Flavour Physics & CP Violation

A. Pich (IFIC, Valencia)

8

2012 School of High-Energy Physics (TAE 2012) Madrid, 16 – 27 July 2012

lavi

CPAN

arXiv:1112.4094

Quar	ks	Lepto	ons	Bosons
up	down	electron	neutrino e	photon
charm	strange	muon	neutrino µ	gluon
top	beauty	tau	heutrino τ	Z ⁰ W [±]

A. Pich – TAE 2012

~ep~ 2 New particle found, consistent with Higgs boson: CERN ArabNews

BBCNEWS

SCIENCE & ENVIRONMENT

4 July 2012 Last updated at 07:35 GMT

Higgs boson-like particle discovery

FINANCIAL TIMES

Welcome to FT.com, the global source of business news and analysis. Register now to receive 8 free articles per month.

Last updated: July 4, 2012 11:18 pm

Scientists bask in 'god particle' discovery

By Clive Cookson, Science Editor

The most anticipated discovery in the history of physics – known officially as the Higgs boson and informally as the god particle – has been announced at Cern, the European nuclear physics centre near Geneva.

Two scientific teams have detected a subatomic particle that matches the predicted characteristics of the Higgs, after analysing the debris of trillions of collisions at the \$8bn Large Hadron Collider

(LHC), the world's most powerful atom smasher.

Higgs boson-like 'God particle' discovered

Updated: 2012-07-07 08:08 (Agencies in London and Beijing) El portavoz de la Conferencia Episcopal: "Bienvenida sea la partícula de Dios"

'La partícula de Dios' no derrumbará la teología, según los obispos

La Conferencia Episcopal Española manifiesta que el posible descubrimiento de la existencia del Bosón de Higgs no supondrá ningún dogma a la doctrina de la Iglesia.

EUROPA PRESS, Peter Higgs.

A boson with $M_H = 125$ GeV and $J \neq 1$

5.0 σ both ATLAS & CMS

Flavour Physics & CP

4

Flavour Structure of the Standard Model

$$\begin{pmatrix} u & v_e \\ d & e^- \end{pmatrix}, \begin{pmatrix} c & v_\mu \\ s & \mu^- \end{pmatrix}, \begin{pmatrix} t & v_\tau \\ b & \tau^- \end{pmatrix}$$
 Why 3?

- Pattern of masses
- Flavour Mixing

Related to SSB Scalar Sector (Higgs)

- LHC: t, b • Kaon Factories : u, d, s
- τ**cF:** C,τ
 - BF, SuperB: b, c, τ

- LC : t,...
- $vF: v_e, v_\mu, v_\tau$

• C/P

NEUTRAL CURRENTS

CHARGED

CURRENTS

Three Families
$$\begin{bmatrix} v_e & u \\ e^- & d' \end{bmatrix}$$
, $\begin{bmatrix} v_\mu & c \\ \mu^- & s' \end{bmatrix}$, $\begin{bmatrix} v_\tau & t \\ \tau^- & b' \end{bmatrix}$

Family Structure $\begin{bmatrix} v_l & q_u \\ l^- & q_d \end{bmatrix} = \left\{ \begin{pmatrix} v_l \\ l^- \end{pmatrix}_L, (v_l)_R, l_R^- \right\}; \left\{ \begin{pmatrix} q_u \\ q_d \end{pmatrix}_L, (q_u)_R, (q_d)_R \right\}$

Charged Currents W^{\pm} $\begin{cases}
\text{Left-handed Fermions only} \\
\text{Flavour Changing: } v_l \Leftrightarrow l , q_u \Leftrightarrow q_d
\end{cases}$

