SM Higgs boson Searches

María José Herrero, IFT-UAM (Madrid)

Madrid, July/2012

- 1. Higgs past searches at LEP
- 2. Higgs past searches at Tevatron
- 3. Higgs past, present and future searches at LHC
- 4. Higgs future searches at ILC

Higgs search at LEP: e^+e^- collisions at CERN

Dominant SM production process: $e^+e^- \rightarrow ZH$

$$\sigma(e^+e^- \to ZH) = \frac{G_{\mu}^2 M_Z^4}{96 \pi s} \left[v_e^2 + a_e^2 \right] \beta \frac{\beta^2 + 12M_Z^2/s}{(1 - M_Z^2/s)^2}$$

with $\beta^2 = (1 - (M_H + M_Z)^2/s) (1 - (M_H - M_Z)^2/s)$

Dominant decay process: $H \rightarrow b\overline{b}$

LEP searches include: 1) 4-jets $(H \to b\bar{b})$ $(Z \to q\bar{q})$, 2) jets + missing E $(H \to b\bar{b})$ $(Z \to \nu\bar{\nu})$ 3) leptonic $(H \to b\bar{b})$ $(Z \to l^+l^-)$ $(l = e, \mu)$ 4) tauonic $(H \to b\bar{b})$ $(Z \to \tau^+\tau^-)$ and $(H \to \tau^+\tau^-)(Z \to q\bar{q})$

Search for the Standard Model Higgs at LEP: [LEP Higgs WG '03]

The confidence CL_{s+b} quantifies the compatibility of the signal (Higgs of mass m_H) plus background hypothesis with the observed events.

The intersection of the horizontal line $CL_s = 0.05$ with the "observed" curve gives the 95% CL bound.

Yelow band = 68% (1 σ), Green band = 95% (2 σ) around median expected background.

Exclusion limit at the 95% C.L.:

$M_H > 114.4 \text{ GeV}$

Test statistic: $-2\ln(Q)$ It measures if the observed data fits better signal+background than just background, and the more negative, the 'better'

$$Q(m_H) = \frac{\mathcal{L}_{s+b}}{\mathcal{L}_b}$$

Ratio of the likelihood function for the signal (Higgs of mass m_H) plus background hypothesis to the likelihood function for the background hypothesis.

Higgs search at the Tevatron

Overview of SM production cross sections:

[F. Maltoni et al. '05]

Interesting evolution in time of Tevatron plots:

1. The Large Hadron Collider, LHC

LHC:

 $p\,p$ collisions at $\sqrt{s}=$ 14 TeV

- 27 km circumference
- two general purpose detectors:
 ATLAS and CMS
- one *B* physics detector: LHCb
- one heavy ion detector: Alice

The (un)official (optimistic?) LHC time line:

03/2010: first collisions at record breaking energy 2010: $\leq 0.05 \, \text{fb}^{-1}$ (at $\sqrt{s} = 7 \, \text{TeV}$) 2011: $\leq 5 \, \text{fb}^{-1}$ (at $\sqrt{s} = 7 \, \text{TeV}$) \Rightarrow first physics results! 2012: $\leq 10 \, \text{fb}^{-1}$ (at $\sqrt{s} = 8 \, \text{TeV}$) \Rightarrow more physics results!! 2013: shutdown, further splice checks, repairs, ... 2014 – 2016: 10 fb⁻¹ per year \Rightarrow physics results with "low" luminosity 2017: shutdown, preparation for "high luminosity" 2018 - 2020: 100 fb⁻¹ per year \Rightarrow physics results with "high" luminosity 2021: upgrade to sLHC with $\sqrt{s} = 14$ TeV? 2022 + X (X > 0): sLHC?

After the recent discovery of 4th July 2012, there have been changes: Three more months of running at 8 TeV before the shutdown... Maybe more changes if more discoveries......(?)

Physics at the LHC: basics

$p\,p$ scattering at $\sqrt{s}=$ 14 TeV

Scattering process of proton constituents (q, \bar{q}, g) with energy up to several TeV, strongly interacting

⇒ huge QCD backgrounds, low signal-to-background ratios

interaction rate of 10^9 events/s

 \Rightarrow can trigger on only

1 event in 10^7

How to calculate cross sections at the LHC?

