
1− M2

W

M2
Z

)
=

π α√
2Gµ

(
1

1−∆r

)

m
loop corrections

Evaluate ∆r from µ decay ⇒ MW

One-loop result for MW in the SM:

[A. Sirlin ’80] , [W. Marciano, A. Sirlin ’80]

∆r1−loop = ∆α − c2W
s2W

∆ρ + ∆rrem(MH)

∼ log
MZ
mf

∼ m2
t log(MH/MW)

∼ 6% ∼ 3.3% ∼ 1%
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Comparison of SM prediction of MW with data (without LHC)

∆r = − 11g22
96π2

s2W
c2W

log

(
MH

MW

)

general for EWPO:

∆ ∼ g22

[
log

(
MH

MW

)
+ g22

M2
H

M2
W

]

leading term: log(MH)

first term ∼ M2
H with g42 80.3

80.4

80.5

155 175 195

mH [GeV]
114 300 1000

mt  [GeV]

m
W

  [
G

eV
]

68% CL

∆α

LEP1 and SLD

LEP2 and Tevatron

July 2011

[LEPEWWG ’11]

⇒ light Higgs boson preferred
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Global fit to all SM data:

[LEPEWWG ’11]

⇒ MH = 92+34
−26 GeV

MH < 161 GeV, 95% C.L.

Assumption for the fit:

SM incl. Higgs boson

0

1

2

3

4

5

6

10030 300

mH [GeV]

∆χ
2

Excluded

∆αhad =∆α(5)

0.02750±0.00033

0.02749±0.00010

incl. low Q2 data

Theory uncertainty
July 2011 mLimit = 161 GeV

⇒ Higgs boson seems to be light, MH <∼ 160 GeV
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Comparison of SM prediction of MW with data (including LHC)

PDG July 2012

Red area: allowed by all precision data at 90%CL

Light blue bands: SM prediction for MW as a function of mt, with MH

allowed by Higgs searches at LHC: a) Central band: 115.5 GeV < MH <

127 GeV, b) band at lower-right corner: MH > 600 GeV.
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Properties of the SM Higgs boson

1.) Decay to fermions:

coupling:

gff̄H =
[√

2Gµ

]1/2
mf

decay width:

Γ(H → ff̄) = Nc
GµMH

4
√
2π

m2
f(M

2
H)


1− 4

m2
f

M2
H



3/2

(E)

with Nc = number of colors

Bulk of QCD corrections for decays to quarks are mapped into

m2
q (pole) → m2

q (M
2
H)

Dominant decay process: H → b̄b
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2.) Decay to heavy gauge bosons (V = W,Z):

coupling:

gV V H = 2
[√

2Gµ

]1/2
M2

V

on-shell decay width (MH > 2MV ):

Γ(H → V V ) = δV
GµM3

H

16
√
2π

(
1− 4

M2
V

M2
H

+12
M4

V

M4
H

) (
1− 4

M2
V

M2
H

)1/2
(E)

with δW,Z = 2,1

off-shell decay width (MH < 2MV ):

Γ(H → V V ∗) = δ′V
3G2

µMH

16π3
M4

V × Integral
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3.) Decay to massless gauge bosons (gg, γγ):

t

t

t g

g

H W

W

W γ

γ

H

Γ(H → gg) =
Gµα2

s(M
2
H)M3

H

36
√
2π3

[
1+ C

αs(µ)

π

]

via the top quark loop with

C =
215

12
− 23

6
log

(
µ2

M2
H

)
+O(αs)

⇒ huge QCD corrections

Γ(H → γγ) =
Gµα2M3

H

128
√
2π3

∣∣∣∣
4

3
e2t − 7

∣∣∣∣
2

via the top quark and W boson loop
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Latest theory predictions for the SM Higgs: branching ratios

[LHC Higgs XS WG ’10]

 [GeV]HM
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B
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G
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01
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Latest theory predictions for the SM Higgs: total width

[LHC Higgs XS WG ’10]
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The ρ parameter and the custodial symmetry I

The ρ parameter was defined as the ratio of neutral to charged current amplitudes at low
energies:

ρ ≡ TNC(q
2 << M2

Z)

TCC(q2 << M2
W)

From ν-scattering experiments and others: ρexp ≈ 1. Last: ρexp = 1.0008+0.0020
−0.0011 (PDG 2012)

The SM prediction at tree level is:

ρSMtree =
M2 tree

W

M2 tree
Z cos2 θtreeW

= 1

At one loop and keeping just the so-called ’oblique’ corrections,

ρ =
ρtree

1−∆ρ
; ∆ρ =

ΣR
Z(0)

M2
Z

− ΣR
W(0)

M2
W

related to T parameter

For instance, the leading top and Higgs loop contributions:

(∆ρ)t =
g2

64π2
NC

m2
t

M2
W

+ ... (E)

(∆ρ)H = − g2

64π2
3 tan2 θW log

M2
H

M2
W

+ ... (E)

The ρ parameter being close to one is due to the so-called custodial symmetry: a global
protecting symmetry of the SM Higgs sector in absence of gauge interactions.
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The ρ parameter and the custodial symmetry II

Use the alternative way of writing the (ungauged) Lagrangian of SBS:

LSBS =
1

4
Tr
[
(∂µM)†(∂µM)

]
− V (M) ;

V (M) =
1

4
λ

[
1

2
Tr(M †M) +

µ2

λ

]2

where M is a 2× 2 matrix containing the four real scalar fields of Φ:

M ≡
√
2(Φ̃Φ) =

√
2

(
φ∗
0 φ†

−φ− φ0

)
;

Φ =

(
φ+

φ0

)
;

Φ̃ = iτ2Φ
∗ =

(
φ∗
0

−φ−

)

LSBS is invariant under the global transformations:

M → gLMg+R ; gL ⊂ SU(2)L ; gR ⊂ SU(2)R

This global symmetry SU(2)L×SU(2)R is called chiral symmetry (for analogy with QCD)
and it is spontaneously broken down to the diagonal subgroup SU(2)L+R ≡ SU(2)custodial .
The pattern of global symmetry breaking is:

SU(2)L × SU(2)R → SU(2)custodial

Once SU(2)L × U(1)Y is gauged, the chiral symmetry (and the custodial) is explicitely
broken.
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