
1 Physics at different scales and renormalization group

approach

1.1 Introductory remarks

Every experiment is restricted by a maximal momentum transfer which could be achieved or,
equivalently, by a minimal distance which could be probed. Consider, for example, Newtonian
mechanics, which describes the motion of the bodies at low momenta. In particular, the mo-
mentum transfer in the interaction process should be small enough so that the bodies can not
penetrate each other and the atomic structure of these bodies can not be seen. Moreover, such
an information is not needed: two bodies with a very different inner structure but with the
same mechanical characteristics like the mass, the moments of inertia, etc, obey exactly the
same equations of motion.

Imagine now that the momentum transfer in the experiment is increased so that the distance
which can be studied (which is inversely proportional to the momentum transfer) becomes of
the order of the size of an atom. Then, the theory which ignores the existence of atoms and
describes a body in terms of few mechanical characteristics, can not be valid any more. It
should be replaced by a more complicated theory that embeds inter-atomic interactions. At
low momenta, the new theory will smoothly cross over into the old one. On the other hand, the
new theory still ignores all physics on sub-atomic scales, like the existence of the nuclei which
consist of the protons and neutrons which, in turn, consist of quarks and gluons and so on. In
the theory, valid at the atomic scales, this sub-atomic information is not needed.

It is crystal-clear that this formal theoretical argument can be taken to any momen-
tum/energy. The theory that describes interactions at a given energy and below, should not
depend on the dynamics at higher energies. One may even loosely argue that such a behavior
is a necessary condition of the existence of physics as an exact science. Namely, were this not
the case, then, in order to describe the phenomena at the energies experimentally achievable
at present, one would need information at all energies, which can not be obtained in principle.

In the context of field theory, the above discussion can be re-formulated as follows. Suppose,
only the momentum transfers |Q| ≤ Λ with a given Λ are available experimentally (the quantity
Λ will be referred to as a “hard scale” hereafter). Consequently, only the distances r ≥ Λ−1 are
probed. Since the Compton wavelength of a massive particle is proportional to the inverse of its
mass, the relevant degrees of freedom for an effective field theory, which describes the processes
with |Q| ≤ Λ, are only those particles whose masses are smaller than Λ. If in the underlying
theory, which is valid at higher momentum transfers, there are particles with M ≫ Λ, their
presence should not be explicitly felt in the effective theory which is valid at the momentum
transfers below Λ. In other words, in the effective theory these high-mass particles are integrated
out.

Here one should also point out that, within field theory, the above arguments are very
subtle. This happens because, e.g., in perturbation theory, the observables can be expressed in
terms of Feynman loop diagrams where the integration is carried out to infinity. Consequently,
contributions from all energies are present even in the low-energy observables. In this case, one
should properly define, what one means under the statement that the low-energy/large distance
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Figure 1: The tree-level scattering amplitude for the process φφ → φφ in the model described
by the Lagrangian given in Eq. (1). Single and double lines correspond to the light and heavy
fields, respectively.

physics does not depend on the details of the high-energy/short-distance dynamics. This is the
central issue of Effective Field Theory (EFT).

In the Nature, there are numerous examples of effective field theories. Say, Chiral Pertur-
bation Theory (ChPT) is a low-energy effective theory of QCD, the dynamics of the Standard
model of electroweak interactions at low energy is described by QED plus the Fermi-theory of
weak interactions, and so on. In this lecture course, we shall be explicitly interested in the
above cases. However, before addressing the issue in full glory, we shall illustrate the general
pattern first within a simple model.

1.2 Integrating out a heavy scale: the model at tree level

Let us consider a model described by the Lagrangian [1, 2]

L =
1

2
(∂φ)2 +

1

2
(∂Φ)2 − m2

2
φ2 − M2

2
Φ2 − g

2
φ2Φ , (1)

where φ,Φ denote the light and heavy fields with masses m,M , respectively1. We shall study
the heavy mass limit M → ∞ in this theory.

Consider the scattering process φφ → φφ at the energies E ∼ m ≪ M . The momenta of
the initial (final) particles are p1 and p2 (p3 and p4). At tree level, the scattering amplitude is
given by the diagrams depicted in Fig. 1, and is equal to

Ttree =
g2

M2 − s
+

g2

M2 − t
+

g2

M2 − u
, (2)

where s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2 are usual Mandelstam variables. On the

mass shell, these variables obey the relation s+ t+ u = 4m2.
In the limit M → ∞, the amplitude in Eq. (2) can be expanded in Taylor series:

Ttree =
3g2

M2
+

g2

M4
(s+ t+ u) +

g2

M6
(s2 + t2 + u2) + · · ·

=
3g2

M2
+

4g2m2

M4
+

g2

M6
(s2 + t2 + u2) + · · · . (3)

1In general, there will be an additional linear term cΦ present in the Lagrangian in Eq. (1), which is needed
to cancel tadpole diagrams with one external Φ-leg. Here, however, we work in tree approximation, where c = 0.
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Figure 2: The tree-level scattering amplitude for the process φφ → φφ in the effective the-
ory described by the Lagrangian given in Eq. (4). This amplitude can be obtained from the
amplitude shown in Fig. 1 by contracting all heavy lines to a point.

At low energies, each subsequent term in this expansion is suppressed by a factor E2/M2 with
respect to the previous one, where E is the characteristic energy of the light particles.

Our aim is to find a Lagrangian, which contains only φ-fields, and which reproduces the
expansion of the amplitude in Eq. (3). In general, such an effective Lagrangian must contain
an infinite tower of the quartic terms in the field φ

Leff =
1

2
(∂φ)2 − m2

2
φ2 + C0φ

4 + C1φ
2
2φ2 + C2φ

2
2

2φ2 + · · · . (4)

Note that, at tree level, the mass parameters in both the underlying and effective Lagrangians
are equal. As we shall see below, this is no more the case at one loop.

The tree-level amplitude, obtained from this Lagrangian, takes the form

T eff

tree
= 24C0 − 8C1(s+ t+ u) + 8C2(s

2 + t2 + u2) + · · ·

= 24C0 − 32m2C1 + 8C2(s
2 + t2 + u2) + · · · . (5)

This amplitude is shown in Fig. 2. Demanding T eff
tree

= Ttree leads to matching conditions which
enable one to express the couplings of the effective theory in terms of the parameters of the
underlying theory

24C0 − 32m2C1 =
3g2

M2
+

4g2m2

M4
,

8C2 =
g2

M6
, (6)

and so on.
Note that the mass-shell matching does not allow one to determine the couplings C0 and

C1 separately. According to Eq. (6), only the combination 24C0 − 32m2C1 can be determined
from the matching condition. This is related to the accidental fact that (in this model only)
all second-order terms can be eliminated by using the equations of motion. In order to prove
this, note that

φ2
2φ2 = 2φ3(2+m2)φ− 2m2φ4 + 2φ2(∂φ)2 . (7)
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On the other hand,

φ2(∂φ)2 =
1

3
∂µ(φ3∂µφ)

︸ ︷︷ ︸

= total derivative

−1

3
φ3(2+m2)φ+

m2

3
φ4 . (8)

Using the equations of motion

(2+m2)φ = 4C0φ
3 + · · · , (9)

it is seen that φ3(2 +m2)φ is transformed into a sum of operators containing more than four
fields and, therefore, do not contribute to the tree-level amplitude. Finally, the term propor-
tional to φ4 can be lumped together with the similar term in the Lagrangian. To summarize,
the second-order terms can be completely eliminated from the Lagrangian – without losing
generality, one may set C1 = 0 everywhere.

Several remarks are in order:

i) The effective theory is equivalent to the underlying theory at tree level. The problems
come in when we start to consider the effective field theory as a field theory, generating
loops with the Lagrangian given in Eq. (4). The underlying theory is a superrenormal-
izable theory (the single coupling constant g has the dimension of mass), whereas the
resulting effective theory contains a tower of non-renormalizable vertices. It is not clear,
how the equivalence of these two theories can be formulated beyond the tree level.

ii) This issue is related to the previous one. The tree-level amplitude, calculated in the
effective theory, violates the unitarity bound. In order to see this, define the partial-wave
amplitudes

T eff

l (s) =
1

32π
√
s

∫ 1

−1

d cos θ T eff(s, cos θ)Pl(cos θ) ,

T eff(s, cos θ) = 16π
√
s

∞∑

l=0

(2l + 1)T eff

l (s)Pl(cos θ) , (10)

where Pl(cos θ) denote the conventional Legendre polynomials. The unitarity relation for
the partial-wave amplitudes gives

ImT eff

l (s) ≥ p |T eff

l (s)|2 , p =

√
s

4
−m2 , (11)

where the inequality turns to equality below the first inelastic threshold s = (4m)2, where
the processes like φφ → φφφφ are no more energetically allowed.

From Eq. (11) it is immediately seen that the real part of the amplitude obeys the so-called
unitarity bound:

|ReT eff

l (s)| ≤ 1

2p
. (12)
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The above bound is violated by the tree amplitude given in Eq. (5). For example, in the
partial wave with l = 0 the tree-level amplitude is equal to

ReT eff

0,tree(s) = 24C̃0 +
32

3
C2

(
s

4
−m2

)2

+ · · · , C̃0 = C0 −
4m2

3
C1 . (13)

This expression saturates the unitarity bound at

sM = 4M2

√

16π − 3g̃2

4g̃2/3
+O(1) , g̃ =

g

M
. (14)

The large-M limit in the underlying theory is performed so that the dimensionless quantity
g̃ stays finite – otherwise, the leading coupling C0 could not be finite. Consequently, the
quantity sM is of order of M2. If s > sM, loops are necessary in order to render the tree-
level amplitude unitary. In turn, this means that the loops must be of the same of order
of magnitude as the tree amplitude, heralding the trouble in the perturbative expansion.

