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0 Preliminaries

A working knowledge of elementary linear algebra, multivariable calculus, and ordinary differ-
ential equations is essential to follow a course in classical mechanics, even at a basic level. In
this chapter we shall briefly review a few fundamental results and identities, usually taught in
freshman courses in Linear Algebra and Calculus, that we shall often use throughout the course.

0.1 Vectors in R3

We shall mostly work with vectors in R3 (the most notable exception is the last chapter on
relativistic mechanics, which shall require the use of four-vectors). Throughout these notes
vectors will be typeset in roman boldface, like a, b, etc., while when writing at the blackboard we
shall use instead the notation #—a ,

#—

b , etc. Unless otherwise stated, the components of a vector
a shall be denoted by ai (i = 1,2,3). We shall normally use the notation |a| for the length (or

magnitude)
√
a2

1 + a2
2 + a2

3 of the vector a, and a · b or simply ab to denote the scalar product
a1b1 + a2b2 + a3b3 of the vectors a and b.

Vector product of two vectors a, b ∈ R3:

a× b :=
∣∣∣∣∣∣∣

i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ , (0.1)

where i := e1 = (1,0,0), j := e2 = (0,1,0), k := e3 = (0,0,1) are the unit vectors of the standard
orthonormal frame in R3. In particular, note that

i× j = k, j× k = i, k× i = j .

The vector product is obviously antisymmetric (a×b = −b× a), so that a× a = 0, and distributive
in both of its arguments:

a× (b+ c) = a× b+ a× c, (a+ b)× c = a× c+ b× c

(note that the second distributive law actually follows from the first by antisymmetry).

Triple product of three vectors a,b, c ∈ R3:

(a× b) · c =
∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣ =: det(a,b, c). (0.2)

In particular, from the properties of determinants it follows that a × b is perpendicular to both
a and b. The triple product is invariant under cyclic permutations of its arguments (again by the
elementary properties of determinants):

(a× b) · c = (b× c) · a = (c× a) · b .

Geometrically, (a×b)·c is equal to the volume of the parallelepiped spanned by the three vectors
a, b, c if the frame {a,b, c} is positively oriented, and minus this volume otherwise.

1



Preliminaries

Useful identities:

a× (b× c) = (a · c)b− (a · b)c (0.3)

(a× b)2 = a2b2 − (a · b)2 . (0.4)

From the identity

a · b = |a||b| cosθab,

where θab ∈ [0,π] is the angle between the vectors a and b, and Eq. (0.4) it follows that

|a× b| = |a||b| sinθab ,

0.2 Vector calculus

A scalar function (also called a scalar field) is a mapping f : R3 → R. Given a scalar function
f(x1, x2, x3) of class C1 (i.e., with continuous partial derivatives), we define its gradient ∇f by

∇f := ∂f
∂x1

i+ ∂f
∂x2

j+ ∂f
∂x3

k . (0.5)

Note that ∇f is a vector field, i.e., a mapping from R3 to R3. In other words, (∇f)(x1, x2, x3) is
a vector at each point (x1, x2, x3). Given a vector field A = (A1, A2, A3) : R3 → R3 of class C1, we
define its divergence ∇ ·A as the scalar function

∇ ·A := ∂A1

∂x1
+ ∂A2

∂x2
+ ∂A3

∂x3
. (0.6)

The gradient and the divergence can be easily generalized to scalar functions and vector fields in
Rn with n > 3. For instance, the gradient of a scalar function f(x1, . . . , xn) (that shall be needed
in Chapter 3) is defined by

∇f(x1, . . . , xn) =
n∑
i=1

∂f
∂xi

ei,

where ei = (0, . . . ,0,1↓
i

,0, . . . ,0) is the i-th vector of the canonical basis of Rn. There is, however,

a differential operator which can only be defined in three dimensions, namely the curl ∇×A of
a vector field (of class C1) A(x1, x2, x3) in R3:

∇×A :=
(
∂A3

∂x2
− ∂A2

∂x3

)
i+

(
∂A1

∂x3
− ∂A3

∂x1

)
j+

(
∂A2

∂x1
− ∂A1

∂x2

)
k ≡

∣∣∣∣∣∣∣∣∣
i j k
∂
∂x1

∂
∂x2

∂
∂x3

A1 A2 A3

∣∣∣∣∣∣∣∣∣ . (0.7)

Another important differential operator is the Laplacian of a scalar function f : R3 → R of class
C2, defined by

∇2f := ∇ · (∇f) =
3∑
i=1

∂2f
∂x2

i
. (0.8)

Note that ∇2f is again a scalar function. The Laplacian operator ∇2 is often denoted as ∆ .

Properties

• The vector∇f(x1, . . . , xn) is orthogonal at each point to the level (hyper)surfaces f(x1, . . . , xn) =
c of the scalar function f (where c is a real constant). In other words, ∇f is orthogonal to
the tangent vectors of curves lying on level surfaces of f .

2



0.3 Chain rule

• If f(x1, x2, x3) is any scalar function of class C2 we have

∇× (∇f) = 0. (0.9)

Conversely, if A(x1, x2, x3) is a vector field of class C1 on all of R3 such that

∇×A = 0,

then A = ∇f for some scalar function f of class C2.

• Similarly, if A(x1, x2, x3) is any vector field of class C2 then

∇ · (∇×A) = 0. (0.10)

Conversely, if B(x1, x2, x3) is a vector field of class C1 on all of R3 such that

∇ · B = 0

then B = ∇×A for some vector field A(x1, x2, x3) of class C2.

Some useful identities:

∇ · (fA) = (∇f) ·A+ f∇ ·A, (0.11)

∇× (fA) = (∇f)×A+ f∇×A, (0.12)

∇× (∇×A) = ∇(∇ ·A)−∇2A. (0.13)

In the first two identities f and A are respectively a scalar function and a vector field of class C1

in R3, while in the third one A is a vector field of class C2 and ∇2A is the vector field

∇2A := (∇2A1)i+ (∇2A2)j+ (∇2A3)k.

As we shall see in the next chapter, the identity (0.13) plays an important role in the formulation
of electromagnetic theory.

Exercise. If A and B are C1 vector fields in R3, express ∇· (A×B) in terms of ∇×A and ∇×B.

0.3 Chain rule

A working knowledge of the chain rule is essential to perform even the most basic calculations
in classical mechanics (or, as a matter of fact, in any branch of physics). From a formal point
of view, the chain rule simply asserts that the derivative D(f ◦ g) of the composition f ◦ g of
two differentiable functions g : Rn → Rm and f : Rm → Rp is the composition Df ◦ Dg of
their derivatives. This abstract formulation yields, however, simple and intuitive formulas for
the partial derivatives of the composition f ◦ g, which are the ones we shall use in practice
throughout the course.

Consider, for instance, a scalar function f(x1, . . . , xn) of the n variables (x1, . . . , xn), and sup-
pose that each of these variables xi is in turn a function of m real variables (y1, . . . , ym). Then
f(x1, . . . , xn) is implicitly a function of the yj ’s through the xi’s. In other words, when we write
(for simplicity’s sake) f(x1, . . . , xn)what we really mean is f

(
x1(y1, . . . , ym), . . . , xn(y1, . . . , ym)

)
.

The partial derivative of this function with respect to any of its independent variables yk can be
computed using the following variant of the chain rule:

∂
∂yk

f(x1, . . . , xn) =
n∑
i=1

∂f
∂xi

∂xi
∂yk

. (0.14)

3
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This is a straightforward generalization of the well-known elementary formula for the n =m = 1
case, namely

d
dy

f(x) = df
dx

dx
dy

.

In classical mechanics (x1, x2, x3) are usually the coordinates of the position vector r of a mov-
ing particle, so they depend implicitly on time t. In this case, therefore, any function f(x1, x2, x3)
depends implicitly on time through the coordinates xi. In other words, f(x1, x2, x3) should be
normally understood as shorthand for f

(
x1(t), x2(t), x3(t)

)
. Applying Eq. (0.14) with n = 3,

m = 1 and yk = y1 ≡ t we obtain the important formula

d
dt
f (x1, x2, x3) =

3∑
i=1

∂f
∂xi

.
xi, (0.15)

where (as is standard in classical mechanics) we have used Newton’s notation

.
xi ≡ dxi

dt

for the time derivative. Since r = (x1, x2, x3), we can write f(x1, x2, x3) = f(r) and
.
r =

(
.
x1,

.
x2,

.
x3). It is also customary to use the mnemonic notation

∂f
∂r

for the gradient of the scalar

function f(r), i.e.,
∂f(r)
∂r

≡ ∇f(x1, x2, x3) .

We can then rewrite the previous formula for
df
dt

≡
.
f in vector form as

.
f = ∂f

∂r
· .

r . (0.16)

Exercise. Compute the gradient of a scalar function g(r) that depends on r = (x1, x2, x3) only

through r :=
√
x2

1 + x2
2 + x2

3 .

Solution. Applying the chain rule we obtain

∂g(r)
∂xi

= g′(r) ∂r
∂xi

= g′(r) xi
r
.

Hence

∇[g(r)] ≡ ∂g(r)
∂r

=
3∑
i=1

∂g(r)
∂xi

ei = g′(r)
r

3∑
i=1

xiei = g′(r) r

r
≡ g′(r)er .

0.4 Total and partial time derivatives

Understanding the difference between total and partial time derivatives of a scalar function
f(t, x1, x2, x3) ≡ f(t, r) is again crucial to follow even the simplest arguments in classical me-

chanics. To begin with, as usual the notation
∂f
∂t

stands for the partial derivative of f with

respect to t considering f as a function of the independent variables (t, x1, x2, x3). For instance,
if f(t, r) = c2t2 + r2 (where c is a constant with the dimension of velocity) then

∂f
∂t

= 2ct .
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0.4 Total and partial time derivatives

On the other hand, if —as is customary in classical mechanics— we consider each coordinate
xi as an implicit function of t (i.e., we write xi as shorthand for xi(t)), then f(t, r) becomes a
function of t only, through the explicit dependence of f on t plus the implicit dependence on
t of r = (x1, x2, x3). The total time derivative of f is the derivative with respect to t of the
latter function, i.e., of f(t, r) considered as f

(
t, r(t)

)
. Applying again the chain rule (with n = 4,

m = 1) we obtain

d
dt
f (t, r) ≡

.
f = ∂f

∂t
dt
dt
+

3∑
i=1

∂f
∂xi

.
xi = ∂f

∂t
+ ∂f
∂r

· .
r . (0.17)

This is of course a generalization of Eq. (0.16), to which it reduces when f does not depend
explicitly on time. For instance, if f(t, r) = c2t2 + r2 then

df
dt

≡
.
f = 2ct +

3∑
i=1

2xi
.
xi = 2ct + 2r · .

r ̸= ∂f
∂t
.

Note that, in general,
.
f is a scalar function of the variables (t, r,

.
r), i.e., it depends not only on

time and the coordinates of the particle, but also on its velocity.
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1 Review of Newtonian mechanics

1.1 Kinematics

Position vector of a particle moving in ordinary space (R3):

r = x1e1 + x2e2 + x3e3 ≡
3∑
i=1

xiei ,

where ei is the i-th coordinate unit vector in a Cartesian orthogonal coordinate system:

e1 = (1,0,0) ≡ i , e2 = (0,1,0) ≡ j , e3 = (0,0,1) ≡ k .

Velocity and acceleration:

v := .
r , a := .

v = ..
r ,

where the dot denotes derivative with respect to time t. In Cartesian coordinates,

v =
3∑
i=1

viei , a =
3∑
i=1

aiei ,

where (since the coordinate vectors ei are constant)

vi = .
xi , ai = ..

xi .

Notation: r = |r| , v = |v| .

Exercise. Show that if v ̸= 0 then
.
v = v · a

v
.

In particular, if v is constant the velocity and acceleration vectors are orthogonal. Note also
that the latter formula can be written as

.
v = a · t ,

where t := v/v is the unit tangent vector along the trajectory. Thus the tangential acceleration
at := a · t is equal to the time derivative of v .

Exercise. Show that r
.
r = r .

r .

1.2 Curvilinear coordinate systems

Consider the system of curvilinear coordinates q = (q1, q2, q3) defined by a bijective transforma-
tion r = r(q) with a non-vanishing Jacobian

det
(
∂r

∂q

)
≡ det

(
∂xi
∂qj

)
1ài,jà3

.

7



Review of Newtonian mechanics

For example, in the case of spherical coordinates we have q = (r , θ,ϕ), with

r á 0 , 0 à θ à π , 0 à ϕ < 2π,

and

r = r(sinθ cosϕ, sinθ sinϕ, cosθ) (1.1)

(cf. Fig. 1.1). The unit coordinate vectors {eqi}3
i=1 are the unit vectors tangent to the coordinate

curves, in which one of the curvilinear coordinates qi varies while the rest are held constant. We
thus have

eqi =
1
hi

∂r

∂qi
, with hi :=

∣∣∣∣∣ ∂r

∂qi

∣∣∣∣∣ . (1.2)

Note that hi(q) > 0 for all i, since the vector
∂r

∂qi
is the i-th column of the Jacobian matrix

∂r

∂q
,

whose determinant —the Jacobian of the mapping r(q)— is nonvanishing by hypothesis. It is
also important to realize that in general the unit coordinate vectors eqi are not constant, but
depend on the curvilinear coordinates q of the point at which they are evaluated. In other words,
each eqi is a vector field in R3.

We shall normally deal with orthogonal coordinate systems, whose unit coordinate vectors are
mutually orthogonal and thus make up an orthonormal frame at each point of R3. Since eqi is a

unit vector proportional to
∂r

∂qi
, the necessary and sufficient condition for a coordinate system

to be orthogonal is that

∂r

∂qi
· ∂r

∂qj
= 0, ∀i ̸= j .

We shall also assume that the coordinate system q is positively oriented, by which we mean that

eq1 × eq2 = eq3 ,

or equivalently
det(eq1 ,eq2 ,eq3) = 1

(cf. second exercise on p. 12). Since

det
(
∂r

∂q

)
= det

(
∂r

∂q1
,
∂r

∂q2
,
∂r

∂q3

)
= det

(
h1eq1 , h2eq2 , h3eq3

)
= h1h2h3 det

(
eq1 ,eq2 ,eq3

)
with hi > 0 for all i, the necessary and sufficient condition for the orthogonal coordinate system
q to be positively oriented is that the Jacobian of the transformation r(q) be positive:

det

(
∂r

∂q

)
> 0 .

• The line element ds2 := dr2 can be easily expressed in any orthogonal curvilinear system q

using the chain rule:

ds2 = dr2 =
 3∑
i=1

∂r

∂qi
dqi

2

=
 3∑
i=1

hieqi dqi

2

=
3∑
i=1

h2
i dq2

i ,

8



1.2 Curvilinear coordinate systems

x1

x2

x3

r

ϕ

θ

eθ

eϕ

er

Figure 1.1. Spherical coordinate system.

where in the last equality we have used the fact that eqi ·eqj = δij . In particular, the line element
along the i-th coordinate curve is given by

ds = hi dqi, i = 1,2,3,

a formula that is often used to compute hi by geometric arguments.

• If A is a vector field in R3 we define its components in an orthogonal coordinate system q by

Aqi := A · eqi ,

so that we can write

A =
3∑
i=1

Aqieqi .

The components of the velocity vector v in such a system can also be readily computed applying
the chain rule. Indeed,

v = dr

dt
=

3∑
i=1

∂r

∂qi
.
qi =

3∑
i=1

hi
.
qieqi ,

and hence

vqi = hi
.
qi . (1.3)

1.2.1 Spherical coordinates

In this case

∂r

∂r
= (sinθ cosϕ, sinθ sinϕ, cosθ) ,

∂r

∂θ
= r(cosθ cosϕ, cosθ sinϕ,− sinθ) ,

∂r

∂ϕ
= r sinθ(− sinϕ, cosϕ,0),

and hence

hr =
∣∣∣∣ ∂r

∂r

∣∣∣∣ = 1, hθ =
∣∣∣∣ ∂r

∂θ

∣∣∣∣ = r , hϕ =
∣∣∣∣∣ ∂r

∂ϕ

∣∣∣∣∣ = r sinθ ,

9



Review of Newtonian mechanics

so that

er = ∂r

∂r
= (sinθ cosϕ, sinθ sinϕ, cosθ) ≡ r

r
,

eθ = 1
r
∂r

∂θ
= (cosθ cosϕ, cosθ sinϕ,− sinθ) ,

eϕ = 1
r sinθ

∂r

∂ϕ
= (− sinϕ, cosϕ,0)

(1.4)

(cf. Fig. 1.1). Spherical coordinates are orthogonal, as from the latter equations it is easily verified
that

er · eθ = er · eϕ = eθ · eϕ = 0 .

Thus the vectors
{
er ,eθ,eϕ

}
form an orthonormal frame at each point. This frame is positively

oriented, since

er × eθ = eϕ ,

or, equivalently,

(er × eθ) · eϕ = 1 .

Velocity and acceleration in spherical coordinates.

The components of the velocity vector v in spherical coordinates can be easily computed using
Eq. (1.3). It is also instructive to obtain them directly differentiating the relation r = rer , as we
shall next explain. To this end, we first compute the time derivatives of the unit coordinate
vectors. Note first of all that, since

eα · eα = 1 (α = r , θ,ϕ) ,

differentiating with respect to time we obtain

.
eα · eα = 0 .

Since the vectors eα are mutually orthogonal,
.
er must be a linear combination of eθ and eϕ, and

similarly for the remaining coordinate vectors. More precisely, applying the chain rule we arrive
at

.
er = ∂er

∂θ
.
θ + ∂er

∂ϕ
.
ϕ =

.
θeθ + sinθ

.
ϕeϕ ,

.
eθ = ∂eθ

∂θ
.
θ + ∂eθ

∂ϕ
.
ϕ = −

.
θer + cosθ

.
ϕeϕ ,

.
eϕ =

∂eϕ
∂ϕ

.
ϕ = −(cosϕ, sinϕ,0)

.
ϕ = − .

ϕ
(

sinθer + cosθeθ
)
.

(1.5)

From the above relations we easily deduce that

v = dr

dt
= d

dt
(rer ) = .

rer + r .
er = .

rer + r
.
θeθ + r sinθ

.
ϕeϕ , (1.6)

and hence

vr = .
r , vθ = r

.
θ , vϕ = r sinθ

.
ϕ . (1.7)

Note that, since the coordinate vectors are orthonormal,

v2 = v2
r + v2

θ + v2
ϕ =

.
r2 + r2(

.
θ2 + sinθ2 .

ϕ2) . (1.8)
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1.2 Curvilinear coordinate systems

Similarly, differentiating Eq. (1.6) with respect to t and using Eqs. (1.5) we obtain:

a = ..
rer + .

r(
.
θeθ + sinθ

.
ϕeϕ)+ (r

..
θ + .

r
.
θ)eθ + r

.
θ(−

.
θer + cosθ

.
ϕeϕ)

+ (r sinθ
..
ϕ + sinθ

.
r

.
ϕ + r cosθ

.
θ

.
ϕ)eϕ − r sinθ

.
ϕ2(sinθer + cosθeθ)

= arer + aθeθ + aϕeϕ ,

where the components of the acceleration in spherical coordinates are given by

ar = ..
r − r

.
θ2 − r sin2 θ

.
ϕ2 ,

aθ = r
..
θ + 2

.
r

.
θ − r sinθ cosθ

.
ϕ2 ,

aϕ = r sinθ
..
ϕ + 2 sinθ

.
r

.
ϕ + 2r cosθ

.
θ

.
ϕ .

(1.9)

1.2.2 Cylindrical coordinates

Cylindrical coordinates (ρ,ϕ, z) are defined by

r = (ρ cosϕ,ρ sinϕ,z) ,

where

ρ á 0 , 0 à ϕ < 2π , z ∈ R
(cf. Fig. 1.2). Now

∂r

∂ρ
= (cosϕ, sinϕ,0),

∂r

∂ϕ
= ρ(− sinϕ, cosϕ,0),

∂r

∂z
= (0,0,1) ,

and thus

hρ = 1 , hϕ = ρ , hz = 1 .

Proceeding as before we obtain:

eρ = ∂r

∂ρ
= (cosϕ, sinϕ,0) ,

eϕ = 1
ρ
∂r

∂ϕ
= (− sinϕ, cosϕ,0) ,

ez = ∂r

∂z
= (0,0,1) .

Note that, once again,

eρ · eϕ = eρ · ez = eϕ · ez = 0 , eρ × eϕ = ez ,

and hence the cylindrical coordinates (ρ,ϕ, z) are also orthonormal and positively oriented.
Differentiating with respect to t the equations for the coordinate vectors we immediately obtain
the relations

.
eρ = .

ϕeϕ ,
.
eϕ = − .

ϕeρ ,
.
ez = 0 .

Since now

r = ρeρ + zez , (1.10)
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x1

x2

x3

r
ρ

ϕ

eρ

eϕ

ez

Figure 1.2. Cylindrical coordinates system.

differentiating twice with respect to t and proceeding as before we easily arrive at the following
formulas for the components of velocity and acceleration in cylindrical coordinates:

vρ = .
ρ , vϕ = ρ .

ϕ , vz = .
z ; aρ = ..

ρ − ρ .
ϕ2 , aϕ = ρ ..

ϕ + 2
.
ρ

.
ϕ , az = ..

z . (1.11)

Note that the equations for the components of the velocity could also have been directly obtained
using Eq. (1.3). Again, from the orthonormal character of the coordinate vectors

{
eρ,eϕ,ez

}
it

follows that

v2 = v2
ρ + v2

ϕ + v2
z =

.
ρ2 + ρ2 .

ϕ2 + .
z2 .

Exercise. Prove that in any orthogonal curvilinear system of coordinates the components ak :=
a · eqk of the acceleration are given by

ak = hk ..
qk +

3∑
i,j=1

Γ ijk
.
qi

.
qj , with Γ ijk := 1

hk
∂r

∂qk
· ∂2r

∂qi∂qj
.

Exercise. Show that if the vectors
{
n1,n2,n3

}
form a positively oriented orthonormal frame

then for i ̸= j we have
ni × nj = sgn(i, j, k)nk , (1.12)

where (i, j, k) is a permutation of (1,2,3) and sgn(i, j, k) denotes its sign.

Solution. If the frame {n1,n2,n3} is orthonormal then n1×n2 is of unit length (since sinθn1n2 =
1) and perpendicular to both n1 and n2, so that n1 × n2 = ±n3. By definition, the frame
{n1,n2,n3} is positively oriented if n1 × n2 = n3, negatively oriented if n1 × n2 = −n3. For
instance, the canonical frame {i, j,k} is positively oriented, since i× j = k. Note that

(n1 × n2) · n3 = (±n3) · n3 = ±1 ,

so the frame {n1,n2,n3} is positively oriented if and only if (n1 × n2) · n3 = 1. In general, if
i ̸= j then ni × nj = ε(i, j, k)nk, with i, j, and k different from one another and ε(i, j, k) = ±1.
To determine the sign ε(i, j, k), we take the scalar product of ni × nj with nk and use the
elementary properties of determinants to obtain

ε(i, j, k) = (ni × nj) · nk = det(ni,nj ,nk) = sgn(i, j, k)det(n1,n2,n3) = sgn(i, j, k),

since the frame {n1,n2,n3} is positively oriented by hypothesis.
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1.2 Curvilinear coordinate systems

Remark. Introducing Levi-Civita’s completely antisymmetric tensor

εijk =


1 , (i, j, k) even permutation of (1,2,3)

−1 , (i, j, k) odd permutation of (1,2,3)

0 , otherwise,

(1.13)

(i.e., εijk = sgn(i, j, k) if i, j, k are all different and zero otherwise) we can write

ni × nj =
3∑
k=1

εijknk . (1.14)

Indeed, if i = j both sides of the latter equation vanish. On the other hand, if i ̸= j then (1.14)
is equivalent to (1.12), since by the definition of εijk the only nonzero term in the sum (1.14) is
the one with k different from both i and j, and in that case εijk = sgn(i, j, k) by definition. From
Eq. (1.14) it follows that we can express the vector product of two three-dimensional vectors a

and b in terms of the Levi–Civita tensor as follows:

a× b =
 3∑
i=1

aiei

×
 3∑
j=1

bjej

 = 3∑
i,j=1

aibjei × ej =
3∑

i,j=1

aibj
3∑
k=1

εijkek =
3∑
k=1

(a× b)kek ,

with

(a× b)k =
3∑

i,j=1

εijkaibj .

Note that we can also write the previous formula as

(a× b)k =
3∑

i,j=1

εkijaibj ,

since εijk = εkij . For instance,

(a× b)1 = ε123a2b3 + ε132a3b2 = a2b3 − a3b2,

since sgn(1,2,3) = +1 and sgn(1,3,2) = −1. Note that a similar formula can be applied to
computed the curl of a vector field F in R3, namely

(∇× F)i =
3∑

j,k=1

εijk
∂Fk
∂xj

= ∂Fk
∂xj

− ∂Fj
∂xk

, (i, j, k) = cyclic permutation of (1,2,3) . (1.15)

Exercise. Consider the system of orthogonal curvilinear coordinates q = (q1, q2, q3), and let f
be a smooth scalar function. Show that

∇f =
3∑
i=1

1
hi

∂f
∂qi

eqi =⇒ (∇f)qi =
1
hi

∂f
∂qi

. (1.16)

Solution. Although the gradient has been defined in a Cartesian (orthogonal) coordinate system,
we can find an identity involving ∇f that is independent of any coordinate system. Indeed,

∇f · dr =
3∑
i=1

∂f
∂xi

dxi = df ,

where the differential df of f can be computed in any curvilinear coordinate system q by the

13
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standard formula

df =
3∑
i=1

∂f
∂qi

dqi.

From the identity

dr =
3∑
i=1

∂r

∂qi
dqi =

3∑
i=1

hieqi dqi

we then obtain

df =
3∑
i=1

∂f
∂qi

dqi = ∇f · dr =
3∑
i=1

hi(∇f · eqi)dqi =
3∑
i=1

hi(∇f)qi dqi .

Equating the coefficients of dqi in the second and last expression for df we deduce that
∂f
∂qi

=
hi(∇f)qi , as claimed.

Remark. Applying Gauss’s theorem to the infinitesimal solid whose curvilinear coordinates lie
between qi and qi + dqi (i = 1,2,3), it can be shown that the divergence of a smooth vector field

F =
3∑
i=1

Fqi(q)eqi

in a curvilinear orthogonal system of coordinates q can be expressed as

∇ · F = 1
h1h2h3

3∑
i=1

∂
∂qi

(
hjhkFqi

)
,

where {i, j, k} = {1,2,3} . From Eq. (1.16) it then follows that the Laplacian of a smooth scalar
function f is given by

∇2f := ∇ · (∇f) = 1
h1h2h3

3∑
i=1

∂
∂qi

(hjhk
hi

∂f
∂qi

)
.

Similarly, if the orthogonal curvilinear coordinate system q is positively oriented, applying Stokes’s
theorem to suitable infinitesimal surfaces perpendicular to the unit coordinate vectors eqi at an
arbitrary point one can show that

∇× F = 1
h1h2h3

∣∣∣∣∣∣∣∣∣∣
h1eq1 h2eq2 h3eq3

∂
∂q1

∂
∂q2

∂
∂q3

h1Fq1 h2Fq2 h3Fq3

∣∣∣∣∣∣∣∣∣∣
.
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1.2 Curvilinear coordinate systems

For the spherical coordinate system hr = 1, hθ = r , hϕ = r sinθ, and therefore

∇f = ∂f
∂r

er + 1
r
∂f
∂θ

eθ + 1
r sinθ

∂f
∂ϕ

eϕ ,

∇2f = 1
r2

∂
∂r

(
r2 ∂f
∂r

)
+ 1
r2 sinθ

∂
∂θ

(
sinθ

∂f
∂θ

)
+ 1

r2 sin2 θ
∂2f
∂ϕ2 ,

∇ · F = 1
r2

∂
∂r
(r2Fr )+ 1

r sinθ

[
∂
∂θ
(sinθFθ)+

∂Fϕ
∂ϕ

]
,

∇× F =
[
∂
∂θ
(sinθ Fϕ)− ∂Fθ∂ϕ

]
er

r sinθ
+
[
∂Fr
∂ϕ

− sinθ
∂
∂r
(rFϕ)

]
eθ

r sinθ

+
[
∂
∂r
(rFθ)− ∂Fr∂θ

]
eϕ
r
.

(1.17)

Likewise, in cylindrical coordinates hρ = hz = 1, hϕ = ρ, and thus

∇f = ∂f
∂ρ

eρ + 1
ρ
∂f
∂ϕ

eϕ + ∂f∂z ez ,

∇2f = 1
ρ
∂
∂ρ

(
ρ
∂f
∂ρ

)
+ 1
ρ2

∂2f
∂ϕ2 +

∂2f
∂z2 ,

∇ · F = 1
ρ
∂
∂ρ
(
ρFρ

)+ 1
ρ
∂Fϕ
∂ϕ

+ ∂Fz
∂z

,

∇× F =
(
∂Fz
∂ϕ

− ρ∂Fϕ
∂z

)
eρ
ρ
+
(∂Fρ
∂z

− ∂Fz
∂ρ

)
eϕ +

[
∂
∂ρ
(ρFϕ)−

∂Fρ
∂ϕ

]
ez
ρ
.

(1.18)

Exercise. Show that the volume element in an orthogonal curvilinear coordinate system q is
given by

d3r = h1h2h3 dq1 dq2 dq3 .

1.2.3 Motion on a plane in polar coordinates.

Suppose that the particle moves on a plane, which we shall take as the plane z = 0, so that
z(t) = 0 for all t. In this case

.
z = ..

z = vz = az = 0, ρ = r (distance to the origin) and (r ,ϕ) are
polar coordinates in the plane of motion (cf. Fig. 1.3). The previous formulas (1.11) then reduce
to the following:

vr = .
r , vϕ = r .

ϕ , ar = ..
r − r .

ϕ2 , aϕ = r ..
ϕ + 2

.
r

.
ϕ . (1.19)

In particular, if r(t) = R for all t (circular motion) we obtain the familiar formulas

vr = 0 , vϕ = R .
ϕ , ar = −R .

ϕ2 , aϕ = R ..
ϕ . (1.20)

Note, in particular, that, although the radial component of the velocity is identically zero, even
when

..
ϕ = 0 there is a negative radial acceleration −R .

ϕ2 = −v2/R (centripetal acceleration).

Example 1.1. Angular velocity.
Consider next a particle rotating around a fixed axis. Taking the rotation axis as the z axis and
the plane of motion as the plane z = 0, the particle’s motion is described in polar coordinates
by Eqs. (1.20). From these equations it follows that

v = R .
ϕ(t)eϕ ,

15



Review of Newtonian mechanics

x1

x2

r

ϕ

er
eϕ

Figure 1.3. Polar coordinates.

and since eϕ = ez × eρ = ez × er we have

v = R .
ϕ(t)ez × er =

( .
ϕ(t)ez)× r .

Hence in this case we can express the particle’s velocity as

v =ω× r ,

where
ω(t) = .

ϕ(t)ez

is called the angular velocity. The angular velocity is therefore a vector directed along the axis
of rotation, whose magnitude is the absolute value | .

ϕ(t)| of the angular velocity of rotation.
Rotation around the z axis is called “left-handed” if

.
ϕ(t) > 0 (i.e., if ω and ez have the same

direction) and “right-handed” if
.
ϕ(t) < 0 (i.e., if ω and ez have opposite directions).

1.3 Newton’s laws. Inertial frames. Galileo’s relativity principle

1.3.1 Newton’s laws

In (non-relativistic) classical mechanics, the linear momentum (or momentum, for short) of a
particle is defined by

p =mv =m .
r , (1.21)

where m is the particle’s mass. In classical mechanics the mass is a positive constant (in par-
ticular, velocity independent) parameter characteristic of each particle. In modern notation and
terminology, the first two of Newton’s laws can be stated as follows:

I. In the absence of external forces, the momentum (and, hence, the velocity) of a particle re-
mains constant.

II. If an external force F acts on a particle, the rate of variation of its momentum is given by

dp

dt
= F . (1.22)

Since the particle’s mass is independent of the velocity, the last equation is equivalent to

F =ma =m..
r . (1.23)
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This is the particle’s equation of motion.

Remarks.

• As stated above, Newton’s first law is a particular case of the second one. Indeed, if F = 0 then
dp

dt
= 0 implies that p, and therefore v, must be constant.

• Newton’s first two laws —or, from what we have just remarked, Eqs. (1.22)-(1.23)— are the
foundation of classical mechanics. These laws are valid with very high accuracy for motions
involving small velocities compared to the speed of light, and at macroscopic scales1. In partic-
ular, they do not hold for interactions at the atomic and subatomic scales (between elementary
particles, atoms, atomic nuclei, molecules, etc.), which are governed by quantum mechanics. Nor
are they valid for motion in intense gravitational fields, which is governed by Einstein’s theory
of general relativity. Actually, both quantum mechanics (or even quantum field theory, which
combines quantum mechanics with the special theory of relativity) and general relativity are not
universally valid, but rather apply to different physical situations. In fact, at present there is no
consistent theory applicable to all physical phenomena which unifies quantum mechanics with
the general theory of relativity.

• Newton’s second law provides an operational definition of mass. Indeed, if we apply the same
force F to two different particles (denoted by 1 and 2), according to Eq. (1.23) their accelerations
have the same direction, and the quotient of their magnitudes is given by

|a1|
|a2| =

m2

m1
.

In this way, the quotient m2/m1 can be measured in principle for any pair of particles. From the
previous discussion it should also be clear that a particle’s mass is a quantitative measure of its
inertia, i.e., its resistance to being accelerated by an applied force.

• Practically all forces appearing in classical mechanics depend at most on time, position and
velocity, and are therefore independent of acceleration (and of derivatives of the position vector
of order higher than two)2. Newton’s second law (1.23) can therefore be written in the form

..
r = 1

m
F(t, r,

.
r) , (1.24)

where F(t, r,
.
r) is the force acting on the particle. This vector equation is actually equivalent to

the system of three second-order ordinary differential equations

..
xi = 1

m
Fi(t, x1, x2, x3,

.
x1,

.
x2,

.
x3) , i = 1,2,3 , (1.25)

for the three particle coordinates xi(t). If the function F(t, r,
.
r) is of class C1, the equations (1.25)

(or (1.24)) with arbitrary initial conditions

r(t0) = r0 ,
.
r(t0) = v0 (1.26)

have (locally) a unique solution. In other words, the position and velocity of the particle at a certain
instant t0 determine its trajectory r(t) at any other (past or future) time t. Classical mechanics is
thus an essentially deterministic theory.

1More precisely, if the typical action of the system under study, defined as the product of its typical energy and
time, is much larger than Planck’s constant h = 6.626 070 15× 10−34 J s.

2The only exception worth mentioning is the force exerted on an accelerated charge by its own electromagnetic
field, the so called Abraham–Lorentz–Dirac force, which is proportional to

.
a.
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• Newton’s third law (or law of action and reaction) states that if particle 2 exerts on particle
1 a force F12 then particle 1 exerts on particle 2 a force F21 of equal magnitude and opposite
direction:

F21 = −F12 . (1.27)

A stronger version of Newton’s third law states that, in addition, the force F12 (and, hence, F21)
must be parallel to the vector r1 − r2, that is to say, to the straight line joining both particles:

F12 = −F21 ∥ r1 − r2 . (1.28)

It is important to bear in mind that Newton’s third law —in either of its two versions (1.27)
and (1.28) — does not have a fundamental character, since (for example) it does not hold in
general for the electromagnetic force between two charges in relative motion. It is however
verified —in fact, in its most restrictive version (1.28)— by the gravitational and electrostatic
forces (see below), as well as by most macroscopic forces that occur in ordinary mechanical
problems, as for example the tension of a string. ■

1.3.2 Inertial frames

It is obvious that Newton’s first law cannot be valid in all reference frames. Indeed, let S and
S′ be two reference frames with parallel axes, and denote by R(t) the coordinates of the origin
of S′ with respect to the reference frame S at time t. Let us denote by r(t) the coordinates of
a particle with respect to the reference frame S at each instant t, so that the particle’s velocity
(with respect to S) is v(t) = .

r(t). In Newtonian mechanics it is assumed that time has a universal
character3, so that (once the unit of time has been set) the relation between the times t and t′ of
the same event measured in the frames S and S′ is simply

t′ = t − t0 ,
where t0 is a constant. From the point of view of S′, therefore, the particle’s coordinates at the
time t′ will be given by the vector

r′(t′) = r(t)− R(t) = r(t′ + t0)− R(t′ + t0) .
The particle’s velocity with respect to S′ is thus

v′(t′) = dr′(t′)
dt′

= .
r(t′ + t0)−

.
R(t′ + t0) = v(t′ + t0)−

.
R(t′ + t0) ,

where as usual the dot denotes differentiation with respect to t. Suppose now that the particle
is free, i.e., not subject to any force4. If Newton’s first law holds in S then v(t) = v0 for all t. By
the previous equation, the particle’s velocity relative to S′ is

v′(t′) = v0 −
.
R(t′ + t0) ,

which is not constant unless
.
R is. Note that

.
R is constant if and only if

..
R = 0. We conclude that

Newton’s first law will hold in the reference frame S′ (assuming that it holds in S, and that the
axes of S and S′ are parallel) if and only if its origin moves without acceleration with respect to
S.

Definition 1.2. A reference frame in which Newton’s first law holds is said to be inertial.

In view of the above considerations, Newton’s first two laws can be formulated in a more
accurate and logically satisfactory fashion as follows:

3We shall see at the end of the course that this postulate is no longer valid in the special theory of relativity.
4Since at the classical level the magnitude of all known forces between two particles tends to zero as the

distance between the particles tends to infinity, it is assumed that a particle is free if it is very far away from all
other particles.
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1.3 Newton’s laws. Inertial frames. Galileo’s relativity principle

I. There is a class of reference frames (called inertial) with respect to which free particles
always move with constant velocity.

II. In an inertial frame, the force F exerted on a particle is equal to the rate of variation of its

momentum
dp

dt
.

It should therefore be clear that:

1. Newton’s first two laws are logically independent (in particular, the first law defines the
class of reference frames in which the second law holds).

2. Both laws are not more or less arbitrary axioms, but rather experimentally verifiable (and,
indeed, verified) facts (as remarked above, valid only approximately, in a certain range of
speeds and forces).

3. The relation (1.23) between force and acceleration is (in general) only valid in an inertial

reference frame.

• What known reference frames are inertial? Galileo and Newton observed that a reference frame
in which distant galaxies are at rest is (to a great approximation) inertial. More recently, it has
been found that a reference frame with respect to which the cosmic microwave background
radiation (a relic of the big bang) appears isotropic is inertial.

1.3.3 Galilean transformations

Let S be an inertial frame, and consider another frame S′ whose origin has coordinates R(t) with
respect to S at every instant t (where t denotes the time measured in S). We shall suppose that
at any time t the axes of S are related to those of S′ by a linear (invertible) transformation A(t),
i.e.,

ei = A(t)e′i , i = 1,2,3 .

We shall assume from now on that both S and S′ are positively oriented orthogonal reference
frames (that is, at all times the axes of both S and S′ form a positively oriented orthonormal
basis of R3). The matrix A must then be orthogonal, i.e, it must verify

AT = A−1 .

The determinant of an orthogonal matrix is equal to ±1, since

ATA = 1 =⇒ (detA)2 = 1 .

In fact, we must have detA = 1, since5

(e1 × e2) · e3 = (detA) (e′1 × e′2) · e′3 .

We ask ourselves how must A(t) and R(t) be so that the frame S′ is inertial (assuming that
S is an inertial frame). To answer this question, note that if we denote by r(t) = r0 + v0t the

5Indeed, since ei =
3∑
k=1

Akie′i (with A = (Aij)3i,j=1) we have

(e1 × e2) · e3 =
3∑

i,j,k=1

Ai1Aj2Ak3(e′i × e′j) · e′k =
3∑

i,j,k=1

Ai1Aj2Ak3εijk(e′1 × e′2) · e′3 = (e′1 × e′2) · e′3
3∑

i,j,k=1

Ai1Aj2Ak3εijk

= detA(e′1 × e′2) · e′3 .
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S

O
P

O′

S′

Figure 1.4. Reference frames S and S′. The coordinates of the vectors
#      —

OO′ and
#   —
OP with respect

to S are denoted in the text respectively by R and r, and thus the coordinates of
#     —

O′P =
#   —
OP − #      —

OO′ with respect to S′ are given by r′ = A · (r− R).

coordinates with respect to S of a free particle at time t, its coordinates with respect to S′ at the
corresponding time t′ = t − t0 are given by6

r′(t′) = A(t) · (r(t)− R(t)
) = A(t) · (r0 + v0t − R(t)

)
, t = t′ + t0 .

Differentiating twice with respect to t′ we obtain

d2r′(t′)
dt′2

= ..
A(t)r0 +

[
t

..
A(t)+ 2

.
A(t)

]
v0 −

[ ..
A(t)R(t)+ 2

.
A(t)

.
R(t)+A(t) ..R(t)] .

If the reference frame S′ is also inertial, the right-hand side (RHS) of this equality must vanish
identically for all t ∈ R and all r0,v0 ∈ R3. We thus have

..
A(t) = t ..

A(t)+ 2
.
A(t) = 0 ,

..
A(t)R(t)+ 2

.
A(t)

.
R(t)+A(t) ..R(t) = 0 ,

or, equivalently,
.
A(t) = 0 ,

..
R(t) = 0 .

In other words:

The necessary and sufficient conditions in order for S′ to be an inertial frame are that the
rotation matrix A(t) relating the axes of S and S′ be constant, and that the origin of S′ move
with constant velocity with respect to S, i.e.,

R(t) = R0 +V0t ,

with R0 and V0 constant vectors.

Moreover, the transformation relating the space-time coordinates (t, r) and (t′, r′) of an event in
the inertial reference frames S and S′ is given by

t′ = t − t0 , r′ = A · (r− R0 −V0t
)

; t0 ∈ R , R0,V0 ∈ R3 , A ∈ SO(3,R) , (1.29)

where SO(3,R) denotes the group7 of 3× 3 real orthogonal matrices with unit determinant.

6Indeed, let c = (c1, c2, c3) be the coordinates of a point with respect to the axes {e1,e2,e3} of S at a certain
time t, and denote by c′ = (c′1, c′2, c′3) the coordinates of the same point with respect to the axes {e′1,e′2,e′3} of S′ at
that instant. We then have

3∑
i=1

ciei =
3∑
i=1

ciA(t) · e′i =
3∑

i,k=1

ciAki(t)e′k =⇒ c′k =
3∑
i=1

Aki(t)ci ,

or, in matrix notation, c′ = A(t)c.
7Recall that a group is a set G endowed with an associative product (an application G × G → G), possessing a

unit element and such that every element of G has an inverse.
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1.3 Newton’s laws. Inertial frames. Galileo’s relativity principle

Definition 1.3. The change of coordinates (t, r) , (t′, r′) defined by Eq. (1.29) is called a Gali-

lean transformation.

Note. A Galilean boost is a transformation (1.29) with t0 = 0, R0 = 0, A = 1.

From the previous discussion it then follows that:

The space-time coordinates (t, r) and (t′, r′) of the same event in two inertial frames S and S′

are related by an appropriate Galilean transformation (1.29).

• It is easy to verify that the composition of two Galilean transformations and the inverse of
a Galilean transformations are Galilean transformations (see the exercises at the end of this
section). From the mathematical point of view, this means that the set of all Galilean transfor-
mations forms a group, the so called Galilean group.

• From what we have just seen it follows that, given an inertial frame S, any other inertial
frame S′ is obtained from S by translating its origin with constant velocity and applying a con-
stant (i.e., time-independent) rotation to its axes.

1.3.4 Galileo’s relativity principle

By Eq. (1.29), the acceleration in the reference frame S′ is given by

d2r′

dt′2
(t′) = A · ..

r(t) ,

and from (1.23) it then follows that

m
d2r′

dt′2
= F′

(
t′, r′,

dr′

dt′

)
, (1.30)

with

F′(t′, r′, .r′) = A · F(t, r,
.
r) ,

.
r′ := dr′

dt′
. (1.31)

Thus, if F(t, r,
.
r) is the force acting at time t on a particle located at a point r moving with velocity

.
r as measured in the inertial frame S, the corresponding force measured in the second inertial
frame S′ is given by Eq. (1.31). The latter equation simply states that the force behaves as a vector
under a Galilean transformation (1.29). Equivalently, F and F′ represent the same vector in two
different frames. In other words, the observers at S and S′ measure essentially the same force,
although of course they assign it different components because their axes do not coincide. Note
also that the transformation law (1.31) depends only on the relation between the two inertial
frames S and S′, and is therefore independent of the properties of the particle considered (i.e., its
mass, electric charge, etc.).

From Eqs. (1.30)-(1.31) it also follows that Newton’s second law —which, as we have seen, is
the fundamental law of mechanics— has the same form in the inertial frame S′ as in the original
frame S. In other words:

The laws of mechanics have the same form in all inertial frames (Galileo’s relativity principle).

• What happens to Newton’s second law in a non-inertial frame? We shall see in Chapter 4
that the force measured by a non-inertial observer differs from that measured by an inertial one
by several terms proportional to the mass of the particle considered, called fictitious or inertial

forces8. In other words, the laws of physics assume their simplest form (that is, without fictitious
forces) only in inertial frames.

8An example of such a force is the centrifugal force that appears in a frame whose axes are rotating as seen
from an inertial frame.
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Exercise. Find the parameters of the Galilean transformation obtained by composing (1.29) with
a second Galilean transformation

t′′ = t′ − t′0 , r′′ = A′ · (r′ − R′0 −V′0t
′) ; t′0 ∈ R , R′0,V

′
0 ∈ R3 , A′ ∈ SO(3,R) .

Solution. Substituting Eq. (1.29) into the previous equations we obtain t′′ = t − t0 − t′0 and

r′′ = A′ · [A(r− R0 −V0t)− R′0 −V′0(t − t0)
] = A′A · [r− R0 −V0t −A−1R′0 −A−1V′0(t − t0)

]
= A′A · [r− (R0 +A−1R′0 − t0A−1V′0

)− (V0 +A−1V′0
)
t
]
.

These are the equations of a Galilean transformation, with parameters

t′′0 = t0 + t′0 , A′′ = A′A , R′′0 = R0 +A−1R′0 − t0A−1V′0, V′′0 = V0 +A−1V′0 .

From the mathematical point of view, the latter equations define the multiplication law of the
Galilean group.

Exercise. Show that the inverse of (1.29) is a Galilean transformation, and find its parameters.

Solution. From the previous exercise it follows that the inverse of (1.29) is the Galilean trans-
formation with parameters (t′0, A′,R

′
0,V

′
0) satisfying

t0 + t′0 = 0, A′A = 1, R0 +A−1R′0 − t0A−1V′0 = V0 +A−1V′0 = 0.

Solving for (t′0, A′,R
′
0,V

′
0) we easily obtain

t′0 = −t0, A′ = A−1, R′0 = −A(R0 +V0t0), V′0 = −AV0.

Note that the latter equations could also have been obtained by solving for (t, r) in terms of
(t′, r′) in Eq. (1.29) (exercise).

1.4 Conservation laws. Conservative forces. Electromagnetic force

1.4.1 Conservation laws

A conserved quantity (also called constant of motion, integral of motion or first integral)
is any function of (t, r,

.
r) that remains constant as the particle moves. Knowing a conserved

quantity is usually very advantageous, since it provides important information on the nature of
the motion. For instance, Newton’s first law (1.21) immediately yields a law of conservation of

linear momentum: in the absence of forces, the linear momentum p of a particle is conserved.
Let us next define the particle’s angular momentum with respect to the origin of coordinates by

L = r× p =mr× .
r , (1.32)

and the torque of the force F (also with respect to the origin) by

N = r× F . (1.33)

Differentiating with respect to t the definition of angular momentum and applying Newton’s
second law we easily get the important identity

.
L = N .
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1.4 Conservation laws. Conservative forces. Electromagnetic force

From this equation it immediately follows the law of conservation of angular momentum: if
the torque of the force acting on a particle vanishes, its angular momentum is conserved. Note
that in this case, since r is perpendicular to the constant vector L, the motion takes place in the
normal plane to L passing through the origin.

• From Eq. (1.33) it follows that N = 0 if either r = 0 or the applied force F is parallel to the
particle’s position vector r, i.e. (assuming that F depends only on t, r, and

.
r):

F = f(t, r, .r)er , (1.34)

where g is an arbitrary scalar function. This type of force is called central.

Consider next the particle’s kinetic energy, defined by

T = 1
2
m

.
r2 . (1.35)

Taking the scalar product of Newton’s second law with the velocity vector
.
r we obtain

dT
dt

=m .
r
..
r = F(t, r,

.
r)

.
r . (1.36)

In particular, kinetic energy is conserved if the force F is perpendicular to the velocity
.
r at all

times. This is what happens, for instance, with the magnetic force acting on a charged particle
(cf. Eq. (1.49) below).

Definition 1.4. We shall say that a force F(r) is conservative if it can be expressed in terms of
a scalar potential V(r) through the formula

F(r) = −∂V(r)
∂r

≡ −∇V(r) = −
3∑
i=1

∂V(r)
∂xi

ei . (1.37)

Note, in particular, that by its very definition a conservative force can depend only on the particle’s

position vector r (i.e., it must be independent of t and
.
r). If F(r) = −∂V(r)

∂r
is conservative we

have

F(r)
.
r = −∂V(r)

∂r
.
r = − d

dt
V(r) ,

and Eq. (1.36) becomes
d

dt
(T + V) = 0 .

