
1
Lectures on Jet Physics: Problems

Iain Stewart, Taller de Altas Enerǵıas, Summer School 2012

Problem 1) Splitting Functions

Infrared enhancements in the quark and gluon branching processes q → qg, g → gg, and
g → qq̄ are key ingredient in the formation of jets. The structure of collinear enhancements
is described by splitting functions Pab, which to first order in the strong coupling αs are:
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Here the color factors are CF = 4/3, TR = 1/2, and CA = 3, and you will determine the

constants aq and ag below. Each P
(0)
ab (x) should be thought of as the probability of finding

a parton of type a inside an initial parton b, with a having a fraction x of the parent b’s
momentum. These expressions include the familiar Dirac δ-function, and the less familiar
+-function. The latter is defined by 1/(1− x)+ = 1/(1− x) for any x < 1, and by the fact
that the singularity at x = 1 is regulated such that
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for any function g(x).

a) Derive results for the constants aq and ag such that quark number is conserved:

∫ 1

0
dx P (0)

qq (x) = 0 , (3)

and momentum is conserved by the quark and gluon splittings:
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Here nf is the number of light quarks. Show that you can rewrite P (0)
qq as P (0)

qq (x) =

(αs(μ)CF/2π) [(1 + x2)/(1− x)]+.

Given an initial distribution of quarks q(ξ, μ0) and gluons g(ξ, μ0) at a momentum scale μ0,
the distribution of quarks at a scale μ1 is given by

q(x, μ1) = q(x, μ0) +
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]
, (5)

where the terms in the integral account for the possibility that the quark we observe came
from a splitting rather than the initital distribution.
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b) By iterative use of Eq. (5) derive a series in αs that writes q(x, μ1) in terms of terms
only involving q’s and g’s at μ = μ0. Draw Feynman diagrams to describe physically
what is happening with the various terms in your infinite series.

The subtraction term from the plus function in P (0)
qq in Eq. (5) sets ξ = x, and is related

to evolution to the scale μ1 without branching, so strictly speaking Eq. (5) does not yet
have a clean separation between branching and no-branching. To better distinguish the two
possibilites we will rewrite this equation in a different way. To simplify the formulas below,
we’ll set P (0)

qg = 0. The probability that a quark does not split when it evolves from μ0 to
μ1 is then given solely by the quark Sudakov form factor:

Δqq(μ1, μ0) = exp
[
−

∫ µ1
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2 dμ

μ

∫
dx P̂ (0)

qq (x)
]
. (6)

Here P̂ (0)
qq (x) = (αs(μ)CF/2π) (1 + x2)/(1− x) and we will assume that the limits on the x

integration keep us away from the singularity at x = 1 (more on this in part d).

c) Taking μ1d/dμ1 derive differential equations for q(x, μ1) and Δqq(μ1, μ0). Next derive
an equation for μ1d/dμ1(q/Δqq) and show that its solution yields
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∫ µ1

µ0

2 dμ

μ

Δqq(μ1, μ0)

Δqq(μ, μ0)

∫
dξ

ξ
P̂ (0)
qq

(x
ξ

)
q(ξ, μ) . (7)

Since this result does not involve the +-function we can interpret the second term as the
probability from splitting, and the first term as the probability of having no splitting.
Thus the Sudakov form factor in the first term gives the no-splitting probability when
we evolve from μ0 to μ1. Can you provide an interpretation for the presence of the
ratio of Δqq’s in the second term? This result with its probabilistic interpretation
is used in parton shower Monte Carlo programs that describe parton branching and
QCD jets.

Next you will calculate the form of the exponent in Δqq(μ1, μ0). The result can be thought
of as an infinite series in αs(μ0), but to keep things simple for this calculation we’ll freeze
αs(μ) = αs(μ0) and approximate P (0)

qq (x) � (αs(μ0)CF/π)/(1 − x) which will allow us to
determine the dominant term for μ1 � μ0.

d) Lets identify the evolution scale parameter as the parton’s virtual mass squared,
μ2 = p2 ≡ t′, and hence impose the corresponding kinematic limits on the x-integral:
μ2
0/μ

2 < x < 1 − μ2
0/μ

2 (obtained for particles with large energy and expanding
μ0 � μ). With the approximations above and these limits perform the double integral
in Eq. (6), and show that your result involves a ln2(μ1/μ0). This double log is related
to the presence in the branching and no-branching probabilities of the soft (x → 1)
singularity and the collinear singularity described by the splitting function equations.
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Problem 2) SCET, Wilson Lines, and Renormalization Group Evolution

In this problem you will get more familiar with the Wilson lines that are present in SCET,
and show that solving the anomalous dimension equation of an SCET operator produces a
Sudakov exponential.