In reality, if s is of order of sM ∼ M2, the effective theory can not be applied any more,
and one should resort to the perturbative expansion in the underlying theory, which is
superrenormalizable and where the amplitude decreases as s−1 at large values of s. It is
said the the underlying theory provides a Wilsonian ultra-violet (UV) completion of the
effective theory at the scales of order M .

iii) There is a well-known example, which exactly follows the path outlined in this toy model.
In the Standard Model, the interactions between left-handed charged currents are medi-
ated by W± bosons with the mass MW ≃ 80 GeV. If the momentum transfer in a process
is much smaller than MW , the propagator of W± takes the form

Dµν(p) =
gµν − pµpν/M

2
W

M2
W − p2

→ gµν
M2

W

, if p2 ≪ M2
W . (15)

In this limit, the flavor-changing weak interactions are described by a local four-fermion
Hamiltonian

Heff =
GF√
2
JµJ†

µ ,
GF√
2
=

g2

8M2
W

, (16)

where GF denotes the Fermi coupling, and g is the SU(2)-gauge coupling in the Standard
model. Further, the charged currents are given by a sum of hadronic and leptonic parts:

Jµ =
∑

ij

Ūiγµ(1− γ5)VijDj +
∑

ℓ

ν̄ℓγµ(1− γ5)ℓ , (17)

where U and D are the up- and down-quark fields (the indices i, j correspond to the
generations), and Vij denotes the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix.

As seen, the (dimensionful) coupling GF in the effective theory is expressed at tree level
in terms of the parameters g and MW of the underlying theory.

Historical note: The violation of the unitarity was the first hint that the Fermi-theory
is incomplete. The efforts to resolve this problem have culminated in the creation of the
Standard Model of the electroweak interactions. For more information, see, e.g. [3].
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1.3 The model at tree level: path-integral formalism

Consider the generating functional of the theory described by the Lagrangian in Eq. (1):

Z(j, J) =

∫

dφdΦ exp

{

i

∫

d4x(L(φ,Φ) + jφ+ JΦ)

}

, (18)

where j(x), J(x) denote the classical external sources for the fields φ(x),Φ(x), respectively. The
Green’s functions are obtained by functional differentiating Z with respect to these sources
(once per each external leg), and putting j = J = 0 at the end.

Since we are interested here in the Green’s functions of the light field only, we may put
J = 0 and consider the quantity Z(j)

.
= Z(j, J = 0). Performing a shift of the integration

variable

Φ → Φ− g

2
(2+M2)−1φ2 , (19)

it is possible to rewrite the generating functional in the following form:

Z(j) =

∫

dφdΦ exp

{

i

∫

d4x

(

−1

2
Φ(2+M2)Φ +

g2

8
φ2(2+M2)−1φ2

− 1

2
φ(2+m2)φ+ jφ

)}

. (20)

The integration over the variable Φ in the first term gives a constant that can be included into
the normalization. Expanding now the second term in the argument, we get:

g2

8
φ2(2+M2)−1φ2 =

g2

8M2

(

φ4 − φ2 2

M2
φ2 + φ2 2

2

M4
φ2 + · · ·

)

. (21)

Comparing this expansion with Eq. (4), we may immediately read off

C0 =
g2

8M2
, C1 = − g2

8M4
, C2 =

g2

8M6
, · · · , (22)

and the result in Eq. (6) is reproduced.
It is legitimate to ask, why the above result is valid only at tree level, even if, formally, no

approximations have been made so far. The answer to this question is that the Taylor expansion
of the integrand in the path integral is not justified – the answer of the integral changes as a
result of this expansion. On the other hand, at tree level, the path integral is equal just to the
value of the integrand at the classical trajectory. Consequently, in this case, the expansion is
justified, since the integration over φ is no longer involved.

A final remark is in order. It is easy to see that, before Taylor-expanding, the theory with
the effective Lagrangian, containing only φ fields, is formally equivalent to the underlying theory
to all orders in perturbation theory. The effective theory contains a vertex φ2(2+M2)−1φ2 and
is thus non-local. Its high-energy behavior is, however, damped by the inverse D’Alembertian
and corresponds to that of the original superrenormalizable theory. The expansion makes a
local effective Lagrangian out of the non-local one, but at a cost of a worse behavior at high
momenta. It is clear that the expansion breaks down at the momenta of the order of M , and
we are back to the underlying theory.
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Figure 3: The self-energy of the light particle at one loop in the model described by the
Lagrangian given in Eq. (1). Single and double lines correspond to the light and heavy fields,
respectively.

1.4 Light particle mass at one loop

The self-energy of the light particle in the underlying theory at one loop is described by two
diagrams shown in Fig. 3. We shall calculate them by using dimensional regularization. The
contribution of the diagram in Fig. 3a is given by

Σa(p
2) = g2

∫

l

1

m2 − l2
1

M2 − (p− l)2
, (23)

where we have used the shorthand notation
∫

l

f(l)
.
=

∫
dDl

(2π)Di
f(l) . (24)

In the above expression, D denotes the number of space-time dimensions. In physical dimen-
sions, D → 4. In addition, in all propagators, the usual causal prescription mass2 → mass2−iǫ,
ǫ → 0+ is implicit.

Performing the integral with the use of the Feynman trick

1

AB
=

∫ 1

0

dx

(xA+ (1− x)B)2
, (25)

as D → 4, we obtain:

Σa(p
2) = −2g2L− g2

16π2

∫ 1

0

dx ln
xm2 + (1− x)M2 − x(1− x)p2

µ2
, (26)

where µ denotes the scale of the dimensional regularization, and

L =
µD−4

16π2

(
1

D − 4
− 1

2
(Γ′(1) + ln 4π)

)

. (27)
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Here, Γ(z) stands for the Γ-function and Γ′(1) = −γ, where γ = 0.577215665 . . . denotes Euler’s
constant. Integrating over the variable x, we obtain

Σa(p
2) = −2g2L− g2

16π2

{

1

2

(

1− M2 −m2

p2

)

ln
m2

µ2
+

1

2

(

1 +
M2 −m2

p2

)

ln
M2

µ2

− λ1/2

2p2






ln

1
2

(

1− M2−m2

p2

)

− λ1/2

2p2

1
2

(

1− M2−m2

p2

)

+ λ1/2

2p2

− ln

−1
2

(

1 + M2−m2

p2

)

− λ1/2

2p2

−1
2

(

1 + M2−m2

p2

)

+ λ1/2

2p2







− 2

}

, (28)

where

λ
.
= λ(p2, m2,M2) , λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx , (29)

denotes the Källén triangle function. Expanding this expression at large M , we obtain

Σa(p
2) = −2g2L− g2

16π2

(

−1 + ln
M2

µ2

)

− g2

16π2M2

(

m2 ln
M2

µ2
−m2 ln

m2

µ2
− p2

2

)

+O(M−4) , (30)

where the notation O(M−4) includes also the terms at O(M−4 lnk M2). We shall consistently
adhere to this notation below.

The calculations in case of the diagram in Fig. 3b (the “tadpole”) can be done analogously.
The result is given by

Σb(p
2) =

g2

2M2

∫

l

1

m2 − l2
=

g2m2

M2
L− g2m2

32π2M2

(

1− ln
m2

µ2

)

. (31)

Adding these two expressions together, we finally get:

Σa(p
2) + Σb(p

2) = −2g2L− g2

16π2

(

−1 + ln
M2

µ2

)

+
g2m2

M2
L

− g2

16π2M2

(

m2 ln
M2

µ2
− 3m2

2
ln

m2

µ2
− 1

2
(p2 −m2)

)

+O(M−4) . (32)

Next, we wish to reproduce this result within the effective theory. We shall, namely, try
to answer the following question: The effective Lagrangian in Eq. (4) reproduces all Green’s
functions of the underlying theory in the tree approximation. Can also the results of the
loop calculations in the underlying theory be reproduced by the loops in the effective theory,
using the same Lagrangian? The answer to this question is no, as will become clear from
our calculation at one loop. In order to reproduce the results up-to-and-including O(M−2), it
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Figure 4: The self-energy of the light particle in the effective theory described by the Lagrangian
given in Eq. (4). C0 multiplies the vertex with no derivatives, C1 with two derivatives, and so
on.

is sufficient to include only the leading term with no derivatives, proportional to C0, in the
effective Lagrangian (cf. Eq. (4) and Eq. (22))

L =
1

2
(∂φ)2 − m2

2
φ2 + C0 φ

4 +O(M−4) . (33)

In the effective theory, up-to-and-including O(M−2), only the first diagram in Fig. 4, pro-
portional to C0 = g2/(8M2), contributes. The result is given by:

Σeff(p
2) = 12C0

∫

l

1

m2 − l2
+O(M−4) = 24C0m

2 Leff − 3C0m
2

4π2

(

1− ln
m2

µ2
eff

)

+O(M−4) . (34)

In the above expression, µeff denotes the dimensional regularization scale in the effective theory,
which need not be the same, and Leff is determined from Eq. (33), with the replacement
µ → µeff .

As one sees from the above equations, Σa + Σb 6= Σeff at one loop. One may now ask the
question, how one could modify the effective theory so that the above relation were restored?
It is easy to see that, to this end, the effective Lagrangian should be supplemented by the
counterterms responsible for the mass and wave function renormalization:

Leff → Leff +
A

2
(∂φ)2 − B

2
φ2 ,

A =
g2

32π2M2
+O(M−4) ,

B = g2
(

2Leff +
1

16π2

(

ln
M2

µ2
eff

− 1

))

+
g2m2

M2

(

2Leff +
1

16π2

(

ln
M2

µ2
eff

− 1

))

+O(M−4) . (35)

Further, let us calculate the physical mass of the light particle which coincides with the pole
in the two-point function. In the underlying theory, at one loop, the physical mass mP can be
determined by the solution of the equation

m2 −m2
P
− (Σa(m

2
P
) + Σb(m

2
P
)) = 0 . (36)
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From this equation to the lowest order in g we obtain

m2
P
= m2

r
(µ) +

g2

16π2

(

−1 + ln
M2

µ2

)

+
g2m2

r (µ)

16π2M2

(

ln
M2

µ2
− 3

2
ln

m2
r (µ)

µ2

)

+O(M−4) , (37)

where mr(µ) denotes the running mass in the underlying theory, which in the modified minimal
subtraction (MS) scheme, which is defined through the subtraction of the divergent pieces
proportional to L:

m2
r (µ) = m2 + 2g2L− g2m2

M2
L . (38)

Note that, at this order, it is still not necessary to consider the loop corrections of other
parameters of the theory, g and M .