Neutral currents γ , Z Flavour Conserving

Universality

Family – Independent Couplings

FERMION MASSES

Scalar – Fermion Couplings allowed by Gauge Symmetry

$$\mathcal{L}_{Y} = - (\overline{q}_{u}, \overline{q}_{d})_{L} \left[c^{(d)} \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix} (q_{d})_{R} + c^{(u)} \begin{pmatrix} \phi^{(0)\dagger} \\ -\phi^{(+)\dagger} \end{pmatrix} (q_{u})_{R} \right] - (\overline{v}_{l}, \overline{l})_{L} c^{(l)} \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix} l_{R} + \text{h.c.}$$

$$SSB$$

$$\mathcal{L}_{Y} = - \left(1 + \frac{H}{V} \right) \left\{ m_{q_{d}} \ \overline{q}_{d} \ q_{d} + m_{q_{u}} \ \overline{q}_{u} \ q_{u} + m_{l} \ \overline{l} \ l \right\}$$

Fermion Masses are New Free Parameters

$$\left[m_{q_d}, m_{q_u}, m_l\right] = \left[c^{(d)}, c^{(u)}, c^{(l)}\right] \frac{\mathbf{v}}{\sqrt{2}}$$

$$H \xrightarrow{\frac{m_{f}}{v}} f$$

Couplings Fixed: $g_{Hf\bar{f}} = \frac{m_f}{v}$

FERMION GENERATIONS

 $N_G = 3$ Identical CopiesMasses are the only differenceQ = 0 $\begin{pmatrix} v'_j & u'_j \\ l'_j & d'_j \end{pmatrix}$ Q = +2/3 $(j = 1, \dots, N_G)$ WHY ?

$$\mathcal{L}_{Y} = -\sum_{jk} \left\{ \left(\overline{u}_{j}^{\prime}, \overline{d}_{j}^{\prime} \right)_{L} \left[c_{jk}^{(d)} \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix} d_{kR}^{\prime} + c_{jk}^{(u)} \begin{pmatrix} \phi^{(0)\dagger} \\ -\phi^{(+)\dagger} \end{pmatrix} u_{kR}^{\prime} \right] - \left(\overline{v}_{j}^{\prime}, \overline{l}_{j}^{\prime} \right)_{L} c_{jk}^{(l)} \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix} l_{kR}^{\prime} \right\} + \text{h.c.}$$

$$\mathbf{SSB}$$

$$\mathcal{L}_{Y} = -\left(1 + \frac{H}{V} \right) \left\{ \overline{d}_{L}^{\prime} \cdot \mathbf{M}_{d}^{\prime} \cdot d_{R}^{\prime} + \overline{u}_{L}^{\prime} \cdot \mathbf{M}_{u}^{\prime} \cdot u_{R}^{\prime} + \overline{l}_{L}^{\prime} \cdot \mathbf{M}_{l}^{\prime} \cdot l_{R}^{\prime} + \text{h.c.} \right\}$$

Arbitrary Non-Diagonal Complex Mass Matrices $\begin{bmatrix} \mathbf{M}'_{d} , \mathbf{M}'_{u} , \mathbf{M}'_{l} \end{bmatrix}_{jk} = \begin{bmatrix} c^{(d)}_{jk} , c^{(u)}_{jk} , c^{(l)}_{jk} \end{bmatrix} \frac{\mathbf{V}}{\sqrt{2}}$

Flavour Physics & CP

A. Pich – TAE 2012 11

DIAGONALIZATION OF MASS MATRICES

 $\mathbf{M}'_{d} = \mathbf{H}_{d} \cdot \mathbf{U}_{d} = \mathbf{S}_{d}^{\dagger} \cdot \mathcal{M}_{d} \cdot \mathbf{S}_{d} \cdot \mathbf{U}_{d} \qquad \mathbf{H}_{f} = \mathbf{H}_{f}^{\dagger}$ $\mathbf{M}'_{u} = \mathbf{H}_{u} \cdot \mathbf{U}_{u} = \mathbf{S}_{u}^{\dagger} \cdot \mathcal{M}_{u} \cdot \mathbf{S}_{u} \cdot \mathbf{U}_{u} \qquad \mathbf{U}_{f} \cdot \mathbf{U}_{f}^{\dagger} = \mathbf{U}_{f}^{\dagger} \cdot \mathbf{U}_{f} = 1$ $\mathbf{M}'_{l} = \mathbf{H}_{l} \cdot \mathbf{U}_{l} = \mathbf{S}_{l}^{\dagger} \cdot \mathcal{M}_{l} \cdot \mathbf{S}_{l} \cdot \mathbf{U}_{l} \qquad \mathbf{S}_{f} \cdot \mathbf{S}_{f}^{\dagger} = \mathbf{S}_{f}^{\dagger} \cdot \mathbf{S}_{f} = 1$