The previous equation is the law of conservation of energy: if the force acting on a particle is
conservative, with potential V(r), then the total energy

E := T + V = 1
2
m

.
r2 + V(r) (1.38)

is conserved.

• More generally, we shall say that a time-dependent force F(t, r) is irrotational provided that
∇×F(t, r) = 0 for all (t, r), where ∇×F is the curl of F (cf. Eq. (1.15)). It can be shown (assuming,
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e.g., that F is of class C1 on R4) that F is irrotational if and only if there is a time-dependent
function V(t, r) such that

F(t, r) = −∂V(t, r)
∂r

.

If the force F is irrotational, differentiating the definition (1.38) of energy we obtain

dE
dt

= dT
dt

+ dV
dt

=m .
r
..
r+ ∂V

∂t
+ ∂V
∂r

.
r = ∂V

∂t
.

Thus if the force is irrotational but depends explicitly on time energy is not conserved.

1.4.2 Conservative forces

As we saw in the previous subsection, a force F(r) is conservative if it is the gradient of a function
−V(r). Note that (in a connected open subset) the potential V(r) is determined by the force F(r)
up to an arbitrary constant, since

F(r) = ∇V1 = ∇V2 ⇐⇒ ∇(V1 − V2) = 0 =⇒ V1 − V2 = const .

It can be shown that the conservative character of a force (independent of time and velocity) F(r)
is equivalent to any of the following three conditions:

I. The force F is irrotational:

∇× F = 0 .

II. The work done by the force F along any closed curve C vanishes:∫
C

F(r) · dr = 0 .

III. The work done by the force F along any curve C with fixed endpoints r1 and r2 is independent
of the curve. In other words, ∫

C1

F(r) · dr =
∫
C2

F(r) · dr ,

for any two curves C1 and C2 with the same endpoints r1 and r2.

The necessity of conditions I)–III) above (i.e., that if F(r) is conservative then I)–III) hold) is
straightforward. Indeed, condition I) is a direct consequence of the identity

∇×∇V(r) = 0 .

Likewise, the work done by a conservative force F = −∇V along any curve C with endpoints r1

and r2 is given by

∫
C

F(r) · dr = −
∫
C

∂V(r)
∂r

· dr = −
∫
C

dV = V(r1)− V(r2) , (1.39)

and is thus independent of the curve considered (condition III). In particular, if C is closed then
we can take r1 = r2, and hence F does no work (condition II). It is shown in advanced calculus
courses that the converse (i.e., that if any of the conditions I)–III) above hold then F(r) is conser-
vative) is also true provided that F(r) is of class C1 in a simply connected open subset9 of R3 (in
particular, on all of R3).

9By definition, a connected open subset U ⊂ R3 is simply connected if any continuous closed curve contained
in U can be continuously contracted to a point within U . For example, R3, R3 minus one point, the interior of a
sphere, a parallelepiped, a cylinder, etc., are simply connected sets, while R3 minus a line is not.
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• From Eq. (1.39) it follows that the work done by a conservative force is equal to the decrease in
the potential energy as the particle moves from the initial point r1 to the final one r2. By the law
of conservation of total energy, this coincides with the increase in the particle’s kinetic energy as
it moves from r1 to r2.

• More generally, if F(t, r,
.
r) is an arbitrary (not necessarily conservative) force the work W done

by F along a trajectory C = {
r = r(t)

∣∣t ∈ [t1, t2]
}

starting at a point r1 = r(t1) with velocity
.
r1 = r(t1) and ending at a point

.
r2 = r(t2) with velocity

.
r2 = .

r(t2) is equal to the increase in the
particle’s kinetic energy. Indeed,

W =
∫
C

F(t, r,
.
r)dt =

∫ t2
t1

F
(
t, r(t),

.
r(t)

) · .
r(t)dt =

∫ t2
t1
m

..
r(t) · .

r(t)dt =
∫ t2
t1

dT
dt

dt

= T( .r2)− T( .r1),

since T = 1
2m

.
r2 depends only on

.
r. Note, however, that the work along two trajectories with the

same endpoints r1 and r2 need not be the same, since the initial and/or final velocities
.
r1,2 will

in general be different for both trajectories.

• A particular case of conservative force of great practical interest is that of a central force of
the form

F(r) = f(r) r

r
. (1.40)

Indeed, taking into account that

∂V(r)
∂r

= V ′(r) ∂r
∂r
= V ′(r) r

r
,

it is obvious that the force (1.40) is generated by the potential

V(r) = −
∫
f(r) dr , (1.41)

which depends only on the magnitude of the position vector r. Thus if the force is central and
conservative both energy and angular momentum are conserved.

Exercise. Show that the central force (1.34) is conservative if and only if the function f(t, r,
.
r)

depends only on r .

Solution. To begin with, f can only depend on r from the definition of conservative force. If
Fθ = Fϕ = 0 and Fr = f(r) Eq. (1.17) for the curl of F in spherical coordinates yields

∇× F = 1
r sinθ

∂f
∂ϕ

eθ − 1
r
∂f
∂θ

eϕ = 0 ⇐⇒ ∂f
∂θ

= ∂f
∂ϕ

= 0 ,

so that f is a function of r only. Alternatively, using Eq. (1.17) for the gradient of V(r) in
spherical coordinates we obtain

∂V
∂r

= ∂V
∂r

er + 1
r
∂V
∂θ

eθ + 1
r sinθ

∂V
∂ϕ

eϕ = −F = −fer =⇒ ∂V
∂θ

= ∂V
∂ϕ

= 0 .

Hence V is a function of r only, and so is f = −∂V(r)
∂r

.
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1.4.3 Gravitational and electrostatic forces

According to Newton’s law of universal gravitation, the gravitational force exerted by a particle
of mass M fixed at the origin of coordinates on another particle of mass m located at a point r

is of the form (1.40) with f inversely proportional to the square of the distance to the origin:

f(r) = −GMm
r2 , (1.42)

where10

G = 6.674 30(15) · 10−11 m3 Kg−1 s−2

is the so called gravitational constant. By Eq. (1.41), the potential V(r) generating the gravita-
tional force (1.42) is given (up to an arbitrary constant) by

V(r) = −GMm
r

. (1.43)

Note that, since GMm > 0, the gravitational force is always attractive.

• The acceleration caused by the gravitational force (1.40)-(1.42) on the particle of mass m is

a = F

m
= −GM

r3 r ,

independent of m. This nontrivial fact, first observed by Galileo Galilei, is due to the fact that
the mass appearing in Newton’s law of universal gravitation (the gravitational mass) actually
coincides11 with the mass appearing in Newton’s second law (the inertial mass). The equality
between the gravitational and inertial masses —the so called equivalence principle, on which
Einstein’s general theory of relativity is based— has been verified with great accuracy (less than
one part in 1012) in different experiments.

Similarly, the electric force exerted by a chargeQ fixed at the origin on a point charge q located
at point r is also of the form (1.40), where now

f(r) = k qQ
r2 . (1.44)

In the SI system of units, the constant k is given by

k = 1
4πε0

≃ 8.98755 · 109 m F−1 ,

where
ε0 = 8.854 187 8128(13) · 10−12 F m−1

is the vacuum permittivity. From Eq. (1.44) it follows that the electric force is attractive if the
charges q and Q are of opposite signs, and repulsive if they have the same sign. Again, the
electric force is obviously conservative, with potential (up to an additive constant)

V(r) = k qQ
r

10In these notes we use the CODATA internationally recommended 2018 values of the fundamental physical
constants, available at the site https://physics.nist.gov/cuu/Constants/.

11Obviously, it is only necessary that inertial and gravitational mass differ by a universal (i.e., the same for all
particles) proportionality constant.
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inversely proportional to the distance between the charges.
More generally, the gravitational force exerted on a particle of mass m located at the point r

by a continuous mass distribution occupying an open subset U ⊂ R3 is given by

F(r) = −Gm
∫
U
ρ(r′)

r− r′

|r− r′|3 d3r′ =: mg(r) = −m∂Φ(r)
∂r

, (1.45)

where ρ(r′) is the mass density at r′ ∈ U , g(r) is the gravitational field created by the mass
distribution at the point r and

Φ(r) = −G
∫
U

ρ(r′)
|r− r′| d3r′ (1.46)

is the gravitational potential. Thus the gravitational force is still conservative in this more
general situation, with potential V(r) =mΦ(r). Again, the particle’s acceleration

a = F(r)
m

= g(r)

is independent of its mass m. Note, however, that in general (unless the mass distribution is
spherically symmetric about the origin) the gravitational force (1.45) is not central.

Similarly, the force exerted on a point charge q located at a point r by a static charge distribu-
tion filling up an open set U is

F(r) = kq
∫
U
ρ(r′)

r− r′

|r− r′|3 d3r′ =: qE(r) = −q∂Φ(r)
∂r

, (1.47)

where now ρ(r′) is the charge density at a point r′, E(r) is the electric field created by the charge
distribution at the point r and

Φ(r) = k
∫
U

ρ(r′)
|r− r′| d3r′ (1.48)

is the electrostatic potential. Again, the electrostatic force (1.47) is conservative (with poten-
tial V(r) = qΦ(r)), but not central unless the charge distribution is spherically symmetric about
the origin.

Exercise. Applying Gauss’s theorem to a sphere centered at the origin prove the identity

△
(

1
r

)
= −4πδ(r) ,

where δ(r) is Dirac’s delta function. Deduce from Eq. (1.46) that both the gravitational and
the electrostatic potential verify Poisson’s equation

△Φ = 4παρ ,

where α = G for the gravitational potential and α = −k for the electrostatic one. In particular,
the gravitational (resp. electrostatic) potential verifies Laplace’s equation△Φ = 0 in any region
of space where there are no masses (resp. charges).

Note. Dirac’s delta function δ(r) is informally defined by the requirements δ(r) = 0 for all
r ̸= 0 and

∫
R3 δ(r)d3r = 1. It can thus be intuitively viewed as the mass density of a point

mass located at the origin. In fact, no ordinary function can simultaneously verify the above
two requirements, since for an ordinary function the condition δ(r) = 0 for all r ̸= 0 implies
that

∫
R3 δ(r)d3r = 0. We can think of δ(r) as the “limit” as ε → 0+ of any family of func-

tions δε(r) satisfying
∫
R3 δε(r)d3r = 1 for all ε > 0 and such that δε(r) is concentrated on a

ball centered at the origin whose radius tends to zero as ε → 0+. (One such family is, for in-
stance, δε(r) = (πε)−3/2e−r2/ε.) From this heuristic definition follows the important property∫
R3 δ(r)f (r)d3r = f(0), for any sufficiently smooth function f(r). In fact, the latter identity

can be taken as a working definition of δ(r). A rigorous mathematical treatment of Dirac’s delta
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function requires the use of the theory of distributions (linear functionals defined on spaces of
smooth functions vanishing fast enough at infinity).

Solution. To begin with, let us check that △(1/r) = 0 for r ̸= 0. Indeed, if r ̸= 0 (and hence
r ̸= 0) we have

△
(

1
r

)
= ∇·

[
∇
(

1
r

)]
= ∇·

(
− r

r3

)
= −∇ · r

r3 −r·∇
(

1
r3

)
= − 3

r3 −r·
(
− 3er
r4

)
= − 3

r3 +
3
r3 = 0.

To show that △(1/r) = −4πδ(r), we only have to prove the equality∫
R3
△
(

1
r

)
d3r = −4π .

As we have just seen that △(1/r) = 0 away from the origin, we can integrate over a ball of
arbitrary radius R centered at the origin. We thus have∫

R3
△
(

1
r

)
d3r =

∫
|r|àR

△
(

1
r

)
d3r = −

∫
|r|àR

∇ ·
(

er
r2

)
d3r = −

∫
|r|=R

er
R2 · n dS

= −
∫
|r|=R

er
R2 · er dS = − 1

R2

∫
|r|=R

dS = − 1
R2 · 4πR2 = −4π ,

where we have applied Gauss’s theorem we obtain the third equality. Taking the Laplacian
(with respect to the r coordinate) of the equation for the gravitational/electrostatic potential,

Φ(r) = −α
∫
U

ρ(r′)
|r− r′| d3r′ ,

we then obtain

△Φ(r) = −α
∫
U
△r

(
ρ(r′)
|r− r′|

)
d3r′ = −α

∫
U
ρ(r′)△r

(
1

|r− r′|
)

d3r′k = 4πα
∫
U
ρ(r′)δ(r− r′)d3r′

= 4παρ(r).

1.4.4 Electromagnetic force

The electromagnetic force (also called Lorentz force) acting on a point charge q which moves
subject to an electric field E(t, r) and a magnetic field B(t, r) is given by

F(t, r,
.
r) = q(E(t, r)+ .

r× B(t, r)
)
. (1.49)

As is well known, the fields E and B verify Maxwell’s equations

∇ · E = ρ
ε0
, ∇× E = −∂B

∂t
,

∇ · B = 0 , ∇× B = µ0J+ 1
c2

∂E

∂t
,

where J is the current density,

c = 2.997 924 58× 108 m s−1

is the speed of light in vacuo, and

µ0 := (c2ε0)−1 = 1.256 637 062 12(19) · 10−6 N A−2
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1.4 Conservation laws. Conservative forces. Electromagnetic force

is the vacuum permeability. From the second and third Maxwell equations it follows that E and
B can be expressed through a scalar potential Φ(t, r) and a vector potential A(t, r) through the
equations

E = −∂Φ
∂r
− ∂A

∂t
, B = ∇×A .

Remark. The fields E and B do not uniquely determine the electromagnetic potentials Φ and A.
Indeed, it is easily verified (exercise) that the potentials

Φ̂ = Φ − ∂f
∂t
, Â = A+ ∂f

∂r
, (1.50)

where f(t, r) is an arbitrary scalar function12, generate exactly the same electromagnetic field
as Φ and A. It can be shown that it is always possible to choose the function f so that the new
potentials Φ̂ and Â verify the condition

∇ · Â+ 1
c2

∂Φ̂
∂t

= 0 , (1.51)

called the Lorenz gauge13. If the electromagnetic potentials satisfy the Lorenz gauge, it is imme-
diate to check that Maxwell’s equations are equivalent to the following two uncoupled equations
for Φ and A:

1
c2

∂2Φ
∂t2 −△Φ =

ρ
ε0
,

1
c2

∂2A

∂t2 −△A = µ0J .

In particular, in vacuo (that is, in any region of space not containing electrical charges or cur-
rents), the scalar potential Φ and each component Ai of the vector potential verify the wave

equation

1
c2

∂2u
∂t2 −△u = 0, (1.52)

where c is the velocity of the waves. ■

Exercise. Using the identity (0.13), show that the components of the fields E and B also verify
the wave equation in vacuo.

Solution. Indeed,

∇× (∇× E) = ∇(∇ · E)−△E = 1
ε0
∇ρ −△E = −∇×

(
∂B

∂t

)
= − ∂

∂t
∇× B = −µ0

∂J

∂t
− 1
c2

∂2E

∂t2

=⇒ 1
c2

∂2E

∂t2 −△E = − 1
ε0
∇ρ − µ0

∂J

∂t
,

∇× (∇× B) = −△B = ∇×
(
µ0J+ 1

c2

∂E

∂t

)
= µ0∇× J+ 1

c2

∂
∂t
∇× E = µ0∇× J− 1

c2

∂2B

∂t2

=⇒ 1
c2

∂2B

∂t2 −△B = µ0 × J.

12Equation (1.50) is called a gauge transformation of the electromagnetic potentials. It can be shown that if
the electromagnetic potentials (Φ,A) and (Φ̂, Â) generate the same electromagnetic field then they are related by a
gauge transformation (assuming, for simplicity, that the fields are of class C2 on R4).

13Indeed, it suffices that the function f be a solution of the partial differential equation

△f − 1
c2

∂2f
∂t2

= ∇ ·A+ 1
c2

∂Φ
∂t
.

It is shown in differential equations courses that if the potentials A and Φ are analytic functions the latter equation
has (locally) a solution dependent on two arbitrary functions of the variable r (Cauchy–Kovalevskaya theorem).

29



Review of Newtonian mechanics

When ρ and J vanish both framed equations reduce to the wave equation with wave velocity c.

If both the electric and the magnetic field are static, i.e., if

E = E(r) , B = B(r) ,

Maxwell’s second equation reduces to ∇× E(r) = 0, and hence

E = −∂Φ(r)
∂r

.

From this equation and the expression (1.49) for the Lorentz force it then follows that

dT
dt

= F · .
r = qE(r) · .

r = −q ∂Φ(r)
∂r

· .
r = −qdΦ

dt
=⇒ d

dt
(
T + qΦ) = 0 .

Thus in this case the function

T + qΦ(r) ,

which can be regarded as the particle’s electromechanical energy, is conserved, although the
Lorentz force is not conservative unless B = 0 (cf. the exercise below). To interpret physically
this result it suffices to note that the magnetic force does no work, since it is perpendicular to
the velocity and hence to the infinitesimal displacement dr, and therefore does not contribute to
the particle’s energy.

Exercise. Show that the Lorentz force (1.49) is conservative if and only if B = ∂E

∂t
= 0 (that is, if

the electromagnetic field is purely electrostatic).

Exercise. Show that if the potentials (Φ,A) and (Φ̂, Â) generate the same electromagnetic field
(E,B) then (1.50) holds for some scalar function f(t, r).

Solution. If (Φ,A) and (Φ̂, Â) generate the same electromagnetic field then

E = −∂Φ
∂r
− ∂A

∂t
= −∂Φ̂

∂r
− ∂Â

∂t
=⇒ ∂

∂r
(Φ̂ −Φ)+ ∂

∂t
(Â−A) = 0,

B = ∇×A = ∇× Â =⇒ ∇× (Â−A) = 0.

From the second equation we deduce that

Â = A+ ∂g
∂r

for some scalar function g(t, r), and substituting into the first equation we then obtain

∂
∂r
(Φ̂ −Φ)+ ∂

∂t
∂g
∂r
= ∂
∂r

(
Φ̂ −Φ + ∂g

∂t

)
= 0 =⇒ Φ̂ = Φ − ∂g

∂t
− h(t)

for some scalar function of time h(t). Thus Eq. (1.50) holds with

f(t, r) = g(t, r)+
∫
h(t)dt .
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1.4 Conservation laws. Conservative forces. Electromagnetic force

Example 1.5. An electron of mass m and charge −e < 0 moves in a uniform electromagnetic
field E = Ee2, B = Be3 (with E > 0, B > 0). Let us compute the particle’s trajectory if initially
r(0) = 0 and v(0) = v0e1, with v0 > 0. Taking into account Eq. (1.49), the electron’s equations
of motion are

m
..
x1 = −eB .

x2 , m
..
x2 = −eE + eB .

x1 , m
..
x3 = 0 . (1.53)

From the last equation and the initial condition x3(0) = .
x3(0) = 0 it immediately follows that

x3(t) = 0 for all t. Hence the motion takes place in the horizontal plane x3 = 0. The equations
for the coordinates x1 and x2 can be simplified using the dimensionless variablesa

τ = eB
m
t , x = eB2

mE
x1 , y = eB2

mE
x2 ,

in terms of which
x′′ = −y′ , y′′ = x′ − 1 , (1.54)

where the prime denotes derivative with respect to τ . In terms of the new variables, the initial
conditions are

x(0) = y(0) = 0 , x′(0) = eB2

mE
.
x1(0)

dt
dτ

= Bv0

E
=: 1+ a , y′(0) = 0 .

The equations of motion for the (x,y) variables can be easily solved through standard tech-
niques, since they are a linear system of second-order differential equations with constant
coefficients. In this case, however, the simplest course of action is to introduce the complex
variable z = x + iy , in terms of which Eqs. (1.54) reduce to the ordinary differential equation

z′′ = x′′ + iy′′ = −y′ + ix′ − i = i(z′ − 1) ,

or equivalently
w′′ = iw′ , w := z − τ.

This is just a linear first-order differential equation in w′, with initial condition

w′(0) = z′(0)− 1 = x′(0)+ iy′(0)− 1 = a,

whose solution is
w′ = aeiτ .

Integrating with respect to τ and taking into account the initial condition

w(0) = z(0) = 0

we obtain
w = ia(1− eiτ) =⇒ z = τ + ia(1− eiτ) .

Taking the real and imaginary parts of z we finally arrive at

x = Rez = τ + a sinτ , y = Imz = a(1− cosτ) , (1.55)

or, in terms of the original variables,

x1 = Et
B
+ 1
ω

(
v0 − EB

)
sin(ωt) , x2 = 1

ω

(
v0 − EB

)[
1− cos(ωt)

]
, ω := eB

m
.
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Equations (1.55) are the parametric equations of the electron’s trajectory. Note that

r(τ + 2nπ) = (x(2nπ),y(2nπ)) = (2nπ + x(τ),y(τ)) = r(τ)+ 2nπ i (n ∈ Z), (1.56)

so that the whole trajectory can be obtained by translating the arc with 0 à τ < 2π an integer
multiple of 2π along the x direction. The qualitative properties of the trajectory depend on
the dimensionless parameter

a = Bv0

E
− 1 ;

note that a > −1, since E, B and v0 are all positive by hypothesis.

i) If |a| < 1, i.e.,

0 < v0 <
2E
B
,

we have
x′ = 1+ a cosτ > 0 ,

and therefore x is an increasing function of τ . In particular, if a = 0, or equivalently

v0 = E
B
,

the trajectory is the x axis traversed with constant velocity (x(τ) = τ or, in the original vari-
ables, x1(t) = Et/B = v0t). By Eq. (1.56), it suffices to study the arc of the trajectory with
0 à τ à 2π. In general, 0 à y à 2a if a > 0, or 2a à y à 0 if a < 0, for all τ . Moreover, in the
interval 0 à τ à 2π we have

y = 0 ⇐⇒ τ = 0,2π =⇒ x = 0,2π ,

while
y = 2a ⇐⇒ τ = π =⇒ x = π .

At points where y attains its extreme values 0 and 2a the electron’s velocity is directed along
the x axis, since for τ = kπ (with k = 0,1,2) we have

x′(kπ) = 1+ (−1)ka > 0 , y′(kπ) = a sin(kπ) = 0 .

In particular, at such points
dy
dx

= y′

x′
= 0 .

The electron’s trajectory has thus the qualitative shape shown in Fig. 1.5 (red curve).

ii) On the other hand, if a = 1, i.e.,

v0 = 2E
B
,

then x′(τ) = 1+ cosτ á 0, with (for 0 à τ à 2π)

x′(τ) = 0 ⇐⇒ τ = π =⇒ x = π , y = 2 .
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1.4 Conservation laws. Conservative forces. Electromagnetic force

In fact, when τ = π both velocity components x′ and y′ = sinτ vanish simultaneously. It is
easily checked that the trajectory has a cusp at the point (π,2) corresponding to τ = π, since
the slope to its tangent at this point satisfies

dy
dx

= y′

x′
= sinτ

1+ cosτ
= 2 sin(τ/2) cos(τ/2)

2 cos2(τ/2)
= tan(τ/2) -→

τ→π∓ ±∞ .

The trajectory is in this case a cycloid (cf. Fig. 1.5, blue curve).

iii) Finally, if a > 1, i.e.,

v0 >
2E
B
,

x is no longer a monotonic function of τ in the interval [0,2π]. More precisely,

x′(τ) á 0 ⇐⇒ τ ∈ [0, arccos(−1/a)
)∪ (2π − arccos(−1/a),2π

]
,

while
x′(τ) < 0 ⇐⇒ τ ∈ ( arccos(−1/a),2π − arccos(−1/a)

)
.

Moreover, we have
y(2π − τ) = y(τ), x(2π − τ)+ x(τ) = 2π,

so that the points r(τ) and r(2π − τ) are symmetric with respect to the vertical line x = π.
Thus the trajectory is symmetric about the latter line. This can be shown to imply that the
trajectory intersects itself at a point on the latter line (cf. Fig. (1.5), green curve).

x

y

π 2π 3π 4π

2

−1

π 2π 3π 4π

6

x

y

Figure 1.5. Electron’s trajectory in Example 1.5 for v0 = E/(2B) (red line), v0 = 2E/B (blue line)
and v0 = 4E/B (green line).

aFrom the Lorentz force law (1.49) it follows that evB/m and E/B have dimensions of acceleration and
velocity, respectively. Hence eB/m has dimensions of a/v = t−1, and (E/B)(m/eB) =mE/(eB2) has dimensions
of vt = l.

Exercise. Redo the previous problem assuming that the electric field vanishes (E = 0). Show
that in this case the particle describes a circle with constant frequency ω = eB/m, called
cyclotron frequency.
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Review of Newtonian mechanics

Figure 1.6. One-dimensional potential V(x) with 5 turning points xi for the energy E shown.
The allowed region consists in this case of the three intervals (−∞, x1], [x2, x3] and
[x4, x5]. Note also that the potential plotted in the figure has exactly 6 equilibria.

1.5 Motion of a particle in a one-dimensional potential

In this section we shall study the motion of a particle in one dimension, subject to a (smooth)
force F(x) independent of time and velocity. Such a force is always conservative, since F(x) =
−V ′(x) with

V(x) = −
∫
F(x) dx .

In this case the law of conservation of energy (1.38) reduces to

1
2
m

.
x2 + V(x) = E , (1.57)

where the constant E ∈ R is the particle’s total energy (which depends on the initial conditions).
Conversely, differentiating (1.57) with respect to t we obtain

.
x
(
m

..
x − F(x)) = 0 .

Hence if
.
x ̸= 0 Eq. (1.57) is equivalent to the equation of motion m

..
x = F(x).

• The equilibrium positions (or equilibria) of the potential V(x) are defined as the points x0 ∈ R
for which the equation of motion has the constant solution x(t) = x0. If this is the case

..
x(t) = 0

for all t, so that from the equation of motion we obtain

F
(
x(t)

) = F(x0) = −V ′(x0) = 0 .

Thus the equilibria are the points at which the force acting on the particle vanishes. From the
mathematical point of view, the equilibria are the critical points of the potential V(x), that is, the
roots of the equation

V ′(x) = 0 .

Note that, by the existence and uniqueness theorem for solutions of ordinary differential equa-
tions, if x0 is an equilibrium the only solution of the equation of motion satisfying the initial
conditions x(t0) = x0,

.
x(t0) = 0 is the constant solution x(t) = x0. In other words:
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1.5 Motion of a particle in a one-dimensional potential

If at some instant the particle is at an equilibrium x0 with zero velocity it will remain at x0

indefinitely.

From Eq. (1.57) it immediately follows that for a given energy E the motion can only take place
in the region defined by the inequality

V(x) à E ,

that we shall call the accessible (or allowed) region for the energy E. In general (i.e., if the
potential is sufficiently smooth), the allowed region is a (countable) disjoint union of closed inter-
vals, some of which may be infinite to the right or the left (including the limiting case where the
allowed region is the whole real line), or even reduce to isolated points (necessarily equilibria).

By continuity, if at some instant the particle lies on one of the disjoint closed intervals making
up the allowed region it will always remain inside that interval.

Of particular interest are the endpoints xi of the latter intervals, which must satisfy the equa-
tion V(x) = E. When the particle is at one of these points its velocity vanishes, since

x(t) = xi ⇐⇒ V(xi) = E = 1
2
m

.
x(t)2 + V(xi) ⇐⇒ .

x(t) = 0 (1.58)

by the law of energy conservation (1.57). We shall say that such a point xi is a turning point of
the trajectory if it is not an equilibrium, i.e., if

V(xi) = E , V ′(xi) ̸= 0 .

In other words, the turning points are the endpoints of the disjoint closed intervals which make
up the allowed region, excluding the equilibria.

• The reason for this terminology is the fact that when the particle reaches a turning point its
velocity

.
x changes sign, and thus the particle “turns”. For example, if V ′(xi) > 0 then V(x) <

V(xi) = E on a sufficiently small interval to the left of xi, and V(x) > V(xi) = E on a similar
interval to the right of xi, so that the particle cannot reach the region to the right of the turning
point. Hence the particle must approach the turning point from its left, and therefore

.
x changes

from positive (right before reaching the turning point) to negative (right afterwards).

If the particle has energy E and x0 is an equilibrium with V(x0) = E, then the particle’s tra-
jectory cannot cross the equilibrium x0. Indeed, since V(x0) = E if the particle is at x0 at some
instant t0 its velocity

.
x(t0) must vanish. From the remark on equilibria on p. 35 we conclude

that x(t) = x0 for all t, and hence the trajectory in this case consists of the single point x0.
Thus, if (for instance) x(t0) < x0 then we must have x(t) < x0 for all t, i.e., the whole trajectory
lies at the left of x0. From the previous remarks it then follows that:

The trajectory of a particle with energy E is an interval (finite or infinite, which might reduce
to a single point) on whose interior V(x) < E, limited by turning points and/or equilibria
satisfying V(x) = E. Moreover, equilibria with V(x) = E limiting the trajectory cannot be
reached in a finite time.

• The equation of motion m
..
x = F(x) is invariant under time translations t , t + t0, for any

t0 ∈ R, since the time t does not appear explicitly in it. Hence if x(t) is a solution of the equation
of motion so is x(t + t0), for all t0 ∈ R.

35



Review of Newtonian mechanics

x

V(x)

E

x0 x1

Figure 1.7. One-dimensional potential V(x) with two consecutive turning points x0, x1 limiting
an allowed interval [x0, x1] (for the energy E shown) such that V(x) < E for x ∈
(x0, x1).

The equation of motion is also invariant under the time reversal mapping t , −t. Thus if x(t)
is a solution of (1.57) so is x(−t). Combining this observation with the previous one it follows
that x(t0 − t) is a solution of the equation of motion if x(t) is.

The law of conservation of energy (1.57) allows us to easily find the general solution of the
equation of motion in implicit form. Indeed, solving for

.
x in Eq. (1.57) we obtain

.
x = dx

dt
= ±

√
2
m
(
E − V(x)) . (1.59)

Each of these two equations (corresponding to the two signs before the radical) is a first-order
differential equation with separable variables, easily solved by separating variables and integrat-
ing:

t − t0 = ±
√
m
2

∫
dx√

E − V(x) . (1.60)

Here t0 is an arbitrary integration constant which, without loss of generality, can be taken equal
to zero in view of the previous comments. The behavior of the solutions depends crucially on the
type of interval inside the allowed region where the motion takes place, as we shall see in more
detail below. To simplify the exposition, we shall assume for the time being that the interval
where the motion takes place is limited by turning points (not by equilibria). Hence on the interior
of this interval we must have V(x) < E, whereas V(x) = E and V ′(x) ̸= 0 at its endpoints (if
any). By the law of conservation of energy (1.57), the particle’s velocity

.
x(t) can only change sign

at the endpoints of the latter interval.

I) Bounded interval [x0, x1]
Consider first the case in which the particle’s motion takes place in a bounded interval [x0, x1]
limited by two consecutive turning points x0,1, so that

E = V(xi) and V ′(xi) ̸= 0 , with i = 0,1,

and V(x) < E for x0 < x < x1 (cf. Fig. 1.7). Let us suppose, without loss of generality14, that
x0 = x(0), so that

.
x(0) = 0. Then

.
x > 0 for sufficiently small t > 0, since otherwise the

14Indeed, suppose that the particle is at some point a ∈ (x0, x1) at the initial time t = t0. From Eq. (1.60) we
then obtain

t = t0 + sgn
( .
x(a)

)√m
2

∫ x
a

ds√
E − V(s) ,
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x

θ(x)

τ
2

x1x0

Figure 1.8. Function θ(x) in Eq. (1.61). Note that θ′(x0,1) = +∞, by Eq. (1.63).

particle would enter the forbidden region to the left of x0. We must therefore take the “+” sign
in Eq. (1.60), obtaining15

t =
√
m
2

∫ x
x0

ds√
E − V(s) =: θ(x) . (1.61)

Hence the particle will reach the point x1 at time t = τ/2, with16

τ = 2θ(x1) =
√

2m
∫ x1

x0

ds√
E − V(s) . (1.62)

Note that, since

θ′(x) =
√
m/2√

E − V(x) > 0 , x0 < x < x1 , (1.63)

θ(x) is monotonically increasing, and hence invertible, in the interval [x0, x1] (see Fig. 1.8). Thus
for 0 à t à τ/2 the particle’s position as a function of time is given by

x = θ−1(t) , 0 à t à
τ
2
.

For t > τ/2 (with t−(τ/2) small enough)
.
x becomes negative, since otherwise the particle would

reach the forbidden region to the right of x1. Using again Eq. (1.60), but this time with the “−”
sign, and the initial condition x(τ/2) = x1 we obtain

t = τ
2
−
√
m
2

∫ x
x1

ds√
E − V(s) = τ −

√
m
2

∫ x
x0

ds√
E − V(s) = τ − θ(x) . (1.64)

In particular, the particle will again reach the point x0 at time t = τ (since θ(x0) = 0). Note also

and thus the particle will reach the endpoint x0 at the time

t1 = t0 − sgn
( .
x(a)

)√m
2

∫ a
x0

ds√
E − V(s) .

This time is finite, since the latter integral, which is improper at its lower endpoint x0, is convergent. Indeed, since
V ′(x0) ̸= 0 by hypothesis, the integrand behaves as (x−x0)−1/2 in the vicinity of s = x0. Thus x(t1) = x0 for some
finite time t1, so that replacing t by t − t1 we have x(0) = x0.

15The integral (1.61), which is improper at its lower limit s = x0, is however convergent (see previous footnote).
16The integral (1.62) is also improper at its upper limit but certainly convergent, since V ′(x1) ̸= 0 implies that

the integrand behaves as (x1 − s)−1/2 near s = x1.
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Figure 1.9. Motion of a particle in a one-dimensional potential between two consecutive turning
points x0, x1.

that from Eq. (1.64) it follows that17

x = θ−1(τ − t) , τ
2
à t à τ .

Hence the particle’s motion for 0 à t à τ , implicitly given by Eqs. (1.61)-(1.64), can be expressed
in terms of the function θ−1 by the equations

x(t) =


θ−1(t) , 0 à t à τ

2 ;

θ−1(τ − t) , τ
2 à t à τ .

(1.65)

Note, in particular, that x(t) is symmetric about t = τ/2, since by the previous equation

x
(τ

2
− s

)
= θ−1

(τ
2
− s

)
= x

(τ
2
+ s

)
, 0 à s à

τ
2
.

The solution of the equations of motion valid for all t is just the periodic extension with period τ
of the function x(t) defined in [0, τ] by Eq. (1.65) (cf. Fig. 1.9). In other words, if kτ à t à (k+1)τ
with k ∈ Z then

x(t) = x(t − kτ) , (1.66)

where the RHS is evaluated using (1.65). Indeed, this function is a solution of the equation of
motion due to the invariance of the latter equation under time translations, satisfies the initial
conditions x(0) = x0, x′(0) = 0 by construction, and is of class C2 at the junction points kτ
with k ∈ Z (exercise). Summarizing:

The motion of a particle between two consecutive turning points x0,1 of a one-dimensional
potential is periodic, with period τ given by Eq. (1.62).

17This could have also been proved noting that, by the two remarks on p. 36, if x = θ−1(t) is a solution to the
equation of motion for t ∈ [0, τ/2] then x = θ−1(τ − t) is a solution for t ∈ [τ/2, τ], which satisfies the initial
conditions x(τ/2) = θ−1(τ/2) = x1 and x′(τ/2) = 0 (by Eq. (1.57)). By the existence and uniqueness theorem for
second-order ordinary differential equations, x(t) = θ−1(τ − t) for τ/2 à t à τ .
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1.5 Motion of a particle in a one-dimensional potential

Figure 1.10. Left: one-dimensional potential V(x)with a a turning point x0 limiting a semiinfinite
allowed interval [x0,∞) (for the energy E shown) such that V(x) < E for x > x0.
Right: corresponding law of motion x(t) (in the case of finite t∞).

Exercise. Show that the function x(t) defined by Eqs. (1.65)-(1.66) is invariant under time re-
versal, i.e., that x(t) = x(−t).
Solution. The function f(t) := x(−t) is a solution of the equation of motion, due to the invari-
ance of the latter equation under time reversal. At t = 0, the solution f(t) satisfies the same
initial conditions as x(t), since

f(0) = x(0) = x0 , f ′(0) = −x′(0) = 0 .

By the existence and uniqueness theorem for second-order ordinary differential equations,
f(t) = x(−t) = x(t) for all t.

II) Semi-infinite interval [x0,∞)
Consider next the case in which the particle moves inside a semi-infinite interval18 [x0,∞) limited
by a turning point x0, so that V(x0) = E, V ′(x0) ̸= 0, and V(x) < E for x > x0 (cf. Fig. 1.10). If
the particle is at the point x0 for t = 0 then

.
x(t) > 0 for t > 0, and the relation between the time

t and the position x is given by equation (1.61) for all t > 0. In particular, the particle reaches
(positive) infinity at time

t∞ = θ(∞) =
√
m
2

∫∞
x0

ds√
E − V(s) ,

which is finite or infinite depending on whether the integral on the RHS is convergent or divergent
at +∞. For instance, if V(x) ∼ −xa with a á 0 for x → ∞ then t∞ is finite if a > 2, and infinite
if 0 à a à 2. Taking into account the definition (1.61) of the function θ(x), the particle’s motion
for 0 à t < t∞ is given by the equation

x = θ−1(t) , 0 à t < t∞ ,

with x(t∞) = ∞. On the other hand, for −t∞ < t à 0 we have

x = θ−1(−t) , −t∞ < t à 0 ,

where again x(−t∞) = ∞. Indeed, the latter function is a solution to the equation of motion (due
to the invariance of this equation under time reversal t , −t), and satisfies the correct initial

18The case in which the motion takes place in a semi-infinite interval (−∞, x0] limited by a turning point is dealt
with analogously.
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Figure 1.11. One-dimensional potential with E > V(x) for all x (for the energy E shown).

conditions at t = 0:
x(0) = θ−1(0) = x0 ,

.
x(0) = 0

(the last equation is actually a consequence of the first, since x0 is a turning point). An alternative
way of reaching the same conclusion is to observe that if t < 0 then

.
x(t) < 0, since the particle

is at the point x0 for t = 0. Therefore we must take the “−” sign in Eq. (1.59), which yields the
equation

t = −
√
m
2

∫ x
x0

ds√
E − V(s) = −θ(x) ⇐⇒ x = θ−1(−t),

on account of the initial condition x(0) = x0. In other words, in this case the law of motion is

x = θ−1(|t|) , −t∞ < t < t∞ .

Note, in particular, that (as in Case I) above) x(t) = x(−t).
III) Whole real line (−∞,∞)
Consider, finally, the case in which for a certain energy E the trajectory is the whole real line,
so that V(x) à E for all x. We must actually have V(x) < E for all x ∈ R (cf. Fig. 1.11), since
otherwise a point x0 with V(x0) = E would be an equilibrium (absolute maximum of V ), which
cannot be crossed by the trajectory. Let x(0) = x0; then

.
x2(0) is fixed by conservation of energy,

namely
.
x2(0) = 2

m
(
E − V(x0)

)
> 0,

Figure 1.12. Law of motion x(t) for the potential V(x) and the energy E shown in Fig. 1.11 in
the cases

.
x(0) > 0 (left) or

.
x(0) < 0 (right), assuming that t±∞ are finite.
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1.5 Motion of a particle in a one-dimensional potential

but the sign of
.
x(0) is of course undetermined. If (for example)

.
x(0) > 0, then

.
x(t) > 0 for all

t, since the velocity cannot vanish in this case by the law of conservation of energy. We must
therefore take the “+” sign in (1.59) for all t, which yields the relation

t =
√
m
2

∫ x
x0

ds√
E − V(s) = θ(x) .

In particular, the particle reaches ±∞ at time

t±∞ = θ(±∞) =
∫ ±∞
x0

ds√
E − V(s)

(which may again be finite or infinite, according to whether the integral is convergent of divergent
at ±∞), and the particle’s motion is governed by the equation

x = θ−1(t) , t−∞ < t < t∞ .

Likewise, if
.
x(0) < 0 then

x = θ−1(−t) , −t∞ < t < −t−∞ ,
where now x(−t±∞) = ±∞ (cf. Fig. 1.12).

Example 1.6. Consider the potential

V(x) = k
(
x2

2
− x4

4a2

)
, k, a > 0 ,

x

V(x)

−a a

Figure 1.13. Potential in Example 1.6 (blue line) and energy E = ka2/4 (dashed red line).

plotted in Fig. 1.13. Differentiating with respect to x we obtain

V ′(x) = kx
(

1− x
2

a2

)
= 0 ⇐⇒ x = 0, ±a .

Therefore the equilibria are in this case the points x = 0 (relative minimum of V ) and x = ±a
(global maxima). The allowed region, and therefore the type of trajectory, depends on the value
of the energy E as follows:

i) E < 0
The allowed region is the union of the two semi-infinite intervals (−∞,−c] and [c,∞), c being
the only positive root of the equation V(x) = E. Thus in this case the trajectory is unbounded
(to the right if x(0) > c, to the left if x(0) < −c).

ii) E = 0
The allowed region is the union of the semi-infinite intervals

(−∞,−√2a
]

and
[√

2a,∞) along
with the origin, which as we know is an equilibrium. In particular, if x(0) = 0 then x(t) = 0
for all t (equilibrium solution), while if |x(0)| á √2a the trajectory is unbounded.
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iii) 0 < E < ka2/4
Since ka2/4 = V(±a) is the potential’s maximum value, the allowed region is the union of the
three intervals (−∞,−c2], [−c1, c1] and [c2,∞), where c1 < c2 are the two positive roots of the
equation V(x) = E. Therefore in this case the trajectory is unbounded (to the left or right) if
|x(0)| á c2, while if |x(0)| à c1 the motion is periodic, with amplitude c1.

iv) E > ka2/4
Since V(x) < E for all x, the allowed region (and the trajectory) is the whole real line. Note
that in this case the time that it takes the particle to reach ±∞ is finite, since for |x| → ∞ the
integral ∫ ±∞ dx√

E − V(x) ∼
∫ ±∞ dx

x2

converges.

v) E = ka2/4
We have left for the end the most interesting case, in which E = ka2/4. Since V(x) à ka2/4
for all x, the allowed region is again the whole real line, and it might therefore superficially
seem that the trajectory is also the whole real line. However, this conclusion is wrong, since
the allowed region now contains the two equilibria x = ±a. If the particle starts at t = 0 from a
point x0 ̸= ±a, it cannot reach the points ±a in a finite time. Indeed, if x(t0) = ±a for a certain
time t0 ∈ R, from (1.57) with V(±a) = ka2/4 = E we obtain

.
x(t0) = 0. Since the points ±a are

equilibria, this implies that x(t) = ±a for all t. Therefore in this case the possible trajectories
of the particle are the open intervals (−∞, a), (−a,a) and (a,∞), along with the two equilibria
±a. In particular, if |x(0)| < a the trajectory remains in the interval (−a,a) for all t ∈ R and
is therefore bounded. However, it is not periodic, but rather verifies x(±∞) = ±a if

.
x(0) > 0 or

x(±∞) = ∓a if
.
x(0) < 0. (Why is

.
x(0) ̸= 0 in this case?)

• In this case it is possible to explicitly integrate the equation of motion when E = ka2/4.
Indeed, substituting this value of the energy in Eq. (1.59) we obtain

.
x = ±

√
k

2ma2 (x
2 − a2) .

Separating variables and integrating we have

±
√

2k
m
t =

∫
2a

x2 − a2 dx = log
∣∣∣∣x − ax + a

∣∣∣∣ =⇒
∣∣∣∣x − ax + a

∣∣∣∣ = e±2ωt , ω :=
√

k
2m

,

where without loss of generality we have taken the integration constant equal to zero. If the
particle lies initially in one of the intervals (−∞,−a) or (a,∞) then∣∣∣∣x − ax + a

∣∣∣∣ = x − a
x + a ,

and therefore

x = a 1+ e±2ωt

1− e±2ωt = ∓a coth(ωt) .

The latter expression actually defines four different solutions. Indeed, if initially the particle is
in the region x > a with positive (resp. negative) velocity then we must take the “−” (resp. “+”)
sign in the previous expression, and the associated solution is therefore defined for t < 0
(resp. t > 0). This solution corresponds to a motion reaching positive infinity (resp. arriving
from positive infinity) in a finite time and tending to the point x = a for t → −∞ (resp. t → +∞).
Likewise, if x(0) < −a then the solution x = −a coth(ωt) with t > 0 corresponds to a motion
from x = −∞ (for t → 0+) to x = −a (for t → ∞) with positive velocity, while the solution
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1.5 Motion of a particle in a one-dimensional potential

x = a coth(ωt) with t < 0 corresponds to a motion from x = −a (for t → −∞) to x = −∞ (for
t → 0+) with negative velocity (cf. Fig. 1.14).

Similarly, if the particle lies initially in the interval (−a,a) then∣∣∣∣x − ax + a
∣∣∣∣ = a− x

a+ x ,

and thus

x = a 1− e±2ωt

1+ e±2ωt = ∓a tanh(ωt)

(cf. Fig. 1.14). The solution corresponding to the “+” (resp. “−”) sign has always positive
(resp. negative) velocity, and tends to ±a for t → ±∞ (resp. t → ∓∞).

t

x

a

−a

Figure 1.14. Plot of solutions x = a coth(ωt) (blue), x = −a coth(ωt) (red), x = a tanh(ωt)
(green), and x = −a tanh(ωt) (magenta) in Example 1.6.

To visualize the different trajectories followed by the particle and qualitatively understand
their properties, it is useful to plot the momentum p = m .

x as a function of the position x for
different values of the energy E. This plot is usually known as the phase map of the system.
From the law of energy conservation it follows that the equation of the trajectories in the phase
map is

p2

2m
+ V(x) = E ,

which in this case reduces to

p2

2m
+ k

(
x2

2
− x4

4a2

)
= E .

The corresponding trajectories (obviously symmetric with respect to both axes) are represented
in Fig. 1.15. Note that the equation of the trajectories with energy equal to the critical energy
E = ka2/4 is

p = ±
√
mk
2a2

√
x4 − 2a2 x2 + a4 = ±

√
mk
2a2

(
x2 − a2) . (1.67)

This is the equation of two parabolas whose axis is the vertical line x = 0, intersecting at the equi-
libria (±a,0). These trajectories divide the phase map into 5 disjoint connected regions, in each
of which the trajectories have different qualitative properties (they are bounded or unbounded,
reach x = ±∞ or not, etc.). For this reason, the trajectories (1.67) are called separatrices.
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x

p

−a a

Figure 1.15. Phase map for the potential in Example 1.6. The red line consists of the trajectories
with energy E = ka2/4 (including the two equilibria (±a,0)), while the orange, green
and blue lines represent trajectories with E < 0, 0 < E < ka2/4 and E > ka2/4,
respectively.

1.5.1 Stability of equilibria. Period of the small oscillations

Intuitively speaking, an equilibrium x0 is stable if sufficiently small perturbations of the initial
conditions x(0) = x0,

.
x(0) = 0 lead to solutions x(t) of the equation of motion which remain

arbitrarily close to x0 (and with velocity arbitrarily close to 0) at all times t > 0. In the previous
example, it is clear that the equilibrium x = 0 is stable, while x = ±a are both unstable equilibria.
Indeed, if we slightly disturb the initial condition x(0) = .

x(0) = 0 corresponding to the first of
these equilibria, that is, we consider particle motions with |x(0)| and | .

x(0)| small enough, the
energy will be slightly positive but much smaller than the critical value ka2/4, and therefore the
motion will be periodic and with amplitude close to zero. On the contrary, a perturbation of the
initial data x(0) = ±a,

.
x(0) = 0 such that (for instance) x(0) = ±a and | .

x(0)| = ε > 0 results
in a motion with energy greater than the critical energy ka2/4 no matter how small ε is, and
therefore x(t)→ ±∞ for t →∞.

In general, an equilibrium is stable if and only if it is a relative minimum of the potential.

To heuristically justify this statement, suppose that x0 is a critical point of the potential V , i.e.,
that V ′(x0) = 0. If x0 is a relative minimum of V then in a sufficiently small interval centered at
x0 we have V ′(x) < 0 for x < x0 and V ′(x) > 0 for x > x0. Hence F(x) = −V ′(x) and x − x0

have opposite signs for x sufficiently close to x0, i.e, the force acting on the particle always points
towards the equilibrium x0 in its vicinity. Thus in this case the equilibrium is stable. Likewise,
if x0 is a relative maximum of V then near x0 the force F(x) points away from x0, and hence
the equilibrium is unstable. Finally, if x0 is an inflection point of V then V ′(x) has constant
sign (positive or negative) for x ̸= x0 in the vicinity of x0. If (for instance) V ′(x) > 0 then in a
neighborhood of x0 the force F(x) points away from x0 for x < x0, and the equilibrium is again
unstable.

An alternative proof of the previous result is based solely on energy considerations. Indeed,
suppose to begin with that x0 is a relative minimum of the potential V(x). A solution of the
equation of motion with initial conditions (x(0),

.
x(0)) close to (x0,0) will have an energy

E = 1
2
m

.
x(0)2 + V(x(0))
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x

V(x)

V(x0)
E

x0
x

V(x)

V(x0)
E

x0
x

V(x)

V(x0)
E

x0

Figure 1.16. Potential V(x) with a local minimum (left), a local maximum (center) or an inflection
point (right) at x0.

slightly greater than V(x0), as | .
x(0)| Ý 0 and (for x(0) close enough to x0) V(x(0)) Ý V(x0),

since by hypothesis x0 is a local minimum of V . Hence the motion will consist in oscillations
about x0 with amplitude decreasing as E approaches V(x0)—see Fig. 1.16 (left). On the contrary,
if x0 is a relative maximum of V then a solution with (for instance) x(0) = x0 and | .

x(0)| small
but non-vanishing will have energy

E = 1
2
m

.
x(0)2 + V(x0)

slightly larger than V(x0). Hence the particle will move away from x0 by a finite amount (to
the left or right) no matter how small | .

x(0)| is —see Fig. 1.16 (center). Finally, suppose that x0

is an inflection point of V , with (for instance) V ′(x) strictly increasing near x0. In this case a
solution with, e.g., initial conditions x(0) = x0 and | .

x(0)| small but non-vanishing will again
have energy E Ý V(x0), and thus the particle will move away from x0 by a finite amount (to the
left) no matter how small | .

x(0)| is —see Fig. 1.16 (right). (In fact, it is apparent from Fig. 1.16 that
when x0 is either a local maximum or an inflection point that any solution with initial conditions
close to equilibrium will have energy close to V(x0), and will move away by a finite amount from
equilibrium either to the left or to the right.)