Since we have modified the effective Lagrangian to ensure that the Green functions in the
underlying and the effective theories coincide, the poles in both theories will be at the same
place2. The physical mass, calculated in the effective theory, is given by the solution of the
following equation

m2 +B − (1 + A)m2
P
− Σeff(m

2
P
) = 0 , (39)

and takes the form

m2
P = m2

r,eff +
3g2m2

r,eff

32π2M2

(

1− ln
m2

r,eff(µeff)

µ2
eff
(µeff)

)

+O(M−4) , (40)

where mr,eff(µeff) denotes the running mass in the effective field theory, which is related to the
bare mass in the following manner:

m2
r,eff(µeff) = m2

eff
− 3g2m2

eff

M2
Leff , (41)

and, finally, the bare mass can be read from the effective Lagrangian

Leff =
1

2
(∂φ)2 − m2

2
φ2 +

A

2
(∂φ)2 − B

2
φ2 + quartic terms

=
1

2
Zeff(∂φ)

2 − m2
eff

2
Zeffφ

2 + quartic terms ,

Zeff = 1 + A , m2
eff =

m2 +B

1 + A
. (42)

2Strictly speaking, only the matching of the observables in two theories (i.e., the masses and the S-matrix
elements) is required. The two-point function is not an observable. So, in principle, one could leave the wave
function renormalization constant Zeff free. However, not much will change in our discussion of the physical
mass, if we lift the restriction on this constant.
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Since observables (the physical masses) should be the same in the underlying theory and in the
effective theory, this finally gives the relation between the running masses in both theories:

m2
r,eff(µeff) = m2

r
(µ) +

g2

16π2

(

−1 + ln
M2

µ2

)

+
g2m2

r (µ)

16π2M2

(

ln
M2

µ2
− 3

2

(

1 + ln
µ2
eff

µ2

))

+O(M−4) . (43)

As we see, the running masses in both theories are not the same beyond tree approximation.
Moreover, these masses run differently with respect to the scale variations:

µ
dm2

r (µ)

dµ
=

g2

8π2
− g2m2

r (µ)

16π2M2

µeff

dm2
r,eff(µeff)

dµeff

=
3g2m2

r,eff(µeff)

16π2M2
+O(M−4) . (44)

The above renormalization group (RG) equations can be obtained by differentiating the ex-
pression for the physical mass with respect to the scale and setting this derivative to zero,
because the physical mass does not depend on the scale. Moreover, it should be pointed out
that even the scale µ is present in Eq. (43), the running mass in the effective theory, mr,eff(µeff),
in fact, does not depend on this scale. This statement can be straightforwardly checked by
using the first of the equations in Eq. (44). This happens because Eq. (43) was obtained from
the matching to the physical observable, which has to be scale-independent.

Concluding remarks are in order:

i) As we have seen, matching the two Lagrangians at tree level does not mean that the loops
calculated with these Lagrangians will also match. The difference, however, can be taken
away completely by the renormalization. This means that both theories are physically
equivalent. This statement constitutes the content of the decoupling theorem [4], see
later.

ii) Matching enables one to express the parameters of the effective theory in terms of the
parameters of the underlying theory. What makes sense is the relation between the finite
quantities: e.g., between the running masses and the couplings.

iii) Both sets of the running parameters depend on their own scale (µ and µeff , respectively).
The parameters of the effective theory do not depend on the underlying scale µ, if they
can be determined from the matching to physical observables.

iv) Note that in the relation given by Eq. (43), all logarithms containing the light mass cancel.
This is the manifestation of the general pattern, which states that the couplings of the
effective theory do not contain non-analytic behavior that emerges at the light scales. All
of this non-analytic behavior has to be reproduced by the loops in the effective theory. On
the contrary, the parameters of the effective theory encode the short-distance dynamics
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Figure 5: Representative set of the diagrams, contributing to the φφ → φφ amplitudes in the
underlying and the effective theories.

and thus depend on the light mass, at most, in the polynomial form. For consistency,
here one assumes that the scales µ, µeff are also “hard.” On the other hand, reducing µeff

down to the “light” scale, the couplings will no more depend analytically on this scale.
We shall observe this phenomenon explicitly in ChPT.

v) As we know, the dimensionful coupling constant g is of order of the heavy mass M in
the large-M limit. The running mass in the effective theory is not protected from large
loop corrections (e.g., by some symmetries) and, according to Eq. (43), is driven up to
the heavy scale, unless some fine tuning is enforced. This phenomenon is closely related
to the hierarchy problem in Grand Unified Theories.

1.5 Matching of the quartic coupling at one loop

Matching of the φφ → φφ scattering amplitudes at one loop proceeds analogously. First of
all, one has to calculate the scattering amplitude in the underlying theory and in the effective
theory. A representative set of the diagrams is shown in Fig. 5. The matching condition is:

T = T eff . (45)

It is seen that, in a result of this matching condition, the quartic couplings in the tree-level
effective Lagrangian, given by Eq. (4), are modified according to Ci → Ci + δCi. This is shown
schematically in Fig. 5.

Since the one-loop contributions to the scattering amplitude in the effective theory (see
Fig. 5) are divergent, the modified Ci should also contain divergent parts

Ci = νiLeff + C r

i (µeff) , (46)

where the coefficients νi determine the running of the renormalized couplings C r
i (µeff) with

respect to the scale µeff :

µeff

dC r
i (µeff)

dµeff

= − νi
16π2

. (47)

12



Matching enables one to express the renormalized couplings C r
i (µeff) in terms of the fundamental

parameters of the underlying theory. Comparing with Eq. (22) which contains matching at tree
level, and using dimensional arguments, we get

C r

i (µeff) = (−)i
g2

8M
2(i+1)
r (µeff)

{

1 + κi
g2

16π2M2
r
(µeff)

}

, (48)

where Mr(µeff) is the renormalized heavy mass in the underlying theory, and the dimensionless
constants κi can depend only on the dimensionless arguments mr/Mr and µeff/Mr (without loss
of generality and in order to ease notations, we took here µ = µeff). In Eq. (48), in addition, we
took into account the fact that in the underlying (superrenormalizable) theory the coupling g is
not renormalized, and we used g instead of gr everywhere. Moreover, as became clear from the
discussion in the section 1.4, the coupling constants, determined from the matching, can not
contain infrared singularities at mr → 0, since these singularities are the same in the underlying
and in the effective theory, canceling each other in the matching condition. An example for
this is the cancellation of all ln(m2

r
)-terms in the matching of the two-point functions, see

the section 1.4. Consequently, the κi can only be a polynomial in the variable m2
r
/M2

r
and

the whole dependence on this variable can be eventually eliminated by using the equations of
motion (EOMs) in the Lagrangian, see section 1.2. On the contrary, the dependence on the
second variable µeff/Mr is non-analytic – in perturbation theory, logarithms ln(µeff/Mr) usually
appear3.

Carrying out the matching at one loop is straightforward but quite boring, since a large
number of Feynman diagrams have to be calculated. Below, we shall demonstrate, how the
same goal, with considerably less effort, can be achieved within the path-integral formalism.
To this end, we evaluate the generating functional, given in Eq. (20) at one loop by using the
saddle-point technique. In the beginning, we carry out the integration over the field Φ (this
integration gives an uninteresting constant, which can be included in the normalization of the
path integral). Further, we expand the action functional in this integral around the classical
solution for the field φ, writing φ = φc + ξ. Here, the field ξ denotes the quantum fluctuation
around the classical solution φc, which obeys the following equation of motion

0 = (2+m2)φc(x) + j(x) +
g2

2

∫

d4y φc(x)DM(x− y)φ2
c(y)

= (2+m2)φc(x) + j(x) +
g2

2M2
φ3
c(x) + · · · , (49)

where

DM(x− y) = 〈x|(2+M2)−1|y〉 =
∫

d4p

(2π)4
e−ip(x−y)

M2 − p2
. (50)

3Using the EOMs is justified, since the S-matrix elements, which are used in the matching condition, do not
change. One should bear in mind, however, that the off-shell behavior of Green’s function changes, if the EOMs
are used.
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Retaining the terms up to the second order in the expansion over ξ, and taking into account
the fact that dφ = dξ, the generating functional in Eq. (20) can be rewritten as follows

Z(j) =

∫

dξ exp

{

i

∫

d4x

(

−1

2
φc(2+m2)φc +

g2

8
φ2
c(2+M2)−1φ2

c + jφc

)}

× exp

{

i

∫

d4xd4y

(

−1

2
ξ(x)H(x− y)ξ(y) +O(ξ3)

)}

, (51)

where

H(x− y) = (2+m2 + S(x))δ4(x− y)− Λ(x− y) ,

S(x) = −g2

2
(2+M2)−1φ2

c(x) ,

Λ(x− y) = g2φc(x)〈x|(2+M2)−1|y〉φc(y) . (52)

Note that there are no terms linear in ξ, because φc is the solution of the equation of motion
that makes the action functional stationary.