$$\mathcal{L}_{Y} = -\left(1 + \frac{H}{v}\right) \left\{ \overline{\mathbf{d}} \cdot \mathcal{M}_{d} \cdot \mathbf{d} + \overline{\mathbf{u}} \cdot \mathcal{M}_{u} \cdot \mathbf{u} + \overline{l} \cdot \mathcal{M}_{l} \cdot l \right\}$$
$$\mathcal{M}_{u} = \operatorname{diag}\left(m_{u}, m_{c}, m_{t}\right) \quad ; \quad \mathcal{M}_{d} = \operatorname{diag}\left(m_{d}, m_{s}, m_{b}\right) \quad ; \quad \mathcal{M}_{l} = \operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)$$

$$\mathbf{d}_{L} \equiv \mathbf{S}_{d} \cdot \mathbf{d}_{L}' \qquad ; \qquad \mathbf{u}_{L} \equiv \mathbf{S}_{u} \cdot \mathbf{u}_{L}' \qquad ; \qquad l_{L} \equiv \mathbf{S}_{l} \cdot l_{L}'$$
$$\mathbf{d}_{R} \equiv \mathbf{S}_{d} \cdot \mathbf{U}_{d} \cdot \mathbf{d}_{R}' \qquad ; \qquad \mathbf{u}_{R} \equiv \mathbf{S}_{u} \cdot \mathbf{U}_{u} \cdot \mathbf{u}_{R}' \qquad ; \qquad l_{R} \equiv \mathbf{S}_{l} \cdot \mathbf{U}_{l} \cdot l_{R}'$$

$$\overline{\mathbf{f}}'_{L} \mathbf{f}'_{L} = \overline{\mathbf{f}}_{L} \mathbf{f}_{L} \quad ; \quad \overline{\mathbf{f}}'_{R} \mathbf{f}'_{R} = \overline{\mathbf{f}}_{R} \mathbf{f}_{R} \qquad \longrightarrow \qquad \mathcal{L}'_{\mathrm{NC}} = \mathcal{L}_{\mathrm{NC}}$$

$$\overline{\mathbf{u}}'_{L} \mathbf{d}'_{L} = \overline{\mathbf{u}}_{L} \cdot \mathbf{V} \cdot \mathbf{d}_{L} \quad ; \qquad \mathbf{V} \equiv \mathbf{S}_{u} \cdot \mathbf{S}_{d}^{\dagger} \qquad \longrightarrow \qquad \mathcal{L}'_{\mathrm{CC}} \neq \mathcal{L}_{\mathrm{CC}}$$

QUARK MIXING

Flavour Conserving Neutral Currents (GIM)

$$\mathcal{L}_{NC}^{Z} = -\frac{e}{2\sin\theta_{W}\cos\theta_{W}} Z_{\mu} \sum_{f} \overline{f} \gamma^{\mu} \left[v_{f} - a_{f} \gamma_{5}\right] f$$

 $Br(K_L \to \mu^+ \mu^-) = (6.84 \pm 0.11) \times 10^{-9}$, $Br(K_S \to \mu^+ \mu^-) < 3.2 \times 10^{-7}$

$$K_L \to \pi^{0*} \to (\gamma \gamma)^* \to \mu^+ \mu^-$$
$$K_S \to (\pi^+ \pi^-)^* \to (\gamma \gamma)^* \to \mu^+ \mu^-$$