Suppose that the potential V(x) is smooth (say, of class C2) at an equilibrium x0, and that
furthermore V ′′(x0) ̸= 0 (which is the generic case). If the equilibrium is stable we must then
have

V ′(x0) = 0 , V ′′(x0) > 0 .

For initial conditions (x(0),
.
x(0)) sufficiently close to (x0,0) the motion is periodic, as E Ý V(x0)

and the particle oscillates between two consecutive turning points close to x0; see Fig. 1.16 (left).
To find an approximation to the period of these small amplitude oscillations, taking into account
that |x − x0| ≪ 1 we Taylor expand the force F(x) about x0 to first order in x − x0:

F(x) = −V ′(x) = −V ′′(x0)(x − x0)+O
(
(x − x0)2

)
.

Hence the particle’s equation of motion is approximately

..
x = F(x)

m
≃ −V

′′(x0)
m

(x − x0) ,

which can be written as ..
ξ +ω2ξ = 0

with

ξ := x − x0 , ω :=
√
V ′′(x0)
m

.
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As is well known, the general solution of this equation can be written as

ξ = A cos(ωt +α) ,

where α ∈ [0,2π) and A á 0 are arbitrary constants (with A ≪ 1 to be consistent with the
hypothesis |x − x0| = |ξ| ≪ 1). Hence the particle’s motion near the equilibrium x0 is approxi-
mately described by the equation

x(t) ≃ x0 +A cos(ωt +α) .

In other words, the period τ of the small oscillations about the equilibrium x0 is approximately
given by

τ ≃ 2π
ω

= 2π
√

m
V ′′(x0)

. (1.68)

In particular, from the above formula it follows that the period of the small oscillations about a
stable equilibrium is approximately independent of the amplitude (or, equivalently, the energy).
Obviously, this is exactly true for any amplitude for the harmonic potential V(x) = k(x−x0)2/2.
For a general potential, the period of the oscillations of arbitrary amplitude is given exactly by
Eq. (1.62), and is thus in general dependent on the amplitude. More precisely,

τ =
√

2m
∫ x2

x1

dx√
E − V(x) =

√
2m

∫ x2

x1

dx√
V(x1,2)− V(x)

, (1.69)

where x1 < x2 = x1 + 2A are the two turning points (roots of the equation V(x) = E) closest to
the equilibrium x0 and A is the amplitude.

Example 1.7. The period of the small oscillations about the origin for the potential in Exam-
ple 1.6 is approximately

τ ≃ 2π
√
m
k
. (1.70)

Note, however, that this approximation is only correct for small amplitudes A ≪ a. For arbi-
trary amplitude 0 < A < a, the period is exactly given by the formula

τ =
√

2m
∫ A
−A

dx√
E − V(x) = 2

√
2m

∫ A
0

dx√
E − V(x) ,

with

E = V(A) = kA2

4a2 (2a
2 −A2) .

Substituting this value of E in the previous formula for τ , setting x = As and operating we
obtain

τ = 4
√
m
k

∫ 1

0

ds√
(1− s2)

(
1− ε2

2 (1+ s2)
) , ε := A

a
∈ (0,1) . (1.71)

Note that when ε tends to 1, that is A tends to a, the integral tends to infinity, which is
consistent with the fact that for A = a the particle takes an infinite time to reach the equilibria
x = ±a. If ε is small, taking into account that

(
1− ε2

2 (1+ s2)
)−1/2

= 1+ ε
2

4
(1+ s2)+O(ε4)
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and using the above formula for the period we obtain the more accurate expansion

τ = 4
√
m
k

(∫ 1

0

ds√
1− s2

+ ε
2

4

∫ 1

0

1+ s2
√

1− s2
ds +O(ε4)

)

=
√
m
k

[
2π + ε2

∫π/2
0

(1+ cos2 θ)dθ +O(ε4)
]
= 2π

√
m
k

(
1+ 3

8
ε2 +O(ε4)

)
(1.72)

(cf. Fig. 1.17).

Note. In this case, the exact value of the period can be expressed in terms of the complete
elliptic integral of the first kind

K(α) :=
∫π/2

0
(1−α2 sin2 s)−1/2 ds =

∫ 1

0

dx√
(1− x2)(1−α2x2)

, 0 à α < 1 , (1.73)

by performing the change of variables x = sin t in the integral (1.71), namely

τ = 4
√
m
k

(
1− ε

2

2

)−1/2

K
(

ε√
2− ε2

)
.
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/τ

0

Figure 1.17. Period of the oscillations about the origin for the potential in Example 1.6 (in units
of the approximate period of the small oscillations τ0 = 2π

√
m/k ) as a function

of the parameter ε = A/a (solid blue line) compared to its approximation (1.72)
(dashed red line).

Exercise. Find the relation between the energy E and the amplitude A of the small oscillations
about a stable equilibrium x0 with V ′′(x0) > 0.

Solution. The turning points (points on the trajectory at a maximum and minimum distance of
the equilibrium x0) are the two roots x1,2 of the equation E = V(x) to the left and right of x0.
Using the approximation

V(x) ≃ V(x0)+ 1
2
V ′′(x0)(x − x0)2

we obtain

E = V(x1,2) ≃ V(x0)+ 1
2
V ′′(x0)(x1,2 − x0)2

=⇒ A := 1
2
(x2 − x1) ≃ |x1,2 − x0| ≃

√
2
(
E − V(x0)

)
V ′′(x0)

.
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Exercise. Find the dependence on the amplitude and energy of the period of the oscillations
around x = 0 of a particle of mass m moving subject to the potential V(x) = k|x|n, with k > 0
and n ∈ N.

Exercise. Redo the discussion in Example 1.6 for the potential

V(x) = k
(
x4

4a2 −
x2

2

)
, k, a > 0 .

In particular, determine the stable equilibria and compute the period of small oscillations
about them. Show that the period of the oscillations of amplitude A ≫ a about the origin is
approximately proportional to a/A, and find the proportionality constant.

x

V(x)

−ka2/4

−a a

Figure 1.18. Potential V(x) = k
(
x4

4a2 − x2

2

)
.

Solution. The potential in this exercise differs only by a sign from that of Example 1.6, and
thus its graph is as shown in Fig. 1.18. In particular, the equilibria are again 0 (unstable) and
±a (both stable). In this case E must be greater than the absolute minimum V(±a) = −ka2/4
of V , and therefore we can have the following types of trajectories:

i) E = −ka2/4
In this case either x(t) = −a or x(t) = a for all t (equilibrium solutions).

ii) −ka2/4 < E < 0
The particle oscillates about the equilibrium x = −a if x(0) < 0, or about x = a if x(0) > 0,
so that the motion is periodic and bounded. The period of the small oscillations about either
equilibrium is approximately given by

τ ≃ 2π
√

m
V "(±a) = 2π

√
m
2k
.

iii) E = 0
If x(0) > 0 then the motion is bounded (0 < x à

√
2a, where

√
2a is the positive root of

V(x) = 0) but not periodic, since the unstable equilibrium at the origin cannot be reached in a
finite time. Similarly, if x(0) < 0 the motion is again bounded (with −√2a à x < 0) but not
periodic. Finally, if x(0) = 0 then x(t) = 0 for all t (equilibrium solution).

iv) E > 0
In this case the motion is bounded and periodic, since the two roots ±A of the equation V(x) =
0 are turning points. Note that A >

√
2a is not infinitesimally small, so that Eq. (1.68) does not
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1.6 Dynamics of a system of particles. Conservation laws

apply in this case. The period of the oscillations as a function of their amplitude A is given,
however, by the exact formula

τ = 2
√

2m
∫ A

0

dx√
V(A)− V(x) = 4a

√
2m
k

∫ A
0

dx√
(A2 − x2)(A2 − 2a2 + x2)

.

Calling ε := a/A < 1/
√

2 and performing the change of variable x = As (so that s is a dimen-
sionless variable) we obtain

τ = 4ε

√
2m
k

∫ 1

0

ds√
(1− s2)(1− 2ε2 + s2)

.

When A ≫ a the dimensionless parameter ε is very small, and we can thus approximate the
period by

τ ≃ 4C

√
2m
k
ε ,

where the constant C is given bya

C :=
∫ 1

0

ds√
1− s4

s=cosθ=
∫π/2

0

dθ√
2− sin2 θ

= 1√
2
K
(
1/
√

2
) = 1.31103 . . . ,

where K(α) is the complete elliptic integral of the first kind defined by Eq. (1.73). Thus the
period of the oscillations with large amplitude A≫ a is (approximately) inversely proportional
to the amplitude.

Note. The exact value of the period of the oscillations of amplitude A >
√

2a can also be
determined in terms of a complete elliptic integral of the first kind. Indeed, performing the
change of variable s = cosθ in the integral for τ we obtain

τ = 4ε

√
2m
k

∫π/2
0

dθ√
2(1− ε2)− sin2 θ

= 4ε
√

m
k(1− ε2)

K
(

1√
2(1− ε2)

)
.

aThe constant C can be also be expressed in terms of Euler’s gamma function

Γ (x) :=
∫∞

0
tx−1e−t dt, x > 0,

as C =
√
π
4
Γ (1/4)
Γ (3/4)

.

1.6 Dynamics of a system of particles. Conservation laws

1.6.1 Dynamics of a system of particles

We shall study in this section the motion of a system of N particles of mass mi (i = 1, . . . ,N).
Let us denote by ri the coordinates of the i-th particle in a certain inertial system, and define
Fij as the force exerted by particle j on particle i (in particular, Fii = 0) and F(e)i as the external
force acting on the i-th particle. Newton’s second law of motion applied to the i-th particle of
the system then states that

mi
..
ri =

N∑
j=1

Fij + F(e)i , i = 1, . . . , N , (1.74)
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where the sum over j on the RHS represents the internal force exerted on particle i by the
remaining particles of the system. These N vector equations are actually a system of 3N scalar
second-order ordinary differential equations in the unknowns r1, . . . , rN . By the existence and
uniqueness theorem for such systems, if the RHS of Eq. (1.74) is a function of class C1 in the
variables (t, r1, . . . , rN ,

.
r1, . . . ,

.
rN) in a certain open subset A ⊂ R6N+1 then the system’s equations

of motion (1.74) have (locally) a unique solution verifying any initial condition of the form

r1(t0) = r10 , . . . , rN(t0) = rN0 ;
.
r1(t0) = v10 , . . . ,

.
rN(t0) = vN0

with (t0, r10 , . . . , rN0,v10 , . . . ,vN0) ∈ A. In other words, the trajectories of all the particles in the
system are determined by their positions and velocities at any instant. In this sense, Newtonian
mechanics is a completely deterministic theory.

Summing over i in Eq. (1.74) we obtain

N∑
i=1

mi
..
ri =

N∑
i,j=1

Fij +
N∑
i=1

F(e)i . (1.75)

If —as we shall assume throughout this section— Newton’s third law holds, the internal forces
verify the condition

Fij + Fji = 0 ,

which summed over i, j immediately yields

0 =
N∑

i,j=1

Fij +
N∑

i,j=1

Fji = 2
N∑

i,j=1

Fij ,

where in the last step we have used the fact that the summation indices (i, j) are dummy (i.e.,
N∑

i,j=1
Fji =

N∑
i,j=1

Fij). Denoting by

F(e) :=
N∑
i=1

F(e)i

the total external force acting on the system, Eq. (1.75) can be written more concisely as

N∑
i=1

mi
..
ri = F(e) . (1.76)

Let us next define the system’s center of mass as the point with coordinates

R := 1
M

N∑
i=1

miri , (1.77)

where

M =
N∑
i=1

mi

is the total mass of the system. In other words, the center of mass (which is generally abbreviated
by CM) is the average of the particles’ coordinates weighted by their masses. In terms of the CM,
Eq. (1.76) adopts the simple form

M
..
R = F(e) . (1.78)

In other words:
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1.6 Dynamics of a system of particles. Conservation laws

The center of mass moves as a single particle of mass M on which the total external force
acting on the system is exerted.

As a consequence, the motion of the center of mass is not affected by the internal forces acting on
the system. In particular, if the total external force vanishes then

..
R = 0. Hence:

In the absence of external forces the center of mass moves with constant velocity.

1.6.2 Conservation laws

Consider first the system’s total momentum P, defined as the sum of the momenta of its con-
stituent particles:

P :=
N∑
i=1

mi
.
ri = M

.
R . (1.79)

Thus the total momentum of the system coincides with the momentum of its center of mass re-
garded as a single particle of mass M . It also follows from the latter equation that Eq. (1.78) is
equivalent to

.
P = F(e) .

In particular, in the absence of external forces the system’s total momentum is conserved.

Consider next the system’s angular momentum with respect to the origin of coordinates, de-
fined as the sum of the angular momenta of its N constituent particles:

L :=
N∑
i=1

miri × .
ri . (1.80)

Let us denote by r′i the position vector of the i-th particle with respect to the CM, so that

ri = R+ r′i . (1.81)

Substituting the latter expression for ri in Eq. (1.80) we obtain

L =
N∑
i=1

mi(R+ r′i)× (
.
R+ .

r′i) = MR× .
R+ R×

N∑
i=1

mi
.
r′i +

 N∑
i=1

mir
′
i

× .
R+

N∑
i=1

mir
′
i ×

.
r′i . (1.82)

On the other hand, from Eq. (1.81) and the definition (1.77) of the CM it easily follows that

N∑
i=1

miri = MR =
N∑
i=1

miR+
N∑
i=1

mir
′
i = MR+

N∑
i=1

mir
′
i =⇒

N∑
i=1

mir
′
i = 0 , (1.83)

and therefore the second and third terms in the RHS of Eq. (1.82) vanish identically. We thus
have

L = MR× .
R+

N∑
i=1

mir
′
i ×

.
r′i . (1.84)

In other words, the angular momentum of the system is the sum of the angular momentum of its
center of mass and the internal angular momentum (last term in the RHS of Eq. (1.84)) due to
the motion of the particles around the CM.
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Example 1.8. Suppose that the system moves as a whole with velocity (not necessarily uniform)
v(t), i.e.,

.
ri = v(t) , i = 1, . . . ,N .

In this case
.
R = 1

M

N∑
i=1

mi
.
ri = v(t) ,

and thus the internal angular momentum vanishes:

.
r′i =

.
ri −

.
R = 0 , i = 1, . . . ,N =⇒ L = MR× .

R = MR× v .

By Eq. (1.80), the time derivative of the angular momentum is given by

.
L =

N∑
i=1

miri × ..
ri =

N∑
i=1

ri × F(e)i +
N∑

i,j=1

ri × Fij .

Again, it is easy to check that the last term vanishes if Newton’s third law holds in its stronger
version, that is if

Fji = −Fij ∥ ri − rj , i ̸= j . (1.85)

Indeed,

0 =
N∑

i,j=1

(ri − rj)× Fij =
N∑

i,j=1

ri × Fij −
N∑

i,j=1

rj × Fij =
N∑

i,j=1

ri × Fij +
N∑

i,j=1

rj × Fji = 2
N∑

i,j=1

ri × Fij .

Thus in this case we have

.
L =

N∑
i=1

ri × F(e)i =: N(e) , (1.86)

where by definition N(e) is the total torque of the external forces acting on the system. In other
words:

If Newton’s third law holds in its stronger version (1.85) then the time derivative of the system’s
angular momentum is equal to the total torque of the external forces acting on it. In particular
if the total torque of the external forces acting on the system vanishes its angular momentum
is conserved.

Exercise. Show that in general the total torque of the external forces is different from the torque
of the total external force with respect to the CM.

Solution. By definition , the torque of the total external force with respect to the CM is the
vector R× F(e). Taking into account the definitions of R and Fe we easily obtain

R× F(e) = 1
M

( N∑
i=1

miri

)
×
( N∑
j=1

F (e)j

)
=

N∑
i,j=1

mi
M

ri × F(e)j ,
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which is different in general than
N∑
i=1

ri × F(e)i . For example, for two particles we have

R× F(e) −
2∑
i=1

ri × F(e)i =
2∑

i,j=1

ri ×
(
mi
M

2∑
j=1

F(e)j − F(e)i

)
= r1

M
×
(
m1F(e)2 −m2F(e)1

)
+ r2

M
×
(
m2F(e)1 −m1F(e)2

)
= r1 − r2

M
×
(
m1F(e)2 −m2F(e)1

)
,

which does not vanish unless
m1F(e)2 −m2F(e)1 ∥ r1 − r2 .

A common situation, however, in which R×F(e) is equal to the total torque of the external forces
arises when all the particles have the same mass and the total external force F(e)i is independent
of i. For example, this will be the case if the particles move in a constant gravitational field, or
if they move in a constant electric field and they have the same charge. Indeed, if mi =m and
F(e)i = F for all i we have M = Nm, F(e) = NF, and therefore

R× F(e) =
N∑
i=1

m
Nm

ri × (NF) =
N∑
i=1

ri × F =
N∑
i=1

ri × F(e)i .

Let us next study the kinetic energy of the system, defined as

T = 1
2

N∑
i=1

mi
.
r2
i . (1.87)

Using again the decomposition (1.81) and the identity (1.83) we easily obtain:

T = 1
2
M

.
R2 + 1

2

N∑
i=1

mi
.
r′2i , (1.88)

where the last term is the internal kinetic energy, due to the motion of the particles with respect
to the CM. Hence the kinetic energy of the system is the sum of the kinetic energy of its CM and
the internal kinetic energy.

We shall say that the forces acting on the system are conservative —or, equivalently, that the
system itself is conservative— if there is a single scalar function V(r1, . . . , rN) such that

Fi := F(e)i +
N∑
j=1

Fij = −∂V∂ri
, i = 1, . . . ,N . (1.89)

As in the case of a single particle addressed in Section 1.4.2, if the forces acting on the system
are conservative the system’s total energy

E = T + V(r1, . . . , rN)

is conserved. Indeed, if the forces acting on the system are conservative we have

dE
dt

=
N∑
i=1

mi
.
ri · ..

ri + dV
dt

=
N∑
i=1

.
ri · Fi +

N∑
i=1

∂V
∂ri

.
ri =

N∑
i=1

(
Fi + ∂V∂ri

)
.
ri = 0 .
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Let us assume that there exist certain functions Vi(ri), Vij(ri, rj) (with i ̸= j, 1 à i, j à N) such
that Vij(ri, rj) = Vji(rj , ri) (i.e., Vij(ri, rj) is symmetric under exchange of the particles i and j)
and

F(e)i = −∂Vi(ri)
∂ri

, Fij = −
∂Vij(ri, rj)

∂ri
, 1 à i ̸= j à N . (1.90a)

We shall then show that the system is conservative, with potential (up to an additive constant)

V =
N∑
i=1

Vi(ri)+
∑

1ài<jàN
Vij(ri, rj) . (1.90b)

Indeed, it is easily verified that Eqs. (1.90) imply the more general relation (1.89):

Fi + ∂V∂ri
=

N∑
j=1

Fij + ∂
∂ri

∑
1àj<kàN

Vjk(rj , rk) =
N∑
j=1

Fij +
N∑

k=i+1

∂
∂ri
Vik(ri, rk)+

i−1∑
j=1

∂
∂ri
Vji(rj , ri)

=
N∑
j=1

Fij +
N∑

j=i+1

∂
∂ri
Vij(ri, rj)+

i−1∑
j=1

∂
∂ri
Vij(ri, rj) =

N∑
j=1
j ̸=i

(
Fij +

∂Vij
∂ri

)
= 0 ,

where we have used the identities Fii = 0 and Vji(rj , ri) = Vij(ri, rj).

• By Newton’s third law we must have

Fji = −
∂Vji(rj , ri)

∂rj
= −∂Vij(ri, rj)

∂rj
= −Fij =

∂Vij(ri, rj)
∂ri

,

so that the function Vij(ri, rj) should verify the system of partial differential equations

∂Vij
∂ri

+ ∂Vij
∂rj

= 0 .

It can be shown (exercise) that the general solution of this system is an arbitrary function of the
difference ri − rj . We thus have

Vij(ri, rj) = Uij(ri − rj) , with Uji(r) = Uij(−r) . (1.91)

Substituting in (1.90b) we obtain the following more explicit formula for the potential V :

V =
N∑
i=1

Vi(ri)+
∑

1ài<jàN
Uij(ri − rj) . (1.92)

In fact, in most conservative physical systems of interest the potential is of the form (1.92).
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Exercise. Study under what conditions on the functions Uij Newton’s third law holds in its
stronger version (1.85).

Solution. If r := ri − rj , Eq. (1.85) will hold if and only if

0 = r× Fij = −r× ∂Uij(ri − rj)
∂ri

= −r× ∂Uij(r)
∂r

,

i.e., if the gradient of Uij(r) has only a radial component. By the formula for the gradient in
spherical coordinates

∂Uij
∂r

= ∂Uij
∂r

er + 1
r
∂Uij
∂θ

eθ + 1
r sinθ

∂Uij
∂ϕ

eϕ ,

this will be the case if and only if Uij depends only on r = |ri− rj|, i.e., if there is a function of
one variable uij such that Uij = uij(|ri − rj|) (with uij = uji, in view of Eq. (1.91)). This con-
dition is in fact satisfied by most conservative forces, like the gravitational or the electrostatic
ones (see next exercise). When it holds, Eq. (1.92) reads

V =
N∑
i=1

Vi(ri)+
∑

1ài<jàN
uij(|ri − rj|) . (1.93)

Exercise. Write down the potential for a system of charged particles of mass mi and charge qi
(i = 1, . . . ,N) moving in an external electric field generated by an electrostatic potential Φ(r).

Solution. The external force acting on the i-th particle is due to its interaction with the electric

field E(r) = −∂Φ(r)
∂r

generated by the electrostatic potential Φ(r), namely

F(e)i = qiE(ri) = −qi ∂Φ∂r
(ri) = −qi ∂Φ(ri)∂ri

= −∂Vi(ri)
∂ri

, with Vi(ri) = qiΦ(ri) .

On the other hand, the force exerted by particle j on particle i is the sum of the electric and
gravitational forces between both particles, given by

Fij = (kqiqj −Gmimj)
ri − rj
|ri − rj|3 = −

∂
∂ri

kqiqj −Gmimj

|ri − rj| = −∂uij(|ri − rj|)
∂ri

,

with k = 1/(4πε0) and

uij(r) =
kqiqj −Gmimj

r
= uji(r) .

The system is thus conservative, with potential

V =
N∑
i=1

qiΦ(ri)+
∑

1ài<jàN

kqiqj −Gmimj

|ri − rj| .

In practice, the electrostatic coupling constant kqiqj is usually much greater than the gravita-
tional one Gmimj . For instance, for protons

qi = qj = 1.602 176 634 · 10−19 C , mi =mj = 1.672 621 923 69(51) · 10−27 kg ,

55



Review of Newtonian mechanics

so that
Gmimj

kqiqj
≃ 8.09355 · 10−37 .

For this reason, the gravitational interaction between the charges is usually neglected, and the
potential reduces accordingly to

V =
N∑
i=1

qiΦ(ri)+ 1
4πε0

∑
1ài<jàN

qiqj
|ri − rj| .

56



2 Motion in a central potential

2.1 Two-body problem. Reduction to the equivalent one-body problem

We shall study in this section the motion of two point masses m1 and m2 not subject to any
external forces. If F12 denotes the force exerted by the second particle on the first, by Newton’s
third law the first particle exerts a force −F12 on the second one, and the system’s equations of
motion are thus

m1
..
r1 = F12(t, r1, r2,

.
r1,

.
r2)

m2
..
r2 = −F12(t, r1, r2,

.
r1,

.
r2) .

(2.1)

It is convenient to rewrite these equations in terms of the variables

R = 1
M
(m1r1 +m2r2) , r = r1 − r2 (2.2)

(cf. Fig. 2.1), where M := m1 +m2 denotes the system’s total mass. Solving for r1 and r2 in the
previous equations we easily obtain the inverse relations

r1 = R+ m2

M
r , r2 = R− m1

M
r . (2.3)

As we saw in Section 1.6.1, since there are no external forces the center of mass R moves without
acceleration, i.e.,

..
R = 0. As to the relative coordinate r, using Eqs. (2.1) and (2.3) we immediately

obtain

µ
..
r = F12

(
t,R+ m2

M
r ,R− m1

M
r ,

.
R+ m2

M
.
r ,

.
R− m1

M
.
r
)
, (2.4)

where

µ := m1m2

m1 +m2
(2.5)

is the so called reduced mass of the system. Note that this is a second-order differential equation
in the single (vector) variable r, since the motion of the center of mass is known (R = R0 + V0t,

x1

x2

x3

R m1
m2

r

O

Figure 2.1. Coordinates R and r in the two-body problem.
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with R0 and V0 constant vectors determined by the initial conditions). Hence:

The two-body problem (2.1) is always equivalent to the one-body problem (2.4).

If (as is usually the case) the internal force satisfies the condition1

F12 = F(t, r1 − r2,
.
r1 − .

r2) , (2.6)

that is, if it depends only on the particles’ relative coordinates and velocities, the equation of
motion of the relative coordinate r reduces to

µ
..
r = F(t, r,

.
r). (2.7)

In other words, if the force F12 is of the form (2.6) the relative coordinate r moves as a particle
of mass µ under the force F(t, r,

.
r), and the two-body problem (2.1) reduces to the one-body

problem (2.7).
Once Eq. (2.7) is solved, the motion of the coordinates r1 and r2 is easily found using Eqs. (2.3).

Since
..
R = 0, if we move the origin to the center of mass the resulting reference frame, called

center of mass frame, remains inertial. In the CM frame, Eqs. (2.3) simplify to

r1 = m2

M
r , r2 = −m1

M
r .

In many applications, the mass m2 is much larger than m1. In this case m1/M ≃ 0, m2/M ≃ 1,
and thus (in the CM frame)

r1 ≃ r , r2 ≃ 0 .

In other words, in this case the heavy particle is approximately fixed at the origin (i.e., the CM),
and the relative coordinate r is approximately equal to the radius vector of the light particle.

2.2 Constants of motion. Law of motion and equation of the

trajectory. Bounded Orbits

2.2.1 Constants of motion

The most important example of force satisfying condition (2.6) is that of a central force of the
form

F12 = f
(|r1 − r2|

) r1 − r2

|r1 − r2| .

In this case Eq. (2.7) reduces to

µ
..
r = f(r) r

r
, (2.8)

which is the equation of motion of a particle of mass µ subject to the central force

F(r) = f(r) r

r
. (2.9)

We shall study in this section how to find the general solution of Eq. (2.8), and analyze the
qualitative behavior of its trajectories.

1The dependence of F only on the relative coordinates and velocities is very natural, since it is clearly related to
the homogeneity of space. Note that the the homogeneity of time would also require that F be time-independent,
which is almost always the case.
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As we saw in Section 1.4.2, the force (2.9) is conservative, since

F(r) = −∂V(r)
∂r

, with V(r) = −
∫
f(r) dr .

Thus the total energy is conserved, i.e.,

1
2
µ

.
r2 + V(r) = E

remains constant throughout the motion. Moreover, since the force (2.9) is central the angular
momentum L = µr× .

r is also conserved. If, as we shall assume from now on,

L ̸= 0,

the motion takes place in the plane perpendicular to L passing through the origin (i.e., the center
of force)2. We shall choose the z axis in the direction of the constant vector L, so that

L = Lez, with L = |L| > 0. (2.10)

In particular, with this choice of axes the motion takes place in the z = 0 plane. Let us introduce
polar coordinates (r ,ϕ) in the latter plane through the usual equations

r = r(cosϕ, sinϕ,0) (r > 0 , 0 à ϕ < 2π) .

The unit coordinate vectors are

er = (cosϕ, sinϕ,0) = r

r
, eϕ = (− sinϕ, cosϕ,0) ,

and hence
.
er = .

ϕeϕ ,
.
eϕ = − .

ϕer ,

whence we easily obtain the formulas (cf. Example 1.2.3)

vr = .
r , vϕ = r .

ϕ ; ar = ..
r − r .

ϕ2 , aϕ = r ..
ϕ + 2

.
r

.
ϕ .

The equations of motion in polar coordinates are therefore

..
r − r .

ϕ2 = f(r)
µ

r
..
ϕ + 2

.
r

.
ϕ = 0 .

(2.11)

2If L = 0 the trajectory is a straight line passing through the origin, which is actually a particular (degenerate)
case of motion on a plane through the origin. Indeed, if r is not identically zero (degenerate case of motion along
a line through the origin) the velocity vector must be parallel to r at all times, and consequently vθ = r

.
θ and

vϕ = r sinθ
.
ϕ vanish identically. Therefore the angles θ and ϕ are constant, and the trajectory lies on the straight

line passing through the origin in the direction of the constant vector er (including the degenerate case in which.
r is identically zero and the particle is at rest on a point of the latter line). Taking the line of the motion as the x
axis we have r = |x| and er = sgnx i, so that F(r) = sgnxf(|x|) i and V(r) = V(|x|). Thus when L = 0 the motion
takes place in one dimension under the conservative force F(x) = sgnxf(|x|) —or, equivalently, the potential
V(|x|)—, a problem studied in the previous chapter.
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Motion in a central potential

Figure 2.2. Infinitesimal area swept by the position vector r.

2.2.2 Law of motion and equation of the trajectory

In order to determine the trajectory described by the particle (i.e., r as a function of ϕ or
vice versa) and the law of motion (i.e., r and ϕ as functions of t) it is easier to use the laws
of conservation of energy and angular momentum, as we shall next see. Indeed, the angular
momentum of the particle is given by

L = Lez = µr× .
r = µrer × ( .

rer + r .
ϕeϕ) = µr2 .

ϕez ,

so that

µr2 .
ϕ = L > 0 . (2.12)

From the previous equation (or, more precisely, our choice of the z axis in the direction of L) it
follows that

.
ϕ(t) > 0 , ∀t ;

in particular, if the trajectory surrounds the origin it must be traversed in an anticlockwise direc-
tion. Note also that the second equation of motion (2.11) is just the time derivative of Eq. (2.12)
(divided by µr ).

An immediate consequence of the conservation of angular momentum is the so-called law of
areas, first formulated by Johannes Kepler in the early 17th century. Indeed, note that the area
A(ϕ) swept by the particle’s position vector when moving between two points on its trajectory
with polar coordinates (r(ϕ0),ϕ0) and (r(ϕ),ϕ) is given by

A(ϕ) = 1
2

∫ϕ
ϕ0

r2(α)dα

(cf. Fig. 2.2). Since
.
A = dA

dϕ
.
ϕ = 1

2
r2 .
ϕ = L

2µ
(2.13)

is constant, the area ∆A swept over a time ∆t is simply

∆A = L
2µ
∆t .

In other words, the particle sweeps out equal areas in equal times as it moves along its trajectory
(law of areas). Note that this property is valid for any central force f(t, r,

.
r)er , more general

than (2.9), since it only requires the conservation of angular momentum.
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2.2 Constants of motion. Law of motion and equation of the trajectory. Bounded Orbits

We can use the conservation law of angular momentum to express
.
ϕ in terms of r and the

angular momentum L as

.
ϕ = L

µr2 . (2.14)

Substituting this expression into the energy conservation equation we immediately obtain

E = 1
2
µ

.
r2 + V(r) = 1

2
µ

.
r2 + 1

2
µr2 .

ϕ2 + V(r) = 1
2
µ

.
r2 + L2

2µr2 + V(r) , (2.15)

or equivalently,

1
2
µ

.
r2 +UL(r) = E , (2.16)

where the effective potential UL(r) is defined by

UL(r) := V(r)+ L2

2µr2 . (2.17)

Although UL depends on the (constant) value of the angular momentum, we shall from now on
adhere to the customary practice of dropping the subindex L and simply writing U instead of
UL. Note also that the effective force generated by the last term in U(r), namely

− ∂
∂r

(
L2

2µr2

)
= − ∂

∂r

(
L2

2µr2

)
er = L2

µr3 er = µr .
ϕ2 er =

µv2
ϕ

r
er ,

can be interpreted as a centrifugal force. Again, it is easy to see that the first equation of mo-
tion (2.11) is the time derivative of Eq. (2.15) (divided by µ

.
r ). In other words, the laws of conser-

vation of energy and angular momentum are obtained by integrating once with respect to time t
the equations of motion (2.11).

Equations (2.12)-(2.16) easily yield the law of motion and the equation of the trajectory in
implicit form. Indeed, the law of motion is directly obtained by integrating Eq. (2.16) (after
separating variables) and using the conservation of angular momentum:

t = ±
√
µ
2

∫
dr√

E −U(r) , ϕ = L
µ

∫
dt
r2(t)

, (2.18)

where it is understood that in the second equation we must substitute the value of r(t) obtained
from the first one. (We shall see later, however, that these equations are almost never the easiest
way of finding the law of motion.)

As to the equation of the trajectory, from Eq. (2.16) it follows that

µ
2

.
ϕ2r ′2(ϕ)+U(r) = E ,

where (as we shall do throughout this section) we have denoted by a prime the derivative with
respect to the angle ϕ. Using Eq. (2.14) to express

.
ϕ as a function of r we obtain

L2

2µ

(
r ′

r2

)2

+U(r) = E .

Introducing the dependent variable

u = 1
r
,
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we can rewrite the previous equation as

u′2 = 2µ
L2

(
E −U(1/u)) , (2.19)

whose integration yields the equation of the trajectory:

ϕ = ± L√
2µ

∫ 1/r du√
E −U(1/u) . (2.20)

In practice, to find the equation of the trajectory it is sometimes convenient to differentiate
Eq. (2.19) with respect to ϕ, thus obtaining a second-order equation that is often easier to inte-
grate than (2.19). Indeed, proceeding in this way we obtain

2u′u′′ = 2µ
L2u2

dU
dr

u′ , (2.21)

and therefore, taking into account the definition (2.17) of U ,

u′′ = µ
L2u2

dU
dr

= µ
L2u2

(
dV
dr

− L
2

µ
u3

)
,

or equivalently,

u′′ +u = − µ
L2u2 f(1/u) . (2.22)

The latter equation is known as Binet’s equation. Binet’s equation, written as

f(r) = − L2

µr2 (u
′′ +u) ,

is often used to compute the central force law f(r) if the equation of the trajectory r = r(ϕ) is
known.

• In general, if the equation of the trajectory is known it is possible to find the law of motion im-
plicitly. Indeed, suppose that the equation of the trajectory is r = r(ϕ). From the conservation
of angular momentum we obtain

t = µ
L

∫
r2(ϕ)dϕ , (2.23)

which yields t as a function of ϕ. Inverting this relation we obtain ϕ(t), while the motion of the
radial coordinate can of course be found by substituting ϕ(t) in the equation of the trajectory:

r = r(ϕ(t)) .
Remark. Binet’s equation actually holds for a general central force f(r ,ϕ)er in two dimensions,
even if energy is not conserved unless f is independent of the polar angle ϕ. To derive Binet’s
equation in this more general setting we start from the equation of motion in the radial direction

..
r − r .

ϕ2 = f(r ,ϕ)
µ

.

Since angular momentum is still conserved, we can replace r
.
ϕ2 in the latter equation by L2/(µ2r3).

Using this fact and the identity
d

dt
= .
ϕ

d
dϕ

= L
µr2

d
dϕ

we obtain

L
µr2

d
dϕ

(
L
µr2 r

′
)
− L2

µ2r3 = −
L2u2

µ2 u′′ − L
2u3

µ2 = f(r ,ϕ)
µ

=⇒ u′′ +u = − µ
L2u2 f(1/u,ϕ) .
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Example 2.1. Let us find the equation of the trajectories of a particle of mass µ subject to the
central force

F = k
r3 er .

In this case f(1/u) = ku3, and thus Binet’s equation reduces to

u′′ + Cu = 0 , C := 1+ kµ
L2 .

The solutions of this equation depend on the sign of the dimensionless constant C . More
precisely:

I) C < 0

In this case —which can only happen if k < 0, i.e., if the force is attractive— the general solution
of Binet’s equation is

u = a eγϕ + b e−γϕ ⇐⇒ r = (a eγϕ + b e−γϕ
)−1 (a, b ∈ R) .

with
γ :=

√
|C| > 0 .

It is easy to see that if a and b are both positive the solution can be expressed as

r = A sech
(
γ(ϕ −ϕ0)

)
(A > 0) , (2.24)

if either a or b vanish then
r = e±γ(ϕ−ϕ0) , (2.25)

whereas if a and b have opposite signs we havea

r = A csch
(
γ(ϕ −ϕ0)

)
(A ̸= 0) . (2.26)

The trajectories (2.24) are bounded (r à A), while (2.25) and (2.26) are not (in the former case
r → ∞ for ϕ → ±∞, while in the latter r → ∞ for ϕ → ϕ0). It is also easy to check that all
of these trajectories are of spiral type, since the angle ϕ can take arbitrarily large (positive or
negative) values and r tends to 0 as ϕ → ±∞.

More precisely, for (2.24) ϕ ∈ R and

lim
ϕ→±∞ r(ϕ) = 0 .

Let t±∞ denote the times corresponding to ϕ = ±∞ (i.e., such that ϕ(t±∞) = ±∞). Then
the trajectory (2.24) spirals away from the origin as t → t−∞, reaches its point of minimum
distance to the origin (r = A), and spirals back into the origin as t → t∞. Likewise, for the
trajectory (2.25) ϕ ∈ R and r → 0 as ϕ → ∞ (for the “−” sign in the exponential) or ϕ → −∞
(for the “+” sign). Hence in the first case the trajectory spirals into the origin as t → t∞, while
in the second one it spirals away from the origin as t → t−∞. Finally, for the trajectory (2.26) we
have ϕ > ϕ0 for A > 0 and ϕ < ϕ0 for A < 0, and r → 0 as ϕ → ∞ or ϕ → −∞, respectively.
Thus for A > 0 the trajectory spirals into the origin for t → t∞, while for A < 0 it spirals away
from the origin as t → t−∞. Moreover, in both cases r → ∞ as ϕ → ϕ0, which is a necessary
condition for the trajectory to have an asymptote making an angle ϕ0 with the positive x axis.
In fact, it can be shown that in this case the trajectory does have such an asymptote (see next
exercise).

63



Motion in a central potential
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Figure 2.3. Trajectories of a particle in the central force field F = ker/r3. From left to right
and top to bottom, r = sech(ϕ/3), r = csch(ϕ/3), r = eϕ/3, r = (

ϕ − π
4

)−1
, and

r = sec(ϕ/3). (The orientation of the trajectories agrees with the convention used
in this chapter, according to which Lz > 0 and hence

.
ϕ > 0.)

II) C = 0

In this case k = −L2/µ < 0, and the general solution of Binet’s equation is

u = a+ bϕ ⇐⇒ r = 1
a+ bϕ (a,b ∈ R) , (2.27)

so that ϕ > −a/b for b > 0 and ϕ < −a/b for b < 0. If b = 0 the trajectory is simply a circle
centered at the origin. On the other hand, for b ̸= 0 the trajectories are unbounded (r → ∞
for ϕ → −a/b) and spiraling towards the origin (when b > 0) or away from it (when b < 0), as
r → 0 when ϕ tends to ∞ or −∞. Moreover, it can be shown that in this case the trajectory
does have an asymptote making an angle −a/b with the positive real axis (see next exercise).

III) C > 0

In this case (which takes place, in particular, if k > 0) the equation of the trajectories is

u = 1
A

cos
(
γ(ϕ −ϕ0)

) ⇐⇒ r = A sec
(
γ(ϕ −ϕ0)

)
(A > 0 , 0 à ϕ0 < 2π) , (2.28)
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so that (since r > 0) the angle ϕ can be taken (for instance) in the range
(
ϕ0 − π

2γ ,ϕ0 + π
2γ
)
.

The trajectories are not spiraling, since r á A > 0, but are unbounded (r →∞ as ϕ →ϕ0± π
2γ ).

In fact, it can be shown that in this case the trajectory has two asymptotes making an angle
ϕ0 ± π

2γ with the positive real axis.

Note. If C à 0 (and, in particular, k < 0), the trajectories in the previous example are generically
called Cotes spirals.

aMore precisely, in cases (2.24) and (2.26) the parameters A and ϕ0 are given by

ϕ0 = log |b/a|
2γ

, A = sgna
2
√|ab| .

Exercise. Show that a plane curve with polar equation r = f(ϕ) has an asymptote making an
angle α with the positive x axis provided that

lim
ϕ→αf(ϕ) = ∞ , c := lim

ϕ→αf(ϕ) sin(ϕ −α) <∞,

and in that case the Cartesian equation of the asymptote is cosαy − sinαx = c. Using this
result, prove that:
i) The trajectory (2.26) has an asymptote of equation

cosϕ0y − sinϕ0 x = A
γ
.

ii) The trajectory (2.27) with b ̸= 0 has an asymptote of equation

cosϕ0y − sinϕ0 x = 1
b
, ϕ0 := −a/b .

iii) The trajectory (2.28) has two asymptotes of equations

cos
(
ϕ0 ± π

2γ
)
y − sin

(
ϕ0 ± π

2γ
)
x = ∓A

γ
.

The energy of a trajectory r = r(ϕ) can be computed from Eq. (2.19) and the definition (2.17)
of U , namely

E = L2

2µ
(u′2 +u2)+ V(1/u) . (2.29)

Since E = µv2/2 + V(1/u), the particle’s speed as a function of its distance r to the origin is
given by

v = L
µ

√
u′2 +u2 . (2.30)

Both formulas can also be obtained directly, taking into account that

v2 = .
r2 + r2 .

ϕ2 = .
ϕ2(r ′2 + r2) = L2

µ2r4

(
u′2

u4 +
1
u2

)
= L2

µ2

(
u′2 +u2) .

In Example 2.1 we can take

V(r) = −
∫
f(r) dr = −k

∫
dr
r3 =

k
2r2 ,
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and thus

E = L2

2µ
(u′2 +u2)+ k

2
u2 = L2

2µ
(
u′2 + Cu2).

For instance, for the trajectories (2.24) it is easily checked that

E = −L
2|C|

2µA2 < 0 ,

while for (2.26) and (2.28) we have

E = L2|C|
2µA2 > 0 .

It is also immediate to verify that the energy of the trajectories (2.27) is

E = L2b2

2µ
á 0 ,

while the trajectories (2.25) have energy E = 0. These results agree with the fact that the trajec-
tories (2.24) are bounded while (2.26), (2.27) (if b ̸= 0) and (2.28) are unbounded. Indeed, note
that, as in this case

lim
r→∞V(r) = 0 ,

if the particle reaches infinity we must necessarily have

E = 1
2
µv2∞ á 0 .

Example 2.2. Let us find the central force causing a particle to describe the spiral r = aϕ. To
this end, it suffices to substitute u = 1/(aϕ) into Binet’s equation, which yields

f(r) = − L2

µr2 (u
′′ +u) = − L2

µar2

(
2
ϕ3 +

1
ϕ

)
= − L2

µar2

(
2a3

r3 + a
r

)
= − L2

µa3

(
2a5

r5 + a
3

r3

)
.

The motion of the angular coordinate ϕ is easily determined from Eq. (2.23):

t = µ
L

∫
a2ϕ2 dϕ = µa2

3L
(
ϕ3 −ϕ3

0

)
=⇒ ϕ =

(
3L
µa2 t +ϕ3

0

)1/3

,

with ϕ0 =ϕ(0), whence it follows that

r = aϕ = a
(

3L
µa2 t +ϕ3

0

)1/3

.

The energy of this trajectory is computed without difficulty using Eq. (2.29). To this end, we
first need to find the potential, which is given by

V(r) = L2

µa3

∫ (
2a5

r5 + a
3

r3

)
dr = − L2

2µa2

(
a4

r4 +
a2

r2

)

up to an arbitrary constant that has been taken equal to zero so that

lim
r→∞V(r) = 0 .

Substituting into Eq. (2.29) we obtain

E = L2

2µ
(u′2 +u2)− L2

2µ
(a2u4 +u2) = L2

2µ
(u′2 − a2u4) = 0 .
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By the law of conservation of energy, the particle reaches infinity with zero speed. The speed of
the particle at any point on the trajectory can be computed using Eq. (2.30), but since we know
the potential V and the energy E it can be more directly obtained from the energy equation:

E = 0 = 1
2
µv2 + V(r) = 1

2
µv2 − L2

2µa2

(
a4

r4 +
a2

r2

)
=⇒ v = L

µr2

√
r2 + a2 .

From this equation it also follows that, as we already knew, v → 0 for r →∞.

Exercise. If we apply Binet’s equation to a circle of radius a centered at the origin we apparently
obtain a force inversely proportional to the square of the distance from origin:

f(r) = − L
2

aµ
1
r2 . (2.31)

Is this result correct?

Solution. The result is clearly false as stated, since any potential V whose corresponding ef-
fective potential U has some critical point r0 admits a circular orbit r = r0 with energy U(r0)
(cf. Eq. (2.16)). Hence Eq. (2.31) is not correct. This fact is not totally surprising, since to obtain
Binet’s equation from Eq. (2.21) it is necessary to divide by u′, which is not allowed if u = 1/r
is constant. Equation (2.31) is however true if properly interpreted. Indeed, since r = a along
the circular orbit, what this equation actually states is that

f(a) = − L2

µa3 = −µa
.
ϕ2 = −µv

2

a
, (2.32)

i.e., that the central force f(a) along the orbit generates the centripetal acceleration −µv2/a.
Equivalently, (2.32) is the necessary and sufficient condition for the potential U(r) to have
a critical point at r = a. Thus in the case of a circular orbit centered at the origin Binet’s
equation is simply the condition for the existence of such an orbit, and does not provide any
information about the force law at distances from the origin different from the orbit’s radius.

2.2.3 Bounded orbits

As we have just shown in the previous section, the motion of the radial coordinate r is deter-
mined by the law of conservation of energy (2.16)-(2.17). Formally, this is the equation of motion
of a particle of mass µ in the one-dimensional potential U(r). For this reason, most of the results
from Section 1.5 are also valid in the present situation. For instance, from Eq. (2.16) it follows
that the motion can only take place in the region defined by the inequality

U(r) = V(r)+ L2

2µr2 à E . (2.33)

It is however important to note that, unlike the variable x in Section 1.5, the coordinate r can
only take non-negative values.

Example 2.3. For the Kepler potential

V(r) = −k/r , with k > 0 ,

the effective potential

U(r) = −k
r
+ L2

2µr2
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behaves as shown in Fig. 2.4. Indeed, U(r) diverges as L2/(2µr2) for r → 0 and tends to zero
as −k/r for r →∞. Moreover,

U ′(r) = k
r2 −

L2

µr3 =
k
r3

(
r − L2

kµ

)
,

so that U decreases for 0 < r < a := L2/(kµ) and increases for r > a, attaining its minimum
value at r = a. The particle’s energy must be greater than or equal to this minimum value,
given by

U(a) = − k
2a

= −k
2µ

2L2 =: Emin .

From Fig. 2.4 it follows that the trajectories with energy E á 0 are unbounded, since in this
case the inequality (2.33) implies that r ∈ [r0,∞), where r0 > 0 is the only root of the equation
U(r) = E. Therefore in this case the particle “arrives” from infinity, reaches a minimum dis-
tance from the origin equal to r0 (which is a turning point of U ) and goes back to infinity. On
the contrary, if Emin < E < 0 then r1 à r à r2, where r1 < r2 are the two roots of the equation
U(r) = E (cf. Fig. 2.4), which are again turning points. Therefore in this case the trajectory is
bounded and stays away from the origin. Finally, if E = Emin then the trajectory is the circle
r = a (cf. Fig. 2.4).

Figure 2.4. Effective potential U(r) for the Kepler potential V(r) = −k/r (with k > 0).

Exercise. Repeat the previous discussion for the potential V(r) = k/(2r2) of Example 2.1.

Solution. The effective potential is in this case given by

U(r) = k
2r2 +

L2

2µr2 =
L2

2µ
C
r2 , (2.34)

with C = 1 + (kµ/L2). Since L2/(2µ) > 0, the behavior of U depends on the sign of C
(cf. Fig. 2.5).

i) For C < 0, the trajectories with energy E á 0 are unbounded and can reach the origin, since
the allowed region for such energies is the whole semiaxis r á 0. On the other hand, for E < 0
the allowed region is an interval of the form [0, r0], where r0 > 0 is a turning point. Thus
in this case the trajectories with negative energy are bounded but fall into the origin. Note
that this is consistent with our previous analysis, since for C < 0 the trajectories with positive
energy L2|C|/(2µA2) are given by Eq. (2.26) and those with zero energy by Eq. (2.25), whereas
the trajectories with negative energy −L2|C|/(2µA2) obey Eq. (2.24).
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ii) For C = 0 the effective potential vanishes identically. Thus in this case the trajectories
with positive energy are unbounded and fall into the origin, since the allowed region is again
the semiaxis r á 0. These trajectories are the curves (2.27) with b ̸= 0, whose energy is
indeed L2b2/(2µ) > 0. On the other hand, for E = 0 all the points on the semiaxis r á 0 are
equilibrium solutions of U(r) (since U ′(r) = 0 and U(r) = E = 0 for all r ). Hence in this case
the possible trajectories are the circles r = r0 with arbitrary r0 á 0 (i.e., the curves (2.27) with
b = 0).

iii) Finally, for C > 0 we must have E > 0, and all the trajectories reach infinity but stay away
from the origin (indeed, the allowed region is an interval of the form [r0,∞], where r0 is a
turning point). As we saw above, these trajectories have equation (2.28) and their energy is
indeed L2C/(2µA2) > 0.

r

U(r)

r

U(r)

r0
r

U(r)

Figure 2.5. Plot of the effective potential (2.34) for C < 0 (left), C = 0 (middle) and C > 0 (right).

