

EFFECTIVE FIELD THEORIES

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

STRUCTURE of the LECTURES

I) Introduction

- II) Effective Field Theories: Learning by Examples
- III) The Paradigm Shift in Quantum Field Theory
- IV) Structure of Effective Field Theories
- V) A detailed Look at a Model EFT
- VI) Chiral QCD Dynamics
- VII) Testing Chiral Dynamcis in Hadron-Hadron Scattering
- more emphasis on the foundations rather than on specific calculations

Introduction

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012

3

BASIC IDEAS: RESOLUTION MATTERS

- Dynamics at long distances does not depend on what goes on at short distances
- Equivalently, low energy interactions do not care about the details of high energy interactions
- Or: you don't need to understand nuclear physics to build a bridge

BASIC IDEAS: ORGANISATION

- This is quite true, but how to make the idea precise and quantitative?
- necessary & sufficient ingredients to construct an Effective Field Theory:

★ scale separation – what is low, what is high?

- ★ active degrees of freedom what are the building blocks?
- * symmetries how are the interactions constrained by symmetries?
- * *power counting* how to organize the expansion in low over high?
- a note on units for a quantum particle ($\hbar = c = 1$)

$$p\sim rac{1}{\lambda}, \;\; E=p \;\;$$
 or $\; E=rac{p^2}{2m}$

 \rightarrow long wavelength \leftrightarrow low momentum

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012

 $\cdot \circ \triangleleft < \land \nabla$

Effective Field Theory: Learning by Example

EXAMPLE 1: MULTIPOLE EXPANSION

• Multipole expansion for electric potentials [not quite a quantum field theory]

$$V \approx \int \frac{\rho(\vec{r})}{d} d^3 r$$

=
$$\int \frac{\rho(\vec{r})}{\sqrt{R^2 + 2rR\cos\theta + r^2}} d^3 r$$

=
$$\sum_{n=0}^{\infty} \frac{1}{R^{n+1}} \int r^n P_n(\cos\theta)\rho(\vec{r}) d^3 r$$

=
$$q \frac{1}{R} + p \frac{1}{R^2} + Q \frac{1}{R^3} + \dots$$

- ullet the sum converges quickly for $a \ll R$
- long-distance (low-energy) probes are only sensitive to bulk properties: charge q, dipole moment p, \ldots
- aside: "don't be a slave of indices, make them your slaves" [Howard Georgi]

7

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < < < < > > > > • •

EXAMPLE 2: WHY THE SKY IS BLUE

• Light-atom scattering involves very different scales:

 $\lambda_{
m light} \sim 5000 ~{
m \AA} \gg a_{
m atom} \sim ~{
m a few} ~{
m \AA} \sim ~{
m a few} ~a_0$

 \Rightarrow photons are insensitive to the atomic structure

$$\stackrel{\text{gauge inv.},P,T}{\Longrightarrow} \mid H_{\text{eff}} = \chi^{\star} \left[-\frac{1}{2}c_E \vec{E}^2 - \frac{1}{2}c_B \vec{B}^2 \right] \chi \mid \quad \text{(χ = atomic wave function)}$$

- fixing the constants: $\frac{\text{field energy}}{\text{volume}} \sim \frac{1}{2}(\vec{E}^2 + \vec{B}^2) \Rightarrow c_E = k_E a_0^3, c_B = k_B a_0^3$
- If k_E and k_B are natural, i.e.of order one, and with $|\vec{E}| \sim \omega$ and $|\vec{B}| \sim |\vec{k}| \sim \omega$:

$$rac{d\sigma}{d\Omega} = |\langle f | H_{ ext{eff}} | i
angle|^2 \sim \omega^4 \, a_0^6 \, \left(1 + rac{\omega^2}{\Delta E^2}
ight)$$

 ΔE = corr. due to atomic excitations

EXAMPLE 3: THE HYDROGEN ATOM

- text-book example of a quantum bound state of an electron and a proton
- lowest order: we need the mass & charge of the electron & charge of the proton & the static Coulomb interaction:

$$E = E_0 = -rac{m_e lpha^2}{2n^2} \,, \ \ lpha = rac{e^2}{4\pi}$$

but this is not the *exact* answer, how can we improve on it?

we can get an approximate answer and improve on it \rightarrow difference to maths!

• beyond leading order:
$$E = E_0 \left[1 + \mathcal{O} \left(\alpha, \frac{m_e}{m_p} \right) \right] \longrightarrow \text{systematic expansion}$$

- corrections from the em interaction

- corrections from the proton structure

fine-structure from $ec{L}\cdotec{S}\sim lpha^4$ etc.

$$m_p
ightarrow$$
 reduced mass $\mu = rac{m_e m_p}{m_e + m_p}$
 $\mu_p
ightarrow$ hyperfine interaction

EXAMPLE 3 cont'd: DIMENSIONAL ANALYSIS

• calculate the influence of the proton size r_p on the hydrogen energy levels

• natural scales: length $a_0=1/(m_elpha)\sim 0.5$ Å time $1/{
m Ryd}=2/(m_elpha^2)\,,~1{
m Ryd}=13.6\,{
m eV}$

• proton charge radius: $F_1(q^2) = 1 + q^2 F_1'(0) + \dots$

$$F_1'(0)\simeq rac{1}{m_p^2}\,, \ \ q\sim rac{1}{a_0}=m_e lpha \ o \ \left(rac{m_e lpha}{m_p}
ight)^2 \sim 10^{-11}$$

 \bullet contribution of $\mathcal{O}(40\,\mathrm{kHz})$ to the energy levels

• $1/m_p = 0.2$ fm. Actual proton size $\simeq 0.85$ fm \rightarrow net contribution to 1S about 1000 kHz

• Proton size measurable in *muonic hydrogen* $(m_{\mu}/m_{e} \sim 200)$ Pohl et al. (2010)

what a pleasure: can do calculations without knowing the underlying theory

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < < < < > > > • •

EXAMPLE 4: LIGHT-BY-LIGHT SCATTERING

Euler, Heisenberg, Kockel 1936

- energy scales: photon energy ω , electron mass m_e
- consider $\omega \ll m_e$
- fermions as massive dofs integrated out: $\mathcal{L}_{QED}[\psi, \psi, A_{\mu}] \rightarrow \mathcal{L}_{eff}[A_{\mu}]$

$$\mathcal{L}_{ ext{eff}} = rac{1}{2} (ec{E^2} - ec{B^2}) + rac{e^4}{360 \pi^2 m_e^4} igg[(ec{E^2} - ec{B^2})^2 + 7 (ec{E} \cdot ec{B})^2 igg] + \dots igg|$$

- invariants: $F_{\mu\nu}F^{\mu\nu} \sim \vec{E}^2 \vec{B}^2$, $F_{\mu\nu}\tilde{F}^{\mu\nu} \sim (\vec{E}\cdot\vec{B})^2$
- energy expansion: $(\omega/m_e)^{2n}$ small parameter
- leads to the X section: $\sigma(\omega) = \frac{1}{16\pi^2} \frac{973}{10125\pi} \frac{e^8}{m^2} (\omega/m_e)^6$
- measurements with PW lasers Bregant et al, Phys. Rev. D 78 (2008) 032006

EXAMPLE 5: FERMI THEORY

- Weak decays
 - mediated by the charged W bosons, $M_W \simeq 80\,{
 m GeV}$
 - energy release in neutron eta-decay $\simeq 1\,{
 m MeV}$
 - energy release in kaon decays \simeq a few 100 MeV $[K \rightarrow \pi \, \ell \, \nu]$

$$\frac{e^2}{8\sin\theta_W} \times \frac{1}{M_W^2 - q^2} \stackrel{q^2 \ll M_W^2}{\longrightarrow} \frac{e^2}{8M_W^2 \sin\theta_W} \left\{ 1 + \frac{q^2}{M_W^2} + \dots \right\}$$
$$= \frac{G_F}{\sqrt{2}} + \mathcal{O}\left(\frac{q^2}{M_W^2}\right)$$

 \Rightarrow Fermi's current-current interaction

 $[n
ightarrow pe^-
u_e]$

BRIEF SUMMARY of EFFECTIVE FIELD THEORY

- Separation of scales: low and high energy dynamics
 - \star low-energy dynamics in terms of relevant dof's energies \sim momenta $\sim {\it Q}$
 - \star high-energy dynamics not resolved \rightarrow contact interactions
- Small parameter(s) & power counting
 - \star Standard QFT: trees + loops \rightarrow renormalization
 - \star Expansion in powers of energy/momenta Q over the large scale Λ

$$\mathcal{M} = \sum\limits_{oldsymbol{
u}} \left(rac{Q}{\Lambda}
ight)^{oldsymbol{
u}} f(Q/\mu,g_i)$$

- μ regularization scale
- g_i low–energy constants
- f is a function of $\mathcal{O}(1)$ "naturalness"
- ν bounded from below
- \Rightarrow systematic and controlled expansion

NB: bound states require non-perturbative resummation

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < \land \bigtriangledown \lor

Weinberg 1979

The Paradigm Shift in Quantum Field Theory

A NEW LOOK AT RENORMALIZATION

- Renormalization: method to tame the infinities in quantum field theories
- Renormalizable gauge field theories have led to some of the most stunning successes in physics: QED tested to better than 10⁻¹⁰
- It has become clear that no theory works at **all** scales, e.g. the Standard Model must break down at the Plank scale (or even earlier)
- The basic idea about renormalization today is that the influences of higher energy processes are localisable in a few structural properties which can be captured by an adjustment of parameters.

"In this picture, the presence of infinities in quantum field theory is neither a disaster, nor an asset. It is simply a reminder of a practical limitation – we do not know what happens at distances much smaller than those we can look at directly" (Georgi 1989)

THE PARADIGM OF EFFECTIVE FIELD THEORY

- constructing a Quantum Field Theory in 4 steps
 - 1) construct the action $S[\ldots]$, respect *symmetries*

e.g. gauge invariance of QED $\psi
ightarrow \psi' = \mathrm{e}^{-ilpha(x)}\psi, \ A_{\mu}
ightarrow A'_{\mu} = A_{\mu} - \partial_{\mu}lpha(x)$

2) retain *renormalizable* interactions ($D \leq 4$)

keep
$$\underbrace{\bar{\psi}\gamma_{\mu}\psi A^{\mu}}_{D=4}, \underbrace{F_{\mu\nu}F^{\mu\nu}}_{D=4}, \dots$$
 drop $\underbrace{\bar{\psi}\sigma_{\mu\nu}\psi F^{\mu\nu}}_{D=5}, \underbrace{(F_{\mu\nu}F^{\mu\nu}}_{D=8})^2, \dots$

3) *quantize*: calculate scattering processes in perturbation theory: *tree* + *loop* graphs

$$\begin{array}{c} & & \\ & &$$

THE PARADIGM OF EFFECTIVE FIELD THEORY cont'd

4) fix the *parameters* from *data*, make *predictions*

e.g.
$$\mu_e = -\frac{eg_e \vec{s_e}}{2m_e}$$
, $g_e = 2\left[1 + \frac{e^2}{8\pi^2} + \mathcal{O}(e^4)\right]$

• constructing an Effective Field Theory

steps 1,3,4: logically necessary
step 2: renormalizability = physics at all scales

another consistent & predictive paradigm:

keep rules 1,3,4, but instead use

2*) work at *low* energies & *expand* in powers of the *energy*

- separation of scales
- only a finite number of operators plays a role
- familiar concept \rightarrow examples just discussed

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 • O < \land \bigtriangledown \lor \lor \lor \lor \lor

EFT: FUNDAMENTAL THEOREM

• Weinberg's conjecture:

Physica A96 (1979) 327

Quantum Field Theory has no content besides unitarity, analyticity, cluster decomposition, and symmetries.