Flavour Physics & CP

A. Pich – TAE 2012 13

Flavour Changing Charged Currents

$$\mathcal{L}_{\rm CC} = -\frac{g}{2\sqrt{2}} W^{\dagger}_{\mu} \left[\sum_{ij} \overline{u}_{i} \gamma^{\mu} (1-\gamma_{5}) \mathbf{V}_{ij} d_{j} + \sum_{l} \overline{v}_{l} \gamma^{\mu} (1-\gamma_{5}) l \right] + \text{h.c.}$$

 $\left(\overline{\nu}_{l_{j}} \equiv \overline{\nu}_{i} \ \mathbf{V}_{ij}^{(l)}\right)$

$$T(l \to v_l \ l' \overline{v_{l'}}) \sim \frac{g_W^2}{M_W^2 - q^2} \quad \xrightarrow{q^2 << M_W^2} \quad \frac{g_W^2}{M_W^2} = 4\sqrt{2} \ G_F$$

$$\frac{1}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192 \pi^3} f(m_e^2/m_{\mu}^2) r_{EW} \quad \blacksquare \quad G_F = (1.166\,378\,8 \pm 0.000\,000\,7) \times 10^{-5} \,\text{GeV}^{-2}$$

$$r_{EW} = \left[1 + \frac{\alpha(m_{\mu})}{2\pi} \left(\frac{25}{4} - \pi^2\right) + C_2 \frac{\alpha(m_{\mu})^2}{\pi^2}\right] \left[1 + \frac{3}{5} \frac{m_{\mu}^2}{M_W^2} - 2\frac{m_e^2}{M_W^2}\right] = 0.9958 \quad ; \quad f(x) = 1 - 8x + 8x^3 - x^4 - 12x^2 \log x$$

A. Pich – TAE 2012 15

New World Average:

Muon Lifetime

$\tau_{\mu}(\mu s) = \left\{ \right.$	$(2.197\ 03 \pm 0.000\ 04)$	PDG '06
	$2.197\ 013 \pm 0.000\ 024$	MuLan '07
	$2.197\ 083 \pm 0.000\ 035$	FAST '08
	2.1969803 ± 0.0000022	MuLan '10

$$\frac{1}{m} = \frac{G_F^2 m_{\mu}^5}{192 \pi^3} (1 + \delta_{\text{QED}})$$

 δ_{QED} known to 0.3 ppm (van-Ritbergen & Stuart)

A S

LEPTON UNIVERSALITY

CHARGED CURRENT UNIVERSALITY

	8μ′8e
$B_{\tau\to\mu}/B_{\tau\to e}$	1.0018 ± 0.0014
$B_{\pi \to \mu} / B_{\pi \to e}$	1.0021 ± 0.0016
$B_{K\to\mu}/B_{K\to e}$	0.9978 ± 0.0024
$B_{K\to\pi\mu}/B_{K\to\pi e}$	1.0010 ± 0.0025
$B_{W\to\mu}/B_{W\to e}$	0.997 ± 0.010

 $| \alpha | \alpha$

$$|g_{\tau}/g_{\mu}|$$

$$B_{\tau \to e} \tau_{\mu} / \tau_{\tau}$$

$$\Gamma_{\tau \to \pi} / \Gamma_{\pi \to \mu}$$

$$\Gamma_{\tau \to K} / \Gamma_{K \to \mu}$$

$$B_{W \to \tau} / B_{W \to \mu}$$

 1.0007 ± 0.0022 0.992 ± 0.004 0.982 ± 0.008 1.032 ± 0.012

$$\begin{vmatrix} g_{\tau} / g_{e} \end{vmatrix}$$
$$B_{\tau \to \mu} \tau_{\mu} / \tau_{\tau} & 1.0016 \pm 0.0021$$
$$B_{W \to \tau} / B_{W \to e} & 1.023 \pm 0.011 \end{vmatrix}$$

LEPTON FLAVOUR VIOLATION

90% CL Upper Limits on $Br(I^- \rightarrow X^-)$ [MEG'11,SINDRUM'88, Bolton'88, BABAR / BELLE]