Of particular interest are bounded orbits, in which the radial coordinate moves between two
consecutive turning points 0 < r1 < r2 of the effective potential U(r) (cf. Fig. 2.6). In this case,
the points on the trajectory at the minimum distance r1 from the origin are called periapsides

or pericenters (perigees, perihelia or periastra3 if the center of force is respectively Earth, the
Sun or a star), while those at the maximum distance r2 are called apoapsides or apocenters

(apogees, aphelia or apoastra4). Both of these types of points are jointly referred to as apsides5

(or apsidal points).
As we saw in Section 1.5, the motion of the radial coordinate is in this case periodic in time,

r

U(r)

E

r1 r2

Figure 2.6. Effective potential U(r) admitting a bounded orbit of energy E with r1 à r à r2,
where r1 < r2 are two consecutive turning points of U for the energy E.

3Singular periapsis, perigee, perihelion and periastron.
4Singular apoapsis, apogee, aphelion and apoastron.
5Singular apsis.
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Figure 2.7. Precession of the periapsis in a bounded orbit. The circles r = r1 and r = r2 (min-
imum and maximum values of the radial coordinate) have been drawn in red, while
the dashed black segment represents the line ϕ = ∆ϕ12 joining the origin with an
apoapsis.

with period (depending in general on the energy and the angular momentum)

τr =
√

2µ
∫ r2

r1

dr√
E −U(r) . (2.35)

However, this does not mean that the particle’s motion is periodic. Indeed, the necessary and
sufficient condition for the motion to be periodic is that when the radial coordinate r completes
a certain integer number of its periods the angle ϕ increases by an integer multiple of 2π, so
that the particle returns to its starting point. Obviously, this is equivalent to requiring that the
bounded orbit be closed. Let us next examine under what conditions this will be the case.

To begin with, when the radial coordinate r increases from r1 to r2 the variable u = 1/r
decreases, and hence dϕ

du < 0 (since
.
ϕ = dϕ

du
.
u > 0), so that we must take the minus sign in

Eq. (2.20). Setting (without loss of generality) ϕ(r1) = 0 we obtain

ϕ = − L√
2µ

∫ 1/r

1/r1

du√
E −U(1/u) =

L√
2µ

∫ 1/r1

1/r

du√
E −U(1/u) =: ϕ1(r) . (2.36)

In particular, when r reaches its maximum value r2 the angle ϕ increases by

∆ϕ12 =ϕ1(r2) = L√
2µ

∫ 1/r1

1/r2

du√
E −U(1/u) . (2.37)

On the other hand, when r decreases from r2 to r1 the variable u increases, so that we should
take the “+” in Eq. (2.20). In other words, we have

ϕ = ∆ϕ12 + L√
2µ

∫ 1/r

1/r2

du√
E −U(1/u) =: ϕ2(r) (2.38)

Thus when r takes once again its minimum value r1 the angle ϕ has increased by

∆ϕ =ϕ2(r1) = 2∆ϕ12 .

The displacement of the periapsis ∆ϕ, defined as the increase in the azimuthal angleϕ between
two consecutive periapsides, is thus given by

∆ϕ =
√

2L2

µ

∫ 1/r1

1/r2

du√
E −U(1/u) =

√
2L2

µ

∫ r2

r1

dr
r2
√
E −U(r) . (2.39)

70



2.2 Constants of motion. Law of motion and equation of the trajectory. Bounded Orbits

In general, ∆ϕ is not an integer multiple of 2π, and thus the particles does not return to its
initial position (i.e., the point with polar coordinates r = r1, ϕ = 0) when the coordinate r takes
the value r1 for the second time (cf. Fig. (2.7)). The necessary and sufficient condition for the
motion to be periodic —or, equivalently, the orbit to be closed— is that after n periods of the r
coordinate the increase of the angle ϕ, which is obviously equal to n∆ϕ, be an integer multiple
2mπ of 2π. We have thus proved the following:

The motion on a bounded orbit in which r varies between two consecutive turning points r1 <
r2 of the effective potential U is periodic if and only if the orbit is closed. The necessary and
sufficient condition for this to happen is that the displacement of the periapsis (2.39) be a
rational multiple of 2π.

Remark. According to Bertrand’s theorem, the only central potentials for which all bounded
orbits are closed (and, hence, periodic) are the harmonic potential (V(r) = 1

2kr
2 with k > 0) and

the Kepler potential (V(r) = −k/r with k > 0). ■

Exercise. Prove that the orbits in a central force field are symmetric about the line joining the
origin with an apsis.

Solution. The function u(ϕ) is a solution to Binet’s equation, which is invariant under the
transformations ϕ , −ϕ and ϕ , ϕ +ϕ0 with ϕ0 an arbitrary constant. Hence if u(ϕ) is
a solution so are u(−ϕ), u(ϕ + ϕ0), and u(ϕ0 − ϕ), for every ϕ0 ∈ R. Since the angle ϕ
does not appear explicitly in Binet’s equation, we can assume without loss of generality that
the apsis considered has polar angle ϕ = 0. The orbit will then be symmetric about this apsis
provided that u(ϕ) = u(−ϕ). Since u(−ϕ) is also a solution of Binet’s equation, in order
to prove the latter equality it suffices to show that u(ϕ) and g(ϕ) = u(−ϕ) satisfy the same
initial conditions atϕ = 0, i.e., that u(0) = g(0) and u′(0) = g′(0). The first of these equalities
is obvious, while the second one easily follows from the fact that u′(0) = 0, since by definition
of apsis u has a maximum or a minimum at ϕ = 0.

Exercise. Show that the displacement of the apoapsis (increase in the angle ϕ between two
consecutive apoapsides) is also given by Eq. (2.39).

Solution. Since u(−ϕ) = u(ϕ) by the previous exercise, if the polar angle of a periapsis is
ϕ = 0 there are two consecutive apoapsides of the orbit at angles ϕ = ±∆ϕ12, and thus their
angular displacement is again 2∆ϕ12 = ∆ϕ.

Remark. From the previous considerations it also follows that u(ϕ + ∆ϕ) = u(ϕ) (indeed, by
definition of ∆ϕ both u(ϕ) and u(ϕ+∆ϕ) are solutions of Binet’s equation with the same initial
conditions u(0) = 1/r1, u′(0) = 0 at ϕ = 0.) Thus u(ϕ) is an even periodic function of period
∆ϕ. ■

Exercise. Find the period of a circular orbit r = a in a central potential.

Solution. The conservation of angular momentum implies that

ϕ(t) =ϕ(0)+ Lt
µa2 .

Hence the motion is periodic, with period τ = 2πµa2/L. In general, the period of a closed
orbit around the origin in a central potential can be found from the law of areas through the
formula τ = 2µA/L, where A is the area enclosed by the curve. (We are actually assuming that,
as is usually the case, r(ϕ) is a one-valued function of ϕ).
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Motion in a central potential

Example 2.4. For the harmonic potential V(r) = 1
2 kr

2, with k > 0, the effective potential U(r)
has the appearance of Fig. 2.8. Therefore in this case all orbits are bounded. The periapsis
displacement of any of these orbits is given by

∆ϕ =
√

2L2

µ

∫ 1/r1

1/r2

du√
E − L2

2µ u2 − k
2u2

=
√

2L2

µ

∫ u1

u2

udu√
− L2

2µ u4 + Eu2 − k
2

,

where u1 > u2 are the two roots of the equation − L2

2µ u
4+Eu2− k

2 = 0 . Performing the change

of variable s = u2 the last integral becomes

∆ϕ =
∫ s1
s2

ds√
p(s)

,

where

p(s) = −s2 + 2µE
L2 s − kµ

L2 = −
(
s − µE

L2

)2

+ µ
2E2

L4

(
1− kL2

µE2

)
(2.40)

and s1 > s2 are the two roots of the equation p(s) = 0 (obviously, si = u2
i ). Performing then

the change of variable

s = µE
L2 +

µE
L2

(
1− kL2

µE2

)1/2
sinθ , −π

2
à θ à

π
2
, (2.41)

we finally obtain

∆ϕ =
∫π/2
−π/2

dθ = π .

Since ∆ϕ is a rational multiple of 2π, all the orbits are periodic (in agreement with Bertrand’s
theorem).

Figure 2.8. Effective potential U(r) for the harmonic potential V(r) = kr2/2 (with k > 0).

Exercise. Show that all the orbits of the harmonic potential V(r) = kr2/2 (with k > 0) are
ellipses centered at the origin, and compute the period of the motion.

Solution. The equation of the orbits is in this case

ϕ =
√
L2

2µ

∫ 1/r du√
E − L2

2µ u2 − k
2u2

=
∫ 1/r udu√

−u4 + 2µE
L2 u2 − kµ

L2

= 1
2

∫ 1/r2
ds√
p(s)

,
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with p(s) defined by Eq. (2.40). Performing the change of variable (2.41) (note that, as seen in
Example 2.4, in this case E2 á kL2/µ) we obtain

ϕ =ϕ0 + 1
2

arcsin


L2

µEr2 − 1√
1− L2k

µE2

 =⇒ L2

µEr2 = 1+
√

1− L2k
µE2 sin

(
2(ϕ −ϕ0)

)
.

Taking, without loss of generality, ϕ0 = π/4, the above equation can be written as

r2 = α
1− e cos 2ϕ

, with α = L2

µE
, e =

√
1− L2k

µE2 à 1

(and e = 1 if and only if L = 0). In Cartesian coordinates,

r2 − er2 cos 2ϕ = x2 +y2 − e(x2 −y2) = (1− e)x2 + (1+ e)y2 = α ,

which is the equation of an ellipse centered at the origin with semiaxes

a =
√

α
1− e , b =

√
α

1+ e .

The period of the motion τ is easily computed using the law of areas:

Lτ
2µ

= πab = πα√
1− e2

= πL2/µE√
L2k/µE2

= πL√
kµ

=⇒ τ = 2π
√
µ
k
.

Note, in particular, that in this case the period is independent of E and L, and is therefore the
same for all orbits.

Note. In this case, the equation of the orbits can be obtained more easily by solving the equa-
tions of motion in Cartesian coordinates, namely

..
x + k

µ
x = 0 ,

..
y + k

µ
y = 0 .

Indeed, callingω = √k/µ and setting, without loss of generality,
.
x(0) = 0, y(0) = 0 (i.e., taking

the x axis in the direction of an apsisa) we obtain

x = a cos(ωt) , y = b sin(ωt) ,

with a and b real constants, which are the parametric equations of an ellipse centered at the
origin with semiaxes |a| and |b|. (In fact, from the choice of the x axis it follows that a > 0, and
the condition

.
ϕ > 0 implies that

.
y(0) = bω > 0, i.e., that b > 0.) From the above equations it

also follows that the period of the motion is

τ = 2π
ω

= 2π
√
µ
k
.

aIndeed, at an apsis we have
.
r = vr = 0, and hence r is perpendicular to

.
r.

Exercise. Find the equation of the orbits for the repulsive harmonic potential V(r) = −kr2/2
(with k > 0).
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Motion in a central potential

Example 2.5. According to Einstein’s theory of general relativity, the potential felt by a particle
of mass m at a distance r from a mass M ≫m fixed at the origin is effectively given by

V(r) = −GMm
r

− GML2

mc2r3 ,

where L > 0 is the particle’s angular momentum. In planetary motion the general relativity
correction is much smaller than the Kepler potential term. Indeed, the quotient of the two
terms in V(r) is given by L2/(m2c2r2), which for nearly circular orbits can be estimated by
taking L =mrv :

(mrv)2

m2c2r2 =
v2

c2 .

The velocity v of a planet in the solar system is at most 59 Km/s (Mercury’s maximum veloc-
ity), so that v2/c2 = O(10−8

)
. In spite of this fact, the general relativity correction causes a

displacement of the periapsis of the planetary orbits slightly different from 2π, so that these
orbits are in general not closed as is the case for the Kepler potential. The periapsis displace-
ment, given bya

∆ϕ =
√

2L2

m

∫ u1

u2

du√
E +GMmu− L2

2m u2
(
1− 2GM

c2 u
) , (2.42)

where u2 < u1 are the two positive roots of the cubic polynomial under the square root, cannot
be expressed in terms of elementary functions. However, since the general relativity correction
is very small it is possible to compute it approximately to order c−2 or, more accurately, to
order 2 in the small dimensionless parameterb GMm/(Lc), as follows. We start by writing

∆ϕ = 2
∫ u1

u2

(
1− 2GM

c2 u
)−1/2[2m

L2

(
E +GMmu)(1− 2GM

c2 u
)−1

−u2
]−1/2

du

≃ 2
∫ u1

u2

(
1+ GM

c2 u
)[

2m
L2

(
E +GMmu)(1+ 2GM

c2 u
)
−u2

]−1/2
du

= 2
(

1− 4G2M2m2

L2c2

)−1/2 ∫ u1

u2

(
1+ GM

c2 u
)
P(u)−1/2 du,

where P(u) is the cubic polynomial

P(u) = −u2 + 2m
L2

(
1− 4G2M2m2

L2c2

)−1[
E +GMm

(
1+ 2E

mc2

)
u
]

and we have taken into account that GMu/c2 ∼ GM/(c2a) = O(v2/c2) (see footnote b) to

approximate the factor
(
1− 2GM

c2 u
)−1/2

. Likewise,

(
1− 4G2M2m2

L2c2

)−1/2(
1+ GM

c2 u
)
≃
(

1+ 2G2M2m2

L2c2

)(
1+ GM

c2 u
)
≃ 1+ 2G2M2m2

L2c2 + GM
c2 u,

and hence

∆ϕ ≃ 2
∫ u1

u2

(
1+ 2G2M2m2

L2c2 + GM
c2 u

)
P(u)−1/2 du .

The quadratic polynomial P(u) differs from the cubic polynomial appearing under the square
root in Eq. (2.42) by terms of order c−2, so the positive roots u2 < u1 of the latter polynomial
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are approximately equal to the two roots u∗2 < u
∗
1 of P(u). Since P(u) = (u∗1 −u)(u−u∗2 ) we

thus have

∆ϕ ≃ 2
∫ u∗1
u∗2

(
1+ 2G2M2m2

L2c2 + GM
c2 u

)
[(u∗1 −u)(u−u∗2 )]−1/2 du =

(
1+ 2G2M2m2

L2c2

)
I0+ GMc2 I1,

with

Ik := 2
∫ u∗1
u∗2
uk[(u∗1 −u)(u−u∗2 )]−1/2 du .

The latter integrals are easily computed by the standard change of variable

u = 1
2
(u∗1 +u∗2 )+

1
2
(u∗1 −u∗2 ) sinθ , −π

2
à θ à

π
2
,

with the result

I0 = 2
∫π/2
−π/2

dθ = 2π , I1 =
∫π/2
−π/2

[
u∗1 +u∗2 + (u∗1 −u∗2 ) sinθ

]
dθ = π(u∗1 +u∗2 ) .

Inserting these values into the last formula for ∆ϕ we obtain

∆ϕ − 2π ≃ 4πG2M2m2

L2c2 + πGM
c2 (u∗1 +u∗2 ) .

Since the constant multiplying u∗1 +u∗2 in the last term is already of order c−2, we can compute
the roots u∗i to order 1, i.e., as the roots of the polynomial

lim
c→∞P(u) = −u

2 + 2GMm2

L2 u+ 2m
L2 E .

We thus obtain

u∗1 +u∗2 ≃
2GMm2

L2 ,

which yields the following formula for the advance of the periapsis after one period of the
radial coordinate r :

∆ϕ − 2π ≃ 6π
(
GMm
Lc

)2

.

Due to the smallness of the dimensionless parameter GMm/LC in the previous expression, we
can use the formula we shall derive in the next section relating the angular momentum to the
semi-major axis a and the eccentricity e of a Keplerian orbit, namely

L2 = GMm2a(1− e2) .

We thus have

∆ϕ − 2π ≃ 6πGM
c2a(1− e2)

.

For planetary motion this effect is very small (of order v2/c2), but it accumulates with each
period. The rate of advance of the periapsis is given by

∆ϕ − 2π
τ

≃ 6πGM
c2a(1− e2)τ

,
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where τ is the period of the radial coordinate r . To order c−2, we can use the formula for τ
derived in the next section for the Kepler potential, namely

τ = 2πa3/2
√
GM

.

We thus finally obtain
∆ϕ − 2π

τ
≃ 3(GM)3/2

c2a5/2(1− e2)
.

If we measure lengths in astronomical units (AU) and times in years we have

GM = 4π2 AU3/year2

and the previous formula reads

∆ϕ − 2π
τ

≃ 24π3

c2a5/2(1− e2)
.

In the solar system the rate of advance of the perihelion is maximum for Mercury, since its orbit
has the smallest semi-major axis (a = 0.38709893 AU) and one of the largest eccentricities
(e = 0.20563069). Taking into account that

c = 2.99792458 ·108 m
s
= 2.99792458 ·108 3.1558149504 · 107

1.495978707 · 1011

AU
year

= 6.3241077×104 AU
year

,

we obtain the following value for the rate of advance of Mercury’s perihelion:

∆ϕ − 2π
τ

≃ 2.08387 · 10−6 rad/year = 42.9829"/century .

aMore precisely, in the previous formula the energy E should be replaced by

mc2

2

[(
1+ E

mc2

)2

− 1
]
= E + E2

2mc2
.

However, the last term is much smaller than the first one, since in planetary motion E≪mc2 (see next footnote).
bTo determine the order of magnitude of GMm/(Lc) in planetary motion, we can use the value of L we shall

obtain from the analysis of the Kepler problem in the next section,

L =m
√
GMa(1− e2) ,

where a and e are respectively the semi-major axis and the eccentricity of the Keplerian orbit. We thus obtain

GMm
Lc

= 1
c

√
GM

a(1− e2)
.

Using the formula for the period τ from the next section,

τ = 2πa3/2
√
GM

,

we have
GMm
Lc

= 2πa
τc
√

1− e2
= v/c√

1− e2
, v := 2πa

τ
.
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In planetary motion the orbital velocity v = 2πa/τ is at most 48.9 Km/s (Mercury’s orbital velocity), while the
factor of (1− e2)−1/2 is only slightly larger than one even for relatively eccentric orbits (1.02 for Mercury). Hence
GMm/(Lc) is typically of order 10−4 in planetary motion. Similarly, using the formula in the next section for the
energy of a Keplerian orbit as a good estimate for E we obtain

E
mc2

≃ GM
2ac2

= 2π2a2

c2τ2
= 1

2

(
v
c

)2

= O(10−8
)
.

2.3 Kepler’s problem. Planetary motion

2.3.1 Kepler’s problem

We shall study in this section Kepler’s problem, i.e., the motion of two bodies of masses m1 and
m2 subject only to their mutual gravitational attraction

F12 = −F21 = − k(r1 − r2)
|r1 − r2|3 ,

where the constant k is given by

k = Gm1m2 = GMµ > 0 .

Therefore in this case

F(r) = − k
r2 er =⇒ f(r) = − k

r2 , V(r) = −
k
r
,

and the associated one-body problem is

µ
..
r = −k r

r3 ,

or equivalently

..
r = −GM r

r3 .

The equation of the orbits is easily obtained from Binet’s equation, which for this potential is
particularly simple:

u′′ +u = µk
L2 .

The general solution of this equation can be expressed in the form

u = µk
L2

(
1+ e cos(ϕ −ϕ0)

)
,

with e and ϕ0 integration constants. Note that we can assume without loss of generality that
e á 0, since if e < 0 it suffices to replace ϕ0 with π +ϕ0 in the previous equation. Clearly ϕ0 is
the polar angle of the orbit’s periapsis, so that taking the x axis as the line joining the origin to
the periapsis we can set ϕ0 = 0. The equation of the orbits reduces then to

r = α
1+ e cosϕ

, with α := L2

µk
. (2.43)

77



Motion in a central potential

The parameter e can be related to the energy and angular momentum of the orbit using Eq. (2.29):

E = L2

2µ
(u′2 +u2)− ku = µk2

2L2

[
e2 sin2ϕ + (1+ e cosϕ)2 − 2(1+ e cosϕ)

]
= µk2

2L2 (e
2 − 1) .

Since e á 0, we have

e =
√

1+ 2EL2

µk2 . (2.44)

Note that, as we saw in Example 2.3, for the Kepler potential E á Emin = −µk2/(2L2), and thus
the quantity under the radical is nonnegative.

• The orbits of Kepler’s potential are conic sections. Indeed, from Eq. (2.43) we obtain

r = α− ex =⇒ x2 +y2 = α2 − 2αex + e2x2 =⇒ (1− e2)x2 +y2 + 2αex = α2 ,

which is a second-degree polynomial equation in (x,y). The type of conic depends on the sign
of 1− e2 as follows:

e > 1 =⇒ hyperbola

e = 1 =⇒ parabola

0 < e < 1 =⇒ ellipse

e = 0 =⇒ circle .

In terms of the energy (cf. Eq. (2.44)),

E > 0 =⇒ hyperbola

E = 0 =⇒ parabola

−µk
2

2L2 < E < 0 =⇒ ellipse

E = −µk
2

2L2 =⇒ circle ,

where −µk2/(2L2) is the minimum energy that a particle of mass µ and angular momentum L
can have. Note, in particular, that this result is consistent with the qualitative discussion of
Example 2.3. Note also that in the Kepler potential all bounded orbits are closed (and hence
periodic), confirming once again Bertrand’s theorem.

2.3.2 Planetary motion

The most interesting case is that of elliptical orbits (including, in particular, circular ones), in
which 0 à e < 1 or E < 0, since it is the relevant case when studying the motion of the planets
around the Sun. The Cartesian equation of the orbits can be rewritten as

(1− e2)
(
x + αe

1− e2

)2

+y2 = α2 + α2e2

1− e2 =
α2

1− e2 ,

which is the equation of an ellipse centered at the point(
− αe

1− e2 ,0
)

(2.45)
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x

y

CF O

B

P

Figure 2.9. Geometry of an elliptical orbit in planetary motion. The point C is the center of
the ellipse, F and O (the origin) its foci and P the periapsis. The distances CP =
a and CB = b are respectively the ellipse’s semi-major and semi-minor axes, and
OC = FC = c is its focal distance. By the defining property of the ellipse we have
BO + BF = 2

√
b2 + c2 = PO + PF = (a− c)+ (a+ c) = 2a =⇒ a = √b2 + c2.

with semi-major and semi-minor axes respectively given by

a = α
1− e2 , b = α√

1− e2
. (2.46)

Recall that the focal distance c (defined as the distance of the center of the ellipse to either of its
foci) and the eccentricity ε of an ellipse with semiaxes a á b are given by

c =
√
a2 − b2 , ε = c

a
(2.47)

(cf. Fig. 2.9). Using the previous expressions for a and b we easily obtain

c = α
1− e2

√
1− (1− e2) = αe

1− e2 = ea =⇒ e = ε .

Therefore the constant e appearing in the equation of the orbits is the eccentricity of the ellipse,
and Eq. (2.44) relates the particle’s energy and angular momentum to the eccentricity of its orbit.
The above equations also determine the position of the foci of the ellipse, which by definition are
the two points on the major axis (in this case, the x axis) at a distance c from the center of the
ellipse. Indeed, from Eqs. (2.45)–(2.47) it follows that the center of the ellipse has coordinates
(−c,0), and thus the foci are the points (−2c,0) and (0,0). In particular, this shows that one
of the foci is the origin of coordinates, that is, the center of gravitational attraction. Hence the
bounded orbits in planetary motion are ellipses, one of whose foci is the Sun (Kepler’s first law).

• From Eq. (2.46) and the expression (2.44) for the eccentricity it follows that the energy of an
elliptical orbit is

E = −µk
2

2L2 (1− e2) = −µk
2α

2aL2 = −
k

2a
. (2.48)

We see, therefore, that the energy depends only on the semi-major axis of the orbit (i.e., it is
independent of its eccentricity).

• The period τ of elliptic orbits in planetary motion is easily determined from the law of ar-
eas (2.13), taking into account that the area of an ellipse is equal to πab:

Lτ
2µ

= πab = π√αa3/2 =⇒ τ = 2πµ
L
√
αa3/2 = 2π

√
µ
k
a3/2 , (2.49)
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or in terms of the energy

τ = πk
√
µ
2
|E|−3/2 .

In particular, the period depends only on the semi-major axis, and is independent of the eccentric-
ity. In planetary motion the formula for the period is usually expressed in the form

τ = 2πa3/2
√
GM

≃ 2πa3/2√
GM⊙

,

M⊙ being the Sun’s mass. Thus (with great approximation) the ratio τ2/a3 is the same for all
planets (Kepler’s third law).

• Let us denote by p and p′ respectively the distance of the perihelion and aphelion of the
ellipse to the origin. From the equation of the orbit (2.43) it easily follows that the particle is in
the perihelion (resp. in the aphelion) when ϕ = 0 (resp. ϕ = π), and therefore

p = α
1+ e = a(1− e) , p′ = α

1− e = a(1+ e) .

This is also apparent from the geometry of the ellipse (cf. Fig. 2.9), since a(1 − e) = a − c,
= a(1+ e) = a+ c.

• It is also straightforward to compute the speed at any point in the orbit from the law of
conservation of energy:

v2 = 2
µ
(
E − V(r)) = k

µ

(
2
r
− 1
a

)
= k
µα

[
2(1+ e cosϕ)− (1− e2)

] = k2

L2 (1+ e2 + 2e cosϕ) .

Note that v is maximal at the perihelion (ϕ = 0) and minimal at the aphelion (ϕ = π), with
respective values

vp = k
L
(1+ e) , vp′ = k

L
(1− e) .

In particular, the quotient
vp
vp′

= 1+ e
1− e

depends only on the eccentricity of the orbit. It is sometimes of interest to express the speeds
vp and vp′ as a function of p and p′, instead of L. To this end, it suffices to note that

α = L2

kµ
= p(1+ e) = p′(1− e) =⇒ L =

√
kµp(1+ e) =

√
kµp′(1− e) ,

and therefore

vp =
√
k
µp

(1+ e) , vp′ =
√

k
µp′

(1− e).

Example 2.6. The mean value over a period of a planetary orbit of any quantity f(r) is defined
by 〈

f(r)
〉

:= 1
τ

∫ τ
0
f(r)dτ .

Taking into account that

dt = dϕ
.
ϕ

= µ
L
r2 dϕ ,

the time integral can be transformed into the following integral over the polar angle ϕ:

〈
f(r)

〉 = µ
τL

∫ 2π

0
r2f(r)dϕ = µα2

τL

∫ 2π

0
f
(

α
1+ e cosϕ

)
dϕ

(1+ e cosϕ)2
.
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Using Eqs. (2.43), (2.46) and (2.49) we obtain

µα2

τL
= µα2

τ
√
αkµ

= 1
τ

√
µ
k
a3/2(1− e2)3/2 = (1− e2)3/2

2π
,

and thus 〈
f(r)

〉 = (1− e2)3/2

2π

∫ 2π

0
f
(
a(1− e2)

1+ e cosϕ

)
dϕ

(1+ e cosϕ)2
.

For instance, the mean distance of a planet to the Sun is given by

⟨r⟩ = a(1− e2)5/2I(e) , I(e) := 1
2π

∫ 2π

0

dϕ
(1+ e cosϕ)3

.

The integral I(e) can be computed using the residue theorem taught in complex analysis
courses, with the result

I(e) = e2 + 2
2(1− e2)5/2

.

We finally obtain

⟨r⟩ =
(

1+ e
2

2

)
a .

Exercise. Integrate Eq. (2.23) to find the relation between t and ϕ in planetary motion.

Solution. Using Eq. (2.43) for the Kepler orbits and the first relation (2.46) we obtain

t = L3

µk2

∫
dϕ

(1+ e cosϕ)2
=
√
µ
k
a3/2(1− e2)3/2

∫
dϕ

(1+ e cosϕ)2
.

To compute the integral, we start by making the change of variable
u = tan(ϕ/2) =⇒ cosϕ = 2 cos2(ϕ/2)− 1 = 2

sec2(ϕ/2)
− 1 = 2

1+u2 − 1 = 1−u2

1+u2 ,

du = 1
2

sec2(ϕ/2)dϕ = 1
2
(1+u2)dϕ,

and hence∫
dϕ

(1+ e cosϕ)2
= 2

∫
du

(1+u2)
[
1+ e(1−u2)

1+u2

]2 = 2
∫

(1+u2)du[
1+ e+ (1− e)u2

]2 .
Setting now

u =
√

1+ e
1− e v

we obtain∫
dϕ

(1+ e cosϕ)2
= 2
(1+ e)2

√
1+ e
1− e

∫
1+ 1+e

1−e v
2

(1+ v2)2
= 2(1− e2)−3/2

∫
1− e+ (1+ e)v2

(1+ v2)2

= 2(1− e2)−3/2
[
(1+ e) arctanv − 2e

∫
dv

(1+ v2)2

]
.
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The last integral is computed integrating by parts in the integral of (1+ v2)−1:

arctanv =
∫

dv
1+ v2 =

v
1+ v2 +

∫
2v2 dv
(1+ v2)2

= v
1+ v2 + 2 arctanv − 2

∫
dv

(1+ v2)2

=⇒ 2
∫

dv
(1+ v2)2

= v
1+ v2 + arctanv.

Putting everything together we obtain:∫
dϕ

(1+ e cosϕ)2
= 2(1− e2)−3/2

(
arctanv − ev

1+ v2

)
.

Since

v
1+ v2 =

√
1− e
1+ e

u
1−e
1+e u2 + 1

=
√

1− e2u
(1− e)u2 + 1+ e =

√
1− e2 tan

(ϕ
2

)
2e+ (1− e) sec2

(ϕ
2

)
=
√

1− e2
sin
(ϕ

2

)
cos

(ϕ
2

)
2e cos2

(ϕ
2

)+ 1− e =
1
2

√
1− e2 sinϕ

1+ e cosϕ

we finally arrive at the formula

t =
√
µ
k
a3/2

2 arctan

(√
1− e
1+ e tan

(ϕ
2

))− e√1− e2 sinϕ
1+ e cosϕ

 ,
where we have discarded the integration constant so that t = 0 at the periapsis ϕ = 0. This ex-
pression is too unwieldy in practice, and the time dependence of r (and hence ϕ) in the Kepler
problem is usually computed inverting Kepler’s equation introduced in the next exercise.

Exercise. Repeat the previous calculation for hyperbolic and parabolic orbits.

Exercise. Given an elliptic orbit of eccentricity e and major semiaxis a, define the eccentric
anomaly ψ(t) by the equation

ωt = ψ− e sinψ, (2.50)

where ω = 2π
τ
=
√
k
µ
a−3/2 is the mean orbital frequency. (Note that

d
dψ

(ψ− e sinψ) = 1− e cosψ á 1− e > 0 ,

so that (2.50) uniquely determines ψ as a function of t by the inverse function theorem.) Show
that the radius vector r(t) can be expressed in terms of the eccentric anomaly through the
equation

r = a(1− e cosψ) . (2.51)

Solution. From the first Eq. (2.18) with

U(r) = L2

2µr2 −
k
r
= ak(1− e2)

2r2 − k
r
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and Eq. (2.48) we easily obtain

t =
√
µ
2k

∫ r
p

s ds√
− s2

2a + s − a
2 (1− e2)

,

where we have chosen as lower limit in the integral the orbit’s perihelion p so that dt/dr > 0
till r reaches the next aphelion (i.e., for 0 à t à τ/2). Since

P(s) := − s
2

2a
+ s − a

2
(1− e2) = 1

2a
[
a2e2 − (s − a)2]

we perform the natural change of variable s = a(1 − e cosβ) in the integral, so that ds =
ae sinβdβ and

P(s) = ae2

2
sin2 β .

Taking into account that p = a(1− e) implies that β = 0 when r = p we finally obtain

t =
√
µa3

k

∫ψ
0
(1− e cosβ)dβ = 1

ω
(ψ− e sinψ)

with r = a(1− e cosψ), as claimed.
Equation (2.50) is usually called in the literature Kepler’s equation. The geometric meaning

of ψ can be understood from Fig. 2.10. Indeed, since the point P on the elliptic orbit and the
point P ′ on the circle of radius a centered at C lie on the same vertical they must have the
same abscissa (measured from the focus F at the origin), namely

a cosψ− c = a(cosψ− e) = r cosϕ .

On the other hand, from the equation of the ellipse in polar coordinates

r = a(1− e2)
1+ e cosϕ

we obtain

r = a(1− e2)− er cosϕ = a(1− e2)− ea(cosψ− e) = a(1− e cosψ),

namely Eq. (2.51).

x

y

P ′

C FQ A

P

ψ

Figure 2.10. Eccentric anomaly ψ of point P on an elliptic orbit (solid blue line). Note that
CF = c = ea, CA = a, and the dashed red curve represents the circle of radius a
centered at C .

83



Motion in a central potential

Note. Strictly speaking, we have proved (2.50)-(2.51) only for one half-period, i.e., for 0 à t à
τ/2 or equivalently 0 à ψ à π. However, using the identities r(t) = r(−t) = r(t + kτ) (with
k ∈ Z) it is straightforward to show that the latter equations are in fact valid for all values of
t and ψ. Indeed, if ψ , −ψ then r does not change in Kepler’s equation and t , −t, which
is again consistent with the identity r(t) = r(−t). Thus Kepler’s equation can be extended to
the interval −τ/2 à t à τ/2, i.e., to a whole period of the motion. Likewise, when ψ changes
by 2kπ (with k ∈ Z) r does not change in Kepler’s equation and t changes by 2kπ/ω = kτ ,
which is consistent with the identity r(t + kτ) = r(τ). This establishes Kepler’s equation for
an arbitrary time t ∈ R.

Exercise. If ψ is the angle ACP ′ in Fig. (2.10), derive Kepler’s equation using the law of areas.

Solution. According to the law of areas, if t is the time taken by the planet to travel from the
periapsis A to the point P in Fig. 2.10 we have

PFA
πab

= t
τ
= ωt

2π
=⇒ PFA = 1

2
ab ·ωt ,

where PFA denotes the area swept by the planet’s position vector as it travels from A to P
along its orbit. On the other hand, from the latter figure it follows that

PFA = PQA− PQF, (2.52)

where PQF and PQA respectively denote the areas of the triangle PQF and the sector delimited
by the elliptic arc AP and the segments PQ and QA. Since the the ellipse in Fig. (2.10) is
obtained dilating the circle of radius a and center C (dashed red line in Fig. 2.10) by b/a in the
vertical direction, we have

PQA = b
a
P ′QA = b

a
(P ′AC − P ′QC) = b

a

(
a2ψ

2
− a

2

2
sinψ cosψ

)

= 1
2
ab(ψ− sinψ cosψ). (2.53)

Here P ′QA is the area of the circular sector delimited by the arc AP ′ and the segments P ′Q and
QA, P ′AC is the area of the circular sector determined by the points P ′, A and C , and P ′QC is
the area of the triangle P ′QC . On the other hand,

QP = b
a
QP ′ = b sinψ, QF = CF − CQ = ae− a cosψ

=⇒ PQF = 1
2
b sinψ · a(e− cosψ). (2.54)

Combining Eqs. (2.52)-(2.54) we finally obtain

1
2
ab ·ωt = 1

2
ab(ψ− sinψ cosψ)− 1

2
ab sinψ(e− cosψ) = 1

2
ab(ψ− e sinψ),

which yields Kepler’s equation (2.50).

Exercise. Find the analogue of Kepler’s equation for hyperbolic orbits of the Kepler potential.

Solution. In this case the energy is positive, and can be expressed as k/(2a) if we define a =
α/(e2 − 1) (cf. Eq. (2.29)). Proceeding as for elliptic orbits and taking into account that

L2 = kµα = kµa(e2 − 1)

84



2.3 Kepler’s problem. Planetary motion

we arrive at the formula

t =
√
µ
2k

∫ r
p

s ds√
P(s)

, (2.55)

where now

P(s) := s2

2a
+ s − a

2
(e2 − 1) = 1

2a
[
(s + a)2 − a2e2]

and s = p = α/(e + 1) = a(e − 1) is obtained for β = 0. This suggests performing the change
of variable s = a(e coshβ− 1), so that ds = ae sinhβdβ, P(s) = a2e2 sinh2 β and

t =
√
µ
k
a3/2

∫ψ
0
(e coshβ− 1)dβ = 1

ω
(e sinhψ−ψ),

with ω = √
k/µ a−3/2 and r = a(e coshψ − 1). The latter is the analogue of Kepler’s equation

for hyperbolic orbits. The motion of the radial coordinate is obtained inverting the relation
ωt = (e sinhψ −ψ) for t as a function of ψ. This is possible, since the RHS of the previous
equation has derivative e coshψ − 1 á e − 1 > 0, and is therefore a monotonically increasing
function of ψ. Strictly speaking, we have established the equations

ωt = e sinhψ−ψ, r = a(e coshψ− 1) (2.56)

for t á 0, or equivalently ψ á 0. However, from the identity r(t) = r(−t) and the fact that
t , −t implies ψ , −ψ and r , r in Kepler’s equation we deduce that Eqs. (2.56) hold for all
real values of t and β.

Exercise. Find the equation of the orbits in the repulsive 1/r potential V(r) = k/r (with k > 0).

Solution. Binet’s equation is in this case

u′′ +u = −kµ
L2 ,

whose general solution can be taken as

u = kµ
L2

(
e cos(ϕ −ϕ0)− 1

)
.

Again, we can assume w.l.o.g. that e > 0 and ϕ0 = 0 (by an appropriate choice of the x axis).
In fact, since r > 0 we must have e > 1. We can thus write

r = α
e cosϕ − 1

, α := L2

kµ
.

All the orbits in this case are clearly unbounded, since r → ∞ for ϕ → ± arccos(1/e). It is also
clear that the polar angle of the periapsis is ϕ = 0, and its distance to the origin is equal to
α/(e − 1). To find the Cartesian equation of the orbit we multiply both sides of the previous
equation by e cosϕ − 1, thus obtaining

r = ex −α =⇒ x2 +y2 = e2x2 − 2αex +α2 ⇐⇒ (e2 − 1)x2 − 2αex −y2 = −α2 ,

or equivalently

(e2 − 1)
(
x − αe

e2 − 1

)2

−y2 = −α2 + α2e2

e2 − 1
= α2

e2 − 1
.
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This is the equation of a hyperbola with center (αe/(e2 − 1),0) and semiaxes

a = α
e2 − 1

, b = α√
e2 − 1

In fact, since ex = α + r > 0 the orbit is the branch of the latter hyperbola in the half-plane
x > 0. The focal distance of the hyperbola is given by

c =
√
a2 + b2 = α2

e2 − 1

√
1+ (e2 − 1) = αe

e2 − 1
= ea,

and hence its eccentricity c/a is equal to the parameter e. This implies that the center of the
hyperbola is the point (c,0), and hence the foci are the points (0,0) and (0,2c). The energy is
now given by

E = L2

2µ
(u′2 +u2)+ ku = µk2

2L2

[
e2 sin2ϕ + (e cosϕ − 1)2 + 2(e cosϕ − 1)

]
= µk2

2L2 (e
2 − 1),

or, using the equation for the semi-major axis,

E = µk2α
2aL2 =

k
2a

.

Finally, the eccentricity can be related to the energy and angular momentum of the orbit
through the equation

e =
√

1+ 2EL2

µk2 ,

which is the same as for the Kepler potential.

Exercise. Find the analogue of Kepler’s equation for the orbits of the repulsive Kepler potential.

Solution. Proceeding as for the Kepler problem and using the formulas

E = k
2a

, L2 = kµα = kµa(e2 − 1)

derived in the previous exercise we again arrive at Eq. (2.55), where now

P(s) := s2

2a
− s − a

2
(e2 − 1) = 1

2a
[
(s − a)2 − a2e2] .

We therefore perform the change of variable s = a(1+ e coshψ), obtaining

t =
√
µ
k
a3/2

∫ψ
0
(e coshβ+ 1)dβ = 1

ω
(ψ+ e sinhψ) .

This is the analogue of Kepler’s equation for this potential.
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3 Lagrangian and Hamiltonian mechanics

3.1 Introduction to the calculus of variations

3.1.1 Fundamental problem of the calculus of variations

The fundamental problem of the calculus of variations (in its simplest version) is that of finding
the extrema (i.e., maxima or minima) of a function of the form

F[y] =
∫ x2

x1

f
(
x,y(x),y′(x)

)
dx

( ′ = d
dx

)
, (3.1)

where f : R3 → R is of class C2 (i.e., twice continuously differentiable). The domain of F consists
of the functions y : [x1, x2] → R (also assumed to be of class C2) that satisfy the boundary

conditions

y(x1) = y1 , y(x2) = y2 (3.2)

with y1, y2 ∈ R fixed. From the mathematical viewpoint,

F : C2
0([x1, x2])→ R

is therefore a function whose domain is the space C2
0([x1, x2]) of scalar functions y : [x1, x2]→

R of class C2 in the interval [x1, x2] satisfying the conditions (3.2). In other words, the applica-
tion F assigns to each function y : [x1, x2]→ R, which can be identified with its graph{(

x,y(x)
)

: x1 à x à x2
} ⊂ R2 ,

the number given by the RHS of Eq. (3.1). A function like F , whose domain is a set of functions,
is usually called a functional. The function f appearing in Eq. (3.1) is called the density of the
corresponding functional F .

Many interesting problems in mathematics and physics reduce to finding the extrema (maxima
or minima) of an appropriate functional of the form (3.1)-(3.2). We shall list below a few of the
most noted ones.

Example 3.1. What is the shortest curve joining two fixed points on a plane?
Let us denote the two fixed points by (xi, yi) (i = 1,2), with x1 ̸= x2 (this can always be

arranged by suitably choosing the axes). If we restrict ourselves, for the sake of simplicity,
to plane curves that are graphs of functions y : [x1, x2] → R, the problem considered is
equivalent to finding the minimum of the length functional

F[y] =
∫ x2

x1

√
1+y′(x)2 dx

with the condition (3.2).

87



Lagrangian and Hamiltonian mechanics

Example 3.2. The brachistochrone problem. A particle of massm is forced to move in a vertical
plane along a curve with fixed endpoints (x1, y1) and (x2, y2), with x1 < x2 and y1 > y2. For
which curve is the time taken by the particle to travel between both endpoints a minimum?

If we neglect friction, the reaction force exerted by the curve on the particle is normal to
the curve at each point. Hence the reaction force does no work, and consequently energy is
conserved:

1
2
mv2 +mgy = E .

If the curve in question is the graph of a function y(x), the differential of time along the curve
is given by

dt = ds
v
=

√
1+y′(x)2√

2g
(
E
mg −y(x)

) dx .

Thus the problem proposed is equivalent to finding the minimum of the functional (propor-
tional to the travel time)

F[y] =
∫ x2

x1

√
1+y′(x)2
y0 −y(x) dx

(
y0 := E

mg

)
(3.3)

with the condition (3.2). Note that from energy conservation it follows that y à y0, and
that the energy (and hence y0) depends only on the particle’s initial velocity v0. Indeed, E =
1
2 mv

2
0 +mgy1, or equivalently y0 = y1 + v2

0
2g ; in particular, y0 = y1 if the particle is initially

at rest.

Example 3.3. Fermat’s principle. What is the trajectory followed by a light ray traveling from a
point (x1, y1) to a second point (x2, y2) in a flat optical medium with refractive index n(x,y)?

According to Fermat’s principle (in the approximation of geometric optics), the trajectory
of the light ray joining the points (x1, y1) and (x2, y2) is the curve for which the time taken
by light to cover the distance between both points is minimum. Suppose, again, that x1 ̸= x2,
and that the trajectory is the graph of a function y(x). By definition of index of refraction, the
speed of light at a point (x,y) of the medium is given by

v(x,y) = c
n(x,y)

,

where c is the speed of light in vacuo. Since

dt = ds
v(x,y)

= n(x,y) ds
c
,

the problem proposed is equivalent to determining the minimum of the functional (propor-
tional to light’s travel time)

F[y] =
∫ x2

x1

n
(
x,y(x)

)√
1+y′(x)2 dx , (3.4)

again with the condition (3.2). The functional (3.4), which has dimensions of length, is called
optical length. Note that if the refractive index is constant F is proportional to the length
functional of the first example, and thus the path followed by light rays in this case is the

88



3.1 Introduction to the calculus of variations

shortest curve joining the points (x1, y1) and (x2, y2). Likewise, if the refractive index is
proportional to (y0 −y)−1/2 the path followed by light is the brachistochrone of the previous
example.

3.1.2 Euler–Lagrange equations

In order to solve the fundamental problem of the calculus of variations formulated in the previ-
ous subsection, we shall proceed in essentially the same way as in real analysis when determining
the extrema of an ordinary function F : R→ R. The key idea is that in both cases the extrema are
points (functions, in this case) for which the variation of the function when we infinitesimally
increase its argument vanishes at first order.

More precisely, suppose that y(x) is an extremum (maximum or minimum) of the func-
tional (3.1) with the condition (3.2). Let η(x) be an arbitrary function (of class C2) satisfying
the conditions

η(x1) = η(x2) = 0 , (3.5)

so that for all ε ∈ R the function yε := y + εη satisfies the boundary conditions (3.2). The
functions yε(x) (with ε ∈ R) form a one-parameter family containing the extremum y(x) for
ε = 0. More informally, if ε is small we can think of yε(x) as a small variation of the extremum
y(x). In any case, if we restrict the functional F to these functions we obtain the scalar function
of one variable

g(ε) := F[yε] =
∫ x2

x1

f
(
x,y(x)+ εη(x),y′(x)+ εη′(x))dx,

which by construction has an extremum at ε = 0. We know that the necessary (although in
general not sufficient) condition for this to happen is that g′(0) = 0. Since

g′(ε) =
∫ x2

x1

∂
∂ε
f
(
x,y(x)+ εη(x),y′(x)+ εη′(x))dx

=
∫ x2

x1

[
∂f
∂y

(
x,y(x)+ εη(x),y′(x)+ εη(x))η(x)+ ∂f

∂y′
(
x,y(x)+ εη(x),y′(x)+ εη(x))η′(x)]dx

we have

g′(0) =
∫ x2

x1

[
∂f
∂y

(
x,y(x),y′(x)

)
η(x)+ ∂f

∂y′
(
x,y(x),y′(x)

)
η′(x)

]
dx .

Hence, if the function y(x) is an extremum of the functional F with the boundary conditions (3.2)
it must satisfy

∫ x2

x1

[
∂f
∂y

(
x,y(x),y′(x)

)
η(x)+ ∂f

∂y′
(
x,y(x),y′(x)

)
η′(x)

]
dx = 0 (3.6)

for any function η(x) satisfying (3.5). Equation (3.6) can be simplified integrating by parts the
last term, since∫ x2

x1

∂f
∂y′

(
x,y(x),y′(x)

)
η′(x)dx

= ∂f
∂y′

(
x,y(x),y′(x)

)
η(x)

∣∣∣∣x2

x1

−
∫ x2

x1

η(x)
d

dx

(
∂f
∂y′

(
x,y(x),y′(x)

))
dx

= −
∫ x2

x1

η(x)
d

dx

(
∂f
∂y′

(
x,y(x),y′(x)

))
dx ,
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where we have taken into account condition (3.5). Substituting back into Eq. (3.6) we finally
obtain

g′(0) = d
dε

∣∣∣∣
ε=0
F[yε] =

∫ x2

x1

[
∂f
∂y

(
x,y(x),y′(x)

)− d
dx

(
∂f
∂y′

(
x,y(x),y′(x)

))]
η(x)dx = 0 .

(3.7)
Since this condition must be verified for any function η satisfying (3.5), the term in square
brackets must vanish identically in the interval [x1, x2], and hence the extremum y(x) must
satisfy the Euler–Lagrange equation

d
dx

(
∂f
∂y′

(
x,y(x),y′(x)

))− ∂f
∂y

(
x,y(x),y′(x)

) = 0 , ∀x ∈ [x1, x2] . (3.8)

• Clearly, the argument leading to the Euler–Lagrange equation (3.8) is still valid if y(x) is only
a local extremum of the functional F .

• It is important to remember that the Euler–Lagrange equation (3.8) is a necessary, but in general
not sufficient, condition for the function y(x) to be an extremum of the functional F . In fact, the
solutions of this differential equation can be regarded as the critical points of F (in the same way
as the points at which the derivative of a function F : R→ R vanishes are the critical points of the
function). Indeed, what the previous argument shows is that the functional F[y] is stationary
(i.e., approximately constant) when y(x) is a solution of the Euler–Lagrange equations. For this
reason, the functions y(x) satisfying the latter equation are usually called stationary points of
the functional (3.1).

• If (as we are assuming throughout) the function f is of class C2, Eq. (3.8) can be written in the
equivalent form

∂2f
∂y′2

y′′ + ∂2f
∂y∂y′

y′ + ∂2f
∂x∂y′

− ∂f
∂y

= 0 .

In particular, if the condition
∂2f
∂y′2

̸≡ 0

is satisfied the previous equation is a second-order ordinary differential equation in the unknown
function y . To find the stationary points of the functional F , we must supplement this equation
with the boundary conditions (3.2).