To calculate the S-matrix for any theory below some scale, simply use the most general effective Lagrangian consistent with these principles in terms of the appropriate asymptotic states.

Structure of Effective Field Theories

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < < < < > > > > • •

STRUCTURE of EFTs

• Energy expansion [derivative/momentum/...]

dimensional analysis:

(a) derivatives \rightarrow powers of q [small scale]

(b) be Λ the hard [limiting] scale

 \rightarrow any derivative $\partial \sim q/\Lambda$

 $\rightarrow N$ derivative vertex $\sim q^N/\Lambda^N$

 \rightarrow for $E[q] \ll \Lambda,$ terms w/ more derivatives are suppressed

• Energy expansion = Loop expansion

interactions generate loops loops generate imaginary parts

 \Rightarrow all this is contained in the *power counting*, which assigns a dimension [not the canonical one] to each diagram

POWER COUNTING THEOREM

• Consider the S-matrix for N_e interacting bosons

 $S = \delta(p_1 + p_2 + \ldots + p_{N_e})\mathcal{M}$ $[\mathcal{M}] = 4 - N_e$ pion field $\sim 1/2\omega$ $\mathcal{M} = \mathcal{M}(q, g, \mu) = q^D f(q/\mu, g)$ couplings g, renorm. scale μ $\Rightarrow D = 4 - N_e - \Delta$ N_d vertices of dim. 4 - d (d = # of derivatives) N_i internal propagators $\Delta = -\sum_{d} N_d(d-4) - 2N_i - N_e$ $N_L = N_i - \sum_{I} N_d + 1$ number of loops N_L topology: $D=2+\sum\limits_{d}N_{d}(d-2)+2N_{L}$ - tree graphs ($N_L = 0$) dominant

- loop graphs suppressed by powers of q^2

POWER COUNTING – ALTERNATIVE DERIVATION

- Consider $\mathcal{L}_{\text{eff}} = \sum_{d} \mathcal{L}^{(d)}$, d bounded from below
- ullet for interacting Goldstone bosons, $d\geq 2$ and $iD(q)=rac{1}{q^2-M^2}$
- consider an L-loop diagram with I internal lines and V_d vertices of order d

$$Amp \propto \int (d^4q)^L \, rac{1}{(q^2)^I} \prod_d (q^d)^{V_d}$$

• let
$$Amp \sim q^{
u}
ightarrow
u = 4L - 2I + \sum\limits_{d} dV_{d}$$

• topology: $L = I - \sum_d V_d + 1$

• eliminate
$$I: \rightarrow \left| \nu = 2 + 2L + \sum\limits_{d} V_d(d-2) \right| \, \checkmark$$

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < \wedge ∇ >

POWER COUNTING for PION-PION SCATTERING

- $\pi(p_1) + \pi(p_2) \to \pi(p_3) + \pi(p_4)$ leading interaction $\sim \partial \pi \, \partial \pi \Rightarrow d = 2$
- leading order (LO)

 $d = 2, N_L = 0 \Rightarrow D = 2$

next-to-leading order (NLO)

a) $d = 4, N_L = 0 \Rightarrow D = 4$ b) $d = 2, N_L = 1 \Rightarrow D = 4$

$$d = 2 \longrightarrow q \longrightarrow d = 2$$

$$\sim \int d^4q \frac{q_1 \cdot q_2 \ q_3 \cdot q_4}{(q^2 - M_\pi^2)(q^2 - M_\pi^2)} \sim \mathcal{O}(q^4)$$

 $\cdot \circ \triangleleft < \land \lor >$ Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012

LOW-ENERGY CONSTANTS (LECs)

 consider a covariant & parity-invariant theory of Goldstone bosons parameterized in some matrix-valued field U

$$\mathcal{L}_{\text{eff}} = g_2 \text{Tr}(\partial_{\mu} U \partial^{\mu} U^{\dagger}) + g_4^{(1)} \left[\text{Tr}(\partial_{\mu} U \partial^{\mu} U^{\dagger}) \right]^2 + g_4^{(2)} \text{Tr}(\partial_{\mu} U \partial^{\nu} U^{\dagger}) \text{Tr}(\partial_{\nu} U \partial^{\mu} U^{\dagger}) + \dots$$

couplings = low-energy constants (LECs)

 $g_2 \neq 0$ spontaneous chiral symmetry breaking (cf also the $g_{>2}^{(i)}$) $g_4^{(1)}, g_4^{(2)}, \ldots$ must be fixed from data (or calculated from the underlying theory)

- calculations in EFT: fix the LECs from some processes, then make predictions
- LECs encode information about the high mass states that are integrated out

$$\frac{1}{M_{\rho}^2 - q^2} \stackrel{q^2 \ll M_{\rho}^2}{\longrightarrow} \frac{1}{M_{\rho}^2} \left(1 + \frac{q^2}{M_{\rho}^2} + \ldots \right)$$

LOOPS and DIVERGENCES

- Loop diagrams generate imag. parts, but are mostly divergent
- ⇒ choose a mass-independent & symmetry-preserving regularization scheme [like dimensional regularization]

Ex.:

$$= -i\Delta_{\pi}(0) = \frac{-i}{(2\pi)^{d}} \int d^{d}p \frac{1}{M^{2} - p^{2} - i\varepsilon} \quad [d \text{ space-time dim.}]$$

$$= (2\pi)^{-d} \int d^{d}k \frac{1}{M^{2} + k^{2}} \text{ with } p_{0} = ik_{0}, \quad -p^{2} = k_{0}^{2} + \vec{k}^{2}$$

$$= (2\pi)^{-d} \int d^{d}k \int_{0}^{\infty} d\lambda \exp(-\lambda(M^{2} + k^{2}))$$

$$= (2\pi)^{-d} \int_{0}^{\infty} d\lambda \exp(-\lambda M^{2}) \underbrace{\int d^{d}k \exp(-\lambda k^{2})}_{(\pi/\lambda)^{d/2}}$$

$$= (4\pi)^{-d} M^{d-2} \Gamma \left(1 - \frac{d}{2}\right) \quad \text{has a pole at } d = 4$$

$$\Rightarrow \text{ absorb in LECs:} \quad \boxed{g_{i} \rightarrow g_{i}^{\text{ren}} + \beta_{i} \frac{1}{d-4}} \quad \text{always possible!}$$

INTERMEDIATE SUMMARY

- Effective field theories explore scale separation in physical systems
 low-energy physics treated explicitely
 high-energy modes integrated out → contact interactions
 → low-energy constants
- Interactions generate loops, loops restore unitarity
- Power counting: systematic ordering of all graphs, loops are suppressed
- Loop graphs are generally divergent \rightarrow order-by-order renormalization

A detailed Look at a Model EFT

Study many aspects of EFTs in a simple model

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 • O < < < < > > > • •

The MODEL at TREE LEVEL I

• Consider a model with light/heavy fields (ϕ/Φ) with mass m/M:

$$\mathcal{L} = rac{1}{2} \, (\partial \phi)^2 + rac{1}{2} \, (\partial \Phi)^2 - rac{m^2}{2} \, \phi^2 - rac{M^2}{2} \, \Phi^2 - rac{g}{2} \, \phi^2 \Phi$$

 \Rightarrow Integrate out the heavy fields Φ

• consider $\phi\phi \rightarrow \phi\phi$ at tree level:

• At low energies, subsequent terms are suppressed by powers of E^2/M^2

 \bullet Task: find an effective Lagrangian \mathcal{L}_{eff} w/ light fields only, that reproduces the above scattering amplitude

The MODEL at TREE LEVEL II

• The effective Lagrangian must contain an infinite tower of terms:

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial \phi \right)^2 - \frac{m^2}{2} \phi^2 + C_0 \phi^4 + C_1 \phi^2 \nabla^2 \phi^2 + C_2 \phi^2 (\nabla^2)^2 \phi^2 + \cdots$$

 \Rightarrow with the LECs C_0, C_1, C_2, \ldots

- Tree level scattering amplitude: $T_{\text{tree}}^{\text{eff}} = 24C_0 - 32m^2C_1 + 8C_2(s^2 + t^2 + u^2) + \cdots + \frac{1}{C_0} + \frac{1}{C_1} + \cdots + \frac{1}{C_1} + \frac{1}{C_1} + \cdots$
- Matching: $T_{\text{tree}} = T_{\text{tree}}^{\text{eff}}$

$$\Rightarrow 24C_0 - 32m^2C_1 = rac{3g^2}{M^2} + rac{4g^2m^2}{M^4}, \ \ C_2 = rac{g^2}{M^6}, \dots$$

- the LECs C_0 and C_1 can not be separated (model artefact)
- EFT (non-ren.) equivalent to underlying th'y (super-ren.) at tree level, but beyond?
- related problem: violation of the unitarity bound

UNITARITY BOUND

• Partial wave amplitudes:

$$T^{\rm eff}(s,\cos\theta) = 16\pi\sqrt{s}\sum_{l=0}^{\infty}(2l+1)T_l^{\rm eff}(s)P_l(\cos\theta)$$

• Unitarity relation: $\operatorname{Im} T_l^{\operatorname{eff}}(s) \geq p \, |T_l^{\operatorname{eff}}(s)|^2 \,, \quad p = \sqrt{s/4 - m^2}$

 \Rightarrow Unitarity bound: $|\operatorname{Re} T_l^{\operatorname{eff}}(s)| \leq 1/(2p)$

• S-wave: Re
$$T_{0,\text{tree}}^{\text{eff}}(s) = 24\tilde{C}_0 + \frac{32}{3}C_2(s/4 - m^2)^2 + \cdots, \quad \tilde{C}_0 = C_0 - \frac{4m^2}{3}C_1$$

$$\Rightarrow$$
 Saturates the unit.bound at: $s_{\sf M} = 4M^2 \sqrt{\frac{16\pi - 3\tilde{g}^2}{4\tilde{g}^2/3}} + O(1), \quad \tilde{g} = \frac{g}{M}$

 $-s_{M}$ is of order $M^{2} \rightarrow \text{EFT}$ no longer applicable

 $ilde{g}$ finite as $M o \infty$

- loops are neccessary to restore unitarity
- the underlying th'y provides an *ultra-violet (UV) completion* of the EFT at scales of order M

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 • O < < < < > > > • •

LIGHT PARTICLE MASS at ONE LOOP I

• Self-energy:
$$\Sigma(p^2) = \Sigma_a(p^2) + \Sigma_b(p^2)$$

• utilize dim. reg.: $\int_l f(l) \doteq -i \int rac{d^D l}{(2\pi)^D} f(l)$

• Infinities are poles as $D \to 4$: $L = \frac{\mu^{D-4}}{16\pi^2} \left(\frac{1}{D-4} - \frac{1}{2} \left(\Gamma'(1) + \ln 4\pi \right) \right)$

 \Rightarrow Self-energy:

$$\begin{split} \Sigma(p^2) &= 2g^2L - \frac{g^2}{16\pi^2} \left(-1 + \ln\frac{M^2}{\mu^2} \right) + \frac{g^2m^2}{M^2}L \\ &- \frac{g^2}{16\pi^2 M^2} \left(m^2\ln\frac{M^2}{\mu^2} - \frac{3m^2}{2}\ln\frac{m^2}{\mu^2} - \frac{1}{2}\left(p^2 - m^2\right) \right) + O(M^{-4}) \end{split}$$

 $-O(M^{-4})$ includes also terms of $O(M^{-4} \ln^k M^2)$

- let us try to reproduce this result within the EFT \rightarrow loops?