Decay	U.L.	Decay	U.L.	Decay	U.L.
$\mu^- \rightarrow e^- \gamma$	$2.4 \cdot 10^{-12}$	$\mu^- \rightarrow e^- e^+ e^-$	$1.0\cdot10^{-12}$	$\mu^- \rightarrow e^- \gamma \gamma$	$7.2 \cdot 10^{-11}$
$\tau^- \rightarrow e^- \gamma$	$3.3 \cdot 10^{-8}$	$\tau^- \rightarrow e^- e^+ e^-$	$2.7\cdot 10^{-8}$	$\tau^- \rightarrow e^- e^+ \mu^-$	$1.8 \cdot 10^{-8}$
$\tau^- \rightarrow \mu^- \gamma$	$4.4 \cdot 10^{-8}$	$\tau^- \rightarrow e^- \mu^+ \mu^-$	$2.7\cdot 10^{-8}$	$\tau^- \rightarrow \mu^- e^+ \mu^-$	$1.7\cdot 10^{-8}$
$\tau^- \rightarrow e^- e^- \mu^+$	$1.5 \cdot 10^{-8}$	$\tau^- \rightarrow \mu^- \mu^+ \mu^-$	$2.1 \cdot 10^{-8}$	$\tau^- \rightarrow e^- \pi^0$	$8.0\cdot10^{-8}$
$\tau^- \rightarrow \mu^- \pi^0$	$1.1 \cdot 10^{-7}$	$\tau^- \rightarrow e^- \eta'$	$1.6 \cdot 10^{-7}$	$\tau^- \rightarrow \mu^- \eta'$	$1.3 \cdot 10^{-7}$
$\tau^- \rightarrow e^- \eta$	$9.2 \cdot 10^{-8}$	$\tau^- \rightarrow \mu^- \eta$	$6.5 \cdot 10^{-8}$	$\tau^- \rightarrow e^- K^{*0}$	$3.2 \cdot 10^{-8}$
$\tau^- \rightarrow e^- K_S$	$2.6 \cdot 10^{-8}$	$\tau^- \rightarrow \mu^- K_S$	$2.3 \cdot 10^{-8}$	$\tau^- \rightarrow \mu^- \rho^0$	$1.2 \cdot 10^{-8}$
$\tau^- \rightarrow e^- K^+ K^-$	$3.4 \cdot 10^{-8}$	$\tau^- \rightarrow e^- K^+ \pi^-$	$3.1 \cdot 10^{-8}$	$\tau^- \rightarrow e^- \pi^+ K^-$	$5.8 \cdot 10^{-8}$
$\tau^- \rightarrow \mu^- K^+ K^-$	$4.4\cdot10^{-8}$	$\tau^- \rightarrow \mu^- K^+ \pi^-$	$4.5 \cdot 10^{-8}$	$\tau^- \rightarrow \mu^- \pi^+ K^-$	$1.6 \cdot 10^{-7}$
$\tau^- \rightarrow e^- \pi^+ \pi^-$	$2.3 \cdot 10^{-8}$	$\tau^- \rightarrow \mu^- \pi^+ \pi^-$	$2.1 \cdot 10^{-8}$	$\tau^- \rightarrow \Lambda \pi^-$	$7.2 \cdot 10^{-8}$
$\tau^- \rightarrow e^+ K^- K^-$	$3.3 \cdot 10^{-8}$	$\tau^- \rightarrow e^+ K^- \pi^-$	$3.2\cdot10^{-8}$	$\tau^- \rightarrow e^+ \pi^- \pi^-$	$2.0 \cdot 10^{-8}$
$\tau^{-} \rightarrow \mu^{-} K^{*0}$	$5.9 \cdot 10^{-8}$	$\tau^- \rightarrow e^- \phi$	$3.1 \cdot 10^{-8}$	$\tau^- \rightarrow \mu^- \omega$	$4.7 \cdot 10^{-8}$
$\tau^- \rightarrow \mu^+ K^- K^-$	$4.7 \cdot 10^{-8}$	$\tau^- \rightarrow \mu^+ K^- \pi^-$	$4.8 \cdot 10^{-8}$	$\tau^- \rightarrow \mu^+ \pi^- \pi^-$	$3.7 \cdot 10^{-8}$

