Heavy Ion Collisions A. Marin (GSI)

Spanish High Energy Physics School Taller Altas Energías Complutense 2012

Taller de Altas Energías Complutense 2012, A. Marin (a.marin@gsi.de)

7/21/2012

Hydrodynamics and flow

Taller de Altas Energías Complutense 2012, A. Marin (a.marin@gsi.de)

Hydrodynamics

Framework to describe the space-time evolution of matter under local thermal equilibrium

Inputs to hydrodynamical models:

Equation of state (Ideal hydro):

P=P(e,n) P: pressure, e: energy density, n: baryon density viscous hydro: needs shear viscosity, bulk viscosity, heat conductivity

P.F. Kolb and U.W. Heinz, nucl-th/0305084

EOS I: Ideal gas of relativistic massless particles EOS Q: Includes hadron masses and phase transition hadronic matter-QGP EOS H: Hadron resonance gas model

Energy-momentum conservation and net-baryon current conservation:

$$\partial_{\mu}T^{\mu\nu} = 0, \qquad \qquad \partial_{\mu}N^{\mu}_{i} = 0,$$

Initial conditions from Glauber model or Color Glass Condensate model

Reaction plane and transverse flow

• Anisotropic transverse flow is a correlation between the azimuth $[=\tan^{-1}(p_y/p_x)]$ of the produced particles and the reaction plane!

⇒ Unambiguous signature of collective behavior

 The reaction plane is the plane defined by the impact parameter and the beam direction

 The orientation of the reaction plane can be estimated from the global event anisotropy

Reaction plane

The initial spatial anisotropy is transformed into momentum anisotropy.
 Created and saturates in first femtometers. The observed v₂ is expected to be sensitive to the initial stage of the collision

•Analyze in terms of response of the system to initial pressure

Deduce (model) thermalizing time, EOS

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}\mathrm{p}} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{t}\mathrm{d}p_{t}\mathrm{d}y} \left(1 + 2\sum_{n=1}^{\infty} \boldsymbol{v}_{n}(\boldsymbol{p}_{t},\boldsymbol{y})\cos\left(n\left(\phi - \Psi_{r}\right)\right)\right)$$

$$v_2 = \langle \cos 2(\varphi - \Psi_r) \rangle, \quad \varphi = \tan^{-1}(\frac{p_y}{p_x})$$

reaction plane

The sine terms in the Fourier expansion vanish because of the reflection symmetry with respect to the reaction plane.

Fourier coefficients: $v_n(p_T; y) = \langle cos[n(\phi - \Psi_{RP})] \rangle$ v_1 : Strength of the directed flow (small at midrapidity) v_2 : Strength of the elliptic flow

Elliptic flow at RHIC

Mass ordering observed. Agrees with hydro for $p_t < 1.5 GeV/c$. It was predicted by ideal hydro. Perfect liquid created at RHIC.

v₂ excitation function

Energy dependence of flow

eccentricity vs. particle multiplicity in overlap region

hydrodynamical limit reached at RHIC \rightarrow 'ideal fluid'

clear predictions from hydrodynamics
sensitive to equation-of-state

v₂ quark number scaling

PHENIX, PRL, 98, 162301

FIG. 2 (color online). (a) v_2 vs p_T and (b) v_2 vs KE_T for identified particle species obtained in minimum-bias Au + Au collisions. The STAR data are from Refs. [24,43].

FIG. 3 (color online). (a) v_2/n_q vs p_T/n_q and (b) v_2/n_q vs KE_T/n_q for identified particle species obtained in minimum-bias Au + Au collisions. The STAR data are from Refs. [24,43].

•Excellent scaling over the full range of KE_{T}/n_{q} values. ($KE_{T}=m_{T}-m$) •An indication of the inherent quark like degrees of freedom in the flowing matter.

Flow universal?

Baryon and meson V_2 & V_4 scale to a universal curve as a function of $(KE_T)/n_q$

Sensitivity of v₂ to viscosity

Viscosity reduces v_2 Present conservative upper limit: $\eta/s \le 5 \times (1/4\pi)$

Taller de Altas Energías Complutense 2012, A. Marin (a.marin@gsi.de)

v₂ at LHC: ALICE

30% increase in the magnitude of integrated v_2 at $\int s_{NN}$ =2.76 TeV compared to RHIC. Larger $\langle p_t \rangle$ at LHC.

The value of $v_2(p_t)$ does not change within uncertainties from $\int s_{NN} = 200 \text{ GeV}$ to 2.76 TeV

v₂ at LHC: ATLAS

 v_2 depends very weakly on η over the measured pseudorapidity region

v_2 at LHC

Taller de Altas Energías Complutense 2012, A. Marin (a.marin@gsi.de)

20

5 10 15

p_T (GeV/c)

10-20%

40-50%

40

20

40

70-80%

5

20

p_{_} (GeV/c)

10 15

p_{_} (GeV/c)

20

20-30%

50-60%

Backup

Taller de Altas Energías Complutense 2012, A. Marin (a.marin@gsi.de)

v₂ at LHC:CMS

Viscous hydro with shear & bulk viscosity

 $\partial \mathcal{C}$ on set \mathcal{T} at \mathcal{T} at

$$T^{\mu\nu} = (e + p + \Pi)u^{\mu}u^{\nu} - (p + \Pi)g^{\mu\nu} + \pi^{\mu\nu}$$

Evolution equations for shear pressure tensor $\pi^{\mu\nu}$ and bulk presurre:

$$\tau_{\pi} \Delta^{\alpha \mu} \Delta^{\beta \nu} \dot{\pi}_{\alpha \beta} + \pi^{\mu \nu} = 2\eta \sigma^{\mu \nu} - \frac{1}{2} \pi^{\mu \nu} \frac{\eta T}{\tau_{\pi}} \partial_{\lambda} \left(\frac{\tau_{\pi}}{\eta T} u^{\lambda} \right)$$
$$\tau_{\Pi} \dot{\Pi} + \Pi = -\zeta \left(\partial \cdot u \right) - \frac{1}{2} \Pi \frac{\zeta T}{\tau_{\Pi}} \partial_{\lambda} \left(\frac{\tau_{\Pi}}{\zeta T} u^{\lambda} \right)$$

(2nd order shear-bulk -mixing term (Muronga, Rischke) not included.)