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < \land \bigtriangledown \lor \lor \lor \lor \lor

LIGHT PARTICLE MASS at ONE LOOP II

- Calculation to $O(M^{-2})$: $\mathcal{L} = \frac{1}{2} (\partial \phi)^2 - \frac{m^2}{2} \phi^2 + C_0 \phi^4 + O(M^{-4})$ $\Rightarrow \qquad \Sigma_{\text{eff}}(p^2) = 12C_0 \int_l \frac{1}{m^2 - l^2} + O(M^{-4})$ $= 24C_0 m^2 L_{\text{eff}} - \frac{3C_0 m^2}{4\pi^2} \left(1 - \ln \frac{m^2}{\mu_{\text{eff}}^2}\right) + O(M^{-4})$
- Obviously not the same: $\Sigma_a + \Sigma_b
 eq \Sigma_{
 m eff}$
- Must include mass and wave function renormalization counterterms:

$$egin{split} \mathcal{L}_{ ext{eff}} &
ightarrow \mathcal{L}_{ ext{eff}} + rac{A}{2} \, (\partial \phi)^2 - rac{B}{2} \, \phi^2 \ A &= rac{g^2}{32 \pi^2 M^2} + O(M^{-4}) \ B &= g^2 igg(2 L_{ ext{eff}} + rac{1}{16 \pi^2} \left(\ln rac{M^2}{\mu_{ ext{eff}}^2} \! - \! 1
ight) igg) \! + \! rac{g^2 m^2}{M^2} \left(2 L_{ ext{eff}} \! + \! rac{1}{16 \pi^2} \left(\ln rac{M^2}{\mu_{ ext{eff}}^2} \! - \! 1
ight) igg) \! + \! O(M^{-4}) \end{split}$$

 \Rightarrow compare now the physical masses !

PHYSICAL MASS I

• Underlying th'y: $m^2 - m_{\mathsf{P}}^2 - (\Sigma_a(m_{\mathsf{P}}^2) + \Sigma_b(m_{\mathsf{P}}^2)) = 0$

 \Rightarrow Lowest order in g:

$$m_{\mathsf{P}}^{2} = m_{\mathsf{r}}^{2}(\mu) + \frac{g^{2}}{16\pi^{2}} \left(-1 + \ln \frac{M^{2}}{\mu^{2}} \right) + \frac{g^{2}m_{\mathsf{r}}^{2}(\mu)}{16\pi^{2}M^{2}} \left(\ln \frac{M^{2}}{\mu^{2}} - \frac{3}{2} \ln \frac{m_{\mathsf{r}}^{2}(\mu)}{\mu^{2}} \right) + O(M^{-4})$$

• running mass: $m_{\mathsf{r}}^2(\mu) = m^2 + 2g^2L - rac{g^2m^2}{M^2}L$ (no renorm. of g and M)

• EFT:
$$m^2 + B - (1+A)m_{\mathsf{P}}^2 - \Sigma_{\mathsf{eff}}(m_{\mathsf{P}}^2) = 0$$

 \Rightarrow Lowest order in $1/M^2$:

$$m_{\mathsf{P}}^2 = m_{\mathsf{r},\mathsf{eff}}^2 + rac{3g^2 m_{\mathsf{r},\mathsf{eff}}^2}{32\pi^2 M^2} \left(1 - \ln rac{m_{\mathsf{r},\mathsf{eff}}^2(\mu_{\mathsf{eff}})}{\mu_{\mathsf{eff}}^2(\mu_{\mathsf{eff}})}
ight) + O(M^{-4})$$

• running mass: $m^2_{
m r,eff}(\mu_{
m eff})=m^2_{
m eff}-rac{3g^2m^2_{
m eff}}{M^2}\,L_{
m eff}$

both running masses are *related* so that physical observables are the same
 ⇒ work this out (exercise)

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < < < < > > > > • •

RUNNING MASSES

• Running masses run different in both theories:

$$\begin{split} & \mu \frac{dm_{\rm r}^2(\mu)}{d\mu} = \frac{g^2}{8\pi^2} - \frac{g^2 m_{\rm r}^2(\mu)}{16\pi^2 M^2} \\ & \mu_{\rm eff} \frac{dm_{\rm r,eff}^2(\mu_{\rm eff})}{d\mu_{\rm eff}} = \frac{3g^2 m_{\rm r,eff}^2(\mu_{\rm eff})}{16\pi^2 M^2} + O(M^{-4}) \end{split}$$

 $ightarrow m_{
m r,eff}(\mu_{
m eff})$ does not depend on μ (observables!)

- \rightarrow loops in general don't match, differences taken away by renormalization
- \rightarrow both theories physically equivalent \rightarrow decoupling theorem
- \rightarrow In $m_{
 m r,eff}(\mu_{
 m eff})$ all logs of the light mass cancel!
- → general phenomenon for decoupling EFTs: Parameters of the EFT encode the short-distance dynamics and thus depend on the light masses in polynomial form
- → running mass in the EFT not protected from large loop corrections (fine-tuning?)

MATCHING of the QUARTIC COUPLING at ONE LOOP

 $\Rightarrow \text{Couplings diverge: } C_i = \nu_i L_{\text{eff}} + C_i^{\text{r}}(\mu_{\text{eff}}) \,, \ \ \mu_{\text{eff}} \frac{dC_i^{\text{r}}(\mu_{\text{eff}})}{d\mu_{\text{eff}}} = -\frac{\nu_i}{16\pi^2}$

• Lengthy calculation:

$$C_0 = rac{9g^4}{8M_r^4} L_{ ext{eff}} + rac{g^2}{8M_r^2} - rac{g^4}{64\pi^2 M_r^4} \left(3 + 2\lnrac{\mu_{ ext{eff}}^2}{M_r^2}
ight) + O(M_r^{-6}) =
u_0 L_{ ext{eff}} + C_0^r(\mu_{ ext{eff}})$$

35

– the heavy mass gets renormalized $M o M_r$

$$- \ \mathsf{RG} \ \mathsf{equation} \ \mathsf{for} \ C_0^r \colon \ \mu_{\mathsf{eff}} rac{dC_0^r}{d\mu_{\mathsf{eff}}} = -rac{9}{2\pi^2} \, (C_0^r)^2$$

NUCLEAR PHYSICS from a RGE POINT of VIEW

• Renormalization group analysis of the low-energy NN interaction

DEPENDENCE of the COUPLINGS on the HEAVY MASS⁷

• Tree level ightarrow dimensionality of the couplings as $M
ightarrow \infty$: $C_i \sim g^2/M^{2(i+1)} \propto M^{-2i}$

- Naturalness: dimensionless coupling $ilde{C}_i = C_i M^{2i}$ should be O(1)
- Beyond tree level consider a typical one-loop graph

• In dim reg:
$$I_{ij} = \frac{\tilde{C}_i \tilde{C}_j}{M^{2(i+j)}} \underbrace{\int_l \frac{N(l; \{p_i\})}{(m^2 - l^2)(m^2 - (P - l)^2)}}_{m^{2(i+j)} \log(m/\mu_{\text{eff}})}$$

 \Rightarrow Irrelevant couplings (negative mass dimension) stay irrelevant

- can be easily generalized to all one and higher loop graphs
- also holds in mass-dependent reg. scheme (e.g. cut-off) \rightarrow exercise

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 • O < \land \bigtriangledown \lor \lor \lor \lor \lor \lor

RENORMALIZATION GROUP FLOW I

ullet Consider an EFT with $m \ll \Lambda \ll M$

 \Rightarrow varying Λ in some range $\Lambda_{ ext{eff}} \leq \Lambda \leq M$ must leave the physics invariant

 \Rightarrow masses and couplings must run accordingly, e.g. ϕ^4 -theory with only coupling C_0

 \Rightarrow Renormalization Group Equations (RGEs):

$$egin{aligned} m^2(\Lambda) &= m^2(M) + 12 C_0 \int_l^M rac{1}{m^2(M) + l^2} igg|_{ ext{Eucl.}} - 12 C_0 \int_l^\Lambda rac{1}{m^2(M) + l^2} igg|_{ ext{Eucl.}} \ &= m^2(M) + rac{3C_0}{4\pi^2} \left(M^2 - \Lambda^2 - m^2(M) \ln rac{M^2}{\Lambda^2} + \cdots
ight) \ &\Lambda rac{d}{d\Lambda} \, m^2(\Lambda) &= -rac{3C_0}{2\pi^2} \, \Lambda^2 igg(1 + Oigg(rac{m^2}{\Lambda^2} igg) igg) \end{aligned}$$

⇒ flow equations will generate all possible types of operators at lower scalesQ: is that a problem?

• A: no, as we will show now!