• Multiplying the left-hand side (LHS) of the Euler–Lagrange equation (3.8) by y′ we obtain

y′
d

dx
∂f
∂y′

−y′ ∂f
∂y

= d
dx

(
y′
∂f
∂y′

)
−y′ ∂f

∂y
−y′′ ∂f

∂y′
= d

dx

(
y′
∂f
∂y′

− f
)
+ ∂f
∂x

.

Hence if y′ ̸= 0 the Euler–Lagrange equation can be written in the equivalent form

d
dx

(
y′
∂f
∂y′

− f
)
+ ∂f
∂x

= 0 . (3.9)

In particular, if f does not explicitly depend on x (that is, if it is a function of y and y′ only),
the function in parentheses in the LHS of Eq. (3.9) is conserved:

∂f
∂x

= 0 =⇒ h := y′ ∂f
∂y′

− f = const. (3.10)

It is said in this case that the function h is a first integral of the Euler–Lagrange equation (3.8),
since when h is conserved the second-order equation (3.8) is equivalent to the first-order equa-
tion (3.10). We shall call h the energy integral, since in many mechanical problems it is equal
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3.1 Introduction to the calculus of variations

to the system’s mechanical energy1. Likewise, if f does not depend on y it follows from the
Euler–Lagrange equation that the partial derivative of f with respect to y′ is conserved:

∂f
∂y

= 0 =⇒ ∂f
∂y′

= const. (3.11)

Example 3.4. The problems set forth in Examples 3.1–3.2 are easily solved using the Euler–
Lagrange equation and its conservation laws (3.10)-(3.11). Indeed, for the length functional
Eq. (3.11) yields

∂f
∂y′

= y′√
1+y′2

= const. =⇒ y′ = const.

Therefore y(x) = ax+b, where the constants a and b must be chosen so that conditions (3.2)
are satisfied. Hence the curve of minimuma length is the line segment joining the given points.

As to the brachistochrone functional (3.3), Eq. (3.10) reads y′2√
1+y′2

−
√

1+y′2
 (y0 −y)−1/2 = −(1+y′2)−1/2(y0 −y)−1/2 = const.

=⇒ (y0 −y)(1+y′2) = 2a ,

with a > 0 constant. Hence

y′ = ±
√

2a
y0 −y − 1 = ±

√
2a−y0 +y
y0 −y ,

and thus

x − x0 = ±
∫ √

y0 −y
2a−y0 +y dy ,

with x0 constant. Performing the change of variable

y0 −y = 2a sin2 θ

we obtain

x − x0 = ∓4a
∫

sin2 θ cosθ
cosθ

dθ = ∓4a
∫

sin2 θ dθ = ∓2a
∫
(1− cos 2θ)dθ = ∓a (2θ − sin 2θ

)
.

The parametric equations of the sought for curve are therefore

x = x0 ∓ a
(
2θ − sin 2θ

)
, y = y0 − 2a sin2 θ = y0 − a(1− cos 2θ) . (3.12)

x

y

y0

0 aπ

y0 − 2a

2aπ

1The energy integral is also called Jacobi integral by some authors.

91



Lagrangian and Hamiltonian mechanics

Figure 3.1. Arc of the cycloid (3.12) with x0 = 0 and “+” sign in a period 0 à θ à π.

These are the equations of an inverted cycloidb traced out by a circle of radius a (cf. Fig. 3.1),
where the constants x0 and amust again be determined imposing the boundary conditions (3.2).

aStricto sensu, we have only shown that the straight line is a stationary point of the length functional.
bNote that the double sign can actually be omitted, since the points on the curve corresponding to the “−”

sign can be obtained from those with the “+” sign changing θ by −θ.

Example 3.5. The Euler–Lagrange equation for the optical length functional (3.4) reads

d
dx

n(x,y)y′√
1+y′2

− √1+y′2 ∂n(x,y)
∂y

= 0 .

This equation can be expressed in a more compact form taking into account that if s is the arc
length along the path of the light ray then

d
ds
=
(

ds
dx

)−1 d
dx

= (1+y′2)−1/2 d
dx

.

In this way we obtain the equation

d
ds

(
n(x,y)

dy
ds

)
= ∂n(x,y)

∂y
.

For instance, if the refractive index does not depend on the y coordinate the previous equation
yields

n(x)
dy
ds

= k =⇒ n2(x)y′2

1+y′2 = k2 =⇒ y′ = ± k√
n2(x)− k2

,

where k is a constant. Thus in this case the equation of the light rays is

y = y0 ± k
∫

dx√
n2(x)− k2

.

In particular, if

n(x) = n0

x
(n0 > 0 , x > 0)

we have

y −y0 = ±k
∫

x dx√
n2

0 − k2x2
= ∓1

k

√
n2

0 − k2x2 =⇒ x2 + (y −y0)2 =
n2

0

k2 .

Therefore the paths of the light rays are in this case arcs of circles whose centers lie on the y
axis.

We shall next consider a more general version of the fundamental problem of the calculus of
variations, in which the functional F depends on n scalar functions y1, . . . , yn of one real variable
x. Equivalently (and more advantageously from the notational point of view), we can regard F as
a function of a single vector-valued function y := (y1, . . . , yn) : R→ Rn. More precisely, consider
the functional

F[y] =
∫ x2

x1

f
(
x,y(x),y′(x)

)
dx , (3.13)
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whose domain is the space of functions y : [x1, x2] → Rn of class C2 on the interval [x1, x2]
satisfying conditions similar to (3.2):

y(x1) = y1 , y(x2) = y2 , (3.14)

for certain fixed vectors y1,y2 ∈ Rn.
As before, in order to find the extrema of the functional (3.13) subject to the boundary condi-

tions (3.14) we consider a variation

yε(x) = y(x)+ εη(x)

about a hypothetical extremum y(x), where the vector-valued function η =: (η1, . . . , ηn) must
satisfy

η(x1) = η(x2) = 0 (3.15)

so that yε verifies conditions (3.14) for all ε. Restricting the functional F to the modified ex-
tremum yε we obtain, as before, the scalar function of one variable

g(ε) := F[yε] =
∫ x2

x1

f
(
x,yε(x),y′ε(x)

)
dx , (3.16)

whose derivative at ε = 0 must vanish. Computing this derivative and integrating by parts, taking
into account conditions (3.15), we easily obtain

g′(0) =
∫ x2

x1

n∑
i=1

[
∂f
∂yi

(
x,y(x),y′(x)

)− d
dx

∂f
∂y′i

(
x,y(x),y′(x)

)]
ηi(x) . (3.17)

Since this expression must vanish identically for all functions ηi satisfying conditions (3.15), we
conclude that the extrema of the functional (3.13) must verify the n Euler–Lagrange equations

d
dx

∂f
∂y′i

− ∂f
∂yi

= 0 , i = 1, . . . , n . (3.18)

Again, the latter equations are only necessary for the function y(x) to be an extremum of the
functional F . Indeed, the solutions of Eqs. (3.18) are actually the critical or stationary points of
the functional (3.13).

• Expanding Eqs. (3.18) we obtain

n∑
j=1

∂2f
∂y′i∂y

′
j
y′′j +

n∑
j=1

∂2f
∂yj∂y′i

y′j +
∂2f
∂x∂y′i

− ∂f
∂yi

= 0 , i = 1, . . . , n .

Hence if the Hessian of the density f with respect to the variables y′i does not vanish identically,
i.e., if

det
(

∂2f
∂y′i∂y

′
j

)
1ài,jàn

̸≡ 0 ,

the Euler–Lagrange (3.18) equations are a system of n second-order ordinary differential equations
in the n unknown scalar functions yi(x) (i = 1, . . . , n), which must be supplemented by the 2n
boundary conditions (3.14).

• Multiplying the LHS of the Euler–Lagrange (3.18) by y′i and summing over i we obtain

n∑
i=1

y′i
d

dx
∂f
∂y′i

−
n∑
i=1

y′i
∂f
∂yi

= d
dx

 n∑
i=1

y′i
∂f
∂y′i

− f
+ ∂f

∂x
= 0 .
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Hence if f does not depend explicitly on the variable x the function

h :=
n∑
i=1

y′i
∂f
∂y′i

− f = y′
∂f
∂y′

− f

is conserved. As in the scalar case, h is usually called the energy (or Jacobi) integral. It is also
evident that if the density f is independent of the variable yi, the derivative of f with respect to
y′i is conserved:

∂f
∂yi

= 0 =⇒ ∂f
∂y′i

= const.

Example 3.6. Let us find the equation of the paths followed by light rays in an optical (three-
dimensional) medium with refractive index n(r).

According to Fermat’s principle, the trajectory r = r(u) of the light ray joining two points
r1, r2 ∈ R3 (where u ∈ [u1, u2] is any parameter along the path) must minimize the time taken
by light to cover the distance between both points. Since

ds
du

=
√

r′2(u) ,

where the prime denotes derivative with respect to u, we have

dt = dt
ds

ds
du

du = 1
v

√
r′2(u) du = n

(
r(u)

)
c

√
r′2(u) du .

Thus the sought for trajectory must minimize the optical length functional (proportional to
the travel time)

F[r] =
∫ u2

u1

n
(
r(u)

)√
r′2(u) du

with the boundary conditions

r(u1) = r1 , r(u2) = r2 .

(Note that in this example u plays the role of x and r that of y.) The Euler–Lagrange equations
for this functional are

d
du

(
∂
∂x′i

(
n
√

r′2
))

−
√

r′2
∂n
∂xi

= d
du

(nx′i√
r′2

)
−
√

r′2
∂n
∂xi

= 0 , i = 1,2,3 ,

where r = (x1, x2, x3). Taking into account that

1√
r′2

d
du

= d
ds
,

the previous equations can be written in the following more geometric fashion:

d
ds

(
n

dr

ds

)
= ∂n
∂r
.
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This is the fundamental equation of geometric optics. For example, if the index of refraction
depends only on r (that is, if the optical medium is spherically symmetric) then

d
ds

(
r×ndr

ds

)
= r× ∂n

∂r
= n′(r) r× r

r
= 0 .

Hence in this case the path of the light ray is contained in a plane passing through the origin of
coordinates (perpendicular to the constant vector nr× dr

ds ).

3.1.3 Variation and variational derivative

Let uus denote by

δy(x) := yε(x)− y(x) = εη(x)
the variation of the function y(x), where the vector-valued function η satisfies the boundary
conditions (3.15). The change in the functional F when its argument y is incremented by δy is
then (using the notation of Eq. (3.16))

F[y+ δy]− F[y] = F[yε]− F[y] = g(ε)− g(0) .

To first order in the small parameter ε, this change is given by

εg′(0) = ε d
dε

∣∣∣∣
ε=0
F[yε] =: δF[y] ,

so that (by definition of derivative) we have

F[y+ δy]− F[y] = ε
(

d
dε

∣∣∣∣
ε=0
F[yε]

)
+ o(ε) = δF(y)+ o(ε) .

The functional δF[y] is called the variation of F at y. From Eq. (3.17) it follows that we can write
this variation as

δF[y] =
∫ x2

x1

δf
δy

(
x,y(x),y′(x)

) · δy(x)dx , (3.19)

where

δf
δy

:= ∂f
∂y

− d
dx

∂f
∂y′

. (3.20)

The (n-component) vector-valued function
δf
δy
(x,y,y′) is called the variational derivative of the

density f with respect to the function y(x). In particular, with this notation the Euler–Lagrange
equations (3.18) of the functional (3.13) simply express the vanishing of the variational derivative
of its density f :

δf
δy

= 0 ⇐⇒ δF[y] = 0 . (3.21)

In other words, if y(x) satisfies the Euler–Lagrange equations for a density f(x,y,y′) the varia-
tion F(y+ δy)− F(y) of the corresponding functional F is o(ε), so that F is “stationary” at y(x)
(i.e., does not vary appreciably near y(x)).

Consider two functionals of the form (3.13)-(3.14) with densities f1 and f2 differing by the
total derivative with respect to x of a function g(x,y):

f2(x,y,y′) = f1(x,y,y′)+ d
dx

g(x,y) ,
d

dx
g(x,y) := ∂g(x,y)

∂x
+ ∂g(x,y)

∂y
y′ .
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We then have

F2[y]− F1[y] =
∫ x2

x1

d
dx
g
(
x,y(x)

)
dx = g(x1,y(x1)

)− g(x2,y(x2)
) = g(x1,y1)− g(x2,y2) ,

on account of the boundary conditions (3.14) satisfied by the functions y(x) in the domain of
the functionals F1 and F2. Hence the latter functionals differ by a constant, and therefore they
have the same variational derivative (as they have the same variation). It follows that the Euler–
Lagrange equations of the densities f1 and f2 must be exactly the same, as can be also checked
by direct differentiation (exercise). In other words:

Two densities differing by a total derivative give rise to the same Euler–Lagrange equations.

Exercise. Show that if the variational derivative of a function f(x,y,y′) vanishes identically
then f is the total derivative of a function g(x,y). This implies the converse of the previous
result: if two densities f1 and f2 give rise to the same Euler–Lagrange equations they must
necessarily differ by a total derivative.

Solution. Indeed, if the variational derivative of f(x,y,y′) vanishes identically we have

δf
δyi

:= ∂f
∂yi

− d
dx

∂f
∂y′i

= −
n∑
j=1

∂2f
∂y′i∂y

′
j
y′′j −

n∑
j=1

∂2f
∂y′i∂yj

y′j −
∂2f
∂x∂y′i

+ ∂f
∂yi

= 0 (3.22)

for i = 1, . . . , n and all (x,y,y′,y′′). Since none of the partial derivatives appearing in the latter
identity depend on y′′ the coefficient of y′′j must vanish identically. We thus obtain

∂2f
∂y′iy

′
j
= 0, i, j = 1, . . . , n ,

i.e,
∂f
∂y′i

is independent of y′ for all i. Hence

∂f
∂y′i

= gi(x,y) =⇒ f =
n∑
i=1

gi(x,y)y′i + g0(x,y)

for certain functions gi(x,y), g0(x,y). Substituting into Eq. (3.22) we then obtain

−
n∑
j=1

∂gi
∂yj

y′j −
∂gi
∂x

+
n∑
j=1

∂gj
∂yi

y′j +
∂g0

∂yi
= 0 . (3.23)

Since none of the partial derivatives in Eq. (3.23) depend on y′, equating to zero the coefficient
of y′j in the latter identity we deduce that

∂gi
∂yj

= ∂gj
∂yi

, i, j = 1, . . . , n .

It can be shown that the latter equations imply that there is a function k(x,y) such that

gi = ∂k
∂yi

, i = 1, . . . , n .

Equation (3.23) then reduces to

∂
∂yi

(
g0 − ∂k

∂x

)
= 0 =⇒ g0 − ∂k

∂x
= l(x)
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for some function l(x). We then have

f =
n∑
i=1

∂k(x,y)
∂yi

y′i +
∂k(x,y)
∂x

+ l(x) = d
dx

(
k(x,y)+

∫
l(x)dx

)
.

3.2 Hamilton’s principle for unconstrained systems

3.2.1 Hamilton’s principle for a single particle

Consider, first, the motion of a particle of mass m subject to an irrotational force

F(t, r) = −∂V(t, r)
∂r

. (3.24)

Newton’s equations of motion are in this case

m
..
xi = − ∂V∂xi , i = 1,2,3 , (3.25)

where we have again denoted by xi the i-th component of the particle’s position vector r. We ask
ourselves if Eqs. (3.25) are the Euler–Lagrange equations of some functional∫ t2

t1
L
(
t, r(t),

.
r(t)

)
dt .

(Note, again, that in this case t, r and L respectively play the roles of x, y, and f .) Although it
is not difficult to answer this question in the affirmative simply by inspection, we can proceed
more systematically as follows. Writing Eqs. (3.25) in the form

d
dt
(m

.
xi)+ ∂V

∂xi
= 0 , i = 1,2,3 ,

we see that it suffices to find a function L(t, r,
.
r) verifying the equations

∂L
∂

.
xi
=m .

xi ,
∂L
∂xi

= − ∂V
∂xi

; i = 1,2,3 .

Integrating first the three equations for
∂L
∂xi

we obtain

L = −V + g(t, .r) ,

and substituting back into the remaining equations we have

∂g
∂

.
xi
=m .

xi , i = 1,2,3 ,

which determines the function g:

g = 1
2
m

.
r2 + h(t) .

Thus the simplest function with the desired property is2

L = 1
2
m

.
r2 − V(t, r) = T − V(t, r) . (3.26)

2Note that h(t) is obviously a total derivative, since

h(t) = d
dt

∫
h(s)ds .

Therefore adding it to the Lagrangian (3.26) does not change its Euler–Lagrange equations (3.25), as we saw in
Section (3.1.3).
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The function L is called the system’s Lagrangian. We have therefore proved the so-called Hamil-

ton’s principle in its simplest form:

The trajectory followed by a particle of mass m subject to the irrotational force (3.24) as it
moves from a point r1 at time t1 to another point r2 at time t2 is a stationary point of the
action functional

S[r] =
∫ t2
t1
L
(
t, r(t),

.
r(t)

)
dt (with r(t1) = r1, r(t2) = r2) (3.27)

where L = T − V(t, r). In other words, Newton’s equations of motion are equivalent to the
Euler–Lagrange equations

δL
δr

= 0,

i.e., to the vanishing of the variation of the action:

δS[r] = 0.

The functional (3.27) is called the action. Note that the action has dimensions of energy × time
or length×momentum, since L (like T or V ) has dimensions of energy.

3.2.2 Hamilton’s principle for a system of particles

Hamilton’s principle is extended without difficulty to a system of N particles, provided that the
total forces Fi acting on each particle are irrotational, i.e.,

Fi(t, r1, . . . , rN) = −∂V(t, r1, . . . , rN)
∂ri

, i = 1, . . . ,N . (3.28)

Indeed, it is easy to check that Newton’s equations of motion for the system:

mi
..
ri = −∂V(t, r1, . . . , rN)

∂ri
, i = 1, . . . ,N ,

are the Euler–Lagrange equations of the action

S[r1, . . . , rN] =
∫ t2
t1
L
(
t, r1(t), . . . , rN(t),

.
r1(t), . . . ,

.
rN(t)

)
dt , (3.29)

where in this case the Lagrangian L is given by

L(t, r1, . . . , rN ,
.
r1, . . . ,

.
rN) = T − V(t, r1, . . . , rN) = 1

2

N∑
i=1

mi
.
r2
i − V(t, r1, . . . , rN) . (3.30)

To see this, we write in vector form the three Euler–Lagrange equations for the i-th particle (i.e.,
one for each of the components of its position vector ri):

0 = d
dt
∂L
∂

.
ri
− ∂L
∂ri

= d
dt
∂T
∂

.
ri
+ ∂V
∂ri

= d
dt
(mi

.
ri)+ ∂V∂ri

=mi
..
ri − Fi ,

and observe that this is precisely the equation of motion of ri. In other words, the following
more general version of Hamilton’s principle holds:
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The trajectory followed by a system of N particles subject to the irrotational forces (3.28) is a
stationary point of the action (3.29) with Lagrangian L = T − V(t, r1, . . . , rN). In other words,
the system’s equations of motion are again the Euler–Lagrange equations

δL
δri

= 0 , i = 1, . . . ,N ,

which express the vanishing of the variation of the action:

δS[r1, . . . , rN] = 0 .

• Hamilton’s variational principle is sometimes called principle of least action, since in many
cases of interest the trajectories of a mechanical system turn out to be minima of the action (at
least locally). More properly, this principle should be called principle of stationary action, since
as we know the Euler–Lagrange equations only guarantee the stationary character of the action.

• From Hamilton’s principle and the conservation laws of the Euler–Lagrange equations derived
in the previous subsection, it follows that if the Lagrangian (3.30) does not depend explicitly on
time the energy integral

h =
N∑
i=1

.
ri
∂L
∂

.
ri
− L =

N∑
i=1

mi
.
r2
i − L = 2T − (T − V) = T + V,

which in this case coincides with the system’s total energy, is conserved. This result is consistent
with the one obtained in Section 1.6.2, since L is independent of time if and only if the poten-
tial V does not depend on t, in which case the forces (3.28) acting on the system are not only
irrotational but conservative.

• Likewise, if the Lagrangian L does not depend (for instance) on the x coordinate of the i-th

particle, i.e., if
∂L
∂xi

= 0, then
∂L
∂

.
xi

is conserved:

∂L
∂xi

= 0 =⇒ ∂L
∂

.
xi
= const.

Note that this result is nothing more than the conservation law of the x component of the i-th
particle’s momentum, since

∂L
∂

.
xi
= ∂T
∂

.
xi
=mi

.
xi = (pi)x .

This is in agreement with the discussion in Section 1.6.2, since

∂L
∂xi

= − ∂V
∂xi

= (Fi)x .
Obviously, the same result holds for the coordinates yi or zi.

3.2.3 Covariance of the Lagrangian formulation

One of the great advantages of the Lagrangian formulation of mechanics is its covariance under
coordinate changes, i.e., that it treats all systems of curvilinear coordinates on the same footing.
More specifically, consider a particle of mass m subject to an irrotational force, whose trajec-
tories are the critical points of the action (3.27). Let (q1, q2, q3) =: q be a system of curvilinear
coordinates, and denote (with a slight abuse of notation) by r(q) the function expressing the
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Cartesian coordinates r in terms of the curvilinear ones q. Suppose that the particle’s trajec-
tory in the coordinates qi is given by a certain function q(t) = (q1(t), q2(t), q3(t)). In Cartesian
coordinates the trajectory is then r = r(q(t)), which (with a slight abuse of notation) we shall
denote by r(t). We can then express the Lagrangian L(t, r(t),

.
r(t)) in terms of q(t) and its time

derivatives
.
q(t) using the change of coordinates formula r = r(q) and its time derivative

.
r =

3∑
i=1

∂r(q)
∂qi

.
qi =:

∂r(q)
∂q

.
q ,

so that

L
(
t, r,

.
r
) = L(t, r(q), ∂r(q)

∂q
.
q
)
=: L̃

(
t,q,

.
q
)
. (3.31)

The action of the trajectory r(t) is then given by

S[r] =
∫ t2
t1
L
(
t, r(t),

.
r(t)

)
dt =

∫ t2
t1
L̃
(
t,q(t),

.
q(t)

)
dt =: S̃[q] .

By Hamilton’s principle, the equations of motion are obtained from the condition δS[r] = 0, i.e.,

δS̃[q] = 0, which is in turn equivalent to the Euler–Lagrange equations
δL̃
δq

= 0. Hence:

The equations of motion of the particle in curvilinear coordinates (q1, q2, q3) are the Euler–
Lagrange equations of the Lagrangian L̃ in Eq. (3.31), that is

d
dt
∂L̃
∂

.
qi
− ∂L̃
∂qi

= 0 , i = 1,2,3 . (3.32)

Note that L̃ is nothing but the expression of the Lagrangian L in terms of the curvilinear co-
ordinates q and their time derivatives. With this understanding the tilde can be dropped, and
Eqs. (3.32) can be simply written as

d
dt
∂L
∂

.
qi
− ∂L
∂qi

= 0 , i = 1,2,3 . (3.33)

Example 3.7. Equations of motion in spherical coordinates.

The kinetic energy of a particle of mass m in spherical coordinates (r , θ,ϕ) is given by

1
2
m

.
r2 = m

2
(

.
r2 + r2

.
θ2 + r2 sin2 θ

.
ϕ2)

(cf. Eq. (1.8)). Thus the Lagrangian in these coordinates is given by

L = T − V(t, r , θ,ϕ) = m
2
(

.
r2 + r2

.
θ2 + r2 sin2 θ

.
ϕ2)− V(t, r , θ,ϕ) . (3.34)

The particle’s equations of motion in spherical coordinates are thus

d
dt
∂L
∂

.
r
− ∂L
∂r

=m ..
r −mr(

.
θ2 + sin2 θ

.
ϕ2)+ ∂V

∂r
= 0 ,

d
dt
∂L
∂

.
θ
− ∂L
∂θ

=m d
dt
(r2

.
θ)−mr2 sinθ cosθ

.
ϕ2 + ∂V

∂θ
= 0 ,

d
dt
∂L
∂

.
ϕ
− ∂L
∂ϕ

=m d
dt
(r2 sin2 θ

.
ϕ)+ ∂V

∂ϕ
= 0 .

(3.35)
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If the potential V does not depend on the azimuthal angle ϕ then the quantity

∂L
∂

.
ϕ
=mr2 sin2 θ

.
ϕ ,

is conserved. This conserved quantity is nothing but the z component of the angular momen-
tum J, sincea,

J = rer ×m( .
rer + r

.
θ eθ + r sinθ

.
ϕ eϕ) =mr2

.
θeϕ −mr2 sinθ

.
ϕ eθ , ez = cosθ er − sinθeθ

=⇒ Jz = J · ez =mr2 sin2 θ
.
ϕ .

Likewise, if the potential V is independent of t, i.e., if V is a function of (r , θ,ϕ) only, then
∂L
∂t
= 0 and hence the quantity

h = .
r
∂L
∂

.
r
+

.
θ
∂L
∂

.
θ
+ .
ϕ
∂L
∂

.
ϕ
− L =m(

.
r2 + r2

.
θ2 + r2 sin2 θ

.
ϕ2)− L = 2T − (T − V) = T + V ,

is conserved. This is, of course, the law of conservation of energy discussed in the previous

chapters. Note, finally, that if the potential is independent of θ the function
∂L
∂

.
θ

is not con-

served, since the angle θ appears explicitly in the kinetic energy and as a consequence
∂L
∂θ

never vanishes.
aThroughout this section, to avoid confusion with the Lagrangian L we shall denote by J the angular momen-

tum.

Example 3.8. Equations of motion in polar coordinates.

If a particle moves on a plane subject to an irrotational force with potential V , its Lagrangian
in polar coordinates (r ,ϕ) is given by

L = T − V(r ,ϕ) = m
2

( .
r2 + r2 .

ϕ2)− V(t, r ,ϕ).
Its corresponding Euler–Lagrange equations are

d
dt
∂L
∂

.
r
− ∂L
∂r

=m ..
r −mr .

ϕ2 + ∂V
∂r

= 0 ,

d
dt
∂L
∂

.
ϕ
− ∂L
∂ϕ

=m d
dt
(r2 .

ϕ)+ ∂V
∂ϕ

= 0 .
(3.36)

Taking into account that

∇V = ∂V
∂r

er + 1
r
∂V
∂ϕ

eϕ = −F = −Frer − Fϕeϕ ,

we can write the previous equations as

..
r − r .

ϕ2 = Fr
m
,

1
r

d
dt
(r2 .

ϕ) = Fϕ
m
.

Thus the left-hand sides of the previous equations are nothing but the radial and angular
components of the acceleration, ar and aϕ. When the potential V is independent of ϕ (in
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which case the force is central) the second equation of motion yields the law of conservation
of angular momentum

mr2 .
ϕ = const. = J ,

while the equation of motion for the radial coordinate can be written as

m
..
r − J2

mr3 +
∂V(t, r)
∂r

= 0 .

Finally, when V does not depend explicitly on time (i.e., when the force is not just irrotational

but conservative) we have
∂L
∂t
= 0, which implies that the energy integral

h = .
r
∂L
∂

.
r
+ .
ϕ
∂L
∂

.
ϕ
− L =m(

.
r2 + r2 .

ϕ2)− L = 2T − (T − V) = T + V .

is conserved. This is nothing but the law of conservation of energy discussed in the previous
two chapters.

Exercise. Compare Eqs. (3.35) with Newton’s second law written in spherical coordinates (see
Eqs. (1.9)).

Hint. It suffices to note that

∂V
∂r

= ∂V
∂r

er + 1
r
∂V
∂θ

eθ + 1
r sinθ

∂V
∂ϕ

eϕ .

Exercise. i) Write down the equations of motion of a particle subject to an irrotational force
in an arbitrary system of orthogonal curvilinear coordinates q = (q1, q2, q3). ii) Use the lat-
ter equations to find an expression for the components of the acceleration in the curvilinear
coordinates q.

Hint. In any orthogonal curvilinear coordinate system we have

.
r2 =

3∑
i=1

hi(q)2
.
q2
i ,

∂V
∂r

=
3∑
i=1

1
hi(q)

∂V
∂qi

eqi ,

where the scale factors hi(q) where defined in Eq. (1.2). From the expression for
.
r2 it is straight-

forward to compute the Lagrangian in the curvilinear coordinates q. The components of the
acceleration can then be found from the Euler–Lagrange equations of motion using Newton’s
second law:

aqi =
Fqi
m

= − 1
mhi(q)

∂V
∂qi

, 1 à i à 3 .

The final result is

aqi = hi
..
qi + 2

.
qi

3∑
j=1

∂hi
∂qj

.
qj −

3∑
j=1

hj
hi
∂hj
∂qi

.
q2
j , 1 à i à 3 .

3.2.4 Lagrangian of a charged particle in an electromagnetic field

We shall next derive the Lagrangian formulation of the equations of motion of a particle of mass
m and charge e in the electromagnetic field generated by the potentials Φ(t, r) and A(t, r). As

102



3.2 Hamilton’s principle for unconstrained systems

we saw in Chapter 1, the equations of motion are

m
..
r = −e

(
∂Φ
∂r
+ ∂A

∂t

)
+ e .

r× (∇×A) .

To simplify these equations, we recall the identity

a× (∇× b) = ∇(a · b)− (a · ∇)b,
where a(r), b(r) are vector fields and a · ∇ is the differential operator

a · ∇ =
3∑
i=1

ai
∂
∂xi

.

We shall also use in what follows the alternative notation

(a · ∇)b ≡
3∑
i=1

ai
∂b

∂xi
=:
∂b

∂r
a .

From the previous identity it follows that

−∂A

∂t
+ .

r× (∇×A) = −∂A

∂t
+ ∂
∂r
(
.
r ·A)− ∂A

∂r
· .

r = ∂
∂r
(
.
r ·A)− dA

dt
,

and hence we can rewrite the equation of motion as

d
dt
(m

.
r+ eA)+ e ∂

∂r
(Φ − .

r ·A) = 0 .

These are the Euler–Lagrange equations of a Lagrangian L(t, r,
.
r) provided that

∂L
∂

.
r
=m .

r+ eA , ∂L
∂r
= −e ∂

∂r
(Φ − .

r ·A) .

Integrating the second equation we obtain

L = e( .r ·A−Φ)+ g(t, .r) ,
and substituting back into the first one we have

∂g
∂

.
r
=m .

r =⇒ g = 1
2
m

.
r2 ,

up to an arbitrary function of t. We have thus obtained the following result:

The equations of motion of a particle of mass m and charge e in the electromagnetic field gen-
erated by the potentials Φ(t, r) and A(t, r) are the Euler–Lagrange equations of the Lagrangian

L(t, r,
.
r) = 1

2
m

.
r2 − eΦ(t, r)+ e .

r ·A(t, r) . (3.37)

Note that we can express the latter Lagrangian as

L = T −U ,
where the potential U is given by

U(t, r,
.
r) = e[Φ(t, r)− .

r ·A(t, r)
]

(3.38)

and is thus velocity dependent. If the fields are static, i.e., if

∂Φ
∂t

= 0 ,
∂A

∂t
= 0 ,

then L is independent of t and therefore

h = .
r · ∂L
∂

.
r
− L =m .

r2 + e .
r ·A− L = 1

2
m

.
r2 + eΦ(r) ,

is conserved. This is the conservation law of the particle’s electromechanical energy.

103



Lagrangian and Hamiltonian mechanics

3.3 Systems with constraints

3.3.1 Motion of a particle on a smooth surface

The simplest case of a mechanical system with constraints is that of a particle of mass m sub-
ject to an external irrotational force with potential V(t, r), whose coordinates r satisfy at every
instant t the constraint (restriction)

φ(t, r) = 0 . (3.39)

In particular, if φ does not depend on t then the particle is forced to move on the surface
of equation φ(r) = 0. (In general, (3.39) is the equation of a moving surface.) Although the
external force is irrotational, it is essential to take also into account the reaction (or constraint)
force F(c)(t, r,

.
r) exerted by the constraint surface (3.39) on the particle at each instant, so that

Newton’s equations of motion are in this case

m
..
r+ ∂V(t, r)

∂r
= F(c)(t, r,

.
r) . (3.40)

We ask ourselves whether Eqs. (3.40) are the Euler–Lagrange equations of some action func-
tional. In order to answer this question, let us introduce two independent coordinates (q1, q2) = q

parametrizing the surface (3.39). For instance, if

φ(t, r) = r2 − a(t)2 , (3.41)

which is the equation of a sphere centered at the origin with variable radius a(t) á 0, we can
use spherical coordinates q1 = θ, q2 = ϕ. We shall express (with a slight abuse of notation) the
relation between the generalized coordinates q and the Cartesian ones r in the general form

r = r(t,q) , (3.42)

where for each fixed t the mapping q , r must be bijective (from an open subset of R2 to
an open subset of the surface at time t). For instance, for the constraint (3.41) the function
r(t,q) = r(t, θ,ϕ) is given by

r(t, θ,ϕ) = a(t)(sinθ cosϕ, sinθ sinϕ, cosθ) .

In general, we can specify the position of the particle at each instant t using the value q(t) taken
by its generalized coordinates qi at that time: indeed, r = r(t,q(t)). It is important to note
that, while the three Cartesian coordinates xi are not independent, since they are connected by
the relation (3.39), the two generalized coordinates qi are by construction independent variables
(i.e., can take arbitrary values in some open subset of R2). For this reason, it is easy to convince
oneself that only two of the three (scalar) equations of motion (3.40) can actually be independent.

We shall assume that the constraint surface (3.39) is smooth, i.e., that there is no friction. If
this is the case the constraint force at each instant t is perpendicular to the corresponding instan-
taneous constraint surface φ(t, r) = 0. When this happens we shall say that the constraint (3.39)
is ideal. To formulate analytically the condition of ideal constraints, note that for each t the two
vectors

∂r(t,q)
∂qi

, i = 1,2 , (3.43)

are tangent to the constraint surface at the point with generalized coordinates q, and in fact are
a basis of the tangent plane to the instantaneous surface φ(t, r) = 0 at this point. Hence the
constraint is ideal if the constraint force verifies the condition

F(c) · ∂r

∂qi
= 0 , i = 1,2 , (3.44)
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at each point. Projecting the equation of motion (3.40) onto the tangent plane to the constraint
surface (i.e., multiplying scalarly by each of the two vectors (3.43)) we obtain the two independent
equations

m
..
r
∂r

∂qi
+ ∂V
∂r

∂r

∂qi
= 0 , i = 1,2 ,

or equivalently

m
..
r
∂r

∂qi
+ ∂V
∂qi

= 0 , i = 1,2 . (3.45)

Differentiating the relation (3.42) with respect to t, qi and
.
qi we obtain the identities3

.
r = ∂r

∂t
+ ∂r

∂q
.
q = .

r(t,q,
.
q) =⇒ ∂

.
r

∂
.
qi
= ∂r

∂qi ,
∂

.
r

∂qi
= ∂2r

∂t∂qi
+ ∂2r

∂qi∂q
.
q = d

dt
∂r

∂qi
, (3.46)

and hence

..
r
∂r

∂qi
= d

dt

(
.
r
∂r

∂qi

)
− .

r
d

dt

(
∂r

∂qi

)
= d

dt

(
.
r
∂

.
r

∂
.
qi

)
− .

r
∂

.
r

∂qi
= d

dt
∂
∂

.
qi

(
1
2

.
r2
)
− ∂
∂qi

(
1
2

.
r2
)
. (3.47)

Thus Eqs. (3.45) can be written as

d
dt
∂T
∂

.
qi
− ∂
∂qi

(T − V) = 0 , i = 1,2 ,

or, taking into account that V does not depend on
.
q ,

d
dt

∂
∂

.
qi
(T − V)− ∂

∂qi
(T − V) = 0 , i = 1,2 . (3.48)

These are the Euler–Lagrange equations of the Lagrangian L = T − V , where it is understood that
the kinetic energy T and the potential V must be expressed in terms of the independent variables
(t,q,

.
q) using Eq. (3.42) and its derivative with respect to t (i.e., the first Eq. (3.46)). We have thus

proved the following fundamental result:

The trajectory q(t) followed by a particle as it moves from a point with generalized coordi-
nates q1 (at t = t1) to a second point with generalized coordinates q2 (at t = t2) obeying the
constraint (3.39) at all times is a stationary point of the action

S[q] =
∫ t2
t1
L
(
t,q(t),

.
q(t)

)
dt (with q(t1) = q1, q(t2) = q2) ,

where the Lagrangian L equals T − V expressed in terms of the independent variables (t,q,
.
q).

The equations of motion are therefore the Euler–Lagrange equations of L,

δL
δq

= 0 ,

expressing the vanishing of the variation of the action functional:

δS[q] = 0 .

In other words:

3We are using again the notation

∂r

∂q
.
q :=

∑
j=1,2

∂r

∂qj
.
qj ,

∂2r

∂qi∂q
.
q :=

∑
j=1,2

∂2r

∂qi∂qj
.
qj .
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Hamilton’s principle remains valid in this case if the constraint is ideal, i.e., if the constraint
force F(c) satisfies condition (3.44). Moreover, when this is the case the Lagrangian L is equal
to T − V expressed in terms of the generalized coordinates qi and their time derivatives

.
qi.

• A virtual displacement is a curve r = r(u) (u ∈ [u1, u2]) entirely contained in the instanta-
neous constraint surface φ(t, r) = 0 at a certain fixed time t, i.e., such that

φ(t, r(u)) = 0 , ∀u ∈ [u1, u2].

In other words, a virtual displacement is a succession of possible particle positions at the same
instant t. Note that if the constraint is time-dependent the particle’s trajectories are not virtual
displacements, since for t′ ̸= t the vector r(t′) belongs to the surface φ(t′, r) = 0, in general
different from φ(t, r) = 0. On the other hand, since a virtual displacement r(u) is contained in
the instantaneous constraint surface φ(t, r) = 0 for all u ∈ [u1, u2], its tangent vector r′(u) is
tangent to the latter surface at the point r(u). Hence the ideal constraint condition implies in
this case that

F(c)
(
t, r(u),v(u)

) · r′(u) = 0 , ∀u ∈ [u1, u2] , (3.49)

where the prime denotes derivative with respect to u and v(u) is a possible velocity4 for the
particle at the point r(u). Thus the work W12 done by the constraint force along the virtual
displacement r(u) vanishes:

W12 =
∫ u2

u1

F(c)
(
t, r(u),v(u)

) · r′(u)du = 0 , (3.50)

for arbitrary v(u) ∈ R3. Conversely, if the constraint force satisfies (3.50) for any virtual dis-
placement r(u) then Eq. (3.49) holds, which implies that the constraint force is perpendicular
to the surface φ(t, r) = 0 at each point (since any vector tangent to the latter surface can be
obtained as the tangent vector to a curve contained in it, i.e., to a virtual displacement). We have
thus proved the following result, known as the principle of virtual work:

The constraint is ideal —and, thus, Hamilton’s principle holds— if and only if the constraint
force does no work along any virtual displacement of the particle.

If the constraint equation (3.39) is independent of t (which is the most common case in practice),
then the particle’s trajectories are virtual displacements, and the principle of virtual work sim-
ply states that the constraint is ideal if and only if the constraint force does no work along any
trajectory.

4Differentiating the constraint equation φ(t, r) = 0 with respect to time we obtain

∂φ
∂t
(t, r)+ ∂φ

∂r
(t, r)

.
r = 0 ,

which is the condition satisfied by the particle’s velocity if the particle is at the point r at time t. Thus the vector
field v(u) must satisfy the condition

∂φ
∂t
(t, r(u))+ ∂φ

∂r
(t, r(u))v(u) = 0 , ∀u ∈ [u1, u2].

If the constraint is time-independent then v(u) must simply be orthogonal to the gradient
∂φ
∂r
(t, r(u)), and thus

tangent to the constraint surface at each point r(u).
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3.3.2 System of N particles with constraints

Consider next the most general case of a system of N particles subject to the irrotational
forces (3.28) and to the l < 3N independent constraints5

φi(t, r1, . . . , rN) = 0 , i = 1, . . . , l . (3.51)

Constraints of this type, which are independent of the particles’ velocities, are called holonomic.
The vector

x := (r1, . . . , rN) ∈ R3N

representing the state of the system must belong at each instant t to the surface in R3N —
or manifold, in a more mathematical language— specified by Eqs. (3.51). Since this manifold
has dimension 3N − l = n, in general it can be parametrized by n independent coordinates
(q1, . . . , qn) =: q, in terms of which the vector x will be expressed by a certain function x(t,q):

x = x(t,q) . (3.52)

In other words, the state of the system at each instant is uniquely determined by the value of
the n generalized coordinates qi at that instant. We shall accordingly say that the system
possesses n degrees of freedom. In particular, the system’s trajectory in the space R3N can
be specified by a curve q(t) in the open subset of Rn in which the generalized coordinates qi
vary, called configuration space, through the equation

x = x(t,q(t)).

It is important to note that, while the Cartesian coordinates x are not independent (since they
are related by the constraint equations (3.51)), the generalized coordinates q are by construction
independent variables.

Again, we shall suppose that the constraints are ideal, in the sense that the constraint force
acting on the point x representing the state of the system, i.e., the vector

F(c)(t,x,
.
x) :=

(
F(c)1 (t,x,

.
x), . . . ,F(c)N (t,x,

.
x)
)
∈ R3N ,

is orthogonal to the constraint manifold defined by Eqs. (3.51) at all times. Since the n vectors

∂x(t,q)
∂qi

, i = 1, . . . , n ,

are a basis of the tangent space to the constraint manifold at each point, the previous condition
is equivalent to the relations

F(c) · ∂x

∂qi
=
(

F(c)1 , . . . ,F(c)N
)
·
(
∂r1

∂qi
, . . . ,

∂rN
∂qi

)
=

N∑
j=1

F(c)j · ∂rj
∂qi

= 0 , i = 1, . . . , n . (3.53)

As in the case of a single particle treated above, this condition is equivalent to the principle of
virtual work, according to which the constraint forces do no work along any virtual displacement
of the system, which by definition is any curve x(u) (with u ∈ [u1, u2]) entirely contained in
an instantaneous constraint surface φi(t,x) = 0 (i = 1, . . . , l) at a fixed instant t. Indeed, if

5Mathematically, the independence of the constraints (3.51) is equivalent to the condition that the Jacobian
matrix of the vector-valued function φ := (φ1, . . . ,φl) with respect to the 3N variables x := (r1, . . . , rN) be of
maximal rank (equal to l) at all points:

rank
(
∂φi
∂xj

)
1àiàl

1àjà3N
= l .
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x(u) = (r1(u), . . . , rN(u)
)

the workW12 done by the constraint forces acting on the system along
the virtual displacement x(u) is given by

W12 =
N∑
i=1

∫ u2

u1

F (c)i · r′i(u)du =
∫ u2

u1

F(c) · x′(u)du .

Hence the principle of virtual work, i.e., the requirement that W12 = 0 for an arbitrary virtual
displacement x(u), is equivalent to requiring that

F(c) · x′(u) = 0

for every tangent vector x′(u) to the instantaneous constraint manifold at time t.
Under these conditions —that is, if the constraints are ideal and the applied forces acting

on the system are irrotational —, proceeding as in the previous subsection one can prove that
Hamilton’s principle is still valid:

The trajectory q(t) joining two states q1 (at t = t1) and q2 (at t = t2) of a system of particles
subject to irrotational forces and ideal holonomic constraints is a stationary point of the action

S[q] =
∫ t2
t1
L
(
t,q(t),

.
q(t)

)
dt ,

where the Lagrangian L equals T − V expressed in terms of the independent variables (t,q,
.
q).

The equations of motion are thus the Euler–Lagrange equations

δL
δq

= 0 ,

expressing the vanishing of the variation of the action functional:

δS[q] = 0 .

Exercise. Prove in detail the latter result.

Solution. The system’s equations of motion can be written in vector form as

(m1
..
r1, . . . ,mN

..
rN)+ ∂V∂x

= F(c) .

Projecting onto the direction of the vector
∂x

∂qi
and taking into account Eq. (3.53) we obtain

(m1
..
r1, . . . ,mN

..
rN) · ∂x

∂qi
+ ∂V
∂x

∂x

∂qi
=

N∑
j=1

mj
..
rj
∂rj
∂qi

+ ∂V
∂qi

= 0 , i = 1, . . . , n .

From Eqs. (3.47) (with rj instead of r) it then follows that

N∑
j=1

mj

[
d

dt
∂
∂

.
qi

(
1
2

.
r2
j

)
− ∂
∂qi

(
1
2

.
r2
j

)]
+ ∂V
∂qi

= d
dt
∂T
∂

.
qi
− ∂
∂qi

(T − V) = 0 , i = 1, . . . , n .

Since V is independent of
.
q, the latter equations can be written in the form

d
dt

∂L
∂

.
qi
− ∂L
∂qi

= 0 , i = 1, . . . , n ,
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which are the Euler–Lagrange equations of the Lagrangian L = T − V .

From what we have just seen, to write down the equations of motion of a mechanical system of
N particles subject to l independent ideal holonomic constraints, the remaining (applied) forces
being irrotational, we can proceed as follows:

1. Introduce n = 3N−l independent generalized coordinates (q1, . . . , qn) = q parametrizing
the constraint manifold (3.51).

2. Express the kinetic energy

T = 1
2

N∑
i=1

mi
.
r2
i

and the potential V of the irrotational forces in terms of (t,q,
.
q), thus obtaining the two

functions T(t,q,
.
q) and V(t,q).

3. The system’s equations of motion in the generalized coordinates qi are the Euler–Lagrange
equations of the Lagrangian

L(t,q,
.
q) = T(t,q, .

q)− V(t,q) ,

i.e.,
d

dt
∂L
∂

.
qi
− ∂L
∂qi

= 0 , i = 1, . . . , n . (3.54)

Notation. In classical mechanics textbooks, equations (3.54) are often referred to simply as La-

grange’s equations for the Lagrangian L.

• One of the advantages of the Lagrangian formulation for systems with constraints is that, as
we have just seen, in order to find the equations of motion it is not necessary to know the constraint
forces (all that is needed is to check that the constraints are ideal). In fact, once these equations
have been found the constraint forces can always be computed using the formula6

F(c)i =mi
..
ri + ∂V∂ri

, 1 à i à N , (3.55)

which is nothing but Newton’s second law applied to the i-th particle.

Remark. Hamilton’s principle is key to understanding in what sense classical mechanics is the
ℏ → 0 limit of quantum mechanics, with the help of Feynman’s path integral formulation of the
latter theory. According to this formulation, the probability P(t1,q1; t2,q2) that a mechanical
system with classical Lagrangian L(t,q,

.
q) whose generalized coordinates take the value q1 at a

certain time t1 is found to have generalized coordinates q2 at a later time t2 is given by

P(t1,q1; t2,q2) =
∣∣Φ(t1,q1; t2,q2)

∣∣2 ,

where the probability amplitude Φ(t1,q1; t2,q2) (in general complex) is given by

Φ(t1,q1; t2,q2) = const.
∑
q

e
i
ℏS[q] . (3.56)

6Indeed,
..
ri can be computed in terms of (t,q,

.
q,

..
q) by differentiating ri(t,q) twice with respect to time. Once

the equations of motion have been found using the Lagrangian formalism, the generalized accelerations
..
q, and

hence the accelerations
..
ri and the constraint forces F(c)i , can be expressed in terms of (t,q,

.
q). Note that, in general,

the constraint force will depend (usually in a complicated way) on the velocity of the particles.
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The latter “sum” —technically an integral, usually called the path integral— is extended to all
paths q(t) satisfying the boundary conditions q(ti) = qi, i = 1,2, and

S[q] =
∫ t2
t1
L
(
t,q(t),

.
q(t)

)
dt

is the classical action of the path q(t). Thus all paths contribute to the probability amplitude
Φ(t1,q1; t2,q2) with the same absolute magnitude, but with different phases proportional to
their classical action. In the classical limit ℏ → 0 we have S[q] ≫ ℏ, and thus the term eiS[q]/ℏ

is highly oscillatory near paths satisfying δS[q] ̸= 0. As a consequence the contributions to the
sum coming from such paths is vanishingly small as ℏ → 0, since very close to a path q with
δS[q] ̸= 0 there is a neighboring path whose phase differs by an odd multiple of π from that of
q. Thus in the limit ℏ→ 0 the overwhelming contribution to the sum (3.56) comes from the path7

satisfying δS[q] = 0, i.e., from the classical trajectory. In other words, the validity of Hamilton’s
principle (when ℏ → 0, i.e., in the classical limit) hinges on the fact that in this limit the path
with the largest contribution to the probability amplitude Φ(t1,q1; t2,q2) is the one making the
classical action stationary. ■

Example 3.9. The spherical pendulum. A spherical pendulum consists of a particle of mass m
attached to a rigid massless rod of length l and negligible mass whose other end is fixed,
subject only to Earth’s gravitational field g = −gez. In this case there is only one (time-
independent) constraint

φ(t, r) = r2 − l2 = 0 , (3.57)

(if we place the origin at the pendulum’s anchor point), and there are therefore 3 − 1 = 2
degrees of freedom. We shall take as generalized coordinates the polar and azimuthal angles
θ ∈ [0,π], ϕ ∈ [0,2π) of the spherical coordinate systema, in terms of which

r(θ,ϕ) = l ( sinθ cosϕ e1 + sinθ sinϕ e2 + cosθ ez
)
.

The constraint force F(c) (in this case, the rod’s reaction) is directed along the rod (towards
the origin), and is thus perpendicular to the constraint surface (3.57). Hence the constraint is
ideal, and we can apply the Lagrangian formalism. The potential of the external force −mgez
is simply

V =mgz =mgl cosθ ,

and the kinetic energy is given by

T = 1
2
m

.
r2 = 1

2
ml2

( .
θ2 + sin2 θ

.
ϕ2).

