Heavy Ion Collisions A. Marin (GSI)

Spanish High Energy Physics School Taller Altas Energías Complutense 2012

Taller de Altas Energías Complutense 2012, A. Marin (a.marin@gsi.de)

7/22/2012

1

Quarkonia:

Quarkonia

Quarkonia are heavy quark antiquark bound states, i.e. ccbar and bbar. Stable with respect to strong decay into open charm or bottom. $M_{c^-c} < 2M_D$ and $M_{b^-b} < 2M_B$

Production of charmonia

Table 1 Masses, binding energies, and radii of the lowest $c\bar{c}$ and $b\bar{b}$ bound states [3]; the listed radii are $1/2\sqrt{\langle r_i^2 \rangle}$, given by Eq. (3)

State	J/ψ	χc	ψ'	γ	χb	Υ'	χ_b'	Υ''
Mass (GeV)	3.10	3.53	3.68	9.46	9.99	10.02	10.36	10.36
ΔE (GeV)	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
Radius (fm)	0.25	0.36	0.45	0.14	0.22	0.28	0.34	0.39

-ccbar production -color octet to color single (color neutralization) -physical bound state (J/ Ψ)

Fig. 10 Lowest order Feynman diagram for $c\overline{c}$ production through gluon fusion

Posible modifications of PDF due to other nucleons
* ccbar pair can suffer absorption while traversing nuclear matter

Fig. 12 J/ψ production in a nuclear medium

Quarkonia in Heavy-Ion Collisions

Quarkonia $(J/\Psi, Y)$:

26 years ago: Matsui & Satz (Phys. Lett. B178(1986) 416) color screening in deconfined matter $\rightarrow J/\psi$ suppression = "smoking gun"

• Sequencial dissociation versus T in QGP (Matsui/Satz)

Can be used as thermometer of the medium

Disappearance of J/ $\Psi\,$ comming from Ψ' , $\chi_{\mathcal{C}}$ and directly produced J/ Ψ

J/Ψ at SPS energies

For very central Pb-Pb collisions (N_{part} > 200) an anomalous J/ ψ suppression, of the order of 20-30%, is still visible.

J/Ψ at RHIC & SPS energies

Eur.Phys.J.C71:1534,2011

more suppression at forward rapidity!

opposite to trend from co-mover or CNM absorption

At mid-rapidity suppression at RHIC very similar to SPS

FIG. 89: Comparison of the anomalous suppression at the SPS and RHIC as a function of $dN_{\rm ch}/d\eta$ at $\eta = 0$

Suppression versus regeneration

P.Braun-Munzinger & J. Stachel, Nature 448 (2007) 302

Statistical Hadronization Model

PLB 652 (2007) 259

Clear signal for generation of charmonia due to statistical hadronization at the phase boundary

Where does all the charm go?

Total ccbar cross section in pp collisions needs to be known

Total charm cross section: open-charmed hadrons, e.g. D^0 , D^* , Λ_c , ... or $c, b \rightarrow e(\mu) + X$ Quarkonia, e.g. J/ ψ carries $\approx 1\%$ of total charm

Total ccbar cross section in pp collisions

Good agreement ALICE-ATLAS-LHCb
Data factor 2 ± 0.5 above central value of FONLL but well

within uncertainty

·Beam energy dependence follows well FONLL

J/Ψ at LHC: ALICE

ALICE Preliminary, Pb-Pb√s_{NN} = 2.76 TeV, L ≈ 70 µb⁻¹

ALICE Preliminary, Pb-Pb√s_{NN} = 2.76 TeV, L≈ 1.7 µb⁻

Inclusive J/ψ, centrality 0%-80%, |y|<0.9

ALICE

Inclusive J/ψ, centrality 0%-90%, 0<p,<8 GeV/c global sys.= ±6%

J/ψ at LHC: ATLAS

arXiv:1012.5419

80% of J/ψ 's (510 in all) have pt >6.5 GeV/c; R _{coll} = Ncoll/N⁴⁰⁻⁸⁰ A centrality dependent suppression is observed in the normalized J/ψ yield

Prompt J/ψ are found to be suppressed, with a strong centrality dependence

Bottonium

backup

Open – charm from ALICE

 $J/\psi \rightarrow e^+e^-$

J/ψ production cross section

 J/ψ production cross section measured in the two rapidity ranges covered by the ALICE experiment

Quarkonia at LHC: ψ (cc) & Υ (bb)

Charm measurement:

Test of NLO pQCD
Needed for quarkonia studies
Reference data for PbPb

Single electron spectrum and cocktail

Subtraction of residual hadronic contamination
Corrections for acceptance and efficiency
Correction for pT detector resolution (electron bremsstrahlung)

Excess from charm and beauty semileptonic decays, +(small contribution from J/ψ, and direct γ)

Single electron spectrum and cocktail

Subtraction of residual hadronic contamination
Corrections for acceptance and efficiency
Correction for pT detector resolution (electron bremsstrahlung)

Excess from charm and beauty semileptonic decays, +(small contribution from J/ψ, and direct γ)

D⁰ and D⁺ transverse momentum