RENORMALIZATION GROUP FLOW II

• Crucial statement:

Even if the theories may look very different at the hard scale $\Lambda=M,$ the differences vanish when going to lower scales $\Lambda=\Lambda_{
m eff}$

• Model with two couplings, one marginal (C_0) and one irrelevant (C_1) :

$$\Rightarrow \mathsf{RGEs:} \qquad \Lambda \frac{dC_0}{d\Lambda} = \beta_0(C_0, \Lambda^2 C_1) \,, \quad \Lambda \frac{dC_1}{d\Lambda} = \Lambda^{-2} \beta_1(C_0, \Lambda^2 C_1)$$

• Rescaling $\tilde{C}_0 = C_0$, $\tilde{C}_1 = \Lambda^2 C_1$ (dimensionless couplings)

$$\Rightarrow \qquad \Lambda \frac{d\tilde{C}_0}{d\Lambda} = \beta_0(\tilde{C}_0, \tilde{C}_1), \qquad \Lambda \frac{d\tilde{C}_1}{d\Lambda} - 2\tilde{C}_1 = \beta_1(\tilde{C}_0, \tilde{C}_1)$$

• RG flow equations, provided the values of $\tilde{C}_i(\Lambda)$ are fixed at some point:

$$ilde{C}_i(\Lambda)ig|_{\Lambda=M} = ilde{C}_i^{(0)}\,, \qquad i=0,1$$

• assume a solution (\bar{C}_0, \bar{C}_1) at large scale $\Lambda = M \rightarrow$ analyze small dev's

RENORMALIZATION GROUP FLOW III

• solution: all trajectories approach each other in the IR (exercise: do the math)

 $\Rightarrow \tilde{C}_1(\Lambda_{\text{eff}})$ can be expressed in terms of $\tilde{C}_0(\Lambda_{\text{eff}})$ up to terms of order $(\Lambda_{\text{eff}}^2/M^2)$. \Rightarrow physics at the large scale M gets decoupled from the one at the low scale Λ_{eff}

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < < < < > > > > • •

TRIVIALITY and the HIGGS MASS

• *Triviality:* if the β -function is strictly positive and grows faster than a linear function, the bare coupling $\tilde{C}_0(M) \to \infty$ at a finite $M \to$ one can only remove the cut-off if the renormalized coupling vanishes, i.e. the theory is trivial

• Higgs sector in the SM:
$$\mathcal{L}_H = \frac{1}{2} \, \partial_\mu \Phi^\dagger \partial^\mu \Phi - \frac{1}{2} m_0^2 \, \Phi^\dagger \Phi - \frac{1}{4} \tilde{C}_0 \, (\Phi^\dagger \Phi)^2$$

• RGE for
$$ilde{C}_0$$
: $rac{1}{ ilde{C}_0(\Lambda)} = rac{1}{ ilde{C}_0(M)} + rac{3}{2\pi^2} \ln rac{M}{\Lambda} \geq rac{3}{2\pi^2} \ln rac{M}{\Lambda}$

• use tree level SM relations:
$$\left(rac{M_H}{M_W}
ight)^2 = rac{8 C_0(\Lambda)}{g^2}$$

 \Rightarrow bound on the Higgs mass:

```
Dashen, Neuberger (1983)
```

$$\frac{M_H}{M_W} \le \frac{4\pi}{g\sqrt{3}} \, \frac{1}{(\ln(M/\Lambda))^{1/2}} \simeq \frac{900 \,\,\mathrm{GeV}}{M_W} \, \frac{1}{(\ln(M/\Lambda))^{1/2}} \to M_H \le 900 \,\,\mathrm{GeV}$$

• Decoupling EFTs:

Appelquist, Carrazone (1975)

- effects of the heavy fields are power-suppressed or appear in the renormalization of the light field couplings
- as $M_H
 ightarrow \infty$, heavy fields decouple & shifts become unobservable
- RGEs / RG flow: powerful tool to analyze decoupling EFTs
- Examples:
 - QED at $E \ll m_e
 ightarrow$ Euler-Heisenberg Lagrangian
 - weak int. at $E \ll M_W \rightarrow$ Fermi's four-fermion Lagrangian
 - ullet SM at $E \ll 1$ TeV $o \mathcal{L}_{ ext{eff}} = SU(3)_C imes SU(2)_L imes U(1)_Y$

INTERMEDIATE SUMMARY cont'd

• Non-decoupling EFTs:

- during the transition $\mathcal{L} \to \mathcal{L}_{eff}$, phase transition via spontaneous symmetry breaking w/ generation of (pseudo-) Goldstone bosons with masses $M_{GB} \ll \Lambda_{SSB}$
- SSB entails relations between MEs w/ different no. of GBs
 - ightarrow D < 4 or $D \geq 4$ becomes meaningless
 - $\rightarrow \mathcal{L}_{eff}$ is intrinsically non-renormalizable
- Examples:
 - SM w/o Higgs \rightarrow GBs = longitudinal comp. of the V-bosons
 - \bullet SM below $\Lambda_{\chi SB} \simeq 1\,{
 m GeV} o {
 m QCD}$ chiral dynamics

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 • O < < < < > > > • •

INTRO: CHIRAL SYMMETRY

• Massless fermions have chiral symmetry:

$${\cal L}=iar\psi\gamma_\mu\partial^\mu\psi$$

• left/right-decomposition:

$$\psi=rac{1}{2}(1-\gamma_5)\psi+rac{1}{2}(1+\gamma_5)\psi=P_L\psi+P_R\psi=\psi_L+\psi_R$$

• projectors:

$$P_L^2 = P_L, \ P_R^2 = P_R, \ P_L \cdot P_R = 0, \ P_L + P_R = 1$$

• helicity eigenstates:

$$rac{1}{2}\hat{h}\psi_{L,R}=\pmrac{1}{2}\psi_{L,R} \quad \hat{h}=ec{\sigma}\cdotec{p}/|ec{p}|$$

L/R fields do not interact → conserved L/R currents

$${\cal L}=iar{\psi}_L\gamma_\mu\partial^\mu\psi_L+iar{\psi}_R\gamma_\mu\partial^\mu\psi_R$$

$$\Psi_{R} \xrightarrow{} \Psi_{L}$$

• mass terms break chiral symmetry: $\bar{\psi}\mathcal{M}\psi = \bar{\psi}_R\mathcal{M}\psi_L + \bar{\psi}_L\mathcal{M}\psi_R$

QCD LAGRANGIAN

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{2} \text{Tr} \, G^a_{\mu\nu} G^{\mu\nu,a} + \sum_f \bar{q}_f (i \not\!\!\!D - \mathcal{M}) q_f + \dots$$

 $D_{\mu} = \partial_{\mu} + igA^{a}_{\mu}\lambda^{a}/2 , \ \ G^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} - g[A^{b}_{\mu}, A^{c}_{\nu}], \ \ f = (u, d, s, c, b, t)$

000

- local color gauge invariance SU(3)_C
- non-linear couplings:

• light (u,d,s) and heavy (c,b,t) quark flavors:

 $m_{
m light} \ll \Lambda_{
m had}, m_{
m heavy} \gg \Lambda_{
m had}$

 $\cdot \circ \triangleleft < \land \bigtriangledown >$

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012

CHIRAL SYMMETRY of QCD

• Three flavor QCD:

• \mathcal{L}^0_{QCD} is invariant under **chiral** $SU(3)_L \times SU(3)_R$ (split off U(1)'s)

$$egin{aligned} \mathcal{L}^0_{ ext{QCD}}(G_{\mu
u},q',D_\mu q') &= \mathcal{L}^0_{ ext{QCD}}(G_{\mu
u},q,D_\mu q) \ q' &= RP_R q + LP_L q = Rq_R + Lq_L \quad R,L \in SU(3)_{R,L} \end{aligned}$$

conserved L/R-handed [vector/axial-vector] Noether currents:

$$egin{aligned} J^{\mu,a}_{L,R} &= ar{q}_{L,R} \gamma^{\mu} rac{\lambda^a}{2} q_{L,R} \,, & a = 1, \dots, 8 \ \partial_{\mu} J^{\mu,a}_{L,R} &= 0 & [ext{or} \ V^{\mu} = J^{\mu}_L + J^{\mu}_R \,, \ A^{\mu} = J^{\mu}_L - J^{\mu}_R] \end{aligned}$$

Is this symmety reflected in the vacuum structure/hadron spectrum?

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < < \land \bigtriangledown > \triangleright •

THE FATE of QCD's CHIRAL SYMMETRY

- the chiral symmetry is not "visible" (spontaneously broken)
 - no parity doublets
 - $ullet \left< 0 |AA| 0
 ight>
 eq \left< 0 |VV| 0
 ight>$
 - scalar condensate $\bar{q}q$ acquires v.e.v.
 - Vafa-Witten theorem
 - (almost) massless pseudoscalar bosons

• the chiral symmetry is realized in the Nambu-Goldstone mode

- weakly interacting massless pseudoscalar excitations
- approximate symmetry (small quark masses)

 $ightarrow \pi, K, \eta$ as Pseudo-Goldstone Bosons

- calls for an effective field theory
- \Rightarrow Chiral Perturbation Theory

THE FATE of QCD's CHIRAL SYMMETRY II

- Wigner mode $|Q_5^a|0
 angle = Q^a|0
 angle = 0 \; (a=1,\ldots,8) \; ?$
- parity doublets: $dQ_5^a/dt = 0
 ightarrow [H,Q_5^a] = 0$

single particle state: $H|\psi_p
angle=E_p|\psi_p
angle$

axial rotation:
$$H(e^{iQ_5^a}|\psi_p\rangle) = e^{iQ_5^a}H|\psi_p\rangle = \underbrace{E_p(e^{iQ_5^a}|\psi_p\rangle)}_{same\ mass\ but\ opposite\ parity}$$

• VV and AA spectral functions (without pion pole):

$$egin{aligned} &\langle 0|VV|0
angle &= \langle 0|(L+R)(L+R)|0
angle &= \langle 0|L^2+R^2+2LR|0
angle &= \langle 0|L^2+R^2|0
angle \ &\parallel \ &\parallel \ &\langle 0|AA|0
angle &= \langle 0|(L-R)(L-R)|0
angle &= \langle 0|L^2+R^2-2LR|0
angle &= \langle 0|L^2+R^2|0
angle \end{aligned}$$

since L and R are orthogonal

PROPERTIES of GOLDSTONE BOSONS

• GBs are massless [no explicit symmetry breaking]

consider a broken generator [Q, H] = 0 but $Q|0\rangle \neq 0$ define $|\psi\rangle \equiv Q|0\rangle$ $\rightarrow H|\psi\rangle = HQ|0\rangle = QH|0\rangle = 0$ \rightarrow not only G.S. $|0\rangle$ has E = 0

There exist massless excitations, non-interacting as E,p
ightarrow 0

[NB: proper argumentation requires more precise use of the infinite volume]

• explicit symmetry breaking, perturbative [small parameter ε]

Goldstone bosons acquire a small mass $M_{
m GB}^2\sim arepsilon$

In QCD, this symmetry breaking is given in terms of the light quark masses

$$\Rightarrow M_{\pi}^2 \sim (m_u + m_d)$$

CHIRAL EFT of QCD

Gasser, Leutwyler, Weinberg, van Kolck, Kaplan, Savage, Wise, Bernard, Kaiser, M., . . .