First step:

Calculate cross section for incoming partons and outgoing X:

 $\hat{\sigma}(ij \to X), \ i, j = q, \bar{q}, g$

Perturbative calculation is possible:

- α_s is sufficiently small at LHC energies
- $-\alpha$ is sufficiently small anyway

Still to be done:

- 1. connect incoming quarks and gluons with the (incoming) colliding protons
- 2. connect the outgoing particles with the observed (outgoing) jets

Making the connections:

1. To connect protons with quarks an gluons we need to know the probability that a quark or gluon is carrying a certain fraction x of the proton momentum,

provided by parton distribution functions (PDFs):

 $f_i(x,\mu_f)$

 μ_f : factorization scale

 at lowest order: each outgoing quark or gluon is identified with a hadronic jet – provided they are well separated in pseudo-rapidity – azimuth space:

$$\Delta R := \left(\Delta \eta^2 + \Delta \Phi^2\right)^{-1/2} > R_{\min}$$

Φ: angle in plane perpendicular to beam axis η : pseudo rapidity: $\eta = -\log(\tan \theta/2)$

The Master formula for all LHC cross section calculations:

$$\sigma(pp \to X) = \sum_{ij} \int dx_1 dx_2 f_i(x_1, \mu_f) f_j(x_2, \mu_f) \,\hat{\sigma}(ij \to X)$$

 $x_{1,2}$: momentum fraction carried by the incoming quarks, gluons $\hat{\sigma}$: partonic cross section, calculated perturbatively

Parton Density Functions (PDFs):

- PDFs cannot be calculated perturbatively
 - \Rightarrow they have to be measured experimentally (at a certain scale)
- QCD predicts the evolution of the PDFs via the Altarelli-Parisi equations,

i.e. once we know the PDFs for a certain scale, QCD predicts them for all other scales

- PDFs are universal, e.g. PDFs determined at HERA can directly be used for LHC calculations
- PDFs are different for valence and sea quarks
- PDFs come in the form of Fortran codes, mainly by two groups: MRST and CTEQ collaborations

Example for PDFs of the proton:

\Rightarrow The LHC is (mainly) a gluon gluon collider

Uncertainties in cross section calculations

induced by uncertainties in PDFs:

Final state X with mass M_X :

PDF induced uncertainties mostly below 5%

[MRST, CTEQ, Alekhin, ...]

Higgs search at the LHC:

Important SM production channel at the LHC:

Important decay for Higgs mass measurement:

SM Higgs search at the LHC: \Rightarrow full parameter space accessible!?

SM Higgs search at the LHC: expectations

\Rightarrow full parameter space accessible

[ATLAS '0기

LHC results on Higgs searches

ATLAS results in search for a SM Higgs (before 4th July) [ATLAS '12]

Small excess for $M_H \simeq 126 \text{ GeV}$

ATLAS results in search for a SM Higgs (zoom) (before 4th July) [ATLAS

CMS results in search for a SM Higgs (before 4th July)

Small excess for $M_H \simeq 125$ GeV

CMS results in search for a SM Higgs (zoom)(before 4th July) [CMS '12]

Small excess for $M_H \simeq 125 \text{ GeV}$

The great news of 4th July 2012.....

The great news of July 2012: I

On 4th July 2012, the CMS and ATLAS collaborations have announced the observation of a new boson!!!!! .

For instance, CMS (Joe Incandela) last slide:

The great news of July 2012: II

Characterization of CMS excess near 125 GeV and strength of the signal in terms of p-values (probablity that background fluctuates to give an excess as large as the signal size expected for a SM Higgs).

The great news of July 2012: III

New CMS Higgs boson mass exclussion limits:

The great news of July 2012: IV

Simmilar conclusions in ATLAS (Fabiola Gianotti) presentation of 4th July.

The great news of July 2012: V

New ATLAS exclussion limits:

Step 2: Measurement of the mass

Best channel for mass measurement in the SM: $H \rightarrow \gamma \gamma$ [ATLAS '99]

Step 3,4: Higgs couplings at the LHC (older analysis):

– mass: $\delta M_h \approx 200 \text{ MeV}$

- couplings: (2 * 300 + 2 * 100) fb⁻¹ :

typical accuracies of 20-30% for $m_H \leq 150~{
m GeV}$

10% accuracies for HVV couplings above WW threshold

Assumption:

- $-g_{HVV}^2 \le g_{HVV,\text{SM}}^2 imes 1.05$
- SM rates for the Higgs

Problems:

- old $t\overline{t}H,H\rightarrow b\overline{b}$ studies used
- valid in weakly interacting models
- rates much lower than in SM ??
- physics can/will hide in 5% margin
- self-couplings out of reach

Higgs coupling measurement at the LHC

Assuming that $(g_{HVV})^2 \leq (g_{HVV}^{SM})^2 \times 1.05$ yields for 10 fb⁻¹ at 14 TeV:

channel / M_H [GeV]	120	130	140	150	160	170	180	190
g_{HWW}	29%	25%	20%	14%	9%	8%	8%	9%
g_{HZZ}	30%	27%	21%	16%	15%	19%	14%	11%
$g_{H au au}$	63%	39%	38%	50%				
g_{Hbb}	72%	54%	56%	73%				
g_{Htt}	87%	62%	45%	36%	31%	32%	36%	45%
Γ_H		77%	60%	42%	27%	25%	26%	29%
$\Gamma_{\rm inv}/\Gamma_H$	81%	72%	56%	39%	23%	20%	22%	24%

 \Rightarrow interesting, but not too convincing . . .