We thus have

L =ml2
[

1
2

( .
θ2 + sin2 θ

.
ϕ2)− k cosθ

]
, k := g

l
,

and Lagrange’s equations read

..
θ = sinθ cosθ

.
ϕ2 + k sinθ ,

d
dt
(

sin2 θ
.
ϕ
) = 0 .

7We are assuming for the sake of simplicity that, as is usually the case, there is a unique classical trajectory
satisfying the boundary conditions q(ti) = qi, i = 1,2.
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π
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Figure 3.2. Effective potential U(θ) for k = 10c2.

From the second Lagrange equation we obtain

sin2 θ
.
ϕ = Jz

ml2
=: c = const. ,

where J is the particle’s angular momentum. This was to be expected, since

.
J = N = r× (F+ F(c)) = r× F = −mgr× ez =⇒ .

Jz = 0 .

Substituting into the first Lagrange equation we obtain the following second-order differential
equation for the angle θ:

..
θ = c2 cosθ

sin3 θ
+ k sinθ . (3.58)

If c = 0 (i.e., Jz = 0) then the particle moves along a meridianb ϕ = const. (since
.
ϕ = 0)

and Eq. (3.58) becomes the equation of motion of the simple pendulum
..
α+ k sinα = 0, where

α = π − θ. Let us see next what happens in the more interesting case c ̸= 0. Equation (3.58)
is formally the equation of motion of a particle of unit mass moving in the effective one-
dimensional potential

U(θ) = −
∫ (
c2 cosθ

sin3 θ
+ k sinθ

)
dθ = k cosθ + c2

2 sin2 θ

plotted in Fig. 3.2. The shape of the potential U(θ) can be determined by taking into account
the following facts:

i. U(θ) diverges as (sinθ)−2 as θ → 0,π.

ii. The derivative U ′(θ) has the sign of θ − θ0, for some θ0 ∈ (π/2,π).

To prove the last statement note that

U ′(θ) = −(sinθ)−3(c2 cosθ + k sin4 θ)

has the sign of f(θ) := −(c2 cosθ + k sin4 θ). The function f , and hence U ′, is clearly negative
for θ à π/2. On the other hand,

f ′(θ) = c2 sinθ − 4k sin3 θ cosθ
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is positive over the interval [π/2,π), so that f is increasing on [π/2,π] from f(π/2) = −k < 0
to f(π) = c2 > 0. It follows that there is a unique θ0 ∈ (π/2,π) such that f(θ) = 0, with
f(θ) < 0 for π/2 à θ < θ0 and f(θ) > 0 for θ0 < θ à π. Thus f(θ), and hence U ′(θ), has the
sign of θ − θ0, as stated.

In fact, since L does not depend explicitly on time the energy integral

h =
.
θ
∂L
∂

.
θ
+ .
ϕ
∂L
∂

.
ϕ
− L = T + V =ml2

[
1
2

( .
θ2 + sin2 θ

.
ϕ2)+ k cosθ

]
,

is conserved. Thus h is the particle’s total energy E, which using the conservation of Jz can be
expressed as

ml2
(

1
2

.
θ2 +U(θ)

)
= E .

The motion of the angular coordinate θ is easily determined integrating the latter equation:

t = ±
∫

dθ√
2
(
E
ml2 −U(θ)

) ,
while the azimuthal angle ϕ then follows from the conservation of Jz:

ϕ = c
∫

dt
sin2 θ(t)

.

Finally, the equation of the trajectory (θ as a function ofϕ, or vice versa) is obtained combining
the previous equations:

.
θ = dθ

dϕ
.
ϕ = c

sin2 θ
dθ
dϕ

= ±
√

2
(
E
ml2

−U(θ)
)

=⇒ ϕ = ±c
∫

dθ

sin2 θ
√

2
(
E
ml2 −U(θ)

) .

From the form of the effective potential U(θ) it follows that the motion of the coordinate θ is
always periodic. Indeed, the period of this motion is given by

τθ = 2
∫ θ2

θ1

dθ√
2
(
E
ml2 −U(θ)

) ,
where θ1 < θ2 are the two roots of the equation E/(ml2)−U(θ) = 0 in the interval (0,π). The
pendulum’s motion, however, is not periodic in general, since when the coordinate θ returns to
its initial value after a period the azimuthal angleϕ does not necessarily increase by a multiple
of 2π. More precisely, from the equation of the trajectory it follows that in a period of θ the
angle ϕ increases by

∆ϕ = 2c
∫ θ2

θ1

dθ

sin2 θ
√

2
(
E
ml2 −U(θ)

) = √2
∫ θ2

θ1

dθ

sin2 θ
√

E
mlc2 − k

c2 cosθ − 1
2 sin2 θ

.

Hence the motion is periodic if ∆ϕ is a rational multiple of 2π.
Equation (3.58) possesses the constant solution θ = θ0, with θ0 ∈ (π/2,π) the unique solu-

tion of the equation
c2 cosθ0 + k sin4 θ0 = 0 ,
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corresponding to a rotation around the z axis with constant angular velocity
.
ϕ = c/ sin2 θ0.

The frequency ω of the small oscillations of the angle θ about the solution θ = θ0 is given by

ω2 = U ′′(θ0) = −k cosθ0 + c2

sin2 θ0
+ 3c2 cos2 θ0

sin4 θ0
= −k cosθ0 − k 1− cos2 θ0 + 3 cos2 θ0

cosθ0

= k 1+ 3 cos2 θ0

| cosθ0| ,

where we have taken into account that c2/ sin4 θ0 = −k/ cosθ0.
Finally, the constraint force is easily computed using Eq. (3.55) and noting that in this

case F(c) is directed along er (perpendicular to the constraint surface). Therefore F(c) = Rer ,
with

R =m..
r · er −mg · er =mar +mgez · er =mg cosθ −ml(

.
θ2 + sin2 θ

.
ϕ2) ,

where we have applied Eq. (1.9) with r = l and
.
r = ..

r0. Using the law of conservation of energy
we finally obtain

R = 3mg cosθ − 2E
l
.

aOf course, if the pendulum’s pivot is fixed to the ceiling the angle θ must be restricted to the range [π/2,π].
bIn fact, c = 0 is also possible if either θ = 0 or θ = π, but these are just the two equilibria of the motion in

a meridian ϕ = const.

Exercise. Show that R < 0 for θ á π/2.

Solution. Indeed, we have

E =ml2U(θ1,2) =mgl cosθ1,2+ ml2c2

2 sin2 θ1,2
=⇒ R =mg cosθ+2mg(cosθ−cosθ1)− mlc2

2 sin2 θ1
,

where cosθ à cosθ1 (since θ á θ1) and cosθ à 0 for θ ∈ [π/2,π].

3.4 Noether’s theorem

Consider a mechanical system with Lagrangian L(t,q,
.
q), where q = (q1, . . . , qn) are the n gen-

eralized coordinates. We define the canonical momentum associated with the generalized coor-
dinate qi as the partial derivative of L with respect to the corresponding generalized velocity
.
qi:

pi := ∂L
∂

.
qi
. (3.59)

Lagrange’s equation of motion for the coordinate qi is then

.
pi = ∂L

∂qi
. (3.60)

We shall say that the coordinate qi is cyclic (or ignorable) if L is independent of qi, i.e.,

∂L
∂qi

= 0 .

From Eq. (3.60) we then obtain the following conservation law:

If the coordinate qi is cyclic, its corresponding canonical momentum pi is conserved.
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Likewise, if L does not explicitly depend on t we saw in Section 3.1.2 that the energy integral

h =
n∑
i=1

.
qi
∂L
∂

.
qi
− L =

n∑
i=1

pi
.
qi − L (3.61)

is conserved. In many mechanical systems the kinetic energy is a quadratic form in the general-
ized velocities, i.e., is of the form

T = 1
2

n∑
i,j=1

aij(t,q)
.
qi

.
qj , with aij = aji ,

and L = T − V(t,q). A mechanical system of this type is called natural. In fact, most of the
systems considered so far —with the important exception of the Lagrangian of a charged particle
in an electromagnetic field (3.37)— are natural. In a natural mechanical system, the generalized
momenta are given by

pi = ∂T
∂

.
qi
=

n∑
j=1

aij(t,q)
.
qj , i = 1, . . . , n ,

are linear in the generalized velocities
.
qi, and the energy integral is simply

h =
n∑

i,j=1

aij(t,q)
.
qi

.
qj − L = 2T − (T − V) = T + V .

Hence:

In a natural mechanical system the energy integral is equal to the total energy. In particular, in
natural mechanical systems the conservation of h, -which will occur if the coefficients aij and
V are both independent of t, is nothing but the law of conservation of energy.

Example 3.10. Consider, first, the Lagrangian of a particle of mass m in Cartesian coordinates
r = (x1, x2, x3), given by

L = 1
2
m

.
r2 − V(t, r) .

In this case

pi = ∂L
∂

.
xi
=m .

xi ,

and thus the canonical momentum corresponding to the coordinate xi is the i-th component
of the linear momentum. Moreover, L is clearly natural and therefore the energy integral h
coincides with the particle’s energy.

Consider next the Lagrangian of a particle of mass m in spherical coordinates (r , θ,ϕ):

L = m
2
(

.
r2 + r2

.
θ2 + r2 sin2 θ

.
ϕ2)− V(t, r , θ,ϕ) , (3.62)

for which
pr =m .

r , pθ =mr2
.
θ , pϕ =mr2 sin2 θ

.
ϕ . (3.63)

In this case the kinetic energy (the term in parentheses in the Lagrangian) depends on r and
θ, so that pr and pθ are not conserved even if V is independent of r or θ. On the other hand,
if V does not depend on ϕ then L is independent of the latter coordinate, and hence pϕ is
conserved:

∂V
∂ϕ

= 0 =⇒ pϕ = const.
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As we know, pϕ is the z component of the particle’s angular momentum. Moreover, since the
kinetic energy is quadratic in the generalized velocities the Lagrangian is natural, and hence
the energy integral coincides with the energy T + V , as we saw in Example 3.7. Hence if L does
not depend on t —i.e., if the potential V is independent of time— energy is conserved.

Consider, finally, the Lagrangian (3.37) of a particle of mass m and charge e moving in an
electromagnetic field with potentials Φ(t, r) and A(t, r). The canonical momentum correspond-
ing to the coordinate xi is now

pi = ∂L
∂

.
xi
=m .

xi + eAi(t, r) .

Thus in this case the canonical and the linear momenta are in general different. In particular,
if L does not depend on the coordinate xi, i.e., if

∂Φ
∂xi

= 0 ,
∂A

∂xi
= 0 ,

pi is conserved but m
.
xi is not conserved in general. The energy integral is given by

h =
3∑
i=1

pi
.
xi − L = (m .

r+ eA) · .
r− L = 1

2
m

.
r2 + eΦ .

Therefore in this case h is the sum of the particle’s kinetic and electrostatic energies. If L does
not depend on t, that is if

∂Φ
∂t

= 0 ,
∂A

∂t
= 0 ,

then h is conserved. Although the system is not natural, we can also interpret h in this case as
the total energy. Indeed, if Φ and A do not depend on t the electric force is conservative with
potential eΦ(r), and therefore h is the sum of the kinetic energy and the potential energy of
the electric force. But this is the total energy of the particle, since the magnetic force does no
work as it is always perpendicular to the particle’s velocity.

The conservation of the canonical momentum pi and the energy integral h are clearly a conse-
quence of the invariance of the Lagrangian under translations in the coordinate qi (qi , qi + ε)
or the time t (t , t + ε), respectively, where ε ∈ R is a continuous parameter. In fact, one of the
fundamental principles of modern physics is the fact that continuous transformations leaving
invariant the Lagrangian —or, more generally, the action— give rise to conserved quantities. This
is precisely the import of Noether’s theorem:

Suppose that the action of a mechanical system with Lagrangian L(t,q,
.
q) is invariant under a

one-parameter family of invertible transformations

t̃ = t + ετ(t,q)+O(ε2) , q̃ = q+ εη(t,q)+O(ε2) , (3.64)

i.e., that ∫ t̃2
t̃1
L
(
t̃, q̃,

dq̃

dt̃

)
dt̃ =

∫ t2
t1
L(t,q,

.
q)dt , ∀t1, t2 . (3.65)

Then the function
I(t,q,

.
q) := pη− hτ ,

where p = ∂L
∂

.
q

and h = p
.
q− L, is conserved .

Proof. We begin by computing the derivatives of
dq̃

dt
and

dt̃
dt

with respect to ε at ε = 0, that we
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shall need in the sequel:

dt̃
dt
= 1+ ε .

τ +O(ε2) =⇒ dt̃
dt

∣∣∣∣
ε=0

= 1 ,
∂
∂ε

∣∣∣∣
ε=0

dt̃
dt
= .
τ .

dq̃

dt̃
=
(

dt̃
dt

)−1 dq̃

dt
=
(

1+ ε .
τ +O(ε2)

)−1( .
q+ ε .

η+O(ε2)
)
=
(

1− ε .
τ +O(ε2)

)(
.
q+ ε .

η+O(ε2)
)

= .
q+ ε( .

η− .
q

.
τ)+O(ε2) =⇒ ∂

∂ε

∣∣∣∣
ε=0

dq̃

dt̃
= .
η− .

q
.
τ .

The invariance of the action under the transformation (t,q) , (t̃, q̃) can be expressed in the
equivalent form8

L
(
t̃, q̃,

dq̃

dt̃

)
dt̃
dt
= L(t,q, .

q) . (3.66)

Differentiating (3.66) with respect to ε and setting ε = 0 we then obtain

dt̃
dt

∣∣∣∣
ε=0

∂
∂ε

∣∣∣∣
ε=0

L
(
t̃, q̃,

dq̃

dt̃

)
+ L ∂

∂ε

∣∣∣∣
ε=0

dt̃
dt
= ∂L
∂t
τ + ∂L

∂q
η+ ∂L

∂
.
q
(

.
η− .

q
.
τ)+ L .

τ = 0 . (3.67)

Using Lagrange’s equations we can rewrite the previous equation as follows:

0 = ∂L
∂t
τ + .

pη+ p
.
η− p

.
q

.
τ + L .

τ = ∂L
∂t
τ + d

dt
(
pη

)− h .
τ = d

dt
(
pη− hτ)+ ( .

h+ ∂L
∂t

)
τ .

It is straightforward to check that the last term vanishes identically on account of Lagrange’s
equations:

.
h = .

p
.
q+ p

..
q− ∂L

∂t
− ∂L
∂q

.
q− p

..
q =

(
.
p− ∂L

∂q

)
.
q− ∂L

∂t
= −∂L

∂t
. ■

Remark. Generally speaking, a symmetry of an object is any transformation leaving the object
invariant. The set of all symmetries of an object is a group (with composition as group multi-
plication), since i) the composition of two symmetries is clearly a symmetry, ii) the inverse of a
symmetry is also a symmetry (why?), and iii) the identity transformation is obviously a symme-
try. Thus the family of transformations (3.64) are a one-parameter group of symmetries of the
action. Families of symmetries of an object depending on one or more continuous parameters
—like the transformations (3.64)— are usually called continuous symmetries. Thus the import of
Noether’s theorem is that every continuous symmetry of the action is yields a conservation law.
As mentioned before, this is in fact one of the most fundamental principles in modern physics,
which actually holds in much more general settings like classical or quantum field theory. ■

Example 3.11. Consider a system of N particles subject only to irrotational forces generated
by a potential V(t, r1, . . . , rN). We can then take the Cartesian coordinates q = (r1, . . . , rN) as
generalized coordinates, and L = T − V as the system’s Lagrangian. The kinetic energy

T = 1
2

N∑
i=1

mi
.
r2
i

is then invariant under two types of transformations:

i. Translations of the particles’ coordinates in the direction of a unit vector n:

t̃ = t , r̃i = ri = ri + εn (1 à i à N, ε ∈ R); (3.68)

indeed,
.
r̃i = .

ri.

8Indeed, integrating (3.66) between t1 and t2 we obtain Eq. (3.65). Conversely, Eq. (3.65) implies (3.66), since
the times t1 and t2 are arbitrary.
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ii. Rotations of the particles’ coordinates around an axis n:

t̃ = t , r̃i = R(ε)ri (1 à i à N, ε ∈ R); (3.69)

indeed,
.
r̃i = R(ε) .ri and hence

.
r̃2
i =

.
r2
i .

Obviously, the Lagrangian —and hence the action, since t̃ = t— will be invariant under the
latter transformations if and only if the potential V(t, r1, . . . , rN) is, i.e., provided that

V(t, r̃1, . . . , r̃N) = V(t, r1, . . . , rN) .

Suppose, first, that the potential is invariant under the translations (3.68), for which

τ = 0 , ηi = n (1 à i à N) .

The corresponding conserved quantity is then

I =
N∑
i=1

∂L
∂

.
ri
ηi − 0 · h =

N∑
i=1

mi
.
ri · n = n ·

N∑
i=1

mi
.
ri = P · n ,

i.e., the component of the system’s total linear momentum along the direction of the vector n.
Suppose next that the potential is invariant under the rotations (3.69). What is the conserved

quantity associated with this invariance of the action? To answer this question, let us take the
z axis in the direction of the vector n, so that

R(ε) =
cos ε − sin ε 0

sin ε cos ε 0
0 0 1

 .
Expanding R(ε) in powers of ε we obtain

r̃i = R(ε)ri = ri + εAri +O(ε2) , 1 à i à N , (3.70)

with

A = R′(0) =
0 −1 0

1 0 0
0 0 0

 .
Since

Ari = (−yi, xi,0) = e3 × ri = n× ri ,

we can rewrite Eq. (3.70) in vector form as

r̃i = ri + εn× ri +O(ε2) , 1 à i à N .

Hence in this case
τ = 0 , ηi = n× ri , 1 à i à N ,

and the conserved quantity associated with the invariance of the action under rotations around
the n axis is therefore

I =
N∑
i=1

∂L
∂

.
ri
ηi − 0 · h =

N∑
i=1

mi
.
ri · (n× ri) = n ·

N∑
i=1

miri × .
ri = J · n ,

where J is the system’s total angular momentum.
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Exercise. Determine the conserved quantity I(t,q,
.
q) associated with the invariance of the ac-

tion under the space-time dilations

t̃ = λαt , q̃ = λq (λ > 0, α ∈ R) . (3.71)

Solution. As in the formulation of Noether’s theorem the parameter ε = 0 corresponds to the
identity transformation, we set λ = eε in Eqs. (3.71). Expanding to first order in ε we then
obtain

t̃ = eαεt = t + εαt +O(ε2) , q̃ = eεq = q+ εq+O(ε)2 .
Hence

τ = αt , η = q ,

and thus the conserved quantity associated with the invariance of the action under the trans-
formations (3.71) is given by

I(t,q,
.
q) = q

∂L
∂

.
q
−αth .

Note that the action is invariant under the dilations (3.71) if the Lagrangian L verifies the
condition

L
(
t̃, q̃,

dq̃

dt̃

)
dt̃ = L(λαt, λq, λ1−α .

q)λα dt = L(t,q, .
q)dt ,

i.e., if L transforms under dilations as

L(λαt, λq, λ1−α .
q) = λ−αL(t,q, .

q) .

Suppose, for instance, that the system is natural. In this case the previous condition becomes

1
2
λ2−2α

n∑
i,j=1

aij(λαt, λq)
.
qi

.
qj − V(λαt, λq) = 1

2
λ−α

n∑
i,j=1

aij(t,q)
.
qi

.
qj − λ−αV(t,q) .

Equating the coefficient of
.
qi

.
qj in both sides of this equality we obtain

λ2−2αaij(λαt, λq) = λ−αaij(t,q) ⇐⇒ aij(λαt, λq) = λα−2aij(t,q) ,

and hence
V(λαt, λq) = λ−αV(t,q) .

For example, if the matrix aij is constant then we must have α = 2, and therefore

V(λ2t, λq) = λ−2V(t,q) .

Consider, for instance, the case of a particle of mass m that moves subject to the central
potential V(r) = k/(2r2), with k ̸= 0. From the previous discussion it easily follows that in
this case the action is invariant under the transformation (3.71) with α = 2. In this case the
energy T + V = E and the function

I =mr
.
r− 2ht =mr .

r − 2Et = d
dt

(
1
2
mr2 − Et2

)
= const. (3.72)

is conserved. Note that the value of the conserved quantity I can be easily expressed in terms
of the initial data r0 := r(0) and

.
r0 := .

r(0) by evaluating it at t = 0:

I =mr .
r − 2Et

∣∣
t=0 =mr0

.
r0 .
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3.5 Small oscillations

Integrating Eq. (3.72) we can easily determine the motion of the r coordinate:

1
2
mr2 = 1

2
mr2

0 +mr0
.
r0t + Et2 =⇒ r =

√
r2

0 + 2r0
.
r0t + 2E

m
t2 .

The motion of the angular coordinate ϕ (in the plane of motion) is obtained integrating the
law of conservation of angular momentum mr2 .

ϕ = J:

ϕ =ϕ0 + J
m

∫ t
0

ds
r2(s)

=ϕ0 + J
m

∫ t
0

ds
r2

0 + 2r0
.
r0s + 2E

m s2
, ϕ0 :=ϕ(0) .

If E = 0 the integral is elementary:

ϕ =

ϕ0 + Jt

mr2
0
,

.
r0 = 0

ϕ0 + J
2mr0

.
r0

log
(
1+ 2

.
r0t
r0

)
,

.
r0 ̸= 0 .

In the more general case E ̸= 0 the integral can be evaluated in terms of hyperbolic, rational
or trigonometric functions depending on whether the discriminant of the polynomial in the
denominator (equal to 4r2

0 (
.
r2

0 − 2E/m) = −4(J2 + km)/m2) is respectively positive, zero or
negative (exercise).

3.5 Small oscillations

In this section we shall analyze the motion of a conservative mechanical system near a sta-
ble equilibrium. We shall assume that the constraints are holonomic and time-independent,
so that the position vector of each particle is a function only of the generalized coordinates
q = (q1, . . . , qn) (not explicitly depending on time):

rk = rk(q) , k = 1, . . . ,N .

Since

.
rk =

n∑
j=1

∂rk(q)
∂qj

.
qj , (3.73)

the system’s kinetic energy is of the form

T(q,
.
q) = 1

2

n∑
i,j=1

tij(q)
.
qi

.
qj

with

tij(q) =
N∑
k=1

mk
∂rk(q)
∂qi

· ∂rk(q)
∂qj

= tji(q) .

If the system is conservative, with potential energy V(q), its Lagrangian is given by

L = 1
2

n∑
i,j=1

tij(q)
.
qi

.
qj − V(q) ,
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and Lagrange’s equations of motion read:

d
dt

( n∑
j=1

tij(q)
.
qj
)
+ ∂V
∂qi

(q)

=
n∑
j=1

tij(q)
..
qj +

n∑
j,k=1

∂tij
∂qk

(q)
.
qj

.
qk + ∂V

∂qi
(q) = 0 , i = 1, . . . , n . (3.74)

Thus an equilibrium solution q(t) = q0 exists if and only if

∂V
∂qi

(q0) = 0 , i = 1, . . . , n ,

i.e., if q0 is a critical point of the potential V(q). As in the one-dimensional case (cf. Section 1.5.1),
it can be shown that the equilibrium q0 is stable if and only if q0 is a local minimum of V .

We wish to describe the motion of the system near a stable equilibrium q0. To this end, let us
assume without loss of generality that q0 = 0 (choosing q−q0 as new generalized coordinates if
necessary) and normalize the potential so that V(0) = 0. The energy of the equilibrium solution
q = 0 is then E0 = 0. Consider now a motion of the system close to the equilibrium solution
q = 0, i.e., with |q(0)| and | .q(0)| small. The energy of such a motion is then close to E0 = 0 and
verifies

E = T + V(q) á V(q) á V(0) = 0

(since q = 0 is by hypothesis a local minimum of V ), i.e., E is positive and small. Taking into ac-
count that the first-order partial derivatives of V vanish at the origin (since q = 0 is by hypothesis
a critical point of V ), we can write its Taylor expansion about 0 as9

V(q) = 1
2

n∑
i,j=1

bijqiqj + o(|q|2) , with bij = ∂2V
∂qiqj

(0) = bji .

Furthermore, since 0 is a local minimum of V the quadratic form
∑n
i,j=1 bijqiqj is positive

semidefinite, i.e., the eigenvalues of the symmetric n×n matrix

B = (bij)1ài,jàn
are nonnegative. We shall actually assume that B is positive definite (i.e., all its eigenvalues are
strictly positive), so that

V(q) ≃ 1
2

n∑
i,j=1

bijqiqj

near the origin. Similarly, the system’s kinetic energy can be expanded near the equilibrium
q = .

q = 0 as

T = 1
2

n∑
i,j=1

aij
.
qi

.
qj + o(|q|2 + | .q|2) , with aij = tij(0) = aji .

Note also that the the quadratic form

T0 := 1
2

n∑
i,j=1

aij
.
qi

.
qj

9In the previous formula we are using the standard notation o(t) to denote a function verifying lim
t→0

o(t)
t

= 0.
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3.5 Small oscillations

is positive definite. Indeed, the kinetic energy T(q,
.
q) is nonnegative and vanishes only if

.
rk = 0

for all k = 1, . . . ,N . In particular, T0 = T(0, .
q) is also nonnegative, and hence positive semidefi-

nite, and by Eq. (3.73) it can only vanish when

n∑
j=1

∂rk
∂qj

(0)
.
qj = 0 , k = 1, . . . ,N . (3.75)

Recall that the vectors
∂x

∂qj
:=
(
∂r1

∂qj
, . . . ,

∂rN
∂qj

)
, j = 1, . . . , n ,

are linearly independent at each point, since they are a basis of the tangent space to the system’s
constraint manifold (see Section 3.3.2). Thus equations (3.75), which are equivalent to the single
relation

n∑
j=1

∂x

∂qj
(0)

.
qj = 0,

imply that
.
qj = 0 for all j. This shows that T0 = 0 if and only if

.
q = 0, and hence T0 is positive

definite, as claimed. Thus near the equilibrium solution q = .
q = 0 we also have T ≃ T0. It

follows that for small displacements q and small velocities
.
q the system’s Lagrangian can be

approximated by

L0 := 1
2

∑
i,j=1

aij
.
qi

.
qj − 1

2

n∑
i,j=1

bijqiqj . (3.76)

The motion of the system near its stable equilibrium q = 0 is thus approximately governed by
the Euler–Lagrange equations of the Lagrangian L0, namely

n∑
j=1

(
aij

..
qj + bijqj

) = 0 , i = 1, . . . , n ,

or in matrix form

A
..
q+ Bq = 0 , (3.77)

where A is the positive definite n×n symmetric matrix with matrix elements aij .
Equations (3.77) are a system of n second-order linear homogeneous differential equations

with constant coefficients, which can also be derived by linearizing the exact equations of motion
obtained from the Lagrangian L (exercise). One of the easiest ways of solving the linearized
equations of motion (3.77) is by transforming the Lagrangian L0 to a suitable canonical form.
Indeed, since T0 is positive definite there is a non-singular (in general non-orthogonal) linear
change of variables

qi =
n∑
j=1

Mijq̃j , i = 1, . . . , n ,

or in matrix form

q = Mq̃

(and consequently
.
q = M

.
q̃), transforming the positive definite quadratic form T0 into

.
q̃2/2. In

other words, there exists a non-singular matrix M such that

MTAM = 1 .

Since

L0 = T0 − 1
2

qT · Bq ,
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in the new generalized coordinates q̃ the Lagrangian L0 can then be written as

L0 = 1
2

.
q̃2 − 1

2

n∑
i,j=1

b̃ijq̃iq̃j = 1
2

.
q̃2 − 1

2
q̃T · B̃q̃ ,

where b̃ij is the matrix element of the matrix

B̃ = MTBM .

Since the matrix B̃ is still symmetric and positive definite (exercise), it can be diagonalized by an
orthogonal transformation, i.e., there is a real orthogonal matrix O such that

OTB̃O =


λ1

λ2

. . .

λn

 =: Λ (3.78)

with Λ diagonal. Note that the numbers λi are all positive, since B̃ is a positive definite matrix.
Defining new generalized coordinates Q by the linear transformation q̃ = OQ, and taking into
account that

.
q̃2 = (O .

Q)2 = .
Q2 since O is orthogonal, we easily find

L0 = 1
2

.
Q2 − 1

2
Q ·ΛQ = 1

2

n∑
i=1

(
.
Q2
i − λiQ2

i ) .

By the covariance of Lagrange’s equations (cf. Section 3.2.3), the linearized equations of motion
in the generalized coordinates Q are simply the Euler–Lagrange equations of the latter Lagrangian
with respect to the variables (Q,

.
Q), namely the decoupled system

..
Qi + λiQi = 0 , i = 1, . . . , n . (3.79)

In other words, in the generalized coordinates Q the system is equivalent to a collection of n
decoupled harmonic oscillators with frequencies

ωi :=
√
λi.

The general solution of the system (3.79) is therefore

Qi = Ai cos(ωit +αi) , i = 1, . . . , n ,

or in vector form

Q =
n∑
i=1

Ai cos(ωit +αi)ei,

with Ai á 0 and αi ∈ [0,2π) arbitrary constants. In other words, equations (3.79) possess a
fundamental system of solutions of the form

Q(i)(t) = cos(ωit +αi)ei , i = 1, . . . , n , (3.80)

where ei = (0, . . . ,1, . . . ,0) is the i-th canonical basis vector. The generalized coordinates Q and
the n fundamental solutions (3.80) are respectively called the system’s normal coordinates and
normal modes. Likewise, the n frequencies ωi (i = 1, . . . , n) are called the system’s normal

frequencies. In terms of the original generalized coordinates

q = Mq̃ = MOQ (3.81)

122



3.5 Small oscillations

the normal modes (3.80) become

q(i)(t) = ci cos(ωit +αi) , i = 1, . . . , n , (3.82)

where the n-dimensional vectors ci are given by

ci = (MO)ei . (3.83)

In other words, the vectors ci are the columns of the matrix MO satisfying

(MO)TA(MO) = 1 , (MO)TB(MO) = Λ (3.84)

(exercise). In particular, the n vectors ci are linearly independent. The general solution of the
system’s linearized equations of motion (3.77) —which, by the previous argument, is an approx-
imate solution of its exact equations of motion (3.74) near the stable equilibrium q = 0— is an
arbitrary linear combination

q(t) =
n∑
i=1

aiq(i)(t) ,

with ai ∈ R constant, of the n normal modes q(i)(t).

Remarks.

• The matrices M and O, and therefore the vectors ci, are not unique.

• The vectors ci defined by Eq. (3.83) are in general not mutually orthogonal nor of unit length.
However, since the n vectors Oei are orthonormal (being the columns of an orthogonal matrix),
the vectors ci satisfy the relations

ci ·Acj = δij , i, j = 1, . . . , n .

Indeed, taking into account that MTAM = 1 we have

ci ·Acj = (MOei) · (AMOej) = (Oei) · (MTAMOej) = (Oei) · (Oej) = δij . ■

How does one find in practice the frequenciesωi and the corresponding vectors ci determining
the system’s normal modes (3.82) in the original coordinates q? To answer this question, it
suffices to note that since q(i)(t) is a solution of the linearized equations (3.77) the vector ci
must satisfy the linear system

(B −ω2
iA)ci = 0 , i = 1, . . . , n . (3.85)

Since ci is nonzero we must therefore have det(B − ω2
iA) = 0. In other words, the normal

frequencies ωi =
√
λi are the square roots of the n solutions λi (counting multiplicities) of the

characteristic equation

det(B − λA) = 0 . (3.86)

The numbers λi are called the eigenvalues of the matrix B relative to the positive definite matrix
A (in particular, when A = 1 the λi’s are the ordinary eigenvalue of B). Note that the λi’s are
the eigenvalues of the matrix B̃ in the previous discussion (cf. Eq. (3.78)). For each such eigen-
value λi =ω2

i , the corresponding (eigen)vector ci is then found solving the linear system (3.85).
Note that the previous argument guarantees that there is a basis {c1, . . . , cn} of Rn whose el-
ements ci satisfy Eqs. (3.85) (just take as ci the i-th column of the matrix MO constructed as
explained above).
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Remarks.

• If ω2
i is a simple root of the characteristic equation it can be shown that the corresponding

vector ci is determined by Eq. (3.85) up to a multiplicative constant. In general, if the frequency
ωi ism times degenerate, i.e., ifω2

i is a root of the characteristic equation with multiplicitym >
1, it can be shown that there are exactly m linearly independent solutions of Eq. (3.85). Both of
these statements are easily proved by noting that from Eqs. (3.78) and (3.84) it follows that the
system (3.85) is equivalent to

(Λ−ω2
i )(MO)

−1ci = 0 , i = 1, . . . , n .

• Comparison of Eqs. (3.81) and (3.83) shows that once the vectors ci have been obtained the
normal coordinates Q can be found through the formula

Q = C−1q , (3.87)

where C is the matrix whose columns are the components of the vectors c1, . . . , cn —i.e., the
change of basis matrix from the canonical basis of Rn to the basis {c1, . . . , cn}. ■

Example 3.12. Double pendulum.

x

y

m1

m2

θ1

θ2

l1

l2

Figure 3.3. Generalized coordinates (θ1, θ2) for the double pendulum system.

Consider the double pendulum schematically represented in Fig. 3.3. Calling rα = (xα, yα) the
position vector of the particle α = 1,2, the system’s constraints are

r2
1 − l21 = 0 , (r2 − r1)2 − l22 = 0 .

These constraints are obviously holonomic and time-independent. Moreover, the principle of
virtual work clearly holds, since the constraint forces —the tension of the wire or rod con-
necting the first particle to the anchor point and the second particle to the first one— are
respectively parallel to the vectors r1 and r := r2 − r1, and thus perpendicular to the parti-
cles’ infinitesimal displacements. Hence we can apply the Lagrangian formalism. We shall use
as generalized coordinates the two angles θ1 and θ2 between the pendulums’ strings and the
vertical (see Fig. 3.3). Taking the y axis downwards (see Fig. 3.3) we then have

r1 = l1(sinθ1, cosθ1) , r = l2(sinθ2, cosθ2) ,

and therefore
.
r1 = l1

.
θ1(cosθ1,− sinθ1) ,

.
r = l2

.
θ2(cosθ2,− sinθ2) .
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3.5 Small oscillations

Hence

T = 1
2
m1

.
r2

1 +
1
2
m2(

.
r1 + .

r)2 = 1
2
M

.
r2

1 +
1
2
m2

.
r2 +m2

.
r1 · .

r

= 1
2
Ml21

.
θ2

1 +
1
2
m2l22

.
θ2

2 +m2l1l2
.
θ1

.
θ2(cosθ1 cosθ2 + sinθ1 sinθ2)

= 1
2
Ml21

.
θ2

1 +
1
2
m2l22

.
θ2

2 +m2l1l2
.
θ1

.
θ2 cos(θ1 − θ2) ,

where M :=m1 +m2. Likewise, the potential energy is given by

V = −m1gy1 −m2gy2 = −m1gy1 −m2g(y +y1) = −Mgl1 cosθ1 −m2gl2 cosθ2 ,

where y is the vertical coordinate of the relative position vector r, and therefore the system’s
Lagrangian can be taken as

L = T − V = 1
2
Ml21

.
θ2

1 +
1
2
m2l22

.
θ2

2 +m2l1l2
.
θ1

.
θ2 cos(θ1 − θ2)+Mgl1 cosθ1 +m2gl2 cosθ2 .

The equilibria are determined by the system

∂V
∂θ1

= Mgl1 sinθ1 = 0 ,
∂V
∂θ1

=m2gl2 sinθ2 = 0 ,

and are therefore (up to integer multiples of 2π) the four pointsa

(0,0) , (0,π), (π,0) , (π,π) .

It is straightforward to ascertain that the point (0,0) is the unique local (in fact, global) min-
imum of V ((π,0) and (0,π) are saddle points and (π,π) is a global maximum). The exact
equations of motion

Ml21
..
θ1 +m2l1l2

..
θ2 cos(θ1 − θ2)−m2l1l2

.
θ2(

.
θ1 −

.
θ2) sin(θ1 − θ2)

+Mgl1 sinθ1 +m2l1l2
.
θ1

.
θ2 sin(θ1 − θ2) = 0 ,

m2l22
..
θ2 +m2l1l2

..
θ1 cos(θ1 − θ2)−m2l1l2

.
θ1(

.
θ1 −

.
θ2) sin(θ1 − θ2)

+m2gl2 sinθ2 −m2l1l2
.
θ1

.
θ2 sin(θ1 − θ2) = 0 ,

are a system of nonlinear coupled second-order differential equations that cannot be solved in
closed form (i.e., in terms of elementary functions and their primitives). On the other hand, we
can easily study the system’s motion near the stable equilibrium θ1 = θ2 = 0, i.e., the small
oscillations of the two pendulums, through the method explained above.

To begin with, taking into account that

cosθ = 1− θ
2

2
+ o(θ2)

we easily obtain

T0 = T(0,0,
.
θ1,

.
θ2) = 1

2
Ml21

.
θ2

1 +
1
2
m2l22

.
θ2

2 +m2l1l2
.
θ1

.
θ2 ,

V = −(M +m2)g + g
2
(Ml1θ2

1 +m2l2θ2
2)+ o(θ2

1 + θ2
2) ,
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and thus (ignoring the irrelevant constant term in V )

A =
(
Ml21 m2l1l2
m2l1l2 m2l22

)
= Ml21

(
1 λµ
λµ λ2µ

)
, B = g

(
Ml1 0

0 m2l2

)
= Ml21ω2

0

(
1 0
0 λµ

)
,

where

ω0 :=
√
g
l1

is the natural frequency of the first pendulum and we have set

λ := l2
l1
, µ := m2

M
.

Since B is diagonal, it is convenient to write the characteristic equation (3.86) in the equivalent
way

det
(
A− B

ω2

)
= M2l41

∣∣∣∣∣∣∣
1− ω2

0
ω2 λµ

λµ λµ
(
λ− ω2

0
ω2

)
∣∣∣∣∣∣∣ = 0 ⇐⇒

(
1− ω

2
0

ω2

)(
λ− ω

2
0

ω2

)
− λµ = 0 ,

or (
ω0

ω

)4

− (λ+ 1)
(
ω0

ω

)2

+ λ(1− µ) = 0 .

The normal frequencies are thus determined by the equation

ω2
0

ω2±
= 1

2

(
λ+ 1±

√
(λ+ 1)2 − 4λ(1− µ)

)
,

whence

ω2± =ω2
0

λ+ 1∓
√
(λ+ 1)2 − 4λ(1− µ)
2λ(1− µ) =ω2

0

λ+ 1∓
√
(λ− 1)2 + 4λµ

2λ(1− µ) .

In particular, when the two pendulums have the same length (i.e., for λ = 1) we simply have

ω2± =
ω2

0

1±√µ =
ω2

0

1±
√

m2
m1+m2

.

The two normal modes are found by solving the characteristic equation(
A− B

ω2±

)
c± = 0 ,

i.e., (
1− ω2

0

ω2±

)
c±,1 + λµc±,2 = 0 .

Using the previous formulas for ω2± we can rewrite the last equation as(
1− λ∓

√
(λ− 1)2 + 4λµ

)
c±,1 + 2λµc±,2 = 0 ,
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thus obtaining the two (unnormalized) vectors

c± = c
1,

λ− 1±
√
(λ− 1)2 + 4λµ
2λµ


with arbitrary c ̸= 0. Hence the two normal mode solutions are

(θ(±)1 , θ(±)2 ) = c± cos(ω±t +α±) ,

i.e.,

θ(±)1 = c cos(ω±t +α±) , θ(±)2 = c
λ− 1±

√
(λ− 1)2 + 4λµ
2λµ

cos(ω±t +α±) .

Note that the quotient of the amplitudes of the oscillations of the angles θ2 and θ1 in these
normal modes, given by

θ(±)2

θ(±)1

=
λ− 1±

√
(λ− 1)2 + 4λµ
2λµ

,

is positive (resp. negative) for the normal mode with the smaller frequencyω+ (resp. the larger
frequency ω−). Thus in the normal mode with frequency ω+ the pendulums oscillate in phase,
whereas in the one with frequency ω− they oscillate completely out of phase (i.e., θ1 is maxi-
mum when θ2 is minimum, and vice versa). Again, in the particular case in which l1 = l2 the
quotient θ2/θ1 simplifies to

θ(±)2

θ(±)1

= ± 1√µ .

aIn fact, the equilibria (π,0) and (π,π) are not possible in practice due to the fact that the first pendulum is
anchored to the ceiling, and thus θ1 ∈ [−π/2,π/2]. For the same reason, the equilibrium (0,π) is only possible
if l2 à l1.

Exercise. Show that for all (positive) values of λ = l2/l1 and µ =m2/M we haveω− < ω0 < ω+.

Exercise. Find the normal coordinates θ± for the double pendulum system.

Solution. From Eq. (3.87) we have

(
θ+
θ−

)
=
 1 1

λ−1+
√
(λ−1)2+4λµ
2λµ

λ−1−
√
(λ−1)2+4λµ
2λµ

(θ1

θ2

)

= 1

2
√
(λ− 1)2 + 4λµ

1− λ+
√
(λ− 1)2 + 4λµ 2λµ

λ− 1+
√
(λ− 1)2 + 4λµ −2λµ

(θ1

θ2

)
.

In fact, since the normal coordinates Qi are defined up to multiplication by a constant scalar,
we can take as normal coordinates

θ± =
[

1− λ±
√
(λ− 1)2 + 4λµ

]
θ1 + 2λµθ2 .

This expression simplifies considerably when the two pendulums have the same length, in
which case (dropping the inessential constant factor ±2

√µ) we obtain

θ± = θ1 ±√µ θ2 .
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Example 3.13. Longitudinal vibrations of the CO2 molecule.

x
m1 m1m2

k k

Figure 3.4. Schematic representation of the CO2 molecule.

Consider a triatomic molecule made up of two identical atoms of massm1 and a single atom
of mass m2. We shall also assume that, as is the case with the CO2 molecule, the molecule’s
equilibrium configuration is collinear, with the atom of mass m2 lying between the other two
atoms and separated from each of them by the same distance a. Let us choose the x axis
along the line joining the equilibrium positions of the three atoms, and place the origin at the
equilibrium position of the atom of mass m2. We shall next study the longitudinal vibrations
of the molecule, i.e., the motions of its atoms along the line of the molecule at equilibrium (the
x axis). Calling x1 and x3 the x coordinates of the atoms of mass m1 (from left to right), and
x2 that of the atom of mass m2, the system’s kinetic and potential energies are given by

T = 1
2

[
m1(

.
x2

1 +
.
x2

3)+m2
.
x2

2

]
, V = U(x2 − x1)+U(x3 − x2) ,

where U is the interaction potential between the atoms of mass m2 and each of the atoms of
mass m1. We have assumed that the interaction between the two atoms of mass m1 is neg-
ligible compared to their interaction with the atom of mass m2, since the strength of atomic
interactions usually falls off very quickly with the distance. Although the potential U is not
known in detail, we are only interested in small vibrations of the atoms about their equilibrium
position x1 = −a, x2 = 0, x3 = a. Imposing that the partial derivatives of V vanish at equilib-
rium we easily deduce that U ′(a) = 0. If we now Taylor expand U(x) about x = a and keep
only the lowest order nontrivial term we obtain

U(x) ≃ U(a)+ k
2
(x − a)2 ,

where k = U ′′(a), and thus (dropping the inessential constant U(a))

V ≃ k
2

[
(x2 − x1 − a)2 + (x3 − x2 − a)2

]
.

Thus in this approximation (i.e., when x2−x1 and x3−x2 are both close to a) the molecule be-
haves as a system of three collinear particles of masses m1, m2 and m1 connected by springs
of natural length a and constant k (cf. Fig. 3.4). The system’s Lagrangian L = T − V is approxi-
mately given by

L0 := 1
2

[
m1

( .
x2

1 +
.
x2

3

)+m2
.
x2

2

]
− k

2

[
(x2 − x1 − a)2 + (x3 − x2 − a)2

]
.

Since L0 is invariant under the translation xi , xi + ε for arbitrary ε, the x component of the
linear momentum P = m1(

.
x1 + .

x3) +m2
.
x2 is conserved. This suggests, as in the two-body
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problem, separating the center of mass motion from the particles’ relative motion, i.e., to use
as generalized coordinates

X := 1
M
[
m1(x1 + x3)+m2x2

]
, q1 := x2 − x1 − a, q2 := x3 − x2 − a ,

where M = 2m1 +m2 is the molecule’s total mass. Inverting the latter equations we readily
find the following expressions for the atoms’ physical coordinates in terms of the generalized
ones:

x1 = X − m1 +m2

M
q1 − m1

M
q2 − a , x2 = X + m1

M
(q1 − q2 ,

x3 = X + m1

M
q1 + m1 +m2

M
q2 + a) ,

(3.88)

and hence

.
x1 =

.
X−m1 +m2

M
.
q1−m1

M
.
q2 ,

.
x2 =

.
X+m1

M
(

.
q1− .

q2) ,
.
x3 =

.
X+m1

M
.
q1+m1 +m2

M
.
q2 .

Substituting these expressions into the Lagrangian L0 and operating we obtain

L0 ≃ 1
2
M

.
X2 + L1(q1, q2,

.
q1,

.
q2) ,

where

L1 = m1(m1 +m2)
2M

(
.
q2

1 +
.
q2

2)+
m2

1

M
q1q2 − k

2
(q2

1 + q2
2) .

Thus in the approximation of small vibrations (i.e., when |q1| and |q2| are small) the equation
of motion of the center of mass coordinate is

..
X = 0, as expected (since there are no external

forces), and the motion of the coordinates (q1, q2) is governed by the Lagrangian L1. From the
expression of the latter Lagrangian we readily obtain the following formulas for the matrices
A and B:

A = m1

M

(
m1 +m2 m1

m1 m1 +m2

)
, B = k1.

As in the previous example, we can write the characteristic equation as

det
(
A− B

ω2

)
= m2

1

M2

∣∣∣∣∣∣m1 +m2 − kM
m1ω2 m1

m1 m1 +m2 − kM
m1ω2

∣∣∣∣∣∣ = 0

⇐⇒ m1 +m2 − kM
m1ω2 = ±m1 ,

whence we easily obtain

ω± =
√

kM
m1(m1 +m2 ∓m1)

=


√

kM
m1m2√
k
m1
.

The normal mode vectors c± are determined by the eigenvalue equation(
m1 +m2 − kM

m1ω2±

)
c±,1 +m1c±,2 =m1(±c1 + c2) = 0 ,
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so that
c± = c(1,∓1)

with c ̸= 0 constant. Hence the two normal mode solutions are given by

q(±)1 = c cos(ω±t +α±) , q(±)2 = ∓c cos(ω±t +α±) ,

and the normal mode coordinates are simply

Q± = q1 ∓ q2

(why?). The motion of the atoms’ physical coordinates xi in each of these normal modes can
be easily obtained from Eqs. (3.88). Note that in the normal mode with the smaller frequency
ω− we have q1 = q2, or equivalently x2 − x1 = x3 − x2. Hence in this mode the distances
between the atom of mass m2 and each of the atoms of mass m1 increase or decrease in step,
oscillating with the same frequency ω−. Moreover, from Eqs. (3.88) it follows that x2 = X, i.e.,
the atom of mass m2 is fixed at the molecule’s center of mass (in particular, it is stationary in
the CM frame). On the other hand, in the normal mode with the larger frequency ω+ we have
q1 = −q2, so that x2 −x1 −a and x3 −x2 −a have opposite signs and oscillate completely out
of phase with the same frequency ω+. Thus when the right half of the molecule stretches the
left one contracts, and vice versa. Moreover, in this case the x2 coordinate is given by

x2 = X + 2m1

M
q1 = X + 2cm1

M
cos(ω±t +α±) ,

so that the position of the atom of mass m2 oscillates with frequency ω+ in the CM frame.