• Starting point: CHIRAL LAGRANGIAN (two flavors)

$$\mathcal{L}_{ ext{QCD}}
ightarrow \mathcal{L}_{ ext{EFF}} = \mathcal{L}_{\pi\pi} + \mathcal{L}_{\pi N} + \mathcal{L}_{NN} + \dots$$

- dofs: quark & gluon fields \rightarrow pions, nucleons, external sources
- Spontaneous chiral symmetry breaking of QCD → pions are Goldstone bosons
- ullet Systematic expansion in powers of q/Λ_χ & M_π/Λ_χ , with $\Lambda_\chi\simeq 1\,{
 m GeV}$
- pion and pion-nucleon sectors are perturbative in $q \rightarrow$ chiral perturbation theory
- Parameters in $\mathcal{L}_{\pi\pi}$ and $\mathcal{L}_{\pi N}$ known from CHPT studies \rightarrow low-energy constants
- \mathcal{L}_{NN} collects short-distance contact terms, to be fitted
- NN interaction requires non-perturbative resummation

 \rightarrow chirally expand V_{\mathbf{NN}}, use in regularized LS equation

CHIRAL PERTURBATION THEORY

• Consider first the mesonic chiral effective Lagrangian

 $\chi = 2B\mathcal{M} + \ldots, B = |\langle 0|\bar{q}q|0
angle|/F_{\pi}^2 \leftarrow ext{scalar quark condensate}$

• Two parameters:

 $F_{\pi} \simeq 92 \, {
m MeV}$ = pion decay constant (GB coupling to the vacuum) $B \simeq 2 \, {
m GeV}$ = normalized vacuum condensate

• Goldstone boson masses: $M_{\pi^+}^2 = (m_u + m_d)B \ , \ M_{K^+}^2 = (m_d + m_s)B \ , \ldots$

• has been extended to two loops $\mathcal{O}(q^6)$ in many cases

FROM QUARK to MESON MASSES

- symmetry breaking Lagrangian: $\mathcal{L}_{\mathrm{SB}} = \mathcal{M} \times f(U, \partial_{\mu} U, \ldots)$, $\mathcal{M} = \mathrm{diag}(m_u, m_d)$
- LO invariants: $\operatorname{Tr}(\mathcal{M}U^{\dagger})$, $\operatorname{Tr}(U\mathcal{M}^{\dagger})$

$$\Rightarrow \mathcal{L}_{SB} = \frac{1}{2} F_{\pi}^{2} \left\{ B \operatorname{Tr}(\mathcal{M}U^{\dagger} + U\mathcal{M}^{\dagger}) \right\} \qquad B \text{ is a real constant if CP is conserved} \\ = (m_{u} + m_{d}) B \left[F_{\pi}^{2} - \frac{1}{2}\pi^{2} + \frac{\pi^{4}}{24F_{\pi}^{2}} + \dots \right] \quad [\text{expand } U = \exp(i\vec{\tau} \cdot \vec{\pi}/F_{\pi})]$$

First term (vacuum):
$$\frac{\partial \mathcal{L}_{\text{QCD}}}{\partial m_q} \bigg|_{m_q=0} = -\bar{q}q$$

 $\Rightarrow \langle 0|\bar{u}u|0\rangle = \langle 0|\bar{d}d|0\rangle = -BF_{\pi}^2 (1 + \mathcal{O}(\mathcal{M}))$

Second term (pion mass): $-\frac{1}{2}M_{\pi}^2\pi^2 \Rightarrow M_{\pi}^2 = (m_u + m_d)B$

combined: $M_{\pi}^2 = -(m_u + m_d) \langle 0 | \bar{u}u | 0 \rangle / F_{\pi}^2$ Gell-Mann–Oakes–Renner rel. repeat for SU(3) $\Rightarrow 3M_{\eta}^2 = 4M_K^2 - M_{\pi}^2$ Gell-Mann–Okubo relation

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 • O < \land \bigtriangledown \lor \lor \lor \lor \lor \bullet

$\underline{\mathsf{MESON}\;\mathsf{MASSES}} \to \underline{\mathsf{QUARK}\;\mathsf{MASS}\;\mathsf{RATIOS}}$

lowest order

$$M_{\pi^+}^2 = (m_u + m_d)B \simeq (0.140 \,\text{GeV})^2$$
$$M_{K^0}^2 = (m_u + m_s)B \simeq (0.494 \,\text{GeV})^2$$
$$M_{K^+}^2 = (m_d + m_s)B \simeq (0.497 \,\text{GeV})^2$$

$$\stackrel{
m ratios}{\longrightarrow} \quad rac{m_u}{m_d} = 0.66 \;, \;\; rac{m_s}{m_d} = 20.1 \;, \;\; rac{\hat{m}}{m_s} = rac{1}{24.2} \;\; \left[\hat{m} = rac{1}{2} (m_u + m_d)
ight]$$

• corrections: next-to-leading order and beyond

electromagnetism

Weinberg, Gasser, Leutwyler, ...

$$iggarrow \left| egin{array}{c} rac{m_u}{m_d} = 0.553 \pm 0.043 \ , \ \ rac{m_s}{m_d} = 18.9 \pm 0.8 \ , \ \ rac{\hat{m}}{m_s} = rac{1}{24.4 \pm 1.5} \end{array}
ight.$$

absolute values: sum rules or lattice QCD

no large isospin violation since $m_u - m_d$ so small vs hadronic scale

CHIRAL EFECTIVE PION-NUCLEON THEORY

- view nucleon as matter fields [from now on, SU(2) only]
- chiral symmetry *dictates* the couplings to pions & external sources

a few steps well documented in the literature

- tree calculations: tree graphs w/ insertions from $\mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)}$
- one-loop calculations: tree graphs w/ insertions from $\mathcal{L}_{\pi N}^{(1)} + \ldots + \mathcal{L}_{\pi N}^{(4)}$ plus loop graphs w/ (one) insertion(s) from $\mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)}$

EFFECTIVE LAGRANGIAN AT ONE LOOP

- Pion-nucleon Lagrangian: $\mathcal{L}_{\pi N} = \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \mathcal{L}_{\pi N}^{(4)}$
 - with $\begin{aligned}
 \begin{bmatrix} (n) &= \text{chiral dimension} \end{bmatrix} \\
 \mathcal{L}_{\pi N}^{(1)} &= \bar{\Psi} \left(i \not D - m_N + \frac{1}{2} g_A \not u \gamma_5 \right) \Psi \\
 \begin{bmatrix} u_\mu &\sim \partial_\mu \phi \end{bmatrix} \\
 \begin{bmatrix} u_\mu &\sim \partial_\mu \phi \end{bmatrix} \\
 \mathcal{L}_{\pi N}^{(2)} &= \sum_{i=1}^7 c_i \bar{\Psi} O_i^{(2)} \Psi = \bar{\Psi} \left(c_1 \langle \chi_+ \rangle + c_2 \left(-\frac{1}{8m_N^2} \langle u_\mu u_\nu \rangle D^{\mu\nu} + \text{h.c.} \right) + c_3 \frac{1}{2} \langle u \cdot u \rangle \\
 &+ c_4 \frac{i}{4} \left[u_\mu, u_\nu \right] \sigma^{\mu\nu} + c_5 \widetilde{\chi}_+ + c_6 \frac{1}{8m_N} F_{\mu\nu}^+ \sigma^{\mu\nu} + c_7 \frac{1}{8m_N} \langle F_{\mu\nu}^+ \rangle \sigma^{\mu\nu} \right) \Psi
 \end{aligned}$
 - dynamical LECs $g_A \sim \partial_\mu \phi$, and $c_2, c_3, c_4 \sim \partial^2_\mu \phi, \partial_\mu \partial_\nu \phi$
 - symmetry breaking LECs $c_1 \sim m_u + m_d$, $c_5 \sim m_u m_d$
 - external probe LECs $c_6, c_7 \sim eQA_{\mu}$

$$\mathcal{L}_{\pi N}^{(3)} = \sum_{i=1}^{23} d_i \,\bar{\Psi} \,O_i^{(3)} \,\Psi \,, \quad \mathcal{L}_{\pi N}^{(4)} = \sum_{i=1}^{118} e_i \,\bar{\Psi} \,O_i^{(4)} \,\Psi$$

for details, see Fettes et al., Ann. Phys. 283 (2000) 273 [hep-ph/0001308]

POWER-COUNTING in the PION-NUCLEON THEORY

ullet nucleon mass $m_N \sim 1\,{
m GeV} o$ only three-momenta can be soft

• solutions:

(1) Heavy-baryon approach

Jenkins, Manohar; Bernard, Kaiser, M., . . .

 $1/m_N$ expansion a la Foldy-Wouthuysen of the Lagrangian m_N only appears in vertices, no longer in the propagator

(2) Infrared Regularization [or variants thereof like EOMS]

Becher, Leutwyler; Kubis, M.; Scherer, . . .

extraction of the soft parts from the loop integrals

easier to retain proper analytic structure

• most calculations at one loop, only two at two loop accuracy (g_A, m_N) Bernard, M.; Schindler, Scherer, Gegelia

FAILURE of the POWER-COUNTING

• naive extension of loop graphs from the pion to the pion-nucleon sector

• consider the nucleon as a static, heavy source \rightarrow four-velocity v_{μ} :

Jenkins, Manohar 1991

$$ig| p_\mu = m_N v_\mu + \ell_\mu ig|, \hspace{0.2cm} v^2 = 1, \hspace{0.2cm} p^2 = m_N^2, \hspace{0.2cm} v \cdot \ell \ll m_N$$

• velocity-projection: $\Psi(x) = \exp(-im_N v \cdot x) \left[H(x) + h(x)
ight]$

with $\psi H = H, \ \psi h = -h$ ["large/small" components]

• *H*- and *h*-components decouple, separated by large mas gap $2m_N$:

$$ightarrow \left[\mathcal{L}_{\pi N}^{(1)} = ar{H} \left(iv \cdot D + g_A S \cdot u
ight) H + \mathcal{O} \left(rac{1}{m_N}
ight)
ight.$$

HEAVY BARYON APPROACH II

• covariant spin-vector à la Pauli-Lubanski:

$$S_{\mu} = rac{i}{2} \gamma_5 \sigma_{\mu
u} v^{
u}, \ S \cdot v = 0, \ \{S_{\mu}, S_{
u}\} = rac{1}{2} (v_{\mu} v_{
u} - g_{\mu
u}), \ S^2 = rac{1-d}{4}$$

• the Dirac algebra simplifies considerably (only v_{μ} and S_{μ}):

$$ar{H}\gamma_{\mu}H=v_{\mu}ar{H}H,\;ar{H}\gamma_{5}H=\mathcal{O}(rac{1}{m_{N}}),\;ar{H}\gamma_{\mu}\gamma_{5}H=2ar{H}S_{\mu}H,\ldots$$

• propagator:

$$S(\omega)=rac{i}{\omega+i\eta}, ~~\omega=v\cdot\ell, ~~\eta
ightarrow 0^+$$

• mass scale moved from the propagator to $1/m_N$ suppressed vertices

 \rightarrow power counting

• can be systematically extended to arbitrary orders in $1/m_N$

Bernard, Kaiser, Kambor, M., 1992

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 • O < < < < > > > • •

INFRARED REGULARIZATION I

• relativistic calculation of the nucleon self-energy:

Gasser, Sainio, Švarč, 1988, Becher, Leutwyler 1999

$$H(p^2) = \frac{1}{i} \int \frac{d^d k}{(2\pi)^d} \frac{1}{M_\pi^2 - k^2} \frac{1}{m_N - (p-k)^2}$$

$$\to H(s_0) = c(d) \frac{M_{\pi}^{d-3} + m_N^{d-3}}{M_{\pi} + m_N} = I + R , \ s_0 = (M_{\pi} + m_N)^2$$

infrared singular piece *I*: generated by momenta of the order M_{π} contains the chiral physics like chiral logs etc.

infrared regular piece R: generated by momenta of the order m_N leads to the violation of the power counting polynomial in external momenta and quark masses \rightarrow can be absorbed in the LECs of the eff. Lagr.