 \Rightarrow a lot of physics can hide in these uncertainties

higher luminosity?

The "dirty" LHC might not be precise enough ... what then?

Linear e^+e^- collider, $\sqrt{s} = 500 - 1000$ GeV (ILC) based on superconducting cavities (cold technology) (ITRP decision 2004)

- two detectors in one interaction region (push-pull)
- undulator based e^+ source
- polarized beams for e^- and e^+ ($P_{e^-} = 80\%$, $P_{e^+} = 60\%$)

• GigaZ:

running with high luminosity at low energies (Z pole, WW threshold)

• <u>e^e</u>:

produce doubly charged particles in the \boldsymbol{s} channel

• $e^-\gamma$:

use one e^- beam to produce high-energy photons produce charged particles in the s channel

• $\gamma\gamma$:

use both beams to produce high-energy photons (e.g. heavy Higgs production in the s channel)

LHC: pp scattering at 14 TeV

⇒ huge QCD backgrounds, low signal-to-background ratios

Clean exp. environment: well-defined initial state, tunable energy, beam polarization, GigaZ, $\gamma\gamma$, $e\gamma$, e^-e^- options, ...

⇒ rel. small backgrounds high-precision physics Discovering the properties of the Higgs boson

What has to be done?

1. Find the new particle	LHC	ILC
2. measure its mass (\Rightarrow ok?)	LHC	ILC
3. measure coupling to gauge bosons	LHC	ILC
4. measure couplings to fermions	LHC	ILC
5. measure self-couplings		ILC
6. measure spin,	LHC	ILC

We need the ILC to (re)find the Higgs and to establish the Higgs mechanism! The LHC can do a crucial part . . .

Higgs physics at the ILC

Higgs production at the ILC:

Higgs-strahlung: $e^+e^- \rightarrow Z^* \rightarrow ZH$

 \Rightarrow Measurement of masses, couplings, ... in per cent/per mille

Some ILC specifics:

recoil method: $e^+e^- \rightarrow ZH$, $Z \rightarrow e^+e^-$, $\mu^+\mu^-$

 \Rightarrow total measurement of Higgs production cross section

⇒ NO additional theoretical assumptions needed for absolute determination of partial widths

 \Rightarrow all observable channels can be measured with high accuracy

Some ILC results (500 fb⁻¹@ \sqrt{s} = 350 GeV):

 $\delta M_H \approx 50 \text{ MeV}$ $\delta g_{ZZH} \approx 2.5\%, \quad \delta g_{WWH} \approx 2-5\%$ $\delta g_{Hb\overline{b}} \approx 1-2\% \text{ (for } M_H \lesssim 150 \text{ GeV)}$

Higgs physics at the ILC:

SM Higgs @ ILC: Precise measurement of:

- 1. Higgs boson mass, $\delta M_{H} \approx 50 \ {\rm MeV}$
- Higgs boson width (direct/indirect)
- 3. Higgs boson couplings, $\mathcal{O}(\text{few}\%) \Rightarrow$
- Higgs boson quantum numbers: spin, ...

But do we need the ILC precision?

YES! To discriminate between the SM and extensions

Step 5: measurement of the Higgs boson self-coupling

 \Rightarrow only possible at the ILC

Back-up

Signal + backgr. hypothesis more compatible with observed than backgr. hypothesis

Evolution in time of Tevatron Likelihood plots

 \Rightarrow steady increase of signal (as "expected")

LHC: pp scattering at 14 TeV

interaction rate of 10^9 events/s

 \Rightarrow can trigger on only

1 event in 10^7

untriggered operation

⇒ can find signals of unexpected new physics (direct production + large indirect reach) that manifests itself in events that are not selected by the LHC trigger strategies \Rightarrow only Lepton Colliders can ''verify'' the Higgs mechanism

María José Herrero – TAE-UCM lectures – Madrid, July 2012

... including couplings to the second family!

 \Rightarrow coupling to the c quark:

... including couplings to the second family!

 \Rightarrow coupling to the muon:

$$(M_H = 120 \text{ GeV}, \sqrt{s} = 800 \text{ GeV}, \mathcal{L}_{int} = 1 \text{ ab}^{-1})$$

Step 6: measurement of the Higgs boson spin

 \Rightarrow easy at the ILC

Threshold scan for $\sigma(e^+e^- \to ZX)$:

 $X = H \Rightarrow \sigma \sim \beta$ (\$\beta\$ from kinematics)

 20 fb^{-1} \Rightarrow identification easy