Flavour Physics & CP

19

Exciting Prospects

Flavour Changing Charged Currents

 $\left| \Gamma(d_{i} \rightarrow u_{i} e^{-} \overline{v}_{e}) \propto |\mathbf{V}_{ij}|^{2} \right|^{2}$

We measure decays of hadrons (no free quarks)

Important QCD Uncertainties

$V_{ij} \quad \text{Determination} \quad (0^- \to 0^-) \\ K \to \pi I \nu, D \to K I \nu \dots$

$$\left\langle P'(k') \left| \overline{u}_i \gamma^{\mu} d_j \right| P(k) \right\rangle = C_{PP'} \left\{ (k+k')^{\mu} f_+(q^2) + (k-k')^{\mu} f_-(q^2) \right\}$$

Measure the q² distribution

- Measure Γ \longrightarrow $f_+(0) |V_{ij}|$
- Get a theoretical prediction for $f_+(0)$ \longrightarrow $|V_{ij}|$

Theory is always needed:

Flavour Physics & CP

Symmetries

Vud

 $f_{+}(0) = 1 + O[(m_u - m_d)^2]$

Superallowed Nuclear β Transitions (0⁺ \rightarrow 0⁺)

• Neutron Decay:

$$|\mathbf{V}_{ud}|^2 = \frac{(4908.7 \pm 1.9) \,\mathrm{s}}{\tau_{\mathrm{n}}(1+3\lambda^2)}$$

(Czarnecki – Marciano – Sirlin)

PDG10: $\tau_n = (885.7 \pm 0.8) \text{ s}$, $\lambda \equiv g_A / g_V = -1.2694 \pm 0.0028$

PDG12: $\tau_n = (880.1 \pm 1.1) \text{ s}$, $\lambda \equiv g_A / g_V = -1.2701 \pm 0.0025$

• Pion Decay:

V: $Br(\pi^+ \to \pi^0 e^+ v_e) = (1.036 \pm 0.006) \times 10^{-8}$ (PIBETA) $V_{ud} = 0.9741 \pm 0.0026$

 $f_{+}(0) = 0.97 \pm 0.01$

 $\Gamma(\mathsf{K}^{+} \rightarrow \mu^{+} \nu_{\mu}) / \Gamma(\pi^{+} \rightarrow \mu^{+} \nu_{\mu})$

(Marciano 04)

$$\left\langle 0 \left| \overline{d}_{i} \gamma^{\mu} \gamma_{5} u_{j} \right| P(k) \right\rangle = i f_{P} k^{\mu}$$

$$\mathsf{R}_{\tau,\mathsf{S}} = \Gamma(\tau^- \to \nu_\tau \, \mathsf{S}^-) \, / \, \Gamma(\tau^- \to \nu_\tau \, \mathsf{e}^- \, \overline{\nu}_\mathsf{e})$$

$$\delta R_{\tau} \equiv \frac{R_{\tau,ud}}{\left|\mathbf{V}_{ud}\right|^2} - \frac{R_{\tau,S}}{\left|\mathbf{V}_{us}\right|^2} \approx 24 \frac{m_s^2(m_\tau^2)}{m_\tau^2} \Delta(\alpha_s)$$

Gámiz-Jamin-Pich-Prades-Schwab

$$\left|\mathbf{V}_{us}\right|^{2} = \frac{R_{\tau,S}}{\frac{R_{\tau,ud}}{\left|\mathbf{V}_{ud}\right|^{2}} - \delta R_{\tau}^{\text{th}}}$$

$$|\mathbf{V}_{us}| = 0.2166 \pm 0.0019_{exp} \pm 0.0005_{th}$$

 $m_s(2\,\text{GeV}) = 96 \pm 10 \text{ MeV}$

Simultaneous $m_s \& V_{us}$ fit possible with better data The τ could give the most precise V_{us} determination Flavour Physics & CP