Evaluating the Gaussian integral over ξ in a standard manner, we obtain

Z(j) = exp

{

i

∫

d4x

(

−1

2
φc(2+m2)φc +

g2

8
φ2
c(2+M2)−1φ2

c + jφc

)

+ iSeff

}

, (53)

where

Seff =
i

2
Tr ln ((2+m2 + S)− Λ) =

i

2
Tr ln(2+m2) +

i

2
Tr ((2+m2)−1S)

− i

4
Tr ((2+m2)−1S(2+m2)−1S)− i

2
Tr ((2+m2)−1Λ)

+
i

2
Tr ((2+m2)−1S(2+m2)−1Λ)− i

4
Tr ((2+m2)−1Λ(2+m2)−1Λ) +O(g6)

= T0 + T1 + T2 + T3 + T4 + T5 +O(g6) , (54)

Here, “Tr” denotes the trace of the operator in the coordinate space, i.e.,

TrA =

∫

d4x 〈x|A|x〉 . (55)

Further, note that T0 is an uninteresting constant, which can be included in the normalization of
the path integral. T1 and T3 are quadratic in the field φc and contribute to the renormalization
of the two-point function of the light field. We have studied this issue in detail is section 1.4.
The remaining terms T2, T4 and T5, which contribute to the renormalization of the quartic
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couplings, can be rewritten as

T2 =
g4

16

∫

d4xd4yd4ud4v (−iD(u− v)D(v − u)DM(u− x)DM(v − y))φ2
c(x)φ

2
c(y) ,

T4 =
g4

4

∫

d4xd4yd4ud4v(−iD(v − u)D(u− y)DM(y − v)DM(u− x))φ2
c(x)φc(y)φc(v) ,

T5 =
g4

4

∫

d4xd4yd4ud4v (−iD(v − u)DM(u− x)D(x− y)DM(y − v))φc(x)φc(y)φc(u)φc(v) ,

(56)

where the light particle propagator D(x − y) is given by the same formula (50), with the
replacement M → m. Schematically, the three quantities T2, T4, T5 are depicted in Fig. 6.

Let us now consider the strategy of the matching at one loop. First, we recall that the
matching condition is altered by loop corrections, because the heavy particles are present in
the loops and the Taylor expansion in the inverse powers of the heavy mass can not be straight-
forwardly carried out in the Feynman integrals. Namely, let us denote TM{Ti}, i = 2, 4, 5, the
quantities Ti, evaluated from the same diagrams shown in Fig. 6, but with the Taylor-expanded
heavy particle propagator

1

M2 − l2
→ 1

M2
+

l2

M4
+ · · · (57)

(the symbol “TM” stands for the procedure of the Taylor expansion in the inverse powers of
the heavy mass4). Then, the difference

∆T =
∑

i=2,4,5

(Ti − TM{Ti}) (58)

should be compensated by adjusting the quartic coupling constants. This gives us the desired
matching condition for these couplings.

From Fig. 6 we immediately conclude that T2 will not affect the matching condition, because
it does not contain heavy particles in the loops. Consequently,

T2 − TM{T2} = 0 . (59)

T4 and T5 will, however, affect the matching condition. Let us start with the quantity T4. The
vertex diagram, which is the part of T4 (see Fig. 6), is given by

−iD(v − u)D(u− y)DM(y − v) =

∫
d4p1
(2π)4

d4p2
(2π)4

e−ip1(v−u)−ip2(u−y)Γv(p1, p2) , (60)

4Note that, graphically, the operation TM amounts to contracting heavy propagators to one point. In a
result, the diagrams, describing φφ → φφ scattering in the effective theory arise from the diagrams T2, T4 and
T5, shown in Fig. 6.
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T2

T4 T5

Figure 6: A schematic representation of T2, T4 and T5. The solid and double lines denote the
light and heavy fields, respectively. On the right, the one loop graph in the effective theory,
which is obtained from T2, T4, T5 by contracting the heavy propagators, is shown.

where

Γv(p1, p2) =

∫

l

1

(m2 − (p1 + l)2)

1

(m2 − (p2 + l)2)

1

(M2 − l2)
. (61)

Note that the second heavy propagator, DM(u−x), which is outside the loop, can be expanded
in inverse powers of M without much ado.

We are interested in the quantity Rv(p1, p2) = Γv(p1, p2)−TM{Γv(p1, p2)}. Since the quantity
Rv(p1, p2) should be a low-energy polynomial in the small momenta p1, p2, one may expand it
in the Taylor series

Rv(p1, p2) = Rv(0, 0) + pµ1
∂

∂pµ1
Rv(p1, p2)

∣
∣
∣
∣
p1,p2=0

+ pµ2
∂

∂pµ2
Rv(p1, p2)

∣
∣
∣
∣
p1,p2=0

+ · · · . (62)

Note that, in the effective Lagrangian, this expansion translates into the derivative expansion
in the light fields. In order to perform matching at lowest order in the inverse heavy mass
M , it suffices to retain the first term in this expansion. Generalization to higher orders is
straightforward.

Calculating Γv(0, 0), we get

Γv(0, 0) =

∫

l

1

(m2 − l2)2
1

M2 − l2
=

1

16π2

∫ 1

0

dx x

xm2 + (1− x)M2

=
1

16π2

(
1

m2 −M2
− M2

(m2 −M2)2
ln

m2

M2

)

= − 1

16π2M2

(

1 + ln
m2

M2

)

+O(M−4) . (63)

On the other hand,

TM{Γv(0, 0)} =

∫

l

1

(m2 − l2)2

{
1

M2
+O(M−4)

}

=
2

M2
Leff − 1

16π2M2
ln

m2

µ2
eff

+O(M−4) . (64)

16



Subtracting these two expressions, we finally obtain

Rv(0, 0) =
2

M2
Leff − 1

16π2M2

(

1 + ln
µ2
eff

M2

)

+O(M−4) . (65)

As expected, the non-analytic terms, proportional to lnm2, cancel in this difference. Substi-
tuting now this expression into Eqs. (60) and (56), we finally obtain

T4 − TM{T4} =
g4

4M2
Rv(0, 0)

∫

d4xφ4
c(x) +O(M−6) . (66)

The quantity T5 can be treated analogously. Here, we need the expression of the box integral
at zero momenta (see Fig. 6)

Γb(0, 0) =

∫

l

1

(m2 − l2)2
1

(M2 − l2)2
=

1

16π2

∫ 1

0

dx x(1− x)

(xm2 + (1− x)M2)2

=
1

16π2

−2(M2 −m2) + (M2 +m2) ln(M2/m2)

(M2 −m2)3

=
1

16π2M4

(

−2 + ln
M2

m2

)

+O(M−6) . (67)

The same integral, with the Taylor-expanded heavy propagator, is equal to

TM{Γb(0, 0)} =

∫

l

1

(m2 − l2)2
1

(M2)2
= − 2

M4
Leff − 1

16π2M4
ln

m2

µ2
eff

. (68)

From these equations we obtain

Rb(0, 0) = Γb(0, 0)− TM{Γb(0, 0)} =
2

M4
Leff +

1

16π2M4

(

−2− ln
µ2
eff

M2

)

+O(M−6) . (69)

Finally, from Eq. (56) we obtain

T5 − TM{T5} =
g4

4
Rb(0, 0)

∫

d4xφ4
c(x) . (70)

From Eqs. (66) and (70) we may now read off the matching of the low-energy constant C0 at
one loop

C0 =
g2

8M2
+

g4

4M2
Rv(0, 0) +

g4

4
Rb(0, 0) +O(M−6)

=
g2

8M2
+

g4

M4
Leff − g4

64π2M4

(

3 + 2 ln
µ2
eff

M2

)

+O(M−6) . (71)
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Figure 7: Renormalization of the heavy mass at one loop. The solid and double lines denote
the light and heavy fields, respectively.

In order to arrive at the final result, one has to express everything in Eq. (71) in terms of the
renormalized couplings. As already mentioned, g is not renormalized. The quantity M2 should
be, however, renormalized, see Fig. 7

M2 = M2
r (µeff)− g2Leff , (72)

where, without loss of generality, one may assume that the scales in the underlying and effective
theories coincide: µ = µeff .

Substituting this expression into Eq. (71), we finally obtain

C0 =
9g4

8M4
r

Leff +
g2

8M2
r

− g4

64π2M4
r

(

3 + 2 ln
µ2
eff

M2
r

)

+O(M−6
r ) = ν0Leff + Cr

0(µeff) . (73)

It is seen that Cr
0(µeff) can be written in form of Eq. (48). Reading off the coefficient κ0, one

gets

κ0 = −6 − 4 ln
M2

µ2
eff

+O(M−2
r ) . (74)

The coefficient κ0 does not depend on the light mass m at this order. This is, however, not
true in general to all orders in the expansion in the inverse powers of Mr, unless the EOMs are
used.

Finally, from Eq. (73) one can straightforwardly ensure that the renormalized coupling
constant at this order obeys the well-known RG equation in the φ4 theory

µeff

dCr
0

dµeff

= − 9

2π2
(Cr

0)
2 . (75)

Last but not least, it should be noted that the effective Lagrangian beyond tree level contains
terms with 6,8,. . . φ-fields as well. These are needed, in particular, to cancel the divergences in
the loop diagrams of the effective theory of the type shown in Fig. 8. Such terms emerge as a
result of using the EOMs in the quartic terms as well.

1.6 Dependence of the effective couplings on the heavy mass

In a simple model considered in the previous sections, the heavy mass M sets the hard scale,
above which the structure of the theory changes. For this reason, it is interesting to learn,
how the parameters of the low-energy theory depend on the heavy mass. First, let us consider
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Figure 8: The renormalization of the Green’s function with eight external legs in the effective
theory. In order to cancel the divergence, a local term with eight φ-fields is introduced in the
Lagrangian. The pertinent coupling is denoted by E8.

the effective Lagrangian at tree level. One may judge about the leading behavior of these
couplings in the limit M → ∞ on the basis of the dimensionality of these couplings alone.
Only the effective mass of the light particle has a positive mass dimension. The coupling
C0 is dimensionless, and the couplings Ci with i > 0 have negative mass dimension. On
dimensional grounds, the leading behavior in M in the latter couplings should be proportional
to g2/M2(i+1) ∝ M−2i. Consequently, the couplings Ci, i > 0, fall off as negative powers of M ,
as M → ∞. The dimensionless couplings are defined as C̃i = CiM

2i. The couplings C̃i are said
to be of natural size if these are of order one.

According to the mass dimension, the couplings are referred to as the relevant (positive
mass dimension), marginal (dimensionless) and irrelevant (negative mass dimension). It is seen
that at low energies that corresponds to the limit of a very large M , the contribution from the
irrelevant couplings to the Green’s functions is suppressed by powers of the large mass M .