INFRARED REGULARIZATION II

- this symmetry-preserving splitting can be *uniquely* defined for any one-loop graph
- method to separate the infrared singular and regular parts (end-point singularity at z = 1):

$$\begin{split} H &= \int \frac{d^d k}{(2\pi)^d} \frac{1}{AB} = \int_0^1 dz \int \frac{d^d k}{(2\pi)^d} \frac{1}{[(1-z)A+zB]^2} \\ &= \left\{ \int_0^\infty - \int_1^\infty \right\} dz \int \frac{d^d k}{(2\pi)^d} \frac{1}{[(1-z)A+zB]^2} = \mathbf{I} + R \\ &A = M_\pi^2 - k^2 - i\eta \;, \; \; B = m^2 - (p-k)^2 - i\eta \;, \; \; \eta \to 0^+ \end{split}$$

• preserves the low-energy analytic structure of any one-loop graph

• extension to higher loop graphs difficult

Lehmann, Prezeau, 2002

HEAVY BARYON vs INFRARED REGULARIZATION

- Heavy baryon (HB) is algebraically much simpler than infrared regularization (IR)
- HB can be extended to higher loop orders (IR requires modifications)
- Strict HB approach sometimes at odds with the analytic structure, IR not, e.g. anomalous threshold in triangle diagram (isovector em form factors)

$$t_c = 4M_\pi^2 - M_\pi^4/m_N^2 \stackrel{HB}{=} 4M_\pi^2 + \mathcal{O}(1/m_N^2)$$

- IR resums kinetic energy insertions \rightarrow sometimes improves convergence e.g. neutron electric ff $G_E^n(Q^2)$ Kubis, M., 2001
- for a detailed discussion, see the review Bernard, Prog. Nucl. Part. Phys. **60** (2008) 82

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < \land \bigtriangledown

POWER COUNTING in the PION-NUCLEON SYSTEM II 64

• consider the nucleon mass being eliminated, e.g. in the heavy baryon scheme $S(q) \sim 1/(v \cdot q)$ and vertices with $d \geq 1$

ullet Goldstone bosons as before, $d\geq 2$ and $D(q)\sim 1/(q^2-M^2)$

• consider an *L*-loop diagram with I_B internal baryon lines, I_M internal meson lines, V_d^M mesonic vertices and V_d^{MB} meson-nucleon vertices of order d

$$Amp \propto \int (d^4q)^L \, rac{1}{(q^2)^{I_M}} rac{1}{(q)^{I_B}} \prod_d (q^d)^{(V_d^M + V_d^{MB})}$$

• let
$$Amp \sim q^{\nu} \rightarrow \nu = 4L - 2I_M + I_B + \sum_d d(V_d^M + V_d^{MB})$$

• topology: $L = I_M + I_B - \sum_d (V_d^m + V_d^{MB}) + 1$ and **one** baryon line through the diagram: $\sum_d V_d^{MB} = I_B + 1$

• eliminate
$$I_M$$
: $\nu = 1 + 2L + \sum_d V_d^m (d-2) + \sum_d (d-1) V_d^{MB} \longrightarrow \nu \ge 1$

STRUCTURE of the PION-NUCLEON INTERACTION

• Pion-nucleon scattering in chiral pertubation theory

Leading order (LO) ($\nu = 1$):

tree graphs w/ insertions with d = 1

Next-to-leading order (NLO) ($\nu = 2$):

tree graphs w/ insertions with d = 1, 2

Next-to-next-to-leading order (NNLO) ($\nu = 3$):

tree graphs w/ insertions with d=1,2,3and one-loop graphs w/insertion with d=1

• calculations have been performed up to $\nu = 4$ (NNNLO = complete one-loop): heavy-baryon scheme Fettes, M., Nucl. Phys. A **676** (2000) 311 infrared-regularization scheme Becher, Leutwyler, JHEP **06** (2001) 017

APPLICATION: DIMENSION-TWO LECS

- Low-energy constants (LECs) relate *many* processes
- e.g. the dimension-two LECs c_i in πN , NN, NN, NN, ...

= operator from
$$\mathcal{L}^{(2)}_{\pi N} \propto c_i ~(i=1,2,3,4)$$

Here:

- determine the c_i from the purest process $\pi N o \pi N$
- later use in the calculation of nuclear forces

DETERMINATION OF THE LECs

- πN scattering data can be explored in different ways:
- πN scattering inside the Mandelstam triangle:
- \rightarrow best convergence, relies on dispersive analysis
- \rightarrow not sensitive to all LECs, esp. c_2 Büttiker, M., Nucl. Phys. A 668 (2000) 97 [hep-ph/9908247]
- πN scattering in the threshold region:
- \rightarrow large data basis, not all consistent
- \rightarrow use threshold parameters and global fits
- ightarrow tree level $\mathcal{O}(p^2)$ fits tends to underestimate the LECs

$$c_{3} = -a_{01}^{+}F_{\pi}^{2} - \underbrace{\frac{g_{A}^{2}M_{\pi}}{16\pi F_{\pi}^{2}}\left(g_{A}^{2} + \frac{77}{48}\right)}_{40\% \text{ correction}}$$

Bernard, Kaiser, M., Nucl. Phys. A 615 (1997) 483 [hep-ph/9611253]
Fettes, M., Steininger, Nucl. Phys. A 640 (1998) 119 [hep-ph/9803266]
Fettes, M., Nucl. Phys. A 676 (2000) 311 [hep-ph/0002182]
Becher, Leutwyler, JHEP 0106 (2001) 017 [arXiv:hep-ph/0103263]

67

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < < < < > > > > • •

VALUES OF THE LECs

 \Rightarrow Resulting values in GeV⁻¹:

$$c_1 = -0.9^{+0.2}_{-0.5} , \ c_2 = 3.3 \pm 0.2 , \ c_3 = -4.7^{+1.2}_{-1.0} , \ c_4 = 3.5^{+0.5}_{-0.2}$$

Remarks:

- $c_{2,3,4}$ larger than natural values: $c_i \sim g_A / \Lambda_\chi \simeq 1.1 \dots 1.5$
- fits with smaller sigma-term preferred $\sigma_{\pi N}(0) \simeq 45 \, {
 m MeV}$

Gasser, Leutwyler, Sainio, Phys. Lett. B 253 (1991) 252

- uncertainty in c_1 accomodates larger σ -term (like e.g. in GWU/VPI)
- consistent w/ determinations from peripheral NN waves:

 $c_1 = 0.76(7)$, $c_3 = -4.78(10)$, $c_4 = 3.96(22)$

Rentmeester, Timmermans, de Swart, Phys. Rev. C 67 (2003) 044001

accuracy challenged

Entem, Machleidt, nucl-th/0303017

BOUND STATE EFT: HADRONIC ATOMS

- Hadronic atoms are bound by the static Coulomb force (QED)
- Many species: $\pi^+\pi^-$, $\pi^\pm K^\mp$, $\pi^- p$, $\left| \pi^- d, K^- p, K^- d, \right| \dots$
- \bullet Bohr radii \gg typical scale of strong interactions
- Small average momenta \Rightarrow non-relativistic approach
- Observable effects of QCD
 - \star energy shift ΔE from the Coulomb value
 - \star decay width Γ

- \Rightarrow access to scattering at zero energy! = S-wave scattering lengths
- These scattering lengths are very sensitive to the chiral & isospin symmetry breaking in QCD Weinberg, Gasser, Leutwyler, ...
- can be analyzed systematically & consistently in the framework of low-energy Effective Field Theory (including virtual photons)

69

EFFECTIVE FIELD THEORY for HADRONIC ATOMS

• Three step procedure utilizing *nested* effective field theories

• Step 1:

Construct non-relativistic effective Lagrangian (complex couplings) & solve Coulomb problem exactly, corrections in perturbation theory

• Step 2: *matching*

relate complex couplings of $\mathcal{L}_{\rm eff}$ to QCD parameters, e.g. scattering lengths & express complex energy shift in terms of QCD parameters

• Step 3:

extract scattering length(s) from the measured complex energy shift

 \Rightarrow most precise way of determining hadron-hadron scattering lengths

 \rightarrow study kaonic hydrogen as one example

FEATURES OF KAONIC HYDROGEN

• Strong $(K^- p \to \pi^0 \Lambda, \pi^{\pm} \Sigma^{\mp}, ...)$ and weaker electromagnetic $(K^- p \to \gamma \Lambda, \gamma \Sigma^0, ...)$ decays

 \rightarrow complicated (interesting) analytical structure

ullet Average momentum $\langle p^2
angle = lpha \, \mu \simeq 2 \, {
m MeV}$

 \rightarrow highly non-relativistic

- \bullet Bohr radius $r_B = 1/(lpha\,\mu) \simeq 100\,{
 m fm}$
- Binding energy $E_{1s}=rac{1}{2}\,lpha^2\,\mu+\ldots\simeq 8\,{
 m keV}$
- Width $\Gamma_{1s} \simeq 250\,{
 m eV} \ll E_{1s}$
- $\mathcal{M}=m_n+M_{K^0}-m_p+M_{K^-}>0\Rightarrow$ unitary cusp
- Isospin breaking, small parameter $\delta \sim lpha \sim (m_d m_u)$

$$\Delta E = \underbrace{\delta^3}_{\text{LO}} + \underbrace{\delta^4}_{\text{NLO}} + \dots$$

NON-RELATIVISTIC EFFECTIVE LAGRANGIAN

 \rightarrow calculate electromagnetic levels and the strong shift (note: \tilde{d}_i complex!)