3.6 Introduction to Hamiltonian mechanics

3.6.1 Hamilton’s canonical equations

Lagrange’s equations of motion of a mechanical system:

d
dt
∂L
∂

.
q
− ∂L
∂q

= 0 , (3.89)

although more versatile than Newton’s, suffer from two main drawbacks. First of all, Lagrange’s
equations are not in normal form, i.e., the second derivatives

..
qi are not expressed in terms of

(t,q,
.
q). Secondly, they are second-order equations, so that the graph of two solutions q1(t) and

q2(t) —i.e., two system trajectories— can intersect in the extended configuration space R × Rn
of the variables (t,q) without violating the existence and uniqueness theorem for systems of or-
dinary differential equations. Both problems can be solved if we are able to express Eqs. (3.89) as
a normal system of first-order differential equations. Since Lagrange’s equations are first-order
in the canonical momenta pi, the most natural way to achieve this aim is to use as dependent
variables q = (q1, . . . , qn) and p := (p1, . . . , pn), in terms of which Eqs. (3.89) can be rewritten as

dq

dt
= .

q ,
dp

dt
= ∂L
∂q
(t,q,

.
q) . (3.90)

The problem is that
.
q, which appears in the RHS of these equations, must be expressed as a

function of (t,q,p) using the relation

p = ∂L
∂

.
q
(t,q,

.
q) . (3.91)

Note that, by the inverse function theorem, for this to be possible (at least locally) we must have

det
(
∂pi
∂

.
qj

)
1ài,jàn

= det
(
∂2L
∂

.
qi∂

.
qj

)
1ài,jàn

≠ 0 . (3.92)
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For instance, it can be shown that this condition automatically holds in a natural mechanical
system. Indeed, in such a system we have

∂2L
∂

.
qi∂

.
qj
= aij(t,q)

(cf. Section 3.4). Since T > 0 for
.
q ̸= 0 the matrix

(
aij(t,q)

)
1ài,jàn is positive definite, and

therefore invertible.
As we have just remarked, (3.90) should be more precisely written as

dq

dt
= .

q(t,q,p) ,
dp

dt
= ∂L
∂q

(
t,q,

.
q(t,q,p)

)
,

where
.
q(t,q,p) is the (vector-valued) function obtained by solving Eq. (3.91) for

.
q in terms of

(t,q,p). In order to recast the latter system in a more symmetric form, it is essential to study
how the Lagrangian L depends on the variables (t,q,

.
q). The differential of L, considered as a

function of the latter variables, is given by

dL = ∂L
∂t

dt + ∂L
∂q

dq+ ∂L
∂

.
q

d
.
q = ∂L

∂t
dt + ∂L

∂q
dq+ p d

.
q . (3.93)

Taking into account that
p d

.
q = d(p

.
q)− .

q dp ,

from Eq. (3.93) we obtain

d(p
.
q− L) = dh = −∂L

∂t
dt − ∂L

∂q
dq+ .

q dp . (3.94)

If in the previous formula we consider
.
q as a function of the variables (t,q,p) the energy integral

h becomes a function

H(t,q,p) := h(t,q, .
q
(
t,q,p)

)
(3.95)

of these variables called the system’s Hamiltonian. Since dH = dh is given by the RHS of
Eq. (3.94), the partial derivatives of H(t,q,p) with respect to the independent variables (t,q,p)
are simply the coefficients of dt, dq and dp in the latter equation, i.e.,

∂H
∂t

= −∂L
∂t
,

∂H
∂q

= −∂L
∂q
,

∂H
∂p

= .
q . (3.96)

It is understood that in the RHS of these equations
.
q must be expressed in terms of (t,q,p) in-

verting Eq. (3.91). From Eqs. (3.96) it then follows that Lagrange’s equations of motion (3.90) are
equivalent to the following system of first-order ordinary differential equations in the indepen-
dent variables (q,p):

dq

dt
= ∂H
∂p
(t,q,p) ,

dp

dt
= −∂H

∂q
(t,q,p) . (3.97)

Equations (3.97) are known as Hamilton’s canonical equations.

Remark. In mathematics, the passage from the generalized coordinates and velocities (q,
.
q) to

the canonical variables (q,p), where
.
q and p are related through (3.91), is called a Legendre

transformation. This type of transformation is widely used, among other areas of physics, in
thermodynamics. ■

• In order to write Hamilton’s canonical equations of a mechanical system with Lagrangian
L(t,q,

.
q) we can proceed as follows:
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1. Find the canonical momenta

pi = ∂L
∂

.
qi
(t,q,

.
q) , i = 1, . . . , n .

2. Use the above equations to solve for the generalized velocities
.
qi in terms of the canonical

momenta pj : .
qi = .

qi(t,q,p) , i = 1, . . . , n . (3.98)

3. Compute the system’s Hamiltonian

H(t,q,p) = p · .
q− L

using Eqs. (3.98) to express
.
q as a function of the variables (t,q,p).

4. Hamilton’s canonical equations (3.97) can then be written down by computing the partial
derivatives of H with respect to the canonical variables q and p. In fact, the first n
Hamilton’s equations

.
qi = ∂H

∂pi
, i = 1, . . . , n ,

are actually equations (3.98), so that in practice it is only necessary to find the n remain-
ing equations

.
pi = − ∂H∂qi , i = 1, . . . , n .

• Recall that in a natural mechanical system

h = .
q
∂L
∂

.
q
− L = T + V ,

and therefore:

The Hamiltonian of a natural mechanical system is the energy T + V expressed in terms of the
variables (t,q,p).

3.6.2 Basic conservation laws

First of all, from Hamilton’s equations it follows that if the Hamiltonian H is independent of a
coordinate qi the corresponding momentum pi is conserved:

∂H
∂qi

= 0 =⇒ pi = const.

Likewise, if H es independent of the momentum pi its corresponding coordinate qi is conserved:

∂H
∂pi

= 0 =⇒ qi = const.

This example illustrates the great symmetry between the generalized coordinates qi and their
associated momenta pi, which is in fact one of the distinctive advantages of the Hamiltonian
formulation of mechanics.

From Hamilton’s equations we also deduce that

dH
dt

= ∂H
∂t

+ ∂H
∂q

.
q+ ∂H

∂p
.
p = ∂H

∂t
+ ∂H
∂q

∂H
∂p

− ∂H
∂p

∂H
∂q

= ∂H
∂t
.
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Hence the Hamiltonian is conserved if it does not depend explicitly on t:

∂H
∂t

= 0 =⇒ H = const.

Note that from the first Eq. (3.96), namely

∂H
∂t

= −∂L
∂t
,

it follows thatH is conserved if and only if L is independent of t. SinceH(t, q,p) = h(t,q, .
q), this

is the conservation of the energy integral deduced in the Lagrangian formalism (cf. Section 3.4).

• Another advantage of the Hamiltonian formulation of mechanics over the Lagrangian one con-
sists in the following fact: if the coordinate qi is cyclic, it is possible to eliminate from Hamilton’s
equations the degree of freedom corresponding to this coordinate and its associated momentum
pi, reducing these equations to a system of 2(n− 1) canonical equations.

Indeed, suppose that
∂H
∂qi

= 0 ,

so that pi(t) = c for all t. It is then immediate to check that the equations of motion of the
remaining coordinates and momenta are Hamilton’s canonical equations for the Hamiltonian

H
∣∣
pi=c = H(t, q1, . . . , qi−1, qi+1, . . . , qn, p1, . . . , pi−1, c, pi+1, . . . , pn) ,

which depends only on the 2(n − 1) canonical variables (qj , pj) with j ̸= i. Indeed, if j ̸= i we
have

.
qj = ∂H

∂pj

∣∣∣∣
pi=c

= ∂
∂pj

(
H
∣∣
pi=c

)
,

.
pj = − ∂H∂qj

∣∣∣∣
pi=c

= − ∂
∂qj

(
H
∣∣
pi=c

)
.

Once these equations are solved, the motion of the cyclic coordinate qi is determined simply by
integrating its corresponding Hamilton equation

.
qi = ∂H

∂pi

∣∣∣∣
pi=c

,

i.e.,

qi(t) =
∫
∂H
∂pi

(
t, q1(t), . . . , qi−1(t), qi+1(t), . . . , qn(t), p1(t), . . . , pi−1(t), c, pi+1(t), . . . , pn(t)

)
dt .

Example 3.14. Hamiltonian of a particle in Cartesian coordinates.
As we saw in Section 3.2.1, in this case the Lagrangian is given by

L = 1
2
m

.
r2 − V(t, r) ,

and the canonical momentum coincides with the linear one:

p = ∂L
∂

.
r
=m .

r ⇐⇒ .
r = p

m
.

Since the Lagrangian is natural, the Hamiltonian is the total energy T + V expressed in terms
of (t, r,p):

H(t, r,p) = 1
2
m

.
r2 + V(t, r) = p2

2m
+ V(t, r) .

If H does not depend on the coordinate xi (i.e, if V is independent of xi) the corresponding
momentum pi = m .

xi is conserved, whereas if H is time-independent (equivalently, if V does
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not depend on t) H itself is conserved. These are nothing but the laws of conservation of the
i-th component of the linear momentum and the total energy that we already knew.

Example 3.15. Hamiltonian of a particle in spherical coordinates.
As we saw in Example 3.7, the Lagrangian of a particle of mass m in spherical coordinates is

given by Eq. (3.62), namely

L = m
2
(

.
r2 + r2

.
θ2 + r2 sin2 θ

.
ϕ2)− V(t, r , θ,ϕ) .

This Lagrangian is clearly natural, so that its corresponding Hamiltonian is simply the total
energy

T + V = m
2
(

.
r2 + r2

.
θ2 + r2 sin2 θ

.
ϕ2)+ V(t, r , θ,ϕ) ,

expressed in terms of the canonical momenta (3.63):

pr =m .
r , pθ =mr2

.
θ , pϕ =mr2 sin2 θ

.
ϕ .

From these equations we obtain

.
r = pr

m
,

.
θ = pθ

mr2 ,
.
ϕ = pϕ

mr2 sin2 θ
, (3.99)

which yields the following expression for the Hamiltonian:

H(t, r , θ,ϕ,pr , pθ, pϕ) = 1
2m

(
p2
r +

p2
θ
r2 +

p2
ϕ

r2 sin2 θ

)
+ V(t, r , θ,ϕ) . (3.100)

Hamilton’s canonical equations are in this case the three equations (3.99), along with the re-
maining three equations for the derivatives of the momenta:

.
pr = −∂H∂r = −

∂V
∂r

+ 1
mr3

(
p2
θ +

p2
ϕ

sin2 θ

)
,

.
pθ = −∂H∂θ = −∂V

∂θ
+ p2

ϕ

mr2

cosθ
sin3 θ

,

.
pϕ = −∂H∂ϕ = − ∂V

∂ϕ
.

As we already knew, from the last of these equations it follows that pϕ (which is equal to the
z component of the angular momentum) is conserved if the potential does not depend on ϕ.
Similarly, since

∂H
∂t

= ∂V
∂t
,

if V is independent of t the Hamiltonian H, which coincides with the system’s total energy, is
conserved.

Example 3.16. Hamiltonian of a charged particle in an electromagnetic field.
As we saw in Example 3.10, using Cartesian coordinates r = (x1, x2, x3) the Lagrangian can

be taken as

L = 1
2
m

.
r2 − eΦ(t, r)+ e .

r ·A(t, r) .
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Hence the canonical momenta are given by

pi =m .
xi + eAi(t, r) , i = 1,2,3 , (3.101)

and the Hamiltonian is given by

H = 1
2
m

.
r2 + eΦ(t, r) ,

where it is understood that the velocities must be expressed in terms of the canonical mo-
menta. Since

.
xi = 1

m
(
pi − eAi(t, r)

)
, i = 1,2,3 , (3.102)

substituting in the formula for H we obtain the expression

H(t, r,p) = 1
2m

(
p− eA(t, r))2 + eΦ(t, r) .

Note that in this formula p does not denote the linear momentum of the particle, but rather the
vector whose three components are the canonical momenta pi given by Eq. (3.101). Hamilton’s
equations are the three equations (3.102), along with

.
pi = − ∂H∂xi = −e

∂Φ
∂xi

(t, r)+ e
m
(
p− eA(t, r)) · ∂A

∂xi
(t, r) , i = 1,2,3 .

The previous Hamiltonian can also be easily calculated in spherical coordinates. In fact, we
know that the Lagrangian is covariant under coordinate changes, so that in order to obtain the
Lagrangian of a charged particle in spherical coordinates it suffices to express (3.37) in these
coordinates. Since

.
r ·A = ( .

rer + r
.
θeθ + r sinθ

.
ϕeϕ) · (Arer +Aθeθ +Aϕeϕ) = .

rAr + r
.
θAθ + r sinθ

.
ϕAϕ ,

substituting into Eq. (3.37) we obtain

L = m
2
(

.
r2 + r2

.
θ2 + r2 sin2 θ

.
ϕ2)− eΦ + e( .

rAr + r
.
θAθ + r sinθ

.
ϕAϕ

)
.

The canonical momenta are now

pr =m .
r + eAr , pθ =mr2

.
θ + erAθ , pϕ =mr2 sin2 θ

.
ϕ + er sinθAϕ ,

so that

.
r = 1

m
(pr − eAr ) , r

.
θ = 1

mr
(pθ − erAθ) , r sinθ

.
ϕ = 1

mr sinθ
(pϕ − er sinθAϕ) .

Substituting in the definition of H we finally obtain

H = .
rpr +

.
θpθ + .

ϕpϕ − m
2
(

.
r2 + r2

.
θ2 + r2 sin2 θ

.
ϕ2)+ eΦ − e( .

rAr + r
.
θAθ + r sinθ

.
ϕAϕ

)
= m

2

( .
r2 + r2

.
θ2 + r2 sin2 θ

.
ϕ2)+ eΦ

= 1
2m

[
(pr − eAr )2 + (pθ − erAθ)

2

r2 + (pϕ − er sinθAϕ)2

r2 sin2 θ

]
+ eΦ ,
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which can also be expressed as

H = 1
2m

[
(pr − eAr )2 +

(
pθ
r
− eAθ

)2

+
( pϕ
r sinθ

− eAϕ
)2
]
+ eΦ . (3.103)

Exercise. Write down Hamilton’s canonical equations for the Hamiltonian (3.103).

3.6.3 Poisson brackets

As we have just seen, in the Hamiltonian formalism the equations of motion are first-order in
the variables q (the generalized coordinates of the Lagrangian formalism) and p (their associated
canonical momenta). Thus the motion of the system can be represented by the trajectory of a
single point in the space R2n where the canonical variables (q,p) take values, usually referred to
as the system’s phase space. Note that, by the existence and uniqueness theorem for systems
of first-order ordinary differential equations, there is a unique trajectory (q(t),p(t)) passing
through any point (q0,p0) in phase space at a certain initial time t0, i.e., verifying the initial
conditions q(t0) = q0, p(t0) = p0. (We are assuming, as we shall implicitly do in what follows,
that the Hamiltonian H(t,q,p) is of class C2 in the variables (q,p) for all t.) In other words, the
system’s trajectories in phase space do not intersect.

The rate of change of a smooth function f(t,q,p) (usually called a dynamical variable) as the
canonical variables q and p evolve with time through Hamilton’s canonical equations (3.97) for a
given Hamiltonian H(t,q,p) is given by

.
f = ∂f

∂t
+ ∂f
∂q

.
q+ ∂f

∂p
.
p = ∂f

∂t
+ ∂f
∂q

∂H
∂p

− ∂f
∂p

∂H
∂q

.

This suggests defining the Poisson bracket of two functions f(t,q,p) and g(t,q,p) as the ex-
pression

{f , g} := ∂f
∂q

∂g
∂p

− ∂f
∂p

∂g
∂q

≡
n∑
i=1

(
∂f
∂qi

∂g
∂pi

− ∂f
∂pi

∂g
∂qi

)
. (3.104)

Using this definition, the previous formula for
.
f can be concisely written as

.
f = ∂f

∂t
+ {f ,H} ; (3.105)

in particular, if f does not depend explicitly on time t we obtain the simpler expression

.
f = {f ,H} .

Applying the previous formula to the coordinates (q,p) in phase space we obtain the following
formulation of Hamilton’s canonical equations in terms of the Poisson bracket:

.
qi = {qi,H} , .

pi = {pi,H} , i = 1, . . . , n .

The Poisson brackets of the canonical coordinates and momenta among themselves are particu-
larly simple:

{qi, qj} = {pi, pj} = 0 , {qi, pj} = δij , i, j = 1, . . . , n , (3.106)

where δij is Kronecker’s delta.
The following properties of the Poisson bracket follow immediately from its definition:
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1. Antisymmetry: {f , g} = −{g, f}. In particular, {f , f} = 0.

2. Bilinearity: {λf +µg,h} = λ{f ,h}+µ{g,h} , where λ,µ are constant (or, more generally,
functions only of t). (By antisymmetry, the analogous property holds for the Poisson
bracket {f , λg + µh}.)

3. Leibniz’s rule: {fg,h} = f{g,h} + {f ,h}g (and similarly for {f , gh}).

On the other hand, a long but straightforward calculation shows that the Poisson bracket satisfies
the so called Jacobi identity

{{f , g}, h}+ {{g,h}, f}+ {{h, f}, g} = 0 . (3.107)

From the elementary properties of partial derivatives it easily follows that

∂
∂t
{f , g} =

{
∂f
∂t
, g
}
+
{
f ,
∂g
∂t

}
.

Using this relation and the Jacobi identity we can derive an important generalization of the latter
result, known as the Jacobi–Poisson identity:

d
dt
{f , g} = {

.
f , g} + {f , .

g} . (3.108)

Indeed,

d
dt
{f , g} = ∂

∂t
{f , g} + {{f , g},H} = {∂f

∂t
, g
}
+
{
f ,
∂g
∂t

}
− {{g,H}, f}− {{H,f}, g}

=
{
∂f
∂t
, g
}
+ {{f ,H}, g}+ {f , ∂g

∂t

}
+ {f , {g,H}} = {∂f

∂t
+ {f ,H}, g

}
+
{
f ,
∂g
∂t
+ {g,H}

}
= {

.
f , g} + {f , .

g} ,

where we have used the Jacobi identity in the second equality. An important corollary of the
Jacobi–Poisson identity is the so called Jacobi–Poisson theorem, of fundamental importance for
obtaining first integrals of Hamiltonian systems:

If f(t,q,p) and g(t,q,p) are two first integrals of Hamilton’s canonical equations (3.97), so is
their Poisson bracket {f , g}.

Example 3.17. As we saw in Example 3.14, the Hamiltonian of a particle of massm in Cartesian
coordinates is given by

H = p2

2m
+ V(t, r) ,

where r = (x1, x2, x3) plays the role of q and p =m .
r is the linear momentum. We can compute

the Poisson bracket of any two components of the angular momentum

J = r× p = (x2p3 − x3p2, x3p1 − x1p3, x1p2 − x2p1
)

by applying the properties of the Poisson bracket reviewed above and the fundamental brack-
ets (3.106). For instance,

{J1, J2} = {x2p3 − x3p2, x3p1 − x1p3} = {x2p3, x3p1} − {x2p3, x1p3} − {x3p2, x3p1} + {x3p2, x1p3}
= −x2p1 + p2x1 = J3 .
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Proceeding in this way we obtain the important relations

{Ji, Jj} = Jk , (i, j, k) = cyclic permutation of (1,2,3) .

Suppose now that any two components of the angular momentum are conserved, for instance
J1 and J2. By the Jacobi–Poisson theorem the remaining component J3 = {J1, J2} will also be
conserved. In other words, if any two components of the angular moment J are conserved then
J is conserved. Likewise, suppose that the projection of the linear momentum p (which in this
case coincides with the canonical one) along a certain direction n and the angular momentum
are conserved. Choosing the coordinates appropriately, we can assume that p1 and J are
conserved. The relation

{p1, J2} = {p1, x3p1 − x1p3} = −{p1, x1p3} = p3

then implies, by the Jacobi–Poisson theorem, that p3 is also conserved. Similarly, from the
Poisson bracket

{p1, J3} = {p1, x1p2 − x2p1} = {p1, x1p2} = −p2

we deduce that p2 is conserved. Hence in this case the linear momentum p is conserved.

We have already remarked in the previous subsection that in the Hamiltonian formulation the
canonical variables q and p have identical status. It is therefore reasonable to try to simplify
Hamilton’s equations (3.97) using general changes of variables of the form

q̃ = q̃(t,q,p) , p̃ = p̃(t,q,p) (3.109)

involving both coordinates and momenta. The problem is that, in general, such a transformation
maps the system (3.97) into a first-order system that need not be in general of Hamiltonian type,
i.e., of the form

.
q̃ = ∂H̃

∂p̃
,

.
p̃ = −∂H̃

∂q̃
(3.110)

for a certain function H̃(t, q̃, p̃). The transformation (3.109) is said to be canonical provided
that it maps Hamilton’s equations of any Hamiltonian H(t,q,p) into the canonical equations of
another Hamiltonian H̃(t, q̃, p̃).

Example 3.18. The transformation

q̃ = p , p̃ = q

is canonical, since it transforms Hamilton’s equations of any Hamiltonian H(t,q,p) into those
of the Hamiltonian H̃(t, q̃, p̃) = −H(t,q,p). Indeed,

.
q̃ = .

p = −∂H
∂q

= ∂H̃
∂p̃

,
.
p̃ = .

q = ∂H
∂p

= −∂H̃
∂q̃

.

The transformation
q̃ = p , p̃ = −q ,

is also canonical, with H̃(t, q̃, p̃) = H(t,q,p).

Exercise. Show that the transformation

q̃ = p2 , p̃ = q

is not canonical.
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• An important result in Hamiltonian mechanics states that the transformation (3.109) is canon-
ical if and only if the Poisson brackets of the transformed canonical variables q̃ and p̃ verify

{q̃i, q̃j} = {p̃i, p̃j} = 0 , {q̃i, p̃j} = λδij , i, j = 1, . . . , n ,

with λ ̸= 0 constant10. In particular, if λ = 1 the variables q̃ and p̃ are said to be canonically

conjugate.

• It can also be shown that it is always possible to find a canonical transformation (3.109) map-
ping Hamilton’s equations (3.97) of any Hamiltonian H(t,q,p) into the canonical equations of
the Hamiltonian H̃ = 0, that is to say, into the trivial system

.
q̃ = 0 ,

.
p̃ = 0 .

The general solution of the latter system is obviously

q̃ = q̃0 , p̃ = p̃0 ,

with q̃0, p̃0 arbitrary constant vectors. The general solution of the canonical equations of the
original Hamiltonian H(t,q,p) is then obtained inverting the relations

q̃(t,q,p) = q̃0 , p̃(t,q,p) = p̃0

to express q and p in terms of t and the 2n constants (q̃0, p̃0). In fact, this is one of the most
effective methods for solving Hamilton’s equations, using the so-called Hamilton–Jacobi equation
for finding a canonical transformation mapping the original Hamiltonian H into H̃ = 0.

• The fundamental Poisson brackets (3.106) make it possible to establish a formal analogy be-
tween classical and quantum mechanics. Indeed, in quantum mechanics the dynamical variables
dynamic (qj , pj) are replaced (in the so called Schrödinger picture) by the self-adjoint operators

Qj = qj , Pj = −iℏ
∂
∂qj

,

whose action on a complex valued wave function (probability amplitude) ψ(q) is given by

(Qjψ)(q) = qjψ(q) , (Pjψ)(q) = −iℏ
∂ψ
∂qj

(q) .

The fundamental operators (Qi, Pj) satisfy commutation relations totally analogous to Eq. (3.106):

[
Qi,Qj

] = [Pi, Pj] = 0 ,
[
Qi, Pj

] = iℏ
[
∂
∂qj

, qi
]
= iℏδij , (3.111)

where the commutator of two operators A,B is defined by

[A, B] = AB − BA .

Any other function f(q,p) is represented in quantum mechanics by a self-adjoint operator
F(Q,P) such that

F(q,p) = f(q,p) .

10Usually only canonical transformations with λ = 1 (called proper) are considered. This does not entail any real
restriction, since if (3.109) is a canonical transformation with λ ̸= 1 the transformation (q,p), (q̃, p̃/λ) is another
canonical transformation with λ = 1
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This fact is known as Bohr’s correspondence principle. It is important to realize in this respect
that, since the product of operators is not commutative in general, the operator F determines
the classical function f but not vice versa. For instance,

F1(Q, P) = PQ2P ≠ F2(Q, P) = 1
2
(Q2P2 + P2Q2)

(in fact, F1 − F2 = ℏ2), but nevertheless f1(q,p) = f2(q,p) = q2p2. This fact is not surprising,
since classical mechanics is the limit as ℏ→ 0 of quantum mechanics, so the former theory must
be determined by the latter. The converse, however, is not necessarily true, as there may exist
different theories with the same limit as ℏ→ 0.

The commutator [A, B] of two operators A and B has algebraic properties formally analogous
to those of the Poisson bracket. Indeed, it is obviously antisymmetric and linear in each of its
arguments. In addition, if A, B, and C are three operators then it is immediate to verify that

[AB,C] = A[B,C]+ [A,C]B . (3.112)

This identity is similar to Leibniz’s rule satisfied by the Poisson bracket, with the only difference
that the order in which operators appear in Eq. (3.112) is essential for its validity. Finally, it is
straightforward to show that the commutator also verifies the Jacobi identity

[[A, B], C]+ [[B,C],A]+ [[C,A], B] = 0 ,

where the order is again essential. If F(Q,P) and G(Q,P) are two self-adjoint operators de-
pending polynomially on (Q,P) (and not explicitly dependent on ℏ), by repeatedly applying
Eq. (3.112) we can always express the commutator [F,G] in terms of the canonical commutators
in Eq. (3.111). From Leibniz’s rule satisfied by the Poisson bracket it then follows that the Poisson
bracket {f , g} of the corresponding classical functions f(q,p) = F(q,p), g(q,p) = G(q,p) will
satisfy the same expression replacing Qi by qi, Pi by pi and the canonical commutators (3.111)
by the canonical Poisson brackets (3.106) (see next example). It follows that if

[F,G] = iℏK ,

where K(Q,P) is a polynomial independent of ℏ, the classical Poisson bracket {f , g} will be given
by

{f , g} = k
with k(q,p) = K(q,p). In other words, the commutator in quantum mechanics determines the
Poisson bracket in classical mechanics through the relation

1
iℏ

[
F,G

]→ {
f , g} .

The opposite route (from the Poisson bracket in classical mechanics to the commutator in quan-
tum mechanics) is not well defined in general, since as we have remarked different self-adjoint
operators F(Q,P) can yield the same function f(q,p).

Example 3.19. Consider, for example, the commutator [Q2, P2]. Using repeatedly Eq. (3.112)
we obtain

[Q2, P2] = [Q ·Q,P2] = Q[Q,P2]+ [Q, P2]Q = QP[Q,P]+Q[Q,P]P + P[Q, P]Q+ [Q, P]PQ
= 2iℏ(QP + PQ) .

At the classical level, applying repeatedly Leibniz’s rule to the Poisson bracket {q2, p2} we
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3.6 Introduction to Hamiltonian mechanics

arrive at

{q2, p2} = q{q,p2} + {q,p2}q = qp{q,p} + q{q,p}p + p{q,p}q + {q,p}pq = 2(qp + pq)
= 4qp ,

which is indeed obtained from [Q2, P2]/(iℏ) replacing q by Q and P by p.
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4 Motion relative to a non-inertial frame

4.1 Angular velocity of a reference frame with respect to another

We shall study in this chapter the description of the motion of a particle in a non-inertial refer-
ence frame. Consider, to begin with, two reference frames S and S′ with the same origin, and
denote by {e1,e2,e3} and {e′i,e′2,e′3} the orthonormal positively oriented frames determining the
axes of S and S′. We shall always assume in this chapter that the frame S′ is inertial, and denote
by O(t) the linear application relating the vectors e′i (fixed axes) with the vectors ei (moving

axes):

ei(t) = O(t)e′i , i = 1,2,3 . (4.1)

We shall often identify in what follows the operator O(t) with its matrix in the basis
{
e′i
}3
i=1,

whose columns are the coordinates of the vectors ei(t) with respect to the latter basis. SinceO(t)
transforms a positively oriented orthonormal frame into another such frame, this operator is
an element of the special orthogonal group SO(3) of all linear operators M : R3 → R3 (or,
equivalently, 3× 3 real matrices M) satisfying the the conditions

MTM = MMT = 1 , detM = 1 .

A theorem first proved by Euler states that every element M of SO(3) is a rotation around a
certain axis n. The proof of this theorem is as follows. First of all, taking the determinant of
both members of the equality

MT(M − 1) = 1−MT

and using the elementary identities

detM = detMT = 1 , det(1−MT) = det
(
(1−M)T) = det(1−M)

we obtain

det(M − 1) = det(1−M) = −det(M − 1) =⇒ det(M − 1) = 0 .

Hence λ = 1 is an eigenvalue of M . In other words, there exists a nonzero vector n ∈ R3 (which
we can take w.l.o.g. of unit length) such that Mn = n. Let us next show that M is a rotation
around the axis n. Indeed, taking e′3 = n the matrix M is of the form

M =
a11 a12 0
a21 a22 0
0 0 1

 ,
where A ≡ (aij)1ài,jà2 is an orthogonal 2 × 2 matrix with unit determinant (recall that the
columns of an orthogonal matrix are unit vectors perpendicular with one another). Since a2

11 +
a2

21 = 1, we can take

a11 = cosθ, a21 = sinθ , with θ ∈ [0,2π) .

Similarly,

a12 = cosψ, a22 = sinψ , with ψ ∈ [0,2π) .
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Motion relative to a non-inertial frame

Imposing the orthogonality of the columns of A we obtain

cosθ cosψ+ sinθ sinψ = cos(θ −ψ) = 0 .

Hence ψ = θ ± π
2 (up to an integer multiple of 2π), and

M =
cosθ ∓ sinθ 0

sinθ ± cosθ 0
0 0 1


Actually, the solution ψ = θ − π

2 is unacceptable, since it implies that detM = −1. Thus ψ =
θ +π/2, and

M =
cosθ − sinθ 0

sinθ cosθ 0
0 0 1

 =: R3(θ)

is indeed a (counterclockwise) rotation of angle θ around the axis e′3 = n.

Exercise. Show that the rotation angle θ of a matrix M ∈ SO(3) is determined by the equation
1+ 2 cosθ = trM , where trM :=∑3

i=1Mii denotes the trace of the matrix M .

Solution. We have just seen that if M ∈ SO(3) and n (with |n| = 1) is an eigenvector of M of
eigenvalue 1 then M is a rotation around the axis n. To determine the angle of rotation θ, note
that M = UR3(θ)U−1, where U is the change of basis matrix from the original basis {e′i}3

i=1 to
the basis with n = e′3. Taking the trace of this equality and remembering that tr(AB) = tr(BA)
we obtain

trM = tr
(
UR3(θ)U−1

)
= tr

(
U−1UR3(θ)

)
= trR3(θ) = 1+ 2 cosθ .

Consider again the rotation matrix R3(θ) around the axis e′3. A direct calculation shows that

dR3

dθ
(0) =

0 −1 0
1 0 0
0 0 0

 ;

hence, if c =∑3
i=1 c

′
ie
′
i ∈ R3 is an arbitrary vector we have

d
dθ

∣∣∣∣
θ=0

R3(θ)c = dR3

dθ
(0) c = −c2e′1 + c1e′2 = e′3 × c .

In general, if Rn(θ) denotes the matrix implementing a rotation around the axis n by an angle θ
we must accordingly have

d
dθ

∣∣∣∣
θ=0

Rn(θ)c = dRn

dθ
(0) c = n× c .

We can symbolically write

dRn

dθ
(0) = n× , (4.2)

with the understanding that both sides are equal when applied to an arbitrary vector c ∈ R3.
Another consequence of the previous result is that, since Rn(0) = 1, for θ small we have

Rn(θ)c = c+ θ n× c+O(θ2) . (4.3)

For this reason the transformation
c , c+ θ n× c

is called an infinitesimal rotation of angle θ around n.
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4.1 Angular velocity of a reference frame with respect to another

Exercise. Show that Rn(θ)r = cosθ r+ (1− cosθ)(n · r)n+ sinθ n× r .

Solution. If r is parallel to n the formula is clearly true. On the other hand, if r is not parallel
to n the vectors n, n × r and r − (n · r)n are mutually orthogonal and nonzero. Moreover, the
last two vectors have the same length l > 0, since

|r− (n · r)n|2 = r2 − (n · r)2 .

It follows that the vectors

e1 = 1
l

(
r− (n · r)n

)
, e2 = 1

l
n× r , e3 = n

make up a positively oriented orthonormal basis. Using this basis and the equation of the
rotation R3(θ) we obtain

Rn(θ)r = Rn(θ)
(
le1 + (n · r)n

) = lRn(θ)e1 + (n · r)n = l cosθ e1 + l sinθ e2 + (n · r)n

= cosθ
(
r− (n · r)n

)+ sinθ n× r+ (n · r)n ,

which yields the sought-for formula.

Let now O(t) ∈ SO(3) for all t, and suppose that O is of class C1 (i.e., that the matrix elements
of O are continuously differentiable functions of t). We shall next compute the derivative

.
O(t)

at an arbitrary time t. To this end, we differentiate with respect to t the identity

O(t)O(t)T = 1 ,

obtaining
0 = .

O(t)O(t)T +O(t) .
O(t)T = .

O(t)O(t)T + [ .
O(t)O(t)T

]T .
Thus

Ω(t) := .
O(t)O(t)T

is an antisymmetric 3× 3 matrix. Since O(t)T = O(t)−1, from the previous relation we obtain
.
O(t) = Ω(t)O(t) . (4.4)

The antisymmetric matrix Ω(t) can be written as

Ω(t) =
 0 −ω3(t) ω2(t)
ω3(t) 0 −ω1(t)
−ω2(t) ω1(t) 0


for appropriate real numbers ωi(t). It is then straightforward to check that if c ∈ R3 is any
vector we have

Ω(t)c =ω(t)× c ,

where ω(t) ∈ R3 is the vector with components ωi(t). From Eq. (4.4) and the previous identity
(with O(t)c instead of c) we finally deduce that

.
O(t)c =ω(t)×O(t)c , ∀t ∈ R . (4.5)

The vector ω(t) ∈ R3, which is in general time-dependent, is determined by the relation

ω(t)× = Ω(t) = .
O(t)O(t)T = .

O(t)O(t)−1 ,

which can also be written as

ω(t0)× = d
dt

∣∣∣∣
t=t0

O(t)O(t0)−1 . (4.6)
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Exercise. Show that the matrix elements Ωij of the antisymmetric matrix Ω and the compo-
nents ωk of the vector ω are related by

Ωij = −
3∑
k=1

εijkωk , ωk = −1
2

3∑
i,j=1

εijkΩij ,

where εijk is Levi-Civita’s completely antisymmetric tensor defined in Eq. (1.13).

Example 4.1. If O(t) is a rotation around a fixed axis n by a time-dependent angle α(t) we
have

ω(t) = .
α(t)n .

Indeed, from Eq. (4.6) we obtain

O(t) = Rn
(
α(t)

)
=⇒ O(t)O(t0)−1 = Rn

(
α(t)

)
Rn
(
α(t0)

)−1 = Rn
(
α(t)−α(t0)

)
,

and thus, by Eq. (4.2),

ω(t0)× = d
dt

∣∣∣∣
t=t0

Rn
(
α(t)−α(t0)

) = .
α(t0)

d
dθ

∣∣∣∣
θ=0

Rn(θ) = .
α(t0)n× =⇒ ω(t0) = .

α(t0)n .

Applying Eq. (4.5) to Eq. (4.1), which relates the moving axes unit vectors ei(t) = O(t)e′i with
the fixed ones e′i, we obtain the important formula

.
ei(t) =ω(t)×O(t)e′i =ω(t)× ei(t) , (4.7)

where
.
ei(t) denotes the time derivative of the vector ei(t) with respect to the inertial (fixed)

frame S′. We thus have

ei(t +∆t) = ei(t)+ω(t)∆t × ei(t)+O(∆t2) .

Comparing with Eq. (4.3) we deduce that to first order in ∆t each vector ei(t + ∆t) is obtained
from ei(t) applying an infinitesimal rotation of angle ∆θ and axis n(t) such that

∆θ n(t) = ∆tω(t) .

Letting ∆t tend to zero in the previous equation we obtain the relation

ω(t) =
.
θ(t)n(t) .

In other words:

The direction and the magnitude of the vector ω(t) are respectively equal to the instanta-
neous axis of rotation and the magnitude of the instantaneous angular velocity of the moving
axes

{
ei
}3
i=1 with respect to the fixed ones

{
e′i
}3
i=1.

For this reason, the vector ω(t) is called the instantaneous angular velocity vector (at time t)
of the moving axes

{
ei
}3
i=1 with respect to the fixed ones

{
e′i
}3
i=1.
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4.2 Time derivative in the fixed and moving frames

To study the relation between the inertial frame S′ (fixed frame) and its non-inertial counterpart
S (moving frame), we shall analyze in this section how the time derivative of a vector A(t) is
expressed in each of these reference frames. To this end, let us start by expanding A(t) in the
moving frame

{
ei
}3
i=1:

A(t) =
3∑
i=1

Ai(t)ei .

From now on, to avoid confusion we shall respectively denote by
(

d
dt

)
f

and
(

d
dt

)
m

the time

derivatives with respect to the fixed and moving reference frames. Differentiating the previous
equation in the fixed frame and using the latter notation we obtain the identity

(
dA(t)

dt

)
f
=

3∑
i=1

.
Ai(t)ei +

3∑
i=1

Ai(t)
(

dei
dt

)
f
, (4.8)

where we have taken into account that the functions Ai(t) are scalars, and therefore their time
derivative is the same in any frame. Using Eq. (4.7), which in the notation just introduced is
written (

dei
dt

)
f
=ω(t)× ei , (4.9)

Eq. (4.8) becomes (
dA(t)

dt

)
f
=

3∑
i=1

.
Ai(t)ei +ω(t)×A(t) . (4.10)

On the other hand, in the moving frame the vectors ei are constant, so that
(

dA

dt

)
m

is simply

given by (
dA(t)

dt

)
m
=

3∑
i=1

.
Ai(t)ei .

Comparing the last two equations we obtain the important relation

(
dA(t)

dt

)
f
=
(

dA(t)
dt

)
m
+ω(t)×A(t) . (4.11)

The above expression is valid for any time-dependent vector A(t); in particular, if we apply it to
the instantaneous angular velocity ω(t) we obtain

(
dω(t)

dt

)
f
=
(

dω(t)
dt

)
m
=:

.
ω(t) . (4.12)

4.3 Dynamics in a non-inertial reference frame

Consider next the most general situation in which the origin of S is displaced from that of S′

by a time-dependent vector R(t). If r is the position vector of a particle with respect to the
non-inertial frame S, its position vector in the inertial frame S′ will be given by

r′ = r+ R .
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Differentiating this equality with respect to the fixed (inertial) reference frame we obtain(
dr′

dt

)
f
=
(

dr

dt

)
m
+ω× r+V , (4.13)

where

V :=
(

dR

dt

)
f

(4.14)

is the velocity of the origin of S measured in the inertial frame S′. Denoting by

vf =
(

dr′

dt

)
f
, vm =

(
dr

dt

)
m

(4.15)

the velocity of the particle with respect to the fixed and moving frames, we can rewrite Eq. (4.13)
in the more compact form

vf = vm +ω× r+V . (4.16)

Differentiating again this relation in the inertial frame we obtain(
dvf

dt

)
f
=
(

dvm

dt

)
m
+ω× vm + .

ω× r+ω× (vm +ω× r)+
(

dV

dt

)
f

=
(

dV

dt

)
f
+
(

dvm

dt

)
m
+ 2ω× vm +ω× (ω× r)+ .

ω× r .

Taking into account that(
dvf

dt

)
f
=
(

d2r′

dt2

)
f

= af ,
(

dvm

dt

)
m
=
(

d2r

dt2

)
m

= am

is the particle’s acceleration in the fixed and moving frames, and denoting by

A :=
(

dV

dt

)
f
=
(

d2R

dt2

)
f

the acceleration of the origin of the moving frame S with respect to the fixed one S′, we finally
obtain the important relation

af = am +A+ 2ω× vm +ω× (ω× r)+ .
ω× r . (4.17)

From the previous equation it follows that if the particle is acted upon by a force F, as measured
in the inertial frame S′, its equation of motion in the moving frame S will be

mam = F−mA− 2mω× vm −mω× (ω× r)−m .
ω× r =: F+ Fin . (4.18)

Hence in the moving frame Newton’s second law must be modified by adding to the real force F

the fictitious force

Fin = −mA− 2mω× vm −mω× (ω× r)−m .
ω× r . (4.19)

It is important to note that this fictitious force is an inertial force, since it is proportional to the
particle’s mass m.

The first term in the fictitious force Fin is simply due to the acceleration of the origin of the
non-inertial frame S with respect to the inertial one S′, and thus vanishes if the latter point
moves with constant velocity relative to S′. The remaining terms in Fi are due to the rotation of
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4.4 Motion of a particle relative to the rotating Earth

Figure 4.1. Centrifugal (left) and Coriolis (right) forces.

the axes of the moving system. While the last term vanishes if the angular velocity ω is constant,
the second and the third terms are in general nonzero even when ω is constant. The term
−mω× (ω× r) is the so called centrifugal force, since it is a vector in the plane determined by
ω and r, perpendicular to ω and pointing away from the axis determined by the latter vector
(cf. Fig. 4.1). The term −2mω × vm, which depends on the particle’s velocity, is known as the
Coriolis force (see again Fig. 4.1). Note that the centrifugal force is of second order in ω, while
the Coriolis force is of first order. It is therefore to be expected that the former force should be
negligible compared to the latter for small angular velocities |ω|.

From the previous remarks it is also clear that the fictitious force Fi vanishes identically if and
only if (

d2R

dt2

)
f

=ω = 0

for all t. By Eq. (4.5), the vanishing ofω(t) for all t is equivalent to the condition that the rotation
matrixO(t) be constant. From the discussion of Section 1.3.4 on Galileo’s relativity principle, this
is the same as saying that S is also an inertial frame. In other words, the only reference frames
in which inertial forces are absent are the inertial ones.

4.4 Motion of a particle relative to the rotating Earth

We shall apply in this section the equation of motion (4.18) obtained above to study the dynamics
of a particle moving near Earth’s surface. We shall neglect Earth’s motion around the Sun, and
assume that Earth rotates around its north-south axis in the west-east direction with constant
angular velocity of magnitude1

ω = 2π rad
1 sidereal day

≃ 2π rad
86164.1 s

≃ 7.29212 · 10−5 rad s−1 .

Let us choose a (moving) frame of terrestrial axes in the manner indicated in Fig. 4.2. More
precisely, the origin O of the terrestrial frame S is a point on Earth’s surface with latitude λ
and longitude ϕ, the vector e3 (z axis) is directed along the vector R joining Earth’s center with
the point O, the vector e1 (x axis) is tangent to the meridian passing through O (in a southerly

1By definition, a sidereal day is the time taken by Earth to perform a complete rotation around its axis, while a
solar day (equal to 24 hours) is the interval between two consecutive transits of the Sun across the meridian of any
point on Earth’s surface. Due to Earth’s rotation around the Sun, the sidereal day is about 4 minutes shorter than
the solar day.
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Figure 4.2. Terrestrial axes at a point O on Earth’s surface.

direction), and the vector e2 (y axis) is then tangent to the parallel passing through O (in an
easterly direction). In other words:

The x axis is directed towards the south, the y axis towards the east, and the z axis along the
vertical.

As fixed axes we shall take a frame with origin O′ located at Earth’s center such that the vector
e′3 is directed along the South Pole-North Pole axis. Hence Earth’s angular velocity is given by

ω =ωe′3 .

Note that the vectors ei of the moving (terrestrial) frame are respectively the unit vectors eθ , eϕ,
and er of the spherical coordinate system at the point r, with θ = π

2 −λ. Using Eqs. (1.4) we thus
obtain

e1 = sinλ cosϕe′1 + sinλ sinϕe′2 − cosλe′3 ,

e2 = − sinϕe′1 + cosϕe′2 ,

e3 = cosλ cosϕe′1 + cosλ sinϕe′2 + sinλe′3 .

From the previous equations (or simply from Fig. 4.2) it follows that in the terrestrial frame
Earth’s angular velocity is given by

ω =ω(− cosλe1 + sinλe3) . (4.20)

Let us next write down the equations of motion (4.18) relative to the terrestrial frame for a
particle of mass m moving in the vicinity of the point O. We shall assume, for the time being,
that the only force acting on the particle is Earth’s gravitational attraction mg0, where

g0 = −GMr ′3 r′ ,

M is Earth’s mass and r′ = R+ r is the particle’s position vector relative to the fixed frame. If the
particle remains close enough to the point O on Earth’s surface we can replace the vector r′ by
R, and thus take

g0 = −GMR3 R = −GM
R2 e3 = −g0e3
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4.4 Motion of a particle relative to the rotating Earth

with

g0 := GM
R2 ≃ 9.80665 m s−2

is the acceleration due to gravity (also called standard gravity) on Earth’s surface. In the rest of
this chapter we shall write, for simplicity,

vm = .
r , am = ..

r .

The particle’s equations of motion in the terrestrial frame are therefore

..
r = g0 −A− 2ω× .

r−ω× (ω× r) .

This expression can be simplified taking into account that in this case

V =
(

dR

dt

)
f
=
(

dR

dt

)
m
+ω× R =ω× R ,

since R = Re3 is constant in the terrestrial frame. Differentiating with respect to t (and taking
into account that ω is constant) we obtain

A =
(

dV

dt

)
f
=ω×V =ω× (ω× R) .

Thus the particle’s equations of motion reduce to

..
r = g− 2ω× .

r−ω× (ω× r) , (4.21a)

where the vector

g := g0 −ω× (ω× R) , (4.21b)

which is constant in the terrestrial frame, is known as the effective gravity at the point O (i.e.,
the acceleration relative to the terrestrial frame experienced by a particle instantaneously at rest
at the pointO on Earth’s surface). Obviously, if apart from gravity an additional force F is exerted
on the particle its equation of motion is

..
r = F

m
+ g− 2ω× .

r−ω× (ω× r) . (4.22)

Exercise. Show that at a point of latitude λ the plumb line deviates from the vertical by an angle
δ(λ) given by

tanδ(λ) = ω2R sinλ cosλ
g0 −ω2R cos2 λ

. (4.23)

Find the latitude λ for which δ(λ) is maximum and the maximum value of δ(λ).

Solution. By definition, the plumb line is the direction determined by a string from which a
mass hangs at rest, i.e., the direction opposite to the string’s tension T at equilibrium. To
find this direction, it is enough to note that the equation of motion of the mass is obtained
substituting F = T in Eq. (4.22), that is

..
r = g− 2ω× .

r−ω× (ω× r)+ T

m
.

Since the mass is at rest
.
r = ..

r = 0, and thus

T

m
= −g+ω× (ω× r) ≃ −g , (4.24)
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Figure 4.3. Effective gravity g (in the Northern Hemisphere).

where we have neglected the term ω× (ω× r) taking into account that

|ω× (ω× r)| à ω2r ≪ |ω× (ω× R)| =ω2R cosλ

except near the Poles (λ = ±π/2). From Eq. (4.24) it follows that the direction of the plumb line
is approximately that of the effective gravity g. Taking into account that g0 = −g0e3 and

ω× (ω× R) = (ω · R)ω−ω2R =ω2R sinλ(− cosλe1 + sinλe3)−ω2Re3

= −ω2R cosλ(sinλe1 + cosλe3)

we obtain

g = g0

(
γ sinλ cosλe1 − (1− γ cos2 λ)e3

)
, with γ := ω2R

g0
≃ 3.458 · 10−3 .

The vector g has a component

g1 = γg0 sinλ cosλ = ω2R
2

sin 2λ

in the direction of the basis vector e1 (cf. Fig. 4.3). Therefore g deviates from the vertical (i.e.,
the direction of the z axis) to the south in the Northern Hemisphere (λ > 0) and to the north
in the Southern one (λ < 0). The tangent of the angle δ(λ) between the vector g is given by

tanδ(λ) = g1

|g3| =
γ sinλ cosλ
1− γ cos2 λ

= γ sin 2λ
2− γ − γ cos 2λ

,

which coincides with Eq. (4.23) by the definition of γ. Differentiating the previous expression
we obtain

1
2γ

d
dλ

tanδ(λ) = (2− γ − γ cos 2λ) cos 2λ− γ sin2 2λ
(2− γ − γ cos 2λ)2

= (2− γ) cos 2λ− γ
(2− γ − γ cos 2λ)2

.

Thus the angle δ(λ) will be maximum (in absolute value) when

cos 2λ = γ
2− γ , (4.25)
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4.4 Motion of a particle relative to the rotating Earth

and its maximum value δmax verifies

tanδmax = sgnλ
γ
√

1− γ2

(2−γ)2

2− γ − γ2

2−γ
= γ sgnλ√

(2− γ)2 − γ2
= γ sgnλ

2
√

1− γ ≃ 1.732 · 10−3 sgnλ ,

or equivalently
δmax ≃ 5.955′ sgnλ .

Since γ is of the order of 10−3, it follows from Eq. (4.25) that the latitude λmax for which δ(λ)
is maximum can be expressed as λmax = ±(π4 − ε), with ε > 0 small. The value of ε can be
approximately computed expanding cos 2λmax to first order in ε:

cos 2λmax = cos
(
π
2
− 2ε

)
= sin 2ε ≃ 2ε = γ

2− γ ≃
γ
2

=⇒ ε ≃ γ
4
≃ 8.646 · 10−4 rad = 2.972′ .

The equation of motion (4.21) is exact. In fact, the latter equation is a system of (inhomoge-
neous) linear second-order ordinary differential equations with constant coefficients in the com-
ponents of the vector r. As shown in the course of Mathematical Methods I, this type of systems
can in principle be exactly solved, for instance, by transforming them into a first-order system
in (r,

.
r) and using the matrix exponential. In practice, it is preferable to first simplify Eq. (4.21)

taking into account the different orders of magnitude of its terms. More precisely, the second
term of (4.21b) is at most of order γ ∼ 10−3 with respect to the first one, while the last term
of (4.21a) is at most of order γr/R with respect to the first. Thus, if r ≪ R the equation of
motion can be approximated by

..
r = g0 − 2ω× .

r . (4.26)

Integrating once with respect to t we obtain

.
r = g0t − 2ω× r+ c ,

where c is a constant vector in the terrestrial frame. Although this system can again be exactly
solved (it is an inhomogeneous linear system of first-order ordinary differential equations with
constant coefficients), it is more convenient in practice to take advantage of the fact that for
small speeds | .r| the first term of the RHS of Eq. (4.26) is much larger than the second one, since

g0

ω
≃ 1.34483 · 105 m s−1 .

This fact makes it possible to obtain an approximate solution of Eq. (4.26), considered as the
first-order equation in the velocity

.
v = g0 − 2ω× v , (4.27)

by expanding v in powers of ω:

v(t) = v1(t)+ωv2(t)+O(ω2) ,

with v1,2 independent of ω and

v(0) := v0 =⇒ v1(0) = v0 , v2(0) = 0 .

Substituting into Eq. (4.27) we have

.
v1 +ω .

v2 = g0 − 2ω× v1 +O(ω2) ,
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Motion relative to a non-inertial frame

whence, equating to zero the terms O(1) and O(ω) in both sides of the latter expression we
obtain

.
v1 = g0 , ω

.
v2 = −2ω× v1 .