Does the situation change beyond the tree level? Let us next consider the insertion of the
irrelevant couplings in the loops. For simplicity, consider one loop in the effective theory with
the insertion of two irrelevant vertices multiplied by the couplings Ci and Cj , see Fig. 9. The
product of these two couplings falls off as M−2(i+j). Further, the mass dimension of the diagram
in Fig. 9 is equal to 0. So, in order to make up the required mass dimension, the above factor
should be multiplied by mass2(i+j), where mass denotes any available mass scale in the effective
theory: external momenta, effective mass or the regulator mass in the loops.

The discussion is particularly simple in the dimensional regularization. The diagram in
Fig. 9 is given by the expression

Iij =
C̃iC̃j

M2(i+j)

∫

l

N(l; {pi})
(m2 − l2)(m2 − (P − l)2)

, (76)

where the tree-level couplings C̃i = CiM
2i are dimensionless and stay finite asM → ∞. Further,

p1, · · · , p4 are the external momenta with P = p1 + p2, and the numerator N , which has the
mass dimension 2(i+j), depends on the integration momentum l, the external momenta and on
the light mass m (at this order, one may replace running effective mass of a light particle mr,eff
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Figure 9: Insertion of two irrelevant vertices into the one-loop diagram. p1, p2 and p3, p4 are the
incoming and outgoing momenta, respectively. The total momentum is P = p1 + p2 = p3 + p4.

by m). After integration, the dependence on the scale µeff appears. However, in dimensional
regularization the dependence on the scale µeff is logarithmic and thus safe (i.e., the power of
M in front of the integral is not changed through the multiplication by a logarithm). The loops
with the insertions of the irrelevant couplings are also irrelevant in the limit M → ∞. Thus,
irrelevant couplings can be eliminated from the theory at one loop level as well.

The argumentation is a bit more subtle in arbitrary regularization (say, cutoff regulariza-
tion), where the powers of the large regulator scale Λcut can appear. This situation also emerges
if we have a multi-scale problem, with heavy particles appearing in the effective field theory
loops together with light particles (example: pion-nucleon scattering in ChPT). According
to the dimensional counting, the maximal power of Λcut is contained in the maximally UV-
divergent piece of the integral Iij in Eq. (76), which does not depend on the external momenta
p1, · · · p4. Denoting this maximally divergent piece by Ĩij, we have

Ĩij =
C̃iC̃j

M2(i+j)

∫ Λcut d4l

(2π)4i

l2(i+j)

(m2 − l2)2
∼ C̃iC̃jΛ

2(i+j)
cut

M2(i+j)
. (77)

In other words, this term is no more suppressed since Λcut ∼ M . Note, however, that the above
contribution does not depend on the external momenta and has exactly the same form as the
contribution coming at tree level from the marginal vertex with the coupling C0. Consequently,
the whole contribution Ĩij can be removed by the renormalization of C0 which we of course are
free to perform. We arrive at the same conclusion as earlier, within dimensional regularization:
the contributions from the irrelevant couplings are irrelevant at one loop as well. Thus, our
results, as expected, do not depend on the regularization used. The above arguments can be
readily generalized for any number of insertions in the diagrams with arbitrary number of loops.

1.7 Renormalization group flow

The heuristic arguments given in the previous section were still restricted to the discussion of
individual Feynman diagrams. In this section, we shall provide a more general proof. A sys-
tematic method is based on integrating out high-frequency modes in the generating functional
of the theory. The discussion below closely follows the one in Ref. [5], see also [6, 7].

We do not want to focus on any particular model. To this end, we shall interpret M
merely as some hard scale of the theory, after which the unknown physics starts, be this
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a new particle with a mass M , non-local effects, or whatever. Further, in order to make
the arguments maximally transparent, below we shall use the momentum cutoff instead of
dimensional regularization. Consider, for simplicity, a theory with a single scalar field φ. The
Euclidean generating functional for the renormalized Green functions in momentum space is
given by

Z(J) =

∫
[
dφ

]

M
exp

{∫
d4p

(2π)4

(

−1

2
φ(p)(p2 +m2)φ(−p) + J(p)φ(−p)

)

+ Sint(φ)

}

, (78)

where
[
dφ

]

M
denotes the path integral measure with a cutoff on the high-frequency modes

with p ∼ M . This shorthand notation should be interpreted as follows: calculating Eq. (78) in
perturbation theory, a cutoff at the momentum scale of order M is introduced in all Feynman
graphs (an explicit form of the cutoff does not play a role). Further, Sint is the interaction
part of the action functional that contains the bare coupling constants Ci(M) corresponding
to the cutoff at a scale M . In addition, in the renormalizable theory, it is possible to choose
Ci(M) so that the generating functional remains finite as M → ∞. This is not possible in the
non-renormalizable theory, but everything is perfectly defined if the cutoff stays finite.

Now, let us ask ourselves, how the couplings Ci depend on the cutoff. To this end, we
introduce an effective field theory scale Λeff , which obeys the condition m ≪ Λeff ≪ M , and
consider a smooth change of a cutoff from M to Λeff . Namely, we define a scale Λeff ≤ Λ ≤ M
and consider the Euclidean path integral

Z(J,Λ) =

∫
[
dφ

]

Λ
exp

{∫
d4p

(2π)4

(

−1

2
φ(p)(p2 +m2)φ(−p) + J(p)φ(−p)

)

+ Sint(φ,Λ)

}

=

∫

dφ exp(S(φ,Λ)) . (79)

Here, we are only interested in the low-frequency modes, so we assume that

J(p) = 0 for p2 > Λ2
eff . (80)

The point is that, in order to ensure that the renormalized Green functions do not depend
on Λ, the effective action S(φ,Λ) should obey certain RG flow equations. In other words, the
effective couplings that enter S(φ,Λ), should depend on Λ in a manner that compensates the
explicit Λ-dependence coming from the cutoff. For example, the mass parameters at two scales
in the pure φ4-theory with the only coupling C0 at one loop are related by

m2(Λ) = m2(M) + 12C0

∫ M

l

1

m2(M) + l2

∣
∣
∣
∣
Eucl.

− 12C0

∫ Λ

l

1

m2(M) + l2

∣
∣
∣
∣
Eucl.

= m2(M) +
3C0

4π2

(

M2 − Λ2 −m2(M) ln
M2

Λ2
+ · · ·

)

,

Λ
d

dΛ
m2(Λ) = −3C0

2π2
Λ2

(

1 +O

(
m2

Λ2

))

, (81)
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where the momentum integrals are evaluated in Euclidean space. Note that, in order to ob-
tain the above equation, the tadpole diagram (the first diagram in Fig. 4) has been evaluated.
In general, at a scale Λ, the effective Lagrangian includes the contribution from all momenta
Λ < p < M , which emerged through the loops, when the cutoff was set to M . Thus, the La-
grangian at lower scales gets very complicated. For example, even if the theory does not contain
non-renormalizable operators at Λ = M , the flow equation tells us that they will necessarily
emerge at lower scales. From dimensional reasons, these operators φ2

2φ2, φ2
2

2φ2, · · · will be
suppressed by the respective powers of Λ if m ≪ Λ still holds. The first-order differential equa-
tions, analogous to one given in Eq. (81), emerge for the couplings Ci(Λ) entering the quantity
Sint(φ,Λ). These are nothing but the conventional RG equations.

Below, we are going to prove the following crucial statement:

Even if the different theories may look very different at the hard scale Λ = M , the
difference vanishes, when going to lower scales Λ = Λeff .

In order to understand what happens, consider first a toy example with two couplings: a
marginal one, C0(Λ), and an irrelevant one, C1(Λ), putting, for simplicity, all other couplings
to zero. Utilizing dimensional arguments, it can be shown that, generally, the RG equations
for these couplings take the form:

Λ
dC0

dΛ
= β0(C0,Λ

2C1) ,

Λ
dC1

dΛ
= Λ−2β1(C0,Λ

2C1) , (82)

where β0, β1 denote the pertinent β-functions. Introducing now the dimensionless constants
C̃0 = C0, C̃1 = Λ2C1, we may rewrite the RG equations as

Λ
dC̃0

dΛ
= β0(C̃0, C̃1) ,

Λ
dC̃1

dΛ
− 2C̃1 = β1(C̃0, C̃1) . (83)

The above equations define the renormalization group flow for the couplings C̃i(Λ), provided
their values are fixed at some point:

C̃i(Λ)

∣
∣
∣
∣
Λ=M

= C̃
(0)
i , i = 0, 1 . (84)

Let us now imagine that the pair (C̄0, C̄1) is a solution of the above equation. Consider small
deviations εi = C̃i − C̄i, for which the RG equations linearize

Λ
dε0
dΛ

=
dβ0

dC̃0

ε0 +
dβ0

dC̃1

ε1 ,

Λ
dε1
dΛ

− 2ε1 =
dβ1

dC̃0

ε0 +
dβ1

dC̃1

ε1 , (85)
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Figure 10: Two neighboring trajectories on the C̃0, C̃1 plane (see the text for more details).

where the bar means that the partial derivatives are evaluated at (C̄0, C̄1). The term −2ε1 in
Eq. (85) will cause a damping of the variation of the deviations in the ε1-direction. This will
be demonstrated in the following.

Further, let us take some initial large value of Λ = M and the initial pair (ε0, ε1). This
corresponds to the point A1 in the (ε0, ε1)-plane, see Fig. 10. Now decrease the value of Λ so
that it comes down to the low-energy region, that corresponds to moving along the trajectory,
defined by the RG equations, from point A1 to point B1.