$D \rightarrow K/\pi I v$

PDG 2012:

$$\left|\mathbf{V}_{\mathbf{cd}}\right|_{vc \to \mu d} = 0.230 \pm 0.011$$

$$\left|\mathbf{V}_{\mathbf{cs}}\right|_{D \to Klv, D_s \to lv} = 1.006 \pm 0.023$$

$B \rightarrow D | v$

QCD Symmetries at $1/M_Q \rightarrow 0$ HQET $G(1) |V_{cb}| =$ $(42.64 \pm 1.53) \times 10^{-3}$ $F(1) |V_{cb}| =$

 $(35.90 \pm 0.45) \times 10^{-3}$

 $G(1) = 1.074 \pm 0.024 \quad (\text{FNAL / MILC}) \implies |\mathbf{V_{cb}}| = (39.70 \pm 1.42_{\text{exp}} \pm 0.89_{\text{th}}) \cdot 10^{-3}$ $F(1) = 0.908 \pm 0.017 \quad (\text{MILC}) \implies |\mathbf{V_{cb}}| = (39.54 \pm 0.50_{\text{exp}} \pm 0.74_{\text{th}}) \cdot 10^{-3}$

 $B \rightarrow D^* I v$

$$|\mathbf{V_{cb}}|_{\text{excl}} = (39.6 \pm 0.8) \cdot 10^{-3}$$

Flavour Physics & CP

A. Pich – TAE 2012 32

Inclusive B Decays

(OPE, HQET)

$$\Gamma(\bar{B} \to X_c \ell \bar{\nu}) = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} \left\{ f(\rho) + k(\rho) \frac{\mu_\pi^2}{2m_b^2} + g(\rho) \frac{\mu_G^2}{2m_b^2} \right\}$$

Fits to lepton energy, hadronic invariant mass and photon energy moments

$$\mathbf{V_{cb}}\Big|_{\text{incl}} = (41.9 \pm 0.7) \cdot 10^{-3}$$

1.9 σ discrepancy with exclusive measurement

$$|\mathbf{V_{cb}}| = (40.9 \pm 1.1) \cdot 10^{-3}$$

- Large backgrounds from $B \rightarrow X_c I_V$
- Strong experimental cuts
- Large theoretical uncertainties

PDG 2012:

$$\mathbf{V_{ub}}\Big|_{\text{incl}} = \left(4.41 \pm 0.15 \,{}^{+0.15}_{-0.17}\right) \cdot 10^{-3}$$

Inclusive |V_{ub}|

Use m_c , m_b , μ_{π^2} from $B \rightarrow X_c I \nu$ and $B \rightarrow X_s \gamma$

- Agreement between experiments! **Theory:** Error (5-7%) dominated by m_c, m_b, μ_{π}^{2}
- **Experiment**: Error from $B \rightarrow \rho/\omega/\eta \ |\nu$, non-resonant. & high X_u mass region (unmeasured)