Consider the two-jet production process through a virtual photon in SCET, namely
e+e− → JnJn̄Xs where Jn is a jet in the n = (1, 0, 0,−1) direction, Jn̄ is a jet in the
n̄ = (1, 0, 0, 1) direction, and any remaining particles in the final state are soft, contained in
Xs. We will study the leading operator for this process written down in lecture

O = ξ̄nWn γ
µ
⊥W

†
n̄ ξn̄ . (8)

At lowest order in the strong coupling it will produce one collinear quark and one collinear
antiquark.

a) In QCD the corresponding current is simply ψ̄γµψ. To derive the presence of Wn

consider the Feynman diagram that attaches an n̄·An collinear gluon to the ξn̄ collinear
antiquark. The resulting propagator is far offshell ∼ Q2 and we can expand in small
momentum keeping only the leading term. Show that this result corresponds to the
momentum space Feynman rule that is linear in the gluon field that can be derived
from the position space Wilson line

Wn(y
+) = P exp

(
ig

∫ 0

−∞
ds n̄·An(sn̄+ y+)

)
.

[Here P is path-ordering which is needed in general to tell us how to order color
matrices, but which can be ignored for one-gluon. For those looking for more challenge,
consider extending your Feynman diagram calculation to two n̄ ·An gluons to pick out
the next term.]

Next we will consider the coupling of soft gluons to our collinear quarks. The interactions
simplify to such a large extent that this is often referred to as soft-collinear decoupling. In
particular, at leading order they only involve a Wilson line built from soft gluons

Yn(x) = P exp
(
ig

∫ 0

−∞
ds n·Aus(sn

µ + xµ)
)
, (9)

and the analog Yn̄ where we swap n ↔ n̄. The result in Eq. (9) satisfies Y †
nYn = 1 and has

the equation of motion n·Dus Yn = 0.

b) Start with the leading order Lagrangian, L(0) for a collinear quark in SCET given in the
lecture notes. This action gives eikonal couplings to ultrasoft gluons. Make the field
redefinitions ξn = Ynξ

(0)
n and An = YnA

(0)
n Y †

n to obtain a Lagrangian L(0)(ξ(0)n , A(0)
n ).

Show explicitly that this new Lagrangian has no coupling to n · Aus gluons. Demon-
strate that after this field redefinition the new form of the operator we are studying
is

O = (ξ̄nWn )γ
µ
⊥(Y

†
nYn̄)(W

†
n̄ ξn̄) . (10)

What is the Feynman rule that this operator generates for one-soft gluon? Besides
a connection through color indices this result involves the product of three sets of
fields that do not interact through their Lagrangians. This property leads directly to
a factorization theorem for the cross-section for this process of the type discussed in
lecture.
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c) This part of the problem is more challenging, and you can solve d) below without first
solving this part. Draw the five one-loop Feynman diagrams that are non-zero for
e+e− → qnq̄n̄ (use Feynman gauge for all gluons when determining which graphs are
zero). Here qn has n-collinear momentum p, and q̄n̄ has n̄-collinear momentum p̄ and
you should work in the CM frame. All graphs but one can be directly read off using
the loop computations given in the handout notes, as long as you use the same IR
regulator. That is, you should keep both collinear quarks offshell, p2 	= 0 and p̄2 	= 0.
Compute the divergent terms in the one remaining ultrasoft graph using dimensional
regularization in the UV. Add up the 1/ε terms from the graphs in c) and determine
the lowest order anomalous dimension equation for C the Wilson coefficient of O.

d) Keeping only the leading logarithmic term in the anomalous dimension equation for
C we have

d

d lnμ
C(Q, μ) = −2CFαs(μ)

π
ln

( μ
Q

)
C(Q, μ) + . . . , (11)

which must be solved simultaneously with the equation for the running coupling

d

d lnμ
αs(μ) = − β0

2π
α2
s(μ) + . . . . (12)

Here the constant β0 = 11CA/3 − 2nf/3 where we have nf light quarks, and the
ellipses are higher order terms we are dropping. (After you see what the strategy here
is, keeping higher order terms is no more difficult.) Solve Eq. (11) to find C(Q, μ1)
given boundary conditions C(Q, μ0) and αs(μ0). You can start by considering the
case with a frozen coupling αs(μ) = αs(μ0) where you should find that the result
for C(Q, μ1) involves a Sudakov double logarithm. Next solve including the full μ
dependence from Eq. (12). Voilá, a formula for Sudakov double logs that are summed
up into an exponential with a running coupling.

[Hint: To derive the result for the Sudakov exponent with a running coupling αs(μ) you
can either i) first solve Eq. (12) and then substitute into Eq. (11), or ii) use Eq. (12) to
make a change of variable μ → αs(μ) in the differential equation for C, and then solve
for C(Q, μ) as a function of the running coupling αs(μ) and the boundary conditions.
The second approach is easier.]