Now, let us take a slightly different initial values of the couplings at Λ = M , corresponding to
the point A2. RG evolution brings this point to B2 along the neighboring trajectory. However,
as seen from Fig. 10, there is a point B′

2 on the same trajectory, whose distance to B1 is minimal.
Up to the first-order terms in εi, it is possible to write

ζ1 = |B′
2B1| = |OB1| − |OB′

2| ≃ ε1 − ε0
dC̄1/dΛ

dC̄0/dΛ
. (86)

Using Eqs. (83) and (85), it can be straightforwardly shown that ζ1 obeys the following RG
equation:

Λ
dζ1
dΛ

− 2ζ1 =

(
∂β1

∂C̃ 1

+
∂β0

∂C̃ 0

− Λ
d

dΛ
ln β̄0

)

ζ1 . (87)

The solution of this equation at Λ = Λeff is given by:

ζ1(Λeff) = ζ1(M)

(
Λ2

eff

M2

)(
β0(M)

β0(Λeff)

)

exp

{∫ Λeff

M

dM ′

M ′

(
∂β1

∂C̃ 1

(M ′) +
∂β0

∂C̃ 0

(M ′)

)}

. (88)
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It is seen that if the couplings are sufficiently small, so that the integrand in Eq. (88) is small,
and if β0 does not vary very fast, then the leading suppression comes from the factor (Λ2

eff
/M2).

This means that all RG trajectories approach each other in the infrared, and there is one
essential parameter left instead of two: the value of C̃1 is predicted, given the value of C̃0.
Moreover, the value of the parameter C̃0 is also not independent: it just marks the place, where
one is on a single trajectory in the infrared – in other words, C̃0 can be traded for the scale
Λeff .

Imagine now that we vary the initial scale M and, correspondingly, the initial value of the
coupling constant C̃0(M), leaving Λeff and C̃0(Λeff) fixed. Since in the infrared all trajectories
converge to a single one, we again conclude that C̃1(Λeff) can be expressed in terms of C̃0(Λeff),
up to the terms of order (Λ2

eff
/M2). Stated differently, different theories at the scale M converge

to a same theory with a single renormalizable coupling C̃0(Λeff) at a lower scale – the physics at
a scale M gets decoupled from the physics at a much lower scale Λeff . Furthermore, the original
coupling C1(Λeff) = C̃1(Λeff)/Λ

2
eff

is still power-suppressed in the low energy region, if the cutoff
Λeff is taken much larger than the light particle mass and the characteristic momenta.

1.8 Landau pole in the φ4-theory

In the toy example considered in the previous section, the coupling C̃0 corresponds to a renor-
malizable, and the coupling C̃1 to a non-renormalizable interaction. Let us now consider a
purely renormalizable bare interaction, that means that the coupling C̃1 vanishes at scale M ,
whereas C̃0 takes some value C̃0(M). One may repeat the argumentation given above, and
ensure that C̃1(Λeff) is expressed through C̃0(Λeff) (C̃1(Λeff) is nonzero at a lower scale Λeff).
One now may consider the limit M → ∞, which corresponds to removing the ultraviolet cutoff
in the renormalized theory, and ensure that all renormalized couplings stay finite.

The argumentation remains similar in case of the bare non-renormalizable interaction that
corresponds to C̃1(M) 6= 0 – this merely corresponds to a different choice of a starting point on
the trajectory in the (C̃0, C̃1)-plane. Only one aspect is different: If one does not start from the
bare renormalizable theory, one can not take the UV cutoff M to infinity, since the coefficients
in front of the non-renormalizable (irrelevant) operators appear in the Lagrangian with inverse
powers of the mass scale M , and in the limit M → ∞ these coefficients necessarily vanish.

In the following, we shall restrict ourselves to renormalizable interaction with a single cou-
pling C0 and consider the limit M → ∞. It can be proved that this limit is well defined in all
orders in perturbation theory (perturbative renormalizability of the φ4-theory in 4 dimensions).
A problem, however, arises due to the fact that, beyond perturbation theory, singular points
may exist on the trajectories, precluding one from taking the limit M → ∞.

Let us explain what is meant. Consider the situation, when the values of Λeff and C̃0(Λeff)
are fixed, whereas M and, correspondingly, C̃0(M) are allowed to vary. At lowest order in
perturbation theory, the following RG equation holds:

M
dC̃0(M)

dM
= β2C̃0(M)2 +O(C̃3

0) , (89)

where the coefficient β2 is calculable in perturbation theory and is positive (see the respective
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exercise). Solving now the RG equation with the boundary condition at M = Λeff , we get

C̃0(M) =
C̃0(Λeff)

1− β2C̃0(Λeff) ln(M/Λeff)
. (90)

We see that, at a some finite value of M , the quantity C̃0(M) becomes infinite, and the limit
M → ∞ can not be performed, starting from the low values of the cutoff M = Λeff . This is an
example of the so-called Landau-pole [8–10] that leads to triviality: it is not possible to remove
the UV cutoff of the theory, unless the theory is trivial, i.e., the renormalized coupling vanishes.

It can be, however, argued that, in the vicinity of the Landau pole, the bare constant
becomes large and the higher-order terms become important. For this reason, we have to
consider the RG equation with the exact β-function:

M
dC̃0(M)

dM
= β(C̃0(M)) ,

∫ C̃0(M)

C̃0(Λeff)

dx

β(x)
= ln

M

Λeff

. (91)

As we know, the β-function at small values of the coupling constant is small and positive.
Below we speculate about the possible form of the β-function on the whole real axis.

a) β(x) is strictly positive for all x, and increases as xα, with 0 < α < 1, as x → ∞ (modulo
logarithms), see Fig. 11a. As M → ∞, the logarithm in the r.h.s. of Eq. (91) diverges.
This means that C̃0(M) → ∞ as M → ∞, and the integral in the l.h.s. diverges on the
upper limit.

b) β(x) is strictly positive for all x, and increases as xα, with α > 1, as x → ∞ (modulo
logarithms), see Fig. 11b. Now, C̃0(M) → ∞ at a finite value of M , and we recover the
situation similar to the Landau pole.

c) β(x) has a zero at some fixed point x = C̃∗
0 , see Fig. 11c. In the vicinity of the zero, one

may write β(x) = A(x− C̃∗
0) + · · · . The RG equation can be rewritten as:

dC̃0

dt
= A(C̃0 − C̃∗

0) + · · · , t = ln
M

Λeff

, A < 0 . (92)

A properly normalized solution to this equation is given by:

(C̃0(M)− C̃∗
0) = (C̃0(Λeff)− C̃∗

0)

(
M

Λeff

)A

. (93)

Since A < 0, C0(M) → C̃∗
0 as M → ∞. C̃∗

0 is called an UV fixed point of the theory.

To summarize, if the β-function is strictly positive and grows faster than a linear function at
infinity, fixing the value of C̃0(Λeff) and increasing M , it is seen that the bare coupling C̃0(M)
explodes at a finite value of M . It is not possible to remove the UV cutoff due to the presence
of the Landau pole.
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Figure 11: Different behavior of the RG β-functions, see details in the text.

We emphasize that if theory is trivial, it can be defined only with an intrinsic cutoff. How-
ever, it will be a meaningful theory well below the cutoff and ceases to be so if the cutoff
should taken down to the renormalized mass of a particle. This leads to the constraints on the
renormalized mass of the Higgs particle in the Standard Model, known as triviality bound [11].

The idea beyond the triviality bound can be simply explained. Consider the Lagrangian of
the the Higgs sector of the theory that contains one complex doublet field Φ:

LH =
1

2
∂µΦ

†∂µΦ− m2
0

2
Φ†Φ− C̃0

4
(Φ†Φ)2 . (94)

The RG equation for the coupling constant to the lowest order yields:

1

C̃0(Λ)
=

1

C̃0(M)
+

3

2π2
ln

M

Λ
≥ 3

2π2
ln

M

Λ
. (95)

Here, the scale Λ is of order of the Higgs mass.
In the following, we shall use the following relations which are valid at tree level in the

Standard Model:

M2
H = 2C̃0v

2 , M2
W =

1

4
g2v2 , g =

e

sin θW
. (96)

Here, MH and MW are the masses of the Higgs and W -bosons, respectively, v is the vacuum
expectation value of the Higgs field, e and g are the electromagnetic and the SU(2) gauge
couplings, respectively, and sin2 θW ≃ 0.23, where θW denotes the Weinberg angle. Using now
Eqs. (95) and (96) and replacing the bare coupling with C̃0(Λ) at tree level, we obtain

(
MH

MW

)2

=
8C̃0(Λ)

g2
. (97)

Finally, substituting the value of the coupling g, the following (very rough) estimate can be
obtained [11]:

MH

MW
≤ 4π

g
√
3

1

(ln(M/Λ))1/2
≃ 900 GeV

MW

1

(ln(M/Λ))1/2
. (98)

As follows from the discussion above, the logarithm should be of order unity in this expression.
Consequently, MH ≤ 900 GeV.
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Figure 12: A schematic representation of an asymmetric lattice. The size of the box in space
and time directions are L = Nsa and T = Nta, respectively. The lattice spacing a is taken to
be universal.

1.9 Continuum limit on the lattice and the triviality of the φ4-theory

Instead of a space-time continuum, a field theory can be formulated on a lattice (see, e.g., [6,
12, 13]). At present, the lattice represents the most popular (if not the only) ab initio non-
perturbative approach in field theory.

In this section, we construct a φ4 field theory on the lattice. We shall consider here the
simplest case of the cubic Euclidean lattice, with the same number of sites N both in space and
time direction. The lattice spacing is denoted by a, so the size of a cubic box is L = Na, and
the total number of the lattice sites is equal to N4. The role of an UV cutoff M is played by the
inverse lattice spacing a−1 ∼ M . In general, the number of sites in space and time directions
can be taken different: Ns and Nt, respectively (see Fig. 12), as well as the lattice spacing, as
and at. In this section, however, we shall not explore the general case.