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < < < < > > > > <
ENERGY SHIFT in KAONIC HYDROGEN

- a) recoil corrections
- b) transverse photon exchange
- c) finite size corrections
- d) vacuum polarisation
- e) leading K⁻p interaction
 f) K⁻p interaction w/ Coulomb ladders
 g) leading K⁰n intermediate state
- h) iterated $\bar{K}^0 n$ intermediate state i) Coulomb ladders in the $K^- p$ interaction

MATCHING CONDITIONS

Electromagnetic form factors

$$c_p^F = 1 + \mu_p, c_p^D = 1 + 2\mu_p + \frac{4}{3} m_p^2 \langle r_p^2 \rangle, c_p^S = 1 + 2\mu_p$$

$$c_K^R = M_{K^+}^2 \langle r_K^2 \rangle$$

Kaon–nucleon scattering amplitude

matching allows to express the complex strong energy shift in terms of the threshold amplitude (kaon-nucleon scattering lengths a_0 and a_1)

$$\left| \Delta E_n^s - \frac{i}{2} \Gamma_n = -\frac{\alpha^3 \mu_c^3}{2\pi M_{K^+} n^3} \mathcal{T}_{KN} \left\{ 1 - \frac{\alpha \mu_c^2}{4\pi M_{K^+}} \mathcal{T}_{KN} (s_n(\alpha) + 2\pi i) + \delta_n^{\text{vac}} \right\} \right|$$

with
$$T_{KN} = 4\pi \left(1 + \frac{M_{K^+}}{m_p}\right) \frac{1}{2} (a_0 + a_1) + O(\sqrt{\delta})$$

 $s_n(\alpha) = 2(\psi(n) - \psi(1) - \frac{1}{n} + \ln \alpha - \ln n)$
 \Rightarrow correct, but not sufficiently accurate

UNITARY CUSP

- Corrections at $\mathcal{O}(\sqrt{\delta})$ can be expressed entirely in terms of a_0 and a_1
- → resum the fundamental bubble to account for the unitary cusp

$$\mathcal{T}_{KN}^{(0)} = 4\pi \left(1 + \frac{M_{K^+}}{m_p}\right) \frac{\frac{1}{2} \left(a_0 + a_1\right) + q_0 a_0 a_1}{1 + \frac{q_0}{2} \left(a_0 + a_1\right)}, \quad q_0 = \sqrt{2\mu_0 \Delta \mathcal{M}}$$

 \star agrees with R.H. Dalitz and S.F.Tuan, Ann. Phys. 3 (1960) 307 \star all corrections at $\mathcal{O}(\sqrt{\delta})$ included

$$\mathcal{T}_{KN} = \mathcal{T}_{KN}^{(0)} + \frac{i\alpha\mu_c^2}{2M_{K^+}} \left(\mathcal{T}_{KN}^{(0)}\right)^2 + \underbrace{\delta\mathcal{T}_{KN}}_{\mathcal{O}(\delta)} + o(\delta)$$

 \Rightarrow These further $\mathcal{O}(\delta)$ corrections are expected to be small

FINAL FORMULA to ANALYZE the DATA

$$\Delta E_n^s - rac{i}{2} \Gamma_n = -rac{lpha^3 \mu_c^3}{2\pi M_{K^+} n^3} \left(\mathcal{T}_{KN}^{(0)} + \delta \mathcal{T}_{KN}
ight) iggl\{ 1 - rac{lpha \mu_c^2 s_n(lpha)}{4\pi M_{K^+}} \, \mathcal{T}_{KN}^{(0)} + \delta_n^{
m vac} iggr\}$$

- $\mathcal{O}(\sqrt{\delta})$ and $\mathcal{O}(\delta \ln \delta)$ terms:
 - \star Parameter-free, expressed in terms of a_0 and a_1
 - * Numerically by far dominant
- Estimate of δT_{KN} in CHPT

 $\star \delta T_{KN} / T_{KN} = (-0.5 \pm 0.4) \cdot 10^{-2}$ at $O(p^2)$

 \star should be improved (loops, unitarization, influence of $\Lambda(1405),$ etc.)

• vacuum polarization calculation: $\delta_n^{\rm vac} \simeq 1\%$

D. Eiras and J. Soto, Phys. Lett. B 491 (2000) 101 [hep-ph/0005066]

EFTs of the STRONG INTERACTIONS

strongly intertwined

INTERMEDIATE SUMMARY

- QCD has a chiral symmetry in the light quark sector (neglecting quark masses)
- Chiral symmetry is *spontaneously* and *explicitely* broken appearance of almost massless Goldstone bosons (π, K, η) Goldstone boson interactions vanish as $E, p \to 0$
- Chiral perturbation theory is the EFT of QCD that explores chiral symmetry
- Meson sector: only even powers in small momenta, many successes
- Single nucleon sector: odd & even powers, quite a few successes
- Low-energy constants relate many processes (in particular the c_i)
- Isospin-breaking can be systematically incorporated \rightarrow spares
- NREFT can be set up for hadronic atoms → extraction of scattering lengths

Testing chiral dynamics in hadron-hadron scattering

WHY HADRON-HADRON SCATTERING?

• Weinberg's 1966 paper "Pion scattering lengths"

Weinberg, Phys. Rev. Lett. 17 (1066) 616

- pion scattering on a target with mass m_t and isospin T_t :

$$a_T = -rac{L}{1 + M_\pi/m_t} \left[T(T+1) - T_t(T_t+1) - 2
ight]$$

- pion scattering on a pion ["the more complicated case"]:

$$a_0 = rac{7}{4}L \ , \ \ \ a_2 = -rac{1}{2}L \qquad \qquad L = rac{g_V^2 M_\pi}{2\pi F_\pi^2} \simeq 0.1 \, M_\pi^{-1}$$

amazing predictions - witness to the power of chiral symmetry

• what have we learned since then?

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 \cdot O < \land ∇ > \triangleright

ELASTIC PION-PION SCATTERING

- Purest process in two-flavor chiral dynamics (really light quarks)
- scattering amplitude at threshold: two numbers (a_0, a_2)
- History of the prediction for a_0 :

LO (tree):	$a_0 = 0.16$	Weinberg 1966
NLO (1-loop):	$a_0=0.20\pm 0.01$	Gasser, Leutwyler 1983
NNLO (2-loop):	$a_0 = 0.217 \pm 0.009$	Bijnens et al. 1996

• even better: match 2-loop representation to Roy equation solution

Roy + 2-loop:
$$a_0 = 0.220 \pm 0.005$$
 Colangelo et al. 2000

 \Rightarrow this is an *amazing* prediction!

• same precision for a_2 , but corrections very small \ldots

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 • O < \land \bigtriangledown \lor \lor \lor \lor \lor

HOW ABOUT EXPERIMENT?

ullet Kaon decays (K_{e4} and $K^0
ightarrow 3\pi^0$): most precise

• Lifetime of pionium: experimentally more difficult

Kaon decays:

 $a_0^0 = 0.2210 \pm 0.0047_{
m stat} \pm 0.0040_{
m sys}$ $a_0^2 = -0.0429 \pm 0.0044_{
m stat} \pm 0.0028_{
m sys}$

J. R. Batley et al. [NA48/2 Coll.] EPJ C 79 (2010) 635

Pionium lifetime:

 $|a_0^0 - a_0^2| = 0.264^{+0.033}_{-0.020}$

B. Adeva et al. [DIRAC Coll.] PL B 619 (2005) 50

• and how about the lattice?

 \Rightarrow direct and indirect determinations of the scattering lengths

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < < \land \bigtriangledown > \triangleright •

THE GRAND PICTURE

Fig. courtesy Heiri Leutwyler 2012

• one of the finest tests of the Standard Model (but: direct lattice a_0 missing)

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < < < < > > > > <

STRANGE QUARK MYSTERIES

• Is the strange quark really light? $M_s \sim \Lambda_{
m QCD}$

 \rightarrow expansion parameter: $\xi_s = \frac{M_K^2}{(4\pi F_\pi)^2} \simeq 0.18 \quad \left[\text{SU(2): } \xi = \frac{M_\pi^2}{(4\pi F_\pi)^2} \simeq 0.014\right]$

• many predictions of SU(3) CHPT work quite well, but:

 \hookrightarrow indications of bad convergence in some recent lattice calculations:

$$\star$$
 masses and decay constantsAllton et al. 2008 $\star K_{\ell 3}$ -decaysBoyle et al. 2008 \hookrightarrow suppression of the three-flavor condensate? \star sum rule: $\Sigma(3) = \Sigma(2)[1 - 0.54 \pm 0.27]$ Moussallam 2000 \star lattice: $\Sigma(3) = \Sigma(2)[1 - 0.23 \pm 0.39]$ Fukuya et al. 2011

ELASTIC PION-KAON SCATTERING

- Purest process in three-flavor chiral dynamics
- scattering amplitude at threshold: two numbers $(a_0^{1/2}, a_0^{3/2})$
- History of the chiral predictions:

	CA [1]	1-loop [2]	2-loop [3]
$a_0^{1/2}$	0.14	0.18 ± 0.03	0.220 [0.17 0.225]
$ a_0^{3/2} $	-0.07	-0.05 ± 0.02	$-0.047[-0.075\ldots -0.04]$

[1] Weinberg 1966, Griffith 1969

[2] Bernard, Kaiser, UGM 1990

[3] Bijnens, Dhonte, Talavera 2004

• match 1-loop representation to Roy-Steiner equation solution

$$a_0^{1/2} = 0.224 \pm 0.022 \;,\;\; a_0^{3/2} = -0.0448 \pm 0.0077$$

Büttiker et al. 2003

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 • O < < < < > > > • •

THE GRAND PICTURE

- tension between lattice and Roy-Steiner (loophole: inconsistencies)
- need improved lattice results (direct calculations)

 \Rightarrow work required

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < < < < > > > > • •

PION-NUCLEON SCATTERING

- simplest scattering process involving nucleons
- intriguing LO prediction for isoscalar/isovector scattering length:

$$a_{\mathrm{CA}}^{+}=0, \;\; a_{\mathrm{CA}}^{-}=rac{1}{1+M_{\pi}/m_{p}}rac{M_{\pi}^{2}}{8\pi F_{\pi}^{2}}=79.5\cdot 10^{-3}/M_{\pi},$$

- chiral corrections:
 - chiral expansion for a^- converges fast

Bernard, Kaiser, UGM 1995

- large cancellations in a^+ , even sign not known from scattering data

	$\mathcal{O}(q)$	${\cal O}(q^2)$	${\cal O}(q^3)$	${\cal O}(q^4)$
fit to KA85	0.0	0.46	-1.00	-0.96
fit to EM98	0.0	0.24	0.49	0.45
fit to SP98	0.0	1.01	0.14	0.27

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < < < < > > > > • •

Fettes, UGM 2000

A WONDERFUL ALTERNATIVE: HADRONIC ATOMS

- Hadronic atoms: bound by the static Coulomb force (QED)
- Many species: $\pi^+\pi^-$, $\pi^\pm K^\mp$, π^-p , π^-d , K^-p , K^-d , ...
- Observable effects of QCD: strong interactions as **small** perturbations

 \star energy shift ΔE

- \star deacy width Γ
- ⇒ access to scattering at zero energy!
 = S-wave scattering lengths
- can be analyzed in suitable NREFTs
 - Pionic hydrogen
 - **Pionic deuterium**

Gasser, Rusetsky, ... 2002 Baru, Hoferichter, Kubis ... 2011

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < \land \bigtriangledown \lor \lor \lor

PION-NUCLEON SCATTERING LENGTHS

 \Rightarrow very precise value for a^- & first time definite sign for a^+

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < \land \bigtriangledown \lor \triangleright \lor

ANTIKAON-NUCLEON SCATTERING

- $K^-p \rightarrow K^-p$: fundamental scattering process with strange quarks
- coupled channel dynamics
- dynamic generation of the $\Lambda(1405)$ Dalitz, Tuan 1960
- major playground of **unitarized CHPT**

• chiral Lagrangian + unitarization leads to generation of certain resonances like e.g. the $\Lambda(1405), S_{11}(1535), S_{11}(1650), \ldots$

Kaiser, Siegel, Weise, Oset, Ramos, Oller, UGM, Lutz, ...

• loopholes: convergence a posteriori, crossing symmetry, on-shell approximation, unphysical poles, ...