Flavour Physics & CP

BLNP, DGE, GGOU (above), ADFR

$B \rightarrow \pi I \nu$

Large theoretical uncertainties

$$|\mathbf{V_{ub}}|_{\text{excl}} = (3.23 \pm 0.31) \cdot 10^{-3}$$

$$|\mathbf{V_{ub}}| = (4.15 \pm 0.49) \cdot 10^{-3}$$

V_{ub}| Summary

\mathbf{V}_{ii}
-3
-
5

CKM entry	Value	Source
$ \mathbf{V}_{ud} $	0.97425 ± 0.00022	Nuclear β decay
	0.9773 ± 0.0017	$n \rightarrow p e^- \overline{v}_e$
	0.9741 ± 0.0026	$\pi^+ \rightarrow \pi^0 e^+ v_e$
V _{us}	0.2255 ± 0.0014	$K \to \pi e^- \overline{v}_e$
	0.2166 ± 0.0020	au decays
	0.2256 ± 0.0012	$K/\pi \rightarrow \mu v$, Lattice
$ \mathbf{V}_{\mathbf{cd}} $	$\boldsymbol{0.230\pm0.011}$	$v d \rightarrow c X$
	0.229 ± 0.025	$D \rightarrow \pi l v$, Lattice
$ \mathbf{V}_{\mathbf{cs}} $	1.006 ± 0.023	$D \rightarrow K l v, D_s \rightarrow l v$, Lattice
$ \mathbf{V_{cb}} $	0.0396 ± 0.0008	$B \rightarrow D^* / D l \overline{v_l}$
	0.0419 ± 0.0007	$b \rightarrow c \ l \ \overline{v_l}$
	0.0409 ± 0.0011	
$ \mathbf{V_{ub}} $	0.00323 ± 0.00031	$B \rightarrow \pi \ l \ \overline{\nu_l}$
	0.00441 ± 0.00032	$b \rightarrow u \ l \ \overline{v_l}$
	0.00415 ± 0.00049	
$\left \mathbf{V_{tb}} \right / \sqrt{\sum_{q} \left \mathbf{V_{tq}} \right ^2}$	> 0.92 (95% CL)	$t \to bW/t \to qW$
$ \mathbf{V_{tb}} $	$\boldsymbol{0.89 \pm 0.07}$	$p\overline{p} \to tb + X$

$$|\mathbf{V}_{ud}|^2 + |\mathbf{V}_{us}|^2 + |\mathbf{V}_{ub}|^2 = 1.0000 \pm 0.0007$$

(LEP)

Hierarchical Structure

$$\mathbf{V} \approx \begin{bmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix} + \mathcal{O}(\lambda^4)$$

 $\lambda \approx \sin \theta_{\rm C} \approx 0.226$; $A \approx 0.80$; $\sqrt{\rho^2 + \eta^2} \approx 0.45$

QUARK MIXING MATRIX

• Unitary $N_{\rm G} \times N_{\rm G}$ Matrix: $N_{\rm G}^2$ parameters $\mathbf{V} \cdot \mathbf{V}^{\dagger} = \mathbf{V}^{\dagger} \cdot \mathbf{V} = \mathbf{1}$

• $2 N_{\rm G} - 1$ arbitrary phases:

$$u_{i} \rightarrow e^{i\phi_{i}} u_{i} ; d_{j} \rightarrow e^{i\theta_{j}} d_{j} \longrightarrow V_{ij} \rightarrow e^{i(\theta_{j} - \phi_{i})} V_{ij}$$

$$V_{ij}$$
Physical Parameters: $\frac{1}{2}N_{\rm G}\left(N_{\rm G}-1\right)$ Moduli; $\frac{1}{2}(N_{\rm G}-1)(N_{\rm G}-2)$ phases

• $N_f = 2$: 1 angle, 0 phases (Cabibbo)

$$\mathbf{V} = \begin{bmatrix} \cos \theta_{\rm C} & \sin \theta_{\rm C} \\ -\sin \theta_{\rm C} & \cos \theta_{\rm C} \end{bmatrix} \longrightarrow \text{No } \mathcal{CP}$$

• $N_f = 3$: 3 angles, 1 phase (CKM) $c_{ij} \equiv \cos \theta_{ij}$; $s_{ij} \equiv \sin \theta_{ij}$

$$\mathbf{V} = \begin{bmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta_{13}} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i\delta_{13}} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta_{13}} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta_{13}} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta_{13}} & c_{23} c_{13} \end{bmatrix}$$

$$\approx \begin{bmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3 (\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3 (1-\rho-i\eta) & -A\lambda^2 & 1 \end{bmatrix} + \mathcal{O}(\lambda^4)$$

 $\lambda \approx \sin \theta_{\rm c} \approx 0.226$; $A \approx 0.80$; $\sqrt{\rho^2 + \eta^2} \approx 0.45$ $\delta_{13} \neq 0$ $(\eta \neq 0)$

Standard Model CP: 3 fermion families needed

- Low-Energy Phenomena
- Small Effects ~ J
- Big Asymmetries + Suppressed Decays
- B Decays are an optimal place for CP signals