The fields φ(x) live on the sites. The field derivatives in the continuum field theory are
replaced by

∂µφ(x) =
1

a
(φ(x+ aµ̂)− φ(x)) , (99)

where µ̂ denotes a unit vector in the direction µ = 0, 1, 2, 3.
The lattice action takes the form

S = a4
∑

x,µ

1

2
∂µφ(x)∂µφ(x) + a4

∑

x

(
m2

0

2
φ2(x) +

C̃0

4
φ4(x)

)

, (100)

where the sum over x runs over all lattice sites (periodic boundary conditions φ(x+Naµ̂) = φ(x)
are assumed), and m0, C̃0 are the bare mass and coupling, respectively. Using this discretized
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action functional, one may transform the path integral for the Euclidean Green’s functions into
conventional multiple integrals that can be evaluated on (super)computers by using Monte-
Carlo techniques. For example, the two-point function is given by

〈0|Tφ(x)φ(y)|0〉 = 1

Z

∫
∏

z

dφ(z)φ(x)φ(y)e−S , (101)

where Z denotes a normalization factor.
At large Euclidean times, the two-point function decreases exponentially, defining the cor-

relation length:

∑

x

〈0|Tφ(x, t)φ(0, 0)|0〉 → const · e−t/ξ , (102)

where the summation is carried out over the three-vector components x.
In order to understand this behavior, let us consider the same Euclidean two-point function

in the continuum and restrict ourselves to the free-field case
∫

d3x 〈0|Tφ(x, t)φ(0, 0)|0〉 =
∫

d3x

∫
d4k

(2π)4
eik4t+ikx

m2
P + k2

, (103)

where mP denotes the physical mass. Performing the Cauchy integration over k4, we obtain
that, at a large positive values of t,

∫

d3x 〈0|Tφ(x, t)φ(0, 0)|0〉 → e−mP t

2mP
. (104)

Comparing Eqs. (102) and (104), one may identify the correlation length with the inverse
physical mass. The statement stays valid in the interacting theory as well. This can be easily
checked by using Källèn-Lehmann representation for the two-point function. Finally, since we
are considering the lattices which are invariant under the interchange of the space and time
axes, the correlation langths in all directions are the same.

The central question is, how the continuum limit a → 0 can be explicitly performed at the
end in the lattice simulations. Physically, the continuum limit means a ≪ ξ. We remind the
reader that the physical mass mP equals to the inverse of the correlation length. Then, in the
continuum limit the physical mass measured in lattice units vanishes, amP → 0. What does
this mean physically? Recall that the tree-level potential in our theory in Minkowski space is
equal to V (φ) = 1

2
m2

Pφ
2 + 1

4
C̃0φ

4. If m2
P > 0, the vacuum of a system φ = 0 is symmetric

under φ → −φ. This symmetry is however spontaneously broken for m2
P < 0, when the field

φ acquires a nonzero vacuum expectation value. Hence, one may argue that in the continuum
limit the system undergoes a phase transition from the unbroken phase with m2

P > 0 and
〈0|φ|0〉 = 0 to the broken phase with m2

P < 0 and 〈0|φ|0〉 6= 0.
In the lattice simulations, one can always use units a = 1 (lattice units). In these units, one

has only two dimensionless parameters am0 and C̃0. The continuum limit is achieved at the
critical surface, i.e., at such values of the bare parameters am0, C̃0, for which amP → 0.
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In order to investigate the continuum limit, let us specify the expression of the renormalized
parameters of the theory in terms of the bare ones. The renormalized one-particle irreducible
Green’s functions in the theory are related to the unrenormalized ones, according to

Γ
(n)
R (p1 · · · pn; C̃R, mR, mRa) = Z

n/2
R (C̃0, am0)Γ

(n)
0 (p1 · · ·pn; C̃0, m0, am0) , (105)

where C̃R denotes the renormalized coupling constant and mR is the renormalized mass. mR =
mP in the vicinity of the critical surface, so the continuum limit implies amR → 0 as well.
Moreover, renormalizability of the theory gives

Γ
(n)
R (p1 · · · pn; C̃R, mR, mRa) = Γ

(n)
R (p1 · · · pn; C̃R, mR, 0) +O(a2(ln a)k) . (106)

The wave function renormalization constant ZR ensures the normalization of the two-point
function:

∂

∂p2
Γ
(2)
R (p,−p; C̃R, mR, mRa)

∣
∣
∣
∣
p2=0

= −1 . (107)

Finally, the renormalized mass and coupling constant are defined via

m2
R = −Γ

(2)
R (0, 0; C̃R, mR, mRa) , C̃R = −Γ

(4)
R (0, 0, 0, 0; C̃R, mR, mRa) . (108)

With the help of the above definitions, it is possible to express the renormalized couplings in
terms of the bare ones. Using dimensional arguments, this relation will have the following form:

amR = amR(C̃0, am0) , C̃R = C̃R(C̃0, am0) . (109)

Using the first equation, one may express am0 in terms of amR and substitute into the second
equation. As a result, one gets:

C̃R = C̃R(C̃0, amR) . (110)

Let us approach the continuum limit, fixing C̃0 and approaching the critical surface by varying
m0. This is equivalent to fixing C̃0 and considering the limit amR → 0. The renormalized
coupling constant obeys the RG equation

(amR)
d

d(amR)
C̃R

∣
∣
∣
∣
C̃0 fixed

= βR(C̃R, amR)

∣
∣
∣
∣
C̃0 fixed

. (111)

In the scaling region amR → 0 the dependence of the beta-function on the second argument
disappears, and the RG equation takes the form:

(amR)
d

d(amR)
C̃R

∣
∣
∣
∣
C̃0 fixed

= βR(C̃R) . (112)

Note that the above βR-function does not coincide with the β-function for the unrenormalized
coupling, see Eq. (91), albeit these two are related. The solution of Eq. (111) is given by:

ln amR =

∫ C̃R dC ′

βR(C ′)
+ const . (113)
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If βR(C
′) does not have fixed points, except the trivial fixed point at C ′ = 0, then in the

continuum limit amR → 0 the renormalized constant C̃R vanishes, i.e., the theory is trivial. To
date, the positiveness of the βR-function is a well established fact beyond perturbation theory
(see, e.g. [14] and references therein).

Finally, we would like to mention that in this section, as well as in the previous section,
we have used the word “triviality,” referring, in fact, to the different phenomena. Namely, it
should be stressed that the trivial theory in the continuum limit does not necessarily imply the
emergence on the Landau pole, see, e.g., [15]. For more information on the triviality issue, see,
e.g., Refs. [16, 17].

1.10 Symanzik effective action

In the previous section, we have considered the continuum limit a → 0 in lattice field theories.
Here we concentrate on the minimization of the lattice artifacts, which emerge at a finite a (for
simplicity, we do not consider another type of the artifacts, which stem from the lattice box
size L being finite, assuming L → ∞). The example of such artifacts is given in Eq. (106),
where the terms of order a2(ln a)k are responsible for the scaling violation. The question we
ask is the following: is it possible to modify the action in Eq. (100), adding higher-order terms
in a, so that the finite-spacing artifacts in the physical observables are canceled up to a given
order in a? Stated differently, we are looking for the expansion

S = a4
∑

x

L(φ, ∂µφ) , L(φ, ∂µφ) = L0 + a2L2 + a4L4 + · · · , (114)

where L0 can be read off from Eq. (100). Note that formally the action functional in Eq. (114)
reduces to the one in Eq. (100) in the continuum limit a → 0, so one may expect that they
yield the same physics in this limit.

Let us illustrate the idea first for a free field. To this end, let us perform the Fourier
transform

φ(x) =
∑

p

e−ipxφ̃(p) , φ̃∗(p) = φ̃(−p) , pµ =
2π

L
nµ , nµ = −N/2 + 1, · · · , N/2 , (115)

in the quadratic part of the effective action, which now reads

S0 =
1

2
(Na)4

∑

pµ

φ̃∗(p)
2− eipµa − e−ipµa

a2
φ̃(p) +

m2
0

2
(Na)4

∑

p

φ̃∗(p)φ̃(p) . (116)

The lattice dispersion law is given by
∑

µ

(2− 2 cos pµa) + (am0)
2 = 0 . (117)

Expanding, in powers of a, at the lowest order we get:

m2
0 +

∑

µ

p2µ −
a2

12

∑

µ

p4µ +O(a4) = 0 . (118)
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Figure 13: 6-point function at one loop in the φ4-theory.

Consider now a modification to the original Lagrangian

L = L0 +
a2

24
φ(x)∂4

µφ(x) . (119)

It is clear that the dispersion law for the modified Lagrangian coincides with the continuum
result up to O(a4). The leading O(a2) corrections are exactly canceled. Thus, the modified
Lagrangian will yield more accurate numerical results at a finite a than the original one.

The general solution beyond the tree level has been provided by Symanzik [18]. Here we
illustrate Symanzik’s idea on a simple example. Consider the 6-point function at one loop, see
Fig. 13. This diagram is ultraviolet-finite (i.e., stays finite in the limit a → 0). The scalar
propagator on the lattice is given by (cf. Eq. (117)):

D(p) =
1

m2
0 + p̂2

, p̂µ =
2

a
sin

(
apµ
2

)

, p̂2 =
∑

µ

p̂µp̂µ . (120)

For vanishing external momenta pi = 0, i = 1, · · · , 6, the one-loop proper diagram for the
6-point function is given by

Γ6(0, 0, 0, 0, 0, 0) ∝ C̃3
0I6 , I6 =

∫ π/a

−π/a

d4p

(2π)4
1

(m2
0 + p̂2)3

. (121)

In the above integral, the integration is performed in the first Brillouin zone −π/a < pµ < π/a.
Thus, as mentioned before, the inverse lattice spacing a−1 plays a role of an ultraviolet cutoff.

In order to calculate the above integral, one may split the integral into two parts |p| < δ/a

and |p| > δ/a, with δ ≪ 1 and |p| =
(
∑

µ pµpµ

)1/2

(see e.g., Ref. [6]). In the first integral one

may use the continuum form of a propagator

I<6 =

∫

|p|<δ/a

d4p

(2π)4
1

(m2
0 + p2)3

=
1

16π2

∫ (δ/a)2

0

p2dp2

(m2
0 + p2)3

=
1

32π2m2
0

− a2

16π2δ2
+O(a4) . (122)

On the other hand,

I>6 =

∫ π/a

−π/a

d4p

(2π)4
θ(|p| − δ/a)

(m2
0 + p̂2)3

= a2
∫ π

−π

d4p

(2π)4
θ(|p| − δ)

((am0)2 + 4
∑

µ sin
2(pµ/2))3

. (123)
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Figure 14: Photon self-energy in QED at one loop. The wiggly and solid lines denote photons
and electrons, respectively.