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 \cdot O < \land \bigtriangledown \checkmark \triangleright \triangleright \bullet

A PUZZLE RESOLVED

- DEAR data inconsistent with scattering data
 - UGM, Raha, Rusetsky 2004
- \Rightarrow vaste number of papers ...

• SIDDHARTA to the rescue

Bazzi et al. 2011

 \Rightarrow more precise, consistent with KpX

$$\epsilon_{1s} = -283 \pm 36(\mathrm{stat}) \pm 6(\mathrm{syst}) \,\mathrm{eV}$$

 $\Gamma_{1s} = 541 \pm 89(\mathrm{stat}) \pm 22(\mathrm{syst}) \,\mathrm{eV}$

CONSISTENT ANALYSIS

- kaonic hydrogen + scattering data can now be analyzed consistently
- use the chiral Lagrangian at NLO, two groups (different schemes)

Ikeda, Hyodo, Weise 2011; UGM, Mai 2012

- 14 LECs and 3 subtraction constants to fit
- \Rightarrow simultaneous description of the SIDDHARTA and the scattering data

KAON–NUCLEON SCATTERING LENGTHS

$$a_{0} = -1.81^{+0.30}_{-0.28} + i \ 0.92^{+0.29}_{-0.23} \text{ fm}$$

$$a_{1} = +0.48^{+0.12}_{-0.11} + i \ 0.87^{+0.26}_{-0.20} \text{ fm}$$

$$a_{K^{-}p} = -0.68^{+0.18}_{-0.17} + i \ 0.90^{+0.13}_{-0.13} \text{ fm}$$
SIDDHARTA only:
$$a_{K^{-}p} = -0.65^{+0.15}_{-0.15} + i \ 0.81^{+0.18}_{-0.18} \text{ fm}$$

• clear improvement compared to scattering data only

 \Rightarrow fundamental parameters to within about 15% accuracy

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 • O < \land \bigtriangledown \lor \lor \lor \lor \lor \lor

KAON–DEUTERON SCATTERING LENGTH

• analyze K^-d , imposing consistency with the $\bar{K}N$ scattering lengths

EFFECTIVE LAGRANGIAN for $\phi D o \phi D$

- Goldstone boson octet (π, K, η) scatters off *D*-meson triplet (D^0, D^+, D_s^+)
- multi-scale/multi-faceted problem:
 - light particles, chiral symmetry \rightarrow chiral expansion in (p, m_q)
 - heavy particles, heavy quark symmetry ightarrow expansion in $1/m_c$
 - isospin-violation ightarrow strong = quark mass difference $m_d
 eq m_u$

 \rightarrow electromagnetic = quark charge difference $q_u \neq q_d$

- 16 channels with different total strangeness and isospin
 - some are perturbative
 - some are non-perturbative, require resummation \rightarrow possible molecules

• $T(\phi D \rightarrow \phi D)$ depends on two LECs at NLO, called h_3 and h_5 :

 h_3 the mass of the $D^*_{s0}(2317)$ as a DK molecule

 h_5 from naturalness, $h_5/M_D^2 \in [-1,+1]$

$$\Rightarrow \left| \Gamma(D_{s0}^*(2317)^+ \to D_s^+ \pi^0) = (180 \pm 110) \, \text{keV} \right| \text{ testable prediction}$$

note: much smaller in quark models (a few keV)

• expectation for the scattering length for DK(I = 0) in the molecular picture:

$$a_{DK}^{I=0} = -g_{ ext{eff}}^2 \Delta_{DK} = -rac{1}{2\sqrt{\mu_{DK}arepsilon}} \simeq 1 \, ext{fm}$$

• no data, but first lattice investigations at varying quark masses

Liu, Lin, Orginos, PoS LATTICE 2008, 112 and more to come!

QUARK MASS DEPENDENCE

• predictions: channels with no poles

Guo, Hanhart, UGM 2009

 \wedge

<

<

 ∇

QUARK MASS DEPENDENCE cont'd

• *predictions:* channels with poles \rightarrow resonances or molecular states

a pair of poles above thr.

$$a_{D\pi}^{(0,1/2)}=0.35(1)$$
 fm

a bound states below thr. $D_{s0}^{*}(2317)$

$$a_{DK}^{(1,0)} = -0.93(5)$$
 fm

 \Rightarrow lattice test of the molecular nature

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 • O < < < < > > > > • •

NATURE of the $D_{s1}(2460)$

- Nature of the $D_{s1}(2460)$: $M_{D_{s1}(2460)} M_{D_{s0}^*(2317)} \simeq M_{D^*} M_D$
- \Rightarrow most likely a $D^{\star}K$ molecule (if the $D^{\star}_{s0}(2317)$ is DK)
- \Rightarrow study Goldstone boson scattering off D- and D^{\star} -mesons
- Use heavy meson chiral perturbation theory Wise, Donoghue et al., Casalbuoni et al., ...

- T-matrix:
- Unitarization (as before) \rightarrow find poles in the complex plane

Effective Field Theories – Ulf-G. Meißner – Lectures, TAE 2012, Madrid, Spain, July 2012 · O < \land \bigtriangledown \lor \lor \lor \lor \lor

KAON MASS DEPENDENCE

• Mass and binding energy: $M_{
m mol} = M_K + M_H - \epsilon$

 \Rightarrow typical for a molecule \rightarrow test in LQCD

Guo, Hanhart, UGM 2009

INTERMEDIATE SUMMARY

- Hadron-hadron scattering: important role of chiral symmetry (CHPT)
 → combine with dispersion relations, unitarization, lattice
- Pion-pion scattering
 - \rightarrow a fine test of the Standard Model
- Pion-kaon scattering
 - \rightarrow tension between lattice and Roy-Steiner solution
- Pion-nucleon scattering
 - \rightarrow superbe accuracy from EFTs for pionic hydrogen/deuterium
- Antikaon-nucleon scattering
 - \rightarrow consistent determination of the scattering lengths possible
- Goldstone-boson scattering off D, D^{\star} -mesons
 - \rightarrow lattice test of molecular states possible

exciting times ahead of us

EFTs of the STRONG INTERACTIONS

strongly intertwined

FINAL SUMMARY

- Basic ideas underlying EFT: Separate different scales, identify proper degrees of freedom
- Implement the consequences of symmetries
- EFT allows you to compute using dimensional analysis (even if you don't know the theory)
- EFT is very useful way of thinking about problems
- All quantum field theories are EFTs

Isospin symmetry and isospin violation

ISOSPIN SYMMETRY

• For $m_u = m_d$, QCD is invariant under *SU(2) isospin* transformations:

$$q
ightarrow q' = U q \;, \;\; q = \left(egin{array}{c} u \ d \end{array}
ight), \;\;\; U = \left(egin{array}{c} a^* & b^* \ -b & a \end{array}
ight), \;\;\; |a|^2 + |b|^2 = 1$$

- NB: Charge symmetry = 180° rotation in iso-space

• Rewriting of the QCD quark mass term:

$$\mathcal{H}_{\text{QCD}}^{\text{SB}} = m_u \, \bar{u}u + m_d \, \bar{d}d = \underbrace{\frac{1}{2}(m_u + m_d)(\bar{u}u + \bar{d}d)}_{I=0} + \underbrace{\frac{1}{2}(m_u - m_d)(\bar{u}u - \bar{d}d)}_{I=1}$$

- Competing effect: QED \rightarrow can be treated in CHPT
- Standard situation: small IV on top of large iso-symmetric background, requires precise machinery to perform accurate calculations

Gasser, Urech, Steininger, Fettes, M., Knecht, Kubis, ...

Strong isospin violation (IV)

ISOSPIN VIOLATION - PIONS & KAONS

Weinberg, Gasser, Leutwyler, Urech, Neufeld, Knecht, M., Müller, Steininger, ...

• SU(2) effective Lagrangian w/ virtual photons to leading order:

Q = quark charge matrix

$$\mathcal{L}^{(2)} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{\lambda}{2}(\partial_{\mu}A^{\mu})^{2} + \frac{F_{\pi}^{2}}{4}\langle D_{\mu}UD^{\mu}U^{\dagger} + \chi U^{\dagger} + \chi^{\dagger}U\rangle + C\langle QUQU^{\dagger}\rangle$$

- \star pion mass difference of em origin, $M_{\pi^+}^2 M_{\pi^0}^2 = 2 C e^2 / F_\pi^2$
- * no strong isospin breaking at LO, absence of D-symbol
- * strong and em corrections at NLO worked out

M., Müller, Steininger, Phys. Lett. B 406 (1997) 154

• Three-flavor chiral perturbation theory:

 \star for $m_u=m_d\Rightarrow M_{K^+}^2-M_{K^0}^2=M_{\pi^+}^2-M_{\pi^0}^2=rac{2Ce^2}{F_\pi^2}$ – Dashen's theorem

 \star for $m_u \neq m_d \Rightarrow$ leading order strong kaon mass difference:

$$\left(M_{K^0}^2 - M_{K^+}^2\right)^{
m strong} = (m_u - m_d)B_0 + \mathcal{O}(m_q^2) \left| B_0 = |\langle 0|ar{q}q|0
angle |/F_\pi^2|$$

* strong and em corrections at NLO incl. leptons worked out

Urech, Nucl. Phys. B 433 (1995) 234 Knecht, Neufeld, Rupertsberger, Talavera, Eur. Phys. J. C 12 (2000) 469

ISOSPIN VIOLATION - NUCLEONS

Weinberg, ..., Fettes, M., Müller, Steininger

• Effective Lagrangian for isospin violation (to leading order):

$$\mathcal{L}_{\pi N}^{(2,\mathrm{IV})} = ar{N} \Big\{ egin{aligned} c_5 \ \underbrace{(\chi_+ - rac{1}{2} \langle \chi_+
angle)}_{\sim m_u - m_d} + eta_1 \ \underbrace{\langle \hat{Q}_+^2 - Q_-^2
angle}_{\sim q_u - q_d} + eta_2 \ \underbrace{\hat{Q}_+ \langle Q_+
angle}_{\sim q_u - q_d} \Big\} N + \mathcal{O}(q^3) \ \end{aligned}$$

- Three LECs parameterize the leading strong (c_5) & em (f_1, f_2) IV effects
- These LECs link various observables/processes:

 $m_n - m_p = 4 c_5 B_0(m_u - m_d) + 2 e^2 f_2 F_\pi^2 + \dots$ fairly well known Gasser, Leutwyler, ...

 $a(\pi^0 p) - a(\pi^0 n) = \text{const} (-4 c_5 B_0 (m_u - m_d)) + \dots$

extremely hard to measure

Weinberg, M., Steininger

- IV in πN scattering analyzed in CHPT \rightarrow intriguing results Fettes & M., Nucl. Phys. A 693 (2001) 693; Hoferichter, Kubis, M., Phys. Lett. B 678 (2009) 65
- also access to IV in $np \rightarrow d\pi^0$ and $dd \rightarrow \alpha \pi^0$ (spin-isospin filter)
 - \rightarrow need to develop a high-precision EFT for few-nucleon systems