Adding these two expressions, one gets:

I6 = I<6 + I>6 =
1

32π2m2
0

+ a2D +O(a4) ,

D = lim
δ→0

∫ π

−π

d4p

(2π)4
θ(|p| − δ)

(
∑

µ 4 sin
2(pµ/2))3

− 1

16π2δ2
. (124)

The quantity D is finite and can be found by numerical integration.
Now, adding a counterterm

∆L6 ∝ a2C̃3
0Dφ6(x) (125)

one may cancel the terms ∝ a2 in the 6-point function at a finite a. For such choice of the
Lagrangian, the scaling violation starts at order a4.

It is clear that the approach can be straightforwardly generalized to systematically remove
lattice artifacts in higher orders in the lattice spacing a.

1.11 Decoupling in the different renormalization schemes

Finally, we wish to discuss the role of the choice of the regularization/renormalization schemes.
As we have seen in the previous sections, the decoupling of a heavy scale in the theory proceeds
differently, if different regularizations and renormalization schemes are used (for example, MS
scheme in dimensional regularization vs cutoff regularization). In this section, we wish to
elaborate on this issue.

Consider a well-known example: charge renormalization in QED (see, e.g., [19]). In dimen-
sional regularization, the expression of the unrenormalized self-energy operator (see Fig. 14)
takes the form:

Σµν(p) = i(pµpν − p2gµν)Σ(p
2)

=
ie2

2π2
(pµpν − p2gµν)

{

−16π2

3
L−

∫ 1

0

dx x(1− x) ln
m2

e − p2x(1− x)

µ2

}

, (126)
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where me denotes the electron mass. The renormalized propagator in the MS scheme takes the
form

ΣMS(p2;µ2) = − e2

2π2

∫ 1

0

dx x(1− x) ln
m2

e − p2x(1− x)

µ2
. (127)

Along with the MS scheme, we consider the mass-dependent scheme – a version of the BPHZ
scheme5, where the subtraction in the self-energy is made at p2 = Λ2:

ΣMD(p2; Λ2) = Σ(p2)− Σ(Λ2) = − e2

2π2

∫ 1

0

dxx(1 − x) ln
m2

e − p2x(1− x)

m2
e − Λ2x(1− x)

. (128)

The β-function in MS scheme is defined by

µ
de(µ)

dµ
= βMS(e(µ)) , βMS(e) =

e

2
µ
d

dµ
ΣMS(p2;µ2) =

e3

12π2
. (129)

whereas in the mass-dependent scheme,

Λ
de(Λ)

dΛ
= βMD(e(Λ)) , βMD(e) =

e

2
Λ

d

dΛ
ΣMD(p2; Λ2) =

e3

4π2

∫ 1

0

dx x2(1− x)2Λ2

m2
e − Λ2x(1 − x)

. (130)

This gives:

βMD(e) =
e3

12π2
, if me ≪ Λ , the same result as in MS ,

βMD(e) =
e3Λ2

60π2m2
e

, if me ≫ Λ , decoupling . (131)

Does this mean that the decoupling of the heavy scale occurs only within the cutoff regulariza-
tion? Of course not, as can be seen from the discussion in section 1.4. The lesson to be learnt
here is different. The decoupling is explicit if everything is expressed in terms of the low-energy
quantities, like the the electric charge defined at a scale Λ ≪ me in the cutoff regularization.
However, in the dimensional regularization defines the charge at a scale µ, and one is forced
to take µ ≃ me, in order to avoid large logarithms in the perturbation theory. Hence, the
decoupling in not explicit. Additional renormalization is necessary to remove all high-energy
contributions from the observables, see section 1.4. Stated differently, if one expresses e(µ) via
the electromagnetic coupling at a some low-energy scale, and then re-expresses the physical ob-
servables in terms of this low-energy coupling, this would automatically ensure the decoupling
of a heavy scale in all physical observables also in case of the dimensional regularization [4].

Below, we give an explicit example at one loop, which serves as an illustration to the above
discussion. Let us sum up all self-energy insertions in the renormalized photon propagator, see
Fig. 15. The resummed propagator then obeys the Dyson-Schwinger equation

Gµν(p) = G0
µν(p) + iG0

µλ(p)Σλρ(p)Gρν(p) , (132)

5See, e.g., [20], chapter 5.

33



����
����
����
����
����
����
����

����
����
����
����
����
����
����

= + + + ...

Figure 15: The renormalized photon propagator, where the self-energy insertions are summed
up.
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Figure 16: The vacuum polarization correction to the one-photon exchange diagram in the
electron-electron scattering.

where G0
µν(p) = −gµν/p

2 is the free photon propagator (in the Feynman gauge). The solution
of the above equation is given by

Gµν(p) = −
(

gµν −
pµpν
p2

)
1

p2(1 + Σ(p2))
− pµpν

p4
. (133)

Here Σ(p2) stands for the renormalized self-energy operator ΣMS(p2;µ2) or ΣMD(p2; Λ2), respec-
tively.

Let us now insert the full photon propagator in the diagram for the electron-electron scat-
tering, see Fig. 16. This corresponds to

Tee→ee = ū(p′1s
′
1)γ

µu(p1s1)
e2gµν
−q2

ū(p′2s
′
2)γ

νu(p2s2)

→ ū(p′1s
′
1)γ

µu(p1s1) e
2(µ)GMS

µν (p;µ
2) ū(p′2s

′
2)γ

νu(p2s2)

= ū(p′1s
′
1)γ

µu(p1s1)
e2(µ)

−q2(1 + ΣMS(p2;µ2))
ū(p′2s

′
2)γµu(p2s2) , (134)

where, pi, si and p′i, s
′
i for i = 1, 2 denote the momenta and the spins of the electrons in the

initial and in the final states, and q = p′1 − p1 = p′2 − p2. To ease notations, we do not display
explicitly the second diagram, which is obtained by a permutation of two electrons in the initial
or in the final state. Further, for definiteness, we have chosen the MS scheme. The expression
in the mass-dependent scheme is similar.

Consider these expressions at very low momenta p2
i ≪ m2

e, p
′
i
2 ≪ m2

e. It is easily seen that

p0i =
√

m2
e + p2

i = me +
p2
i

2me
+ · · · = me +O(m−1

e ) . (135)

Similar relations hold for p′i
0. Further, q2 = (p′i

0 − p0i )
2 − (p′

i − pi)
2 = −(p′

i − pi)
2 + O(m−1

e ).
The non-relativistic reduction of the Dirac spinors takes the form

ū(p′s′)γµu(ps) = ū(0, s′)
6 p′ +me

√

p′0 +me

γµ 6 p+me
√

p0 +me

u(0, s) = (2me)g
µ0δs′s(1 +O(m−1

e )) . (136)
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According to this, the tree-level amplitude at low momenta is given by

ū(p′1s
′
1)γ

µu(p1s1)
e2gµν
−q2

ū(p′2s
′
2)γ

νu(p2s2) = (2me)
2δs′

1
s1δs′2s2

e2

q2
(1 +O(m−1

e )) . (137)

The Fourier-transform of Eq. (137) gives the Coulomb law

∫
d3q

(2π)3
eiqr

e2

q2
=

e2

4πr
.
= VCoul(r) . (138)

It is immediately seen that taking into account the vacuum polarization leads to the modifica-
tion of the Coulomb potential

VCoul(r) →
∫

d3q

(2π)3
eiqr

e2(µ)

q2(1 + ΣMS(−q2;µ2))

.
= V (r) . (139)

The expression for the mass-dependent scheme looks similarly.
We fix the parameters of theory (the electric charge) at large distances, i.e., by measuring

the force acting on small charged oil droplets (Millikan-type experiment). The elementary
charge measured in this manner corresponds to α = e2/(4π) ≃ 1/137. Since the distances
in such an experiment are much larger than the Compton wavelength of an electron, in the
momentum space we are looking the region q2 → 0. In this region, the modified potential is
well approximated by

V (q) =
e2(µ)

q2(1 + ΣMS(0;µ2))
+ · · · . (140)

From this expression, one can easily read off the relation between e and e(µ)

e2 =
e2(µ)

1 + ΣMS(0;µ2)
=

e2(µ)

1− e2(µ)

12π2
ln

m2
e

µ2

. (141)

There is a similar expression for the mass-dependent scheme

e2 =
e2(Λ)

1 + ΣMD(0; Λ2)
=

e2(Λ)

1 +
e2(Λ)

2π2

∫ 1

0

dx x(1− x) ln

(

1− Λ2

m2
e

x(1− x)

) . (142)

Differentiating e(µ) and e(Λ) by µ and Λ, respectively, and taking into account that the quantity
e =

√
4πα is a physical observable which is scale-independent, we again arrive at the RG

equations (129) and (130). Finally, expressing everything in terms of the physical charge e, the
modified Coulomb potential becomes

V (q) =
e2

q2(1 + F (q2))
, F (q2) =

e2

2π2

∫ 1

0

dx x(1− x) ln

(

1 +
q2

m2
e

x(1− x)

)

. (143)
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Note that the quantity F (q2) is scale-independent and is the same in both regularizations. The
decoupling is explicit: F (q2) → 0 as m2

e → ∞. Thus, the whole difference between the two
regularizations is hidden in Eqs. (141) and (142), which describe, how the renormalized charge
e(µ) and e(Λ) behave atme → ∞, when e is fixed. This behavior is different. Namely, e(Λ) → e,
meaning that e(Λ) stays a perfectly low-energy quantity in this limit. On the contrary, the limit
me → ∞ can not be performed at a fixed e and µ in the quantity e(µ), because of the large

logarithms ln
m2

e

µ2
in the perturbation theory. In order to suppress these logarithms, one has to

take µ ∼ me, meaning that one is fixing the charge at a scale of order me. Thus, e(µ) is not a
quantity defined at low energy, and the decoupling is not explicit if the expressions are written
in terms of e(µ) instead of e.
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