Solving for v1 in the first of these equations and substituting the result into the second one we
have

v1 = g0t + v0 , ω
.
v2 = −2ω× v0 − 2tω× g0

v2(0)=0
=⇒ ωv2 = −2tω× v0 − t2ω× g0 .

Hence
v ≃ v1 +ωv2 = v0 + g0t − 2tω× v0 − t2ω× g0 ,

and integrating with respect of t we finally obtain

r ≃ r0 + v0t + g0
t2

2
− t2ω× v0 − t

3

3
ω× g0 . (4.28)

Exercise. A particle is thrown vertically from a point on Earth’s surface with latitude λ until it
reaches a height h. Show that the particle lands at a point (4/3)

√
8h3/g0ω cosλ west of the

starting point. (Consider only small heights h and neglect air resistance.)

Solution. We have

r0 = 0 , v0 = v0e3 =⇒ −ω× v0 =ωv0(cosλe1 − sinλe3)× e3 = −ωv0 cosλe2

and
−ω× g0 =ωg0 cosλe2 .

From Eq. (4.28) with the previous values of r0 and v0 we (approximately) obtain

r = v0t e3 − g0

2
t2 e3 +

(
−ωv0 cosλ t2 + ωg0

3
t3 cosλ

)
e2 .

Hence the law of motion is

x = 0 , y =ωv0 cosλ t2
(
g0t
3v0

− 1
)
, z = v0t − g0

2
t2 .

The particle lands at the time t0 > 0 for which z = 0, namely

t0 = 2v0

g0
.

The value of the y coordinate at this time is thus

y(t0) = −4
3

ωv3
0

g2
0

cosλ à 0 .

We thus see that the particle deviates to the west, both in the northern and in the southern
hemisphere, with maximum deviation at the equator (λ = 0). In order to express the deviation
y(t0) in terms of the maximum height h, it suffices to note that this height is reached when
.
z = 0:

.
z = v0 − g0t = 0 =⇒ t = v0

g0
=⇒ z = h = v2

0

2g0
.
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4.5 Foucault’s pendulum

Hence

y(t0) = − 4ω
3g2

0

(2g0h)3/2 cosλ = −4
3
ω cosλ

√
8h3

g0
.

For instance,

h = 100 m , λ = 40◦ 25′ (Madrid’s latitude) =⇒ y(t0) = −6.686 cm .

Exercise. Redo the previous problem assuming that the particle is dropped from a height h
over the vertical.

Solution. In this case
r0 = he3 , v0 = 0 ,

and substituting into Eq. (4.28) we obtain

x = 0 , y = ωg0

3
t3 cosλ , z = h− g0

2
t2 .

The particle lands when

t0 =
√

2h
g0
,

and its deviation in the y direction is thus

y(t0) = ω
3

cosλ

√
8h3

g0
.

Since y(t0) á 0, the particles deviates eastwards in both hemispheres.

4.5 Foucault’s pendulum

In 1851 J.B.L. Foucault experimentally demonstrated Earth’s rotation using the pendulum that
nowadays bears his name, schematically represented in Fig. 4.4.

Since we are only interested in studying the small oscillations, we shall assume that the pendu-
lum’s length l is very large compared to the coordinates x,y, z of its bob. The total force acting
on the pendulum’s bob is thus

F =mg0 + T ,

where the tension T of the pendulum’s string is given by

T = T le3 − r

|le3 − r| ≃ T
(

e3 − r

l

)
.

With this approximation the equation of motion reads

..
r = g0 + T

m

(
e3 − r

l

)
− 2ω× .

r ,

where

ω× .
r =ω

∣∣∣∣∣∣∣
e1 e2 e3

− cosλ 0 sinλ
.
x

.
y

.
z

∣∣∣∣∣∣∣ =ω
[− .

y sinλe1 + ( .
x sinλ+ .

z cosλ)e2 − .
y cosλe3

]
,
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Figure 4.4. Foucault’s pendulum.

and thus
..
x = −Tx

lm
+ 2ω

.
y sinλ

..
y = −Ty

lm
− 2ω(

.
x sinλ+ .

z cosλ)

..
z = −g0 + T

m

(
1− z

l

)
+ 2ω

.
y cosλ .

(4.29)

Note that z ≪
√
x2 +y2, since calling θ the angle between the pendulum and the vertical we

have √
x2 +y2 = l sinθ ≃ lθ , z = l(1− cosθ) ≃ lθ2

2
.

We can thus neglect in Eqs. (4.29) the quantities z,
.
z and

..
z compared to x, y and their derivatives.

In particular, from the last equation we obtain

T
m
≃ g0 − 2ω

.
y cosλ ≃ g0 ,

since g0/ω is of the order of 105 m s−1. Substituting into the first two equations (4.29) and
dropping the term proportional to

.
z we finally obtain the following system for the coordinates

(x,y):
..
x +α2x = 2ω

.
y sinλ

..
y +α2y = −2ω

.
x sinλ ,

(4.30)

where

α :=
√
g0

l

is the pendulum’s natural frequency.
The latter equations are easily solved introducing the complex variable

u = x + iy ,

in terms of which they adopt the simple form

..
u+ 2iΩ

.
u+α2u = 0 , with Ω :=ω sinλ . (4.31)
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4.5 Foucault’s pendulum

This is a linear homogeneous second-order ordinary differential equation with constant coeffi-
cients, whose characteristic polynomial

p(s) = s2 + 2iΩ s +α2

possesses the two pure imaginary roots

s± = −iΩ ± i
√
Ω2 +α2 .

For all practical purposes, we can neglect the term Ω2 in the radical compared to α2, since2

Ω2

α2 à
ω2l
g0

= l
1.84422 · 109 m

.

We thus have
s± ≃ −iΩ ± iα ,

and the general solution of Eq. (4.31) is therefore given by

u = e−iΩt
(
c1eiαt + c2e−iαt

)
, (4.32)

where the constants c1, c2 are in general complex.
Let us find, for instance, the solution of Eqs. (4.30) with the initial conditions

x(0) = x0 > 0 , y(0) = 0 ,
.
x(0) = .

y(0) = 0 , (4.33)

i.e., when the pendulum’s bob is initially at rest in the Oxz plane at a distance x0 from the
vertical. If Earth did not rotate around its north-south axis, i.e., if ω = 0, the solution of the
equations of motion (4.30) with the initial conditions (4.33) would be

x = x0 cos(αt) , y = 0 .

In other words, the pendulum would oscillate with frequency α and amplitude x0 around the
vertical in the Oxz plane. On the other hand, when ω > 0 the solution (4.32) verifying the initial
conditions (4.33) is easily found taking into account that

u(0) = x(0)+ iy(0) = x0 ,
.
u(0) = .

x(0)+ i
.
y(0) = 0 . (4.34)

We thus have
c1 + c2 = x0 ,

iα(c1 − c2)− iΩ(c1 + c2) = iα(c1 − c2)− iΩx0 = 0 =⇒ c1 − c2 = Ω
α
x0 ≃ 0 ,

whose approximate solution is

c1 = c2 = 1
2
x0 .

Thus the sought-for solution of Eq. (4.31) is approximately

u = x0e−iΩt cos(αt) .

The complex number e−iΩt is the point on the unit circle making an angle −Ωt with the real (x)

2More precisely, we have

s± = −iΩ ± iα

√
1+ Ω

2

α2
= iα

(
± 1− Ω

α
+O

(
Ω2

α2

))
,

so that the term discarded is of order O(Ω/α) compared to the smallest term retained (−iΩ).
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Figure 4.5. Rotation of the plane of Foucault’s pendulum (shaded gray).

axis, obtained rotating the unit coordinate vector e1 by an angle −Ωt around the z axis. Since
x0 cos(αt) is real, the previous equation can be rewritten in real terms as

(x,y) = x0 cos(αt)n(t) , with n(t) := R3(−Ωt)e1 .

From this equation it follows that at each instant t the pendulum‘s plane, determined by the
vectors e3 and n(t), makes an angle −Ωt with the Oxz plane. The pendulum’s motion can thus
be viewed as the composition of two periodic motions, namely a “fast” oscillation with period
2π/α in the plane determined by the vectors e3 and n(t) and a “slow” rotation of the latter plane
around the z axis with period 2π/Ω≫ 2π/α (cf. Fig. 4.5). In particular:

In the Northern Hemisphere the pendulum’s plane rotates clockwise, i.e., in the east-south di-
rection (since

.
ϕ = −Ω = −ω sinλ < 0), with angular velocity Ω = ω sinλ. In the Southern

Hemisphere the rotation of the pendulum’s plane is counterclockwise (since sinλ < 0), and in
the equator (λ = 0) no such rotation occurs.

Note that in each period 2π/α of the pendulum (time in which cos(αt) performs a complete
oscillation) the angle between the pendulum’s plane and the Oxz plane increases by −2πΩ/α,
which as noted before is a very small quantity. The period of the rotation of the pendulum’s
plane is given by

τ = 2π
Ω
= 2π
ω

cscλ = cscλ sidereal days .

For instance, at a latitude of 30◦ the period is 2 sidereal days, while in Madrid (λ = 40◦ 25′) it
is 1.5424 sidereal days. Note, finally, that (with the approximations made) the motion of the
pendulum’s bob is not exactly periodic unless the ratio α/Ω is a rational number (cf. Fig. 4.6).
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Figure 4.6. Projection onto the Oxy plane of the trajectory of the pendulum’s bob for α/Ω = 5.
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5 Rigid body motion

5.1 Degrees of freedom

A rigid body is a system of particles of mass mα (α = 1, . . . ,N) in which the distance |rα − rβ|
between any two particles is constant. In other words, a rigid body is a mechanical system of
N particles subject to the N(N − 1)/2 time-independent holonomic constraints (not all of them
independent!)

(rα − rβ)2 = l2αβ = const. , 1 à α < β à N . (5.1)

• We shall assume in what follows that Newton’s third law holds in its strongest version, i.e., that

the constraint force Fαβ exerted by particle β on particle α satisfies

Fαβ = −Fβα ∥ rα − rβ .

It is easy to see that if this is the case the constraints (5.1) are ideal, i.e., that the principle of vir-
tual work holds. Indeed, the work done by the constraint forces in an infinitesimal displacement
drα (α = 1, . . . ,N) of the system’s particles is given by1

∑
α̸=β

Fαβ · drα = 1
2

∑
α̸=β

(Fαβ · drα + Fβα · drβ) = 1
2

∑
α̸=β

Fαβ · (drα − drβ) . (5.2)

On the other hand, differentiating the constraint equation we obtain

(rα − rβ) · (drα − drβ) = 0 , 1 à α < β à N ,

whence it follows (since Fαβ is parallel to the vector rα − rβ) that

Fαβ · (drα − drβ) = 0 , 1 à α < β à N .

We thus see that all the terms in the last sum in Eq. (5.2) vanish identically, and as a consequence
the total work done by the constraint forces is indeed zero.

• We shall say that a rigid body is generic if it contains three non-collinear particles2.

In a generic rigid body it is always possible to construct a set of moving axes, the so-called
body axes, with respect to which all of the body’s particles are fixed, i.e., at rest.

In other words, the position vectors rα (1 à α à N) of all the particles making up the body are
constant in the frame of body axes.

Proof. Let P,Q,R be three non-collinear points in the rigid body. A set of body axes is obtained,
for example, taking as origin the point P , the x axis in the direction of the vector

#   —
PQ, the y

axis in the direction of the line in the plane PQR perpendicular to
#   —
PQ, oriented so that the y

coordinate of the point R is (say) positive, and the z axis in the direction of
#   —
PQ× #  —

PR. Indeed, in

1In what follow, sums over Greek indices α, β, γ, . . . will implicitly run from 1 to N , while Latin ones i, j, k, . . .
will take the values 1,2,3.

2It is easy to show that if three points of a rigid body are collinear at some instant they must remain collinear
at any other time.
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this frame the points P ,Q, and R are fixed by construction (exercise). We shall next show that the
coordinates (x,y, z) of any other point S in the body relative to this frame are constant. To this
end, let (a,0,0) and (b, c,0) denote the coordinates of Q and R in the frame just constructed
(where a, c > 0 by construction). If r1, r2 and r3 are the (fixed) distances of S to the points P,Q,R
we have

x2 +y2 + z2 = r2
1 , (x − a)2 +y2 + z2 = r2

2 , (x − b)2 + (y − c)2 + z2 = r2
3 . (5.3)

Subtracting the second equation from the first we obtain

2ax = r2
1 − r2

2 + a2 =⇒ x = a
2
+ r

2
1 − r2

2

2a
,

so that the x coordinate is constant. Likewise, subtracting the third equation from the second
one we deduce that

y = c
2
+ 1

2c
[
2(a− b)x + r2

2 − r2
3 + b2 − a2)

]
is also constant. Finally, from the above and any of the three equations (5.3) it follows that z2 is
constant, which implies (by continuity) that z is also constant. ■

• Obviously, there is an infinite number of body axes, obtained from the frame we have just
constructed by translating the origin to any point fixed in the body and applying a constant
rotation to the axes.

More precisely, we shall say that a point is fixed in the body if its coordinates are constant
(i.e., time-independent) in a frame of body axes. Such a point is, for instance, the body’s center
of mass. Indeed, let O and O′ respectively denote the origin of the frame of body axes and of the
inertial frame, and let a = #      —

OO′. The position vector of the body’s CM in the inertial frame is by
definition the vector

#     —

O′C = 1
M

∑
α
mαr′α ,

where M = ∑
αmα is the body’s total mass and r′α is the position vector of the α-th particle

relative to the inertial frame. Moreover, if r and r′ respectively denote the position vectors of a
point in space in the frame of body axes and in the inertial frame we have

r = a+ r′.

In particular, the position vector of the body’s CM in the frame of body axes is given by

#   —
OC = a+ 1

M

∑
α
mαr′α = a+ 1

M

∑
α
mα(rα − a) = a+ 1

M

∑
α
mαrα − a

M

∑
α
mα = 1

M

∑
α
mαrα ,

where rα denotes the position vector of the α-th particle in the latter frame. Since the compo-
nents of the position vectors rα are by construction constant in the frame of body axes, so are
the coordinates of the CM in this frame. Note, finally, that from the previous argument it also
follows that the position vector of the CM in the frame of body axes is still given by the usual
formula (1/M)

∑
αmαrα.

A generic rigid body has 6 degrees of freedom.

Indeed, in order to determine the coordinates of any particle in the rigid body at an arbitrary
time t, given its coordinates at the initial instant t0, it suffices to know the position of the
origin P of a set of body axes {ei}3

i=1 together with the rotation matrix O(t) relating these axes
to those of an inertial (fixed) reference frame {e′i}3

i=1 (cf. Eq. (4.1)). Indeed, all the vectors rα
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are known at t = t0, and since they are constant the coordinates r′α(t) of the position vector of
particle α in the fixed frame at an arbitrary time t can be computed through the formula3

r′α(t) =
#     —

O′P +O(t)rα .

The vector
#     —

O′P (i.e., the position of the point P ) is determined by three parameters (for instance,
its Cartesian coordinates), while the matrix O(t) ∈ SO(3) can be specified by another three
independent parameters (for example, the two spherical coordinates of the rotation axis n and
the rotation angle θ ∈ [0,π]). (In practice, the most widespread way of determining the rotation
matrix O(t) is through three angles, the so-called Euler angles).

Exercise. How many degrees of freedom has a rotor (rigid body all of whose particles are
collinear)?

The above considerations also apply to the continuous version of a rigid body, which consists
of a continuous mass distribution of density ρ(r) over a volume Ω ⊂ R3 whose shape does not
change with time. In other words, the location and shape of the body at any instant t is obtained
applying a rigid motion (overall translation followed by a rotation, or vice versa) to the set Ω.
More precisely, at any instant t the mass distribution is concentrated on the set Ω(t) ⊂ R3 given
by

Ω(t) = O(t)Ω + X(t),

for some vector X(t) ∈ R3 and rotation matrix O(t) ∈ SO(3) about a fixed point in the body (for
instance, its center of mass). The state of the system is thus completely determined by the three
components of the vector X(t) together with the three parameters needed to specify the rotation
matrix O(t). As in the discrete case, this implies that a continuous rigid body has 6 degrees of
freedom. Of course, we can also have continuous bodies whose mass density is concentrated on
a surface, or even a curve, in R3. Note, finally, that the center of mass of a continuous rigid body
is naturally defined by

R = 1
M

∫
Ω
ρ(r)r d3r ,

where

M =
∫
Ω
ρ(r)d3r

is the body’s total mass. In particular, if the mass density ρ is constant then

R = 1
V

∫
Ω

r d3r ,

where V is the body’s volume. Similar considerations apply to a continuous rigid body whose
mass is distributed over a surface or on a curve in R3, replacing the volume element by the
surface or line element and the volume density by the surface or line density.

5.2 Angular momentum and kinetic energy

We shall next compute the angular momentum of the rigid body with respect to an inertial frame,
which we shall often call for short (as in the previous chapter) the fixed (or space) frame.

3In the formula that follows rα denotes the vector whose components are the coordinates of the position of
particle α in the body frame. As explained in Chapter 1.3.3, to obtain the coordinates of the same vector in the
fixed frame we have to multiply rα by the rotation matrix O(t).
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From now on, unless otherwise stated we shall take the rigid body’s center of mass as the origin
of the set of body axes.

Let us denote, as usual, by R(t) the vector joining the origin O′ of the fixed frame with the center
of mass O (i.e., the origin of the set of body axes). If rα and r′α are respectively the position
vectors of the α-th particle with respect to the body axes (which plays the role of the moving
frame in the last chapter) and the fixed ones we have

r′α = R+ rα .

In this case
.
rα = 0, since the particles which make up the rigid body are at rest with respect to

the set of body axes. Hence Eq. (4.16) reduces to

v′α = V+ω× rα , (5.4)

where ω denotes the instantaneous angular velocity of the set of body axes with respect to the
fixed ones and

v′α :=
(

dr′α
dt

)
f
, V :=

(
dR

dt

)
f
.

• By Eq. (5.4), the infinitesimal change of the position vector of particle α from a time t to a time
t + dt is given by

dr′α = v′α dt = V dt +ωdt × rα = dR+ωdt × rα .

Hence:

The instantaneous motion of the body, as seen from the fixed reference frame, can be viewed
as an infinitesimal translation followed by an infinitesimal rotation around the axis parallel to
ω passing through the CM by an angle ω(t)dt.

The latter assertion can also be proved directly taking into account that the rate of change of the
position vector with respect to the CM of any particle α, as measured in the fixed frame, is given
by (

drα
dt

)
f
= .

rα +ω(t)× rα =ω(t)× rα . (5.5)

Hence from the point of view of the fixed frame the position vectors of all particles in the rigid
body relative to the CM rotate instantaneously with the same angular velocity ω(t) around an
axis parallel to the vector ω(t)/ω(t) passing through the CM.

The rigid body’s linear momentum with respect to the inertial frame is given by

P =
∑
α
mαv′α =

∑
α
mαV+ω×

∑
α
mαrα = MV , (5.6)

where

M =
∑
α
mα

is the body’s total mass and we have used the identity∑
α
mαrα = 0 (5.7)

(since the LHS is proportional to the position vector of the CM with respect to the CM itself). As
expected, Eq. (5.6) coincides with Eq. (1.79) in Chapter 1.
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Let us next find the rigid body’s angular momentum with respect to the origin O′ of the set of
fixed axes (as measured in the latter frame), defined by

L =
∑
α
mαr′α × v′α .

Using Eq. (5.4) for v′α and the identity (5.7) we easily obtain

L =
∑
α
mα(R+ rα)× (V+ω× rα) = MR×V+ R×

(
ω×

∑
α
mαrα

)
+
(∑
α
mαrα

)
×V

+
∑
α
mαrα × (ω× rα) = MR×V+

∑
α
mαrα × (ω× rα) . (5.8)

Note that this expression is nothing but Eq. (1.84) from Chapter 1, on account of Eq. (5.5). The
first term in Eq. (5.8) is simply the angular momentum of a particle located at the CM with
mass equal to the body’s total mass. To interpret the second term, note first that the angular
momentum of the rigid body with respect to any point P , as measured in the fixed frame S′, is
by definition

LP :=
∑
α
mα(r′α −

#     —

O′P)× v′α ,

where r′α−
#     —

O′P is the position vector of the α-th particle with respect to the point P . In particular,
taking P as the CM we have

LCM =
∑
α
mαrα × v′α =

∑
α
mαrα × (ω× rα) , (5.9)

where we have used again Eq. (5.4) for v′α and the identity (5.7). By Eq. (5.8) we then have

L = MR×V+ LCM . (5.10)

It is important to note that, although LCM is the rigid body’s angular momentum with respect
to the CM, it is computed in the space frame S′, since the particle’s velocities v′α in Eq. (5.9) are
measured in the latter frame.

Proceeding in the same way we can compute the body’s kinetic energy (with respect to the
inertial frame)

T = 1
2

∑
α
mαv′2α .

Indeed, using again Eq. (5.4) for v′α and the identity (5.7) we obtain the expression

T = 1
2

∑
α
mα

(
V+ω× rα

)2 = 1
2
MV2 + 1

2

∑
α
mα

(
ω× rα

)2 , (5.11)

which again coincides with Eq. (1.88) of Chapter 1 on account of Eq. (5.5). We thus have

T = 1
2
MV2 + Trot , Trot = 1

2

∑
α
mα

(
ω× rα

)2 , (5.12)
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where the first term in T is the CM’s translational energy while the second one is the body’s ro-

tational energy around its CM, since

1
2

∑
α
mα

(
ω× rα

)2 = 1
2

∑
α
mα

(
drα
dt

)2

f
.

Using the identities

a× (b× c) = (a · c)b− (a · b)c , (a× b)2 = a2b2 − (a · b)2

Eqs. (5.10) and (5.12) can be recast in the alternative form

LCM =
∑
α
mα

[
r2
αω− (ω · rα)rα

]
, Trot = 1

2

∑
α
mα

[
ω2r2

α − (ω · rα)2
]
, (5.13)

whence it follows the important identity

Trot = 1
2
ω · LCM . (5.14)

Note that in all of the previous formulas the vectors LCM and ω, and hence the rotational energy
Trot, are in general functions of time.

5.3 Inertia tensor

5.3.1 Definition and elementary properties

The expressions obtained in the previous section for the angular momentum with respect to the
CM and the rotational energy of a rigid body can be greatly simplified with the help of the so-
called inertia tensor. Since the rotational energy is expressed in terms of LCM through Eq. (5.14),
we can restrict ourselves to the angular momentum. The key observation is that Eq. (5.13) clearly
indicates that, although in general LCM is not parallel to the angular velocity ω, it is a linear
function thereof. In other words, we can write

LCM = Iω , (5.15)

where I : R3 → R3 is a linear map, which can be represented by a 3 × 3 matrix whose entries
we shall now compute. To this end it suffices to note that, if xαi (i = 1,2,3) denotes the i-th
component of the vector rα, the i-th component of LCM (in the same basis) is given by

LCM,i =ωi
∑
α
mαr2

α −
∑
α
mαxαi

∑
j
ωjxαj =ωi

∑
α
mαr2

α −
∑
j
ωj

∑
α
mαxαixαj

∑
j
ωjδij

∑
α
mαr2

α −
∑
j
ωj

∑
α
mαxαixαj =

∑
j
ωj

∑
α
mα

(
δijr2

α − xαixαj
)
.

We thus have

LCM,i =
∑
j
Iijωj , (5.16a)

where the matrix element Iij is given by

Iij =
∑
α
mα

(
δijr2

α − xαixαj
)
. (5.16b)
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The linear map I with matrix elements given by Eq. (5.16b) is known as the rigid body’s inertia

tensor4. It is important to note that, although both LCM andω in general depend on t, the matrix
elements (5.16b) of the inertia tensor are constant, since the Cartesian coordinates xαi (i = 1,2,3)
of the body’s particles in a frame of body axes do not depend on time. In other words:

The inertia tensor is a constant matrix characteristic of the rigid body, depending only on the
initial choice of the body axes.

• From Eq. (5.16b) it immediately follows that the inertia tensor is symmetric:

Iij = Iji , i, j = 1,2,3 .

The diagonal matrix elements of the inertia tensor are given by

Iii =
∑
α
mα(x2

αj + x2
αk) , i = 1,2,3 ,

with (i, j, k) different from each other. In other words,

Iii =
∑
α
mαd2

αi , (5.17)

where dαi is the distance of the α-th particular to the i-th axis. Hence the matrix element Iii is
the so-called moment of inertia of the body with respect to the axis ei. Likewise, the off-diagonal
matrix elements of I

Iij = −
∑
α
mαxαixαj , 1 à i ̸= j à 3 ,

are the negatives of the body’s products of inertia. For a continuous rigid body Ω with mass
density ρ(r), the latter expressions must be replaced by their obvious continuous analogues

Iij =
∫
Ω
ρ(r)

(
δijr2 − xixj

)
d3r , i, j = 1,2,3 , (5.18)

or, in more detail,

Iii =
∫
Ω
ρ(r)

(
x2
j + x2

k
)

d3r , i = 1,2,3 ,

(with (i, j, k) different from each other) and

Iij = −
∫
Ω
ρ(r)xixj d3r , 1 à i ̸= j à 3 .

Analogous expressions are obtained for continuous body whose mass is distributed on a surface
or along a curve replacing the volume element d3r with the surface element dS or the line element
ds.

• From the identity (5.14) it follows that the body’s rotational energy can be expressed in terms
of its angular velocity ω and the inertia tensor I through the formula

Trot = 1
2
ω · (Iω) . (5.19)

4The name “tensor” is due to the fact that in general a linear map is a tensor with one covariant and one
contravariant indices. Note, however, that in orthogonal Cartesian coordinates there is no distinction between
covariant and contravariant indices.
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Note also that the previous expression can be written using the usual matrix notation as

Trot = 1
2
ωTIω , (5.20)

if we interpret ω as the column vector
(ω1
ω2
ω3

)
and I (sans serif I) denotes the real 3 × 3 matrix

with elements Iij . In other words, Trot is a quadratic form in the components of ω, whose matrix
elements are the matrix elements (5.16b) of the inertia tensor. Since Trot á 0 for all ω, this
quadratic form —or, equivalently, the inertia tensor I— is positive semi-definite. In fact:

The inertia tensor is positive definite if and only if the body is generic.

Indeed, if I were not positive definite, by Eq. (5.12) there would exist a nonzero vector ω such
that

2Trot =
∑
α
mα(ω× rα)2 = 0 .

Since all the terms in the sum are nonnegative, the latter equality is only possible if ω × rα
vanishes for all α = 1, . . . ,N , i.e., if all the particles lie on the line parallel to ω passing through
the CM.

• From Eq. (5.19) it follows that a rigid body’s rotational energy can also be expressed as

Trot = 1
2
ω2 n · In ,

where n = ω/ω is the direction of instantaneous axis of rotation of the body axes. Since Iii =
ei · Iei, by Eq. (5.17) we can also write

n · In =
∑
α
mαdα(n)2 =: In,

where dα(n) and In respectively denote the distance of particle α to the line through the CM
parallel to the vector n and the body’s moment of inertia with respect to the latter axis. It
follows that the rotational energy Trot can be expressed in terms of In as

Trot = 1
2
Inω2 .

5.3.2 Steiner’s theorem

We shall next see how the inertia tensor changes when we compute it with respect to a point P
fixed in the body that does not necessarily coincide with the center of mass C . If we denote by
r̃α the position vector of the α-th particle with respect to the point P , the inertia tensor IP with
respect to the point P is by definition

(IP )ij =
∑
α
mα

(
δij r̃2

α − x̃αix̃αj
)
. (5.21)

Taking into account that

r̃α = rα − a , a := #  —
CP ,
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we obtain

(IP )ij =
∑
α
mα

[
δij(rα − a)2 − (xαi − ai)(xαj − aj)

] = Iij +M(a2δij − aiaj)

− 2δija ·
∑
α
mαrα + ai

∑
α
mαxαj + aj

∑
α
mαxαi .

The last three terms vanish on account of the identity (5.7), so that we finally have

(IP )ij = Iij +M(a2δij − aiaj) . (5.22)

The latter formula is known as Steiner’s theorem.

It often happens that there is a point P fixed in the body which is also fixed in an inertial frame;
for example, if the body is rotating around a fixed axis we can choose as P any point on the axis
of rotation. When this is the case it is possible —and, in fact, usually advantageous— to take P
as the origin O′ of the inertial frame. It then follows that the vector R = #      —

O′O = #  —
PC is constant in

the frame of body axes, since its endpoints are both fixed in the body. Thus in this case
.
R = 0,

and the velocity of the CM in the inertial frame can be simply expressed as

V =ω× R ,

so that

v′α =ω× R+ω× rα =ω× (rα + R) =ω× r′α .

The angular momentum L with respect to O′ = P is given by

L =
∑
α
mαr′α × v′α =

∑
α
mαr′α ×

(
ω× r′α

)
,

i.e., is obtained replacing rα by r′α in Eq. (5.10) for LCM. In other words, in this case the body’s
total angular momentum is given by

L = IPω . (5.23)

Note that IP is still a constant matrix characteristic of the rigid body considered, since in this
case r′α = R+ rα is a constant vector in the body frame. Likewise

T = 1
2

∑
α
mαv′2α =

1
2

∑
α
mα(ω× r′α)2 =

1
2
ω · IPω . (5.24)

The inertia tensor IP can be computed from I applying Steiner’s theorem (5.22), taking into
account that in this case a = #  —

CP = −#  —
PC = −#      —

O′O = −R:

(
IP
)
ij = Iij +M(R2δij −XiXj) ,

where Xi (i = 1,2,3) are the components of the vector R. Note that the last term in Eq. (5.22) is
nothing but the inertia tensor with respect to O′ of a particle of mass M located at the CM.

Note: from now on we shall usually omit the subindex when the point with respect to which the
inertia tensor is computed is clear from the context.
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5.3.3 Principal axes of inertia

Let us next see how the components of the inertia tensor (5.16b) (with respect to the CM or, more
generally, to any point P fixed in the body) change when we perform a constant rotation of the
frame of body axes. More precisely, let

ẽi =
∑
j
ajiej , i = 1,2,3 , (5.25)

be a second positively oriented frame fixed in the body. Then the change of basis matrix

A := (aij)1ài,jà3

is a constant proper orthogonal matrix (i.e., A ∈ SO(3) is time independent). As is well known,
the coordinates (or, in general, the components of any vector) in both frames are related by the
dual equation

xi =
∑
j
aijx̃j ;

indeed, ∑
j
x̃j ẽj =

∑
j
x̃j
∑
i
aijei =

∑
i,j
aijx̃jei =

∑
i
xiei =⇒ xi =

∑
j
aijx̃j .

Denoting by x (sans serif x) the column vector whose components are the coordinates xi, and
similarly x̃ = (x1 x2 x3)T, we can rewrite the previous relation in matrix form as

x = A x̃ .

Using this notation, and denoting by I the matrix of the inertia tensor with respect to the set of
axes ei, we obtain

LCM = Iω = IA ω̃ = A L̃CM =⇒ L̃CM = A−1IA ω̃ =: Ĩ ω̃ .

Hence the matrix of the inertia tensor in the new set of axis is given by

Ĩ = A−1IA = ATIA ,

since A is orthogonal. Note that in the new set of body axes the body’s rotational energy can be
expressed as

Trot = 1
2
ωTIω = 1

2
ω̃TATIAω̃ = 1

2
ω̃T Ĩ ω̃ ,

which agrees with the expression we just derived for the matrix Ĩ.
It is well known that a real symmetric matrix can be diagonalized by means of a proper orthog-

onal transformation5. In other words, it is always possible to find a matrix A ∈ SO(3) such that
in the new set of body axes (5.25) we have

Ĩij = δijIi , 1 à i, j à 3 ,

where I1, I2 and I3 are the three eigenvalues of the inertia tensor I. Note that A is a constant (i.e.,
time-independent) matrix, since the matrix elements of the inertia tensor are also constant. If the

5This is essentially due to the following facts: i) every real symmetric matrix is diagonalizable; ii) its eigen-
values are all real, and iii) two eigenvectors of a real symmetric matrix corresponding to different eigenvalues are
orthogonal. From these three facts it easily follows that there exists a (positively oriented) orthonormal basis of
eigenvectors of any real orthogonal matrix.
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vectors ẽi are defined by (5.25), where A ∈ SO(3) is the proper orthogonal matrix diagonalizing I,
then

Iẽi = Iiẽi , i = 1,2,3 . (5.26)

In other words, the vector ẽi, whose components with respect to the basis {e1,e2,e3} are the i-th
column of the change of basis matrix A, is an eigenvector of the inertia tensor I with eigenvalue
Ii. Since A is a proper orthogonal matrix, the vectors ẽi (i = 1,2,3) are a positively oriented
orthonormal basis of R3. These vectors are fixed in the body, since their components with respect
to the original set of body axes {e1,e2,e3} are the matrix elements of the constant matrix A.
Hence:

It is always possible to find a set of body axes whose unit vectors ẽi are all eigenvectors of the
linear map I. In this set of body axes the inertia tensor is represented by the diagonal matrix

I =
I1 I2

I3

 ,
where Ii is the eigenvalue corresponding to the eigenvector ẽi.

The vectors ẽi satisfying the relations (5.26) are known as the body’s principal axes of inertia,
and their corresponding eigenvalues Ii are called its principal moments of inertia. As is well
known, the eigenvalues of the matrix (Iij), i.e., the principal moments of inertia, are the roots of
the secular equation

det
(
Iij − λδij

) = 0 .

Note that the principal axes of inertia, i.e., the directions of the eigenvectors of the matrix (Iij),
are not uniquely determined (up to a sign) unless all the eigenvalues of the inertia tensor are
distinct (i.e., they are simple roots of the secular equation).

• If the set of body axes {e1,e2,e3} is a set of principal axes of inertia Eqs. (5.15) and (5.19)
reduce to

LCM =
∑
i
Iiωiei , Trot = 1

2

∑
i
Iiω2

i . (5.27)

In particular, if the body rotates around its i-th principal axis of inertia we have

LCM = Iiω , Trot = 1
2
Iiω2 .

If the origin of the fixed frame is also a point fixed in the body, expressions analogous to the
previous ones are valid for L and T replacing I by the inertia tensor IO′ with respect to the
point O′.

• Rigid bodies can be classified into the following three categories, depending on the multiplicity
of the eigenvalues of their inertia tensor:

1. Asymmetric tops: Ii ̸= Ij for all i ̸= j

2. Axially symmetric tops: Ii = Ij ̸= Ik (with (i, j, k) distinct)

3. Spherically symmetric tops: I1 = I2 = I3.
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5.3.4 Symmetries

We shall next examine how the symmetries of a rigid body Ω of mass density ρ result in simpli-
fications of its inertia tensor.

1) If Ω and ρ are invariant under the reflection xi , −xi, then

Iij = 0 , ∀j ̸= i .

Indeed, suppose that (for instance) Ω is invariant under reflection of the x1 coordinate and
ρ(−x1, x2, x3) = ρ(x1, x2, x3). Performing the change of variables

x1 = −x′1 , x2 = x′2 , x3 = x′3
in the integral for I1j (with j ̸= 1), which by hypothesis maps Ω to itself, we obtain

−I1j =
∫
Ω
ρ(r)x1xj d3r = −

∫
Ω′
ρ(−x′1, x′2, x′3)x′1x′j d3r′ = −

∫
Ω
ρ(x′1, x

′
2, x

′
3)x

′
1x

′
j d3r′ = I1j

=⇒ I1j = 0 , j ̸= 1 .

2) If Ω and ρ are invariant under the exchange xi , xj , then

Iii = Ijj , Iik = Ijk (k ̸= i, j) .

Indeed, if (for instance) Ω is invariant under x1 , x2 and ρ(x2, x1, x3) = ρ(x1, x2, x3), perform-
ing the change of variable

x1 = x′2 , x2 = x′1 , x3 = x′3
in the integral for I11 we obtain

I11 =
∫
Ω
ρ(r)(x2

2+x2
3)d3r =

∫
Ω′
ρ(x′2, x

′
1, x

′
3)(x

′2
1 +x′23 )d3r′ =

∫
Ω
ρ(x′1, x

′
2, x

′
3)(x

′2
1 +x′23 )d3r′ = I22 .

Likewise,

−I13 =
∫
Ω
ρ(r)x1x3 d3r =

∫
Ω′
ρ(x′2, x

′
1, x

′
3)x

′
2x

′
3 d3r′ =

∫
Ω
ρ(x′1, x

′
2, x

′
3)x

′
2x

′
3 d3r′ = −I23 .

Analogous results hold for the coordinates of the body’s center of mass. For instance, if Ω and
ρ are invariant under the reflection xi , −xi then the i-th coordinate of the CM vanishes, since
(taking, for definiteness, i = 1)

MX1 =
∫
Ω
ρ(r)x1 d3r = −

∫
Ω′
ρ(−x′1, x′2, x′3)x′1 d3r′ = −

∫
Ω
ρ(x′1, x

′
2, x

′
3)x

′
1 d3r′ = −MX1

=⇒ X1 = 0 .

Similarly, if Ω and ρ are invariant under the permutation xi , xj then Xi = Xj .

Example 5.1. Consider a homogeneous (i.e., ρ = const.) rigid body Ω in the shape of a solid of
revolution around a certain axis. Taking the z axis of the set of body axes in the direction of
the body’s axis of revolution, in cylindrical coordinatesa (r ,ϕ, z) the body is described by an
equation of the form

0 à r à f(z) , z1 à z à z2 , 0 à ϕ à 2π .

The symmetry under rotations around the z axis implies the invariance of the body under the
transformations

x1 , −x1 , x2 , −x2 , x1 , x2 .

Hence the body’s center of mass is a point on the z axis, which we shall take as the origin of
coordinates since we are interested in computing the inertia tensor with respect to the CM. By
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5.4 Equations of motion of a rigid body

the above symmetries, the components of the inertia tensor satisfy

I11 = I22 , Iij = 0 (i ̸= j) .

Hence in this case the inertia tensor is diagonal, with principal moments of inertia Ii = Iii given
by

I1 = I2 = ρ
∫ z2

z1

dz
∫ f(z)

0
dr

∫ 2π

0
r dϕ · (z2 + r2 sin2ϕ)

= πρ
∫ z2

z1

z2f 2(z)dz + πρ
4

∫ z2

z1

f 4(z)dz ,

I3 = ρ
∫ z2

z1

dz
∫ f(z)

0
dr

∫ 2π

0
r dϕ · r2 = πρ

2

∫ z2

z1

f 4(z) dz .

The mass density ρ can be expressed in terms of the body’s total mass M through the formula

ρ = M
V
= M

π
∫ z2

z1

f 2(z)dz
.

Note that, in general, I1 = I2 ̸= I3; more precisely, we have

I1 = I2 = 1
2
I3 +πρ

∫ z2

z1

z2f 2(z)dz .

Thus a solid of revolution is in general an axially symmetric top. Note also that in this case the
axis of revolution is a principal axis of inertia, as is any axis perpendicular to it.

For instance, in the case of a cylinder of radius a and height h we can take f(z) = a,
z1 = −h/2 and z2 = h/2, since by symmetry the CM of a cylinder is equidistant from its bases.
Hence

I3 = π
2
ρa4h = 1

2
Ma2 ,

I1 = I2 = 1
2
I3 +πρa2

∫ h/2
−h/2

z2 dz = 1
4
Ma2 + 2πρa2

∫ h/2
0

z2 dz = 1
4
Ma2 + 1

12
πρa2h3

= 1
4
M
(
a2 + h

2

3

)
.

In particular, a cylinder is a spherically symmetric top if and only if h = √3a.
aWe are temporarily denoting the distance to the z axis as r instead of the usual notation ρ to avoid confusion

with the mass density.

5.4 Equations of motion of a rigid body

5.4.1 Equations of motion of a rigid body in an inertial frame

Since a rigid body has (in general) 6 degrees of freedom, it should be expected that its motion
is determined by 6 differential equations. The first three of these equations are obviously the
equations of motion of the body’s CM, which, as we saw in Chapter 1, read

M
(

d2R

dt2

)
f

= F . (5.28)
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In the RHS
F =

∑
α

Fα

denotes the sum of the external forces acting on the particles making up the body (remember
that, by Newton’s third law, the sum of the internal forces vanishes). The remaining three differ-
ential equations can be taken as the equations of motion of the body’s angular momentum with
respect to the origin O′ of the fixed frame, namely(

dL

dt

)
f
= N . (5.29)

Here
N =

∑
α

r′α × Fα ,

denotes the total torque (with respect to O′) of the external forces acting on the body. Indeed, as
we saw in Chapter 1, if we assume that Newton’s third law holds in its stronger sense the torque
of the internal forces vanishes.

In equation (5.29) both the angular momentum and the total torque of the external forces are
computed with respect to the origin O′ of the fixed frame. In fact, Eq. (5.29) still holds if we
replace L by LCM and N by the total torque of the external forces with respect to the CM, given by

NCM =
∑
α

rα × Fα . (5.30)

Indeed, from the relation L = MR×V+ LCM and the CM’s equation of motion it follows that(
dL

dt

)
f
=
(

dLCM

dt

)
f
+ R× F = N =

∑
α
(R+ rα)× Fα = R× F+NCM ,

and thus (
dLCM

dt

)
f
= NCM . (5.31)

In general, if the total force acting on the body vanishes the torque N is independent of the
point with respect to which it is computed.

Indeed, if F :=∑α Fα = 0 and a is a fixed vector we have∑
α
(r′α + a)× Fα =

∑
α

r′α × Fα + a× F =
∑
α

r′α × Fα .

Exercise. Show that the necessary and sufficient condition for a generic rigid body to be at
equilibrium in an inertial frame is that F = N = 0.

Solution. In general, the body is at equilibrium in an inertial frame —i.e., v′α = 0 for all t and
for all α— if and only of V =ω = 0, sincea

v′α = V+ω× rα .

Suppose, to begin with, that the body is at equilibrium. Then V = ω = 0, and therefore
L = MR × V + Iω = 0. Substituting into the equations of motion (5.28)-(5.29) we immediately
obtain F = N = 0.

Conversely, suppose that F = N = 0 and that initially the body is at rest in some inertial frame.
We shall then show that the body is at equilibrium in that frame, i.e., that V(t) =ω(t) = 0 for
all t. Indeed, by hypothesis the body’s particles are all instantaneously at rest in an inertial
frame, i.e., V(0) =ω(0) = 0. From F = 0 and the equation of motion for R we deduce that V is
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5.4 Equations of motion of a rigid body

constant in the fixed frame. Since initially V(0) = 0, we must therefore have V(t) = 0 for all t.
Moreover, F = 0 implies that NCM = N = 0, and therefore(

dLCM

dt

)
f
= NCM = 0 =⇒ LCM = LCM(0) = Iω(0) = 0 ∀t .

If the body is generic its inertia tensor I is invertible, and hence

Iω = 0 =⇒ ω = 0 ∀t .

We have thus shown that V =ω = 0, so that by Eq. (5.4) the body is indeed at rest in the inertial
frame considered.

aIndeed,
V+ω× rα = 0 , ∀α =⇒ ω× (rα − rβ) = 0 , ∀α ̸= β .

It follows that ω = 0, which implies that V = 0. Indeed, if ω ̸= 0 then rα − rβ would be parallel to ω for fixed β
and all α ̸= β, and hence the body would lie on the straight line parallel to ω passing through rβ.

Remark. The condition V(0) =ω(0) = 0 is essential to guarantee that the body is at equilibrium
when F = N = 0. Indeed, we shall see in Section 5.5 that when F and N vanish the body can
still rotate with constant angular velocity around a principal axis of inertia passing through the
CM. ■

Exercise. Show that the condition for equilibrium of a rigid body found above is equivalent
to F = NCM = 0.

Solution. If F = 0 the torque of the external forces does not depend on the point with respect
to which it is taken, so that in this case N = NCM.

A particular case which often occurs in practice arises when the external forces Fα acting on
the rigid body are due to a constant external field f, to which the particles couple through a
“charge” λ. In this case

Fα = λαf , α = 1, . . . ,N , (5.32)

where f is independent of α and λα is the charge of particle α. For instance, Earth’s gravitational
force is of this form if the body’s extension is small compared to its distance to Earth’s center, so
that Earth’s gravitational field is approximately uniform inside the body (in this case λα = mα,
f = g). The same is true for the electric force due to a uniform electric field (in this case λα = eα
is the electric charge, f = E). If the external forces are of the form (5.32) we have

F =
∑
α

Fα = f
∑
α
λα = Λf , N =

(∑
α
λαr′α

)
× f ,

Λ :=∑α λα being the body’s total charge. If (as is the case with the gravitational force) Λ ̸= 0, we
define the body’s center of charge by the equation

X = 1
Λ

∑
α
λαr′α =

1
Λ

∑
α
λα(R+ rα) = R+ 1

Λ

∑
α
λαrα . (5.33)

Note that the point X is fixed in the body, since its position vector with respect to the CM (also
fixed in the body)

X− R = 1
Λ

∑
α
λαrα =: XCM

is a constant vector in the frame of body axes. In particular, for the gravitational field X = R and
XCM = 0. In terms of the vector X, the torque N can be concisely expressed as

N = X× F . (5.34)

In other words:
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If the total charge doesn’t vanish, the total torque of the external forces coincides with the
torque of the total external force applied at the center of charge. In particular, when computing
the torque of the gravitational forces acting on a rigid body we can always assume that they
are applied at its center of mass.

Likewise, if Λ ̸= 0 the torque of the external forces with respect to the CM is given by

NCM =
(∑
α
λαrα

)
× f = XCM × F .

In the case of the gravitational force XCM = 0, and hence NCM = 0. In other words:

The torque with respect to the CM of the gravitational forces Fα = mαg vanishes (assuming
again that the body’s size is negligible compared to its distance to Earth’s center).

Note, finally, that the forces (5.32) are clearly conservative, with potential

U = −f ·
∑
α
λαr′α = −Λf · X = −F · X ,

where the last two equalities are valid only when Λ ̸= 0. Thus (assuming again that Λ ̸= 0)
when computing the potential energy we can assume in this case that the total constant external
force F is applied at the point X. In particular, the potential energy of a rigid body due to Earth’s
gravitational field is simply

U = −Mg · R .

Note. If the total charge Λ vanishes the center of charge cannot be defined by Eq. (5.33). In this
case the total torque of the external forces is clearly independent of the point with respect to
which it is taken, since the total external force F = Λf vanishes.

5.4.2 Euler’s equations

Since the relation between angular momentum and angular velocity is particularly simple in a
frame of principal axes of inertia fixed in the body, it is convenient to formulate the equation of
motion of the angular momentum in such a frame. To this end, we shall assume that the point
P with respect to which L, I and N are computed is either the CM or (when it exists) a point
simultaneously fixed in the body and in an inertial frame, that we shall take as the origin O′ of
the latter frame. To cover both situations we shall use the more descriptive notation LP , NP , and
IP to respectively denote the angular momentum, torque, and inertia tensor taking as origin the
point P (in our old notation, LC ≡ LCM, LO′ ≡ L, NC ≡ NCM, NO′ ≡ N, and IC ≡ I). With this
notation we can write

(
dLP
dt

)
f
= NP , LP = IPω , E := 1

2
ω · LP =

Trot , P = C
T , P = O′ ,

where IP is constant in the frame of body axes (since P is by hypothesis fixed in the body). We
shall usually drop the subindex, and simply write(

dL

dt

)
f
= N , L = Iω, 1

2
ω · L = E (5.35)

to deal with both cases at the same time. From Eq. (4.11) we then obtain the relation

.
L+ω× L = N ,
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where as usual the dot denotes time derivative with respect to the frame of body axes. Using the
relation between L and ω, and taking into account that Iij is constant in a frame of body axes,
we immediately obtain

I
.
ω+ω× (Iω) = N . (5.36)

If the body axes are principal axes of inertia the i-th component of this vector equation is simply

Ii
.
ωi +ωj(Ikωk)−ωk(Ijωj) = Ni , i = 1,2,3 ,

or equivalently

Ii
.
ωi − (Ij − Ik)ωjωk = Ni , i = 1,2,3 , (5.37a)

where

(i, j, k) = cyclic permutation of (1,2,3) . (5.37b)

Equations (5.37), i.e., the system

I1
.
ω1 − (I2 − I3)ω2ω3 = N1 ,

I2
.
ω2 − (I3 − I1)ω1ω3 = N2 ,

I3
.
ω3 − (I1 − I2)ω1ω2 = N3 ,

(5.38)

are known as Euler’s equations. We emphasize that these equations are valid if both N and I
are computed either with respect to the CM or (when possible) to a point simultaneously fixed
in the body and in the inertial frame. Moreover, the quantities ωi and Ni appearing in Euler’s
equations are the components of the vectors ω and N in a frame of principal axes of inertia (in
general not inertial).

If the total torque of the external forces vanishes and the origin O′ of the inertial frame is a
point fixed in the body, LO′ ≡ L and T are conserved. Similarly, if NCM vanishes then LCM and
the rotational energy Trot are conserved.

Proof. Using the notation in Eq. (5.35), we only need to show that

N = 0 =⇒
(

dL

dt

)
f
= 0,

.
E = 0 .

(Note that E is a scalar, so that it is not necessary to specify the frame with respect to which the
time derivative is taken.) The conservation of L (in the fixed frame) follows immediately from
its equation of motion (5.35), while the conservation of E is obtained differentiating the third
relation (5.35) in the frame of body axes (which is correct, since E is a scalar). Indeed,

d
dt
(
ω · Iω) = d

dt

∑
i
Iiω2

i = 2
∑
i
Iiωi

.
ωi = 2ω · I .

ω

From Euler’s equations in their vector form (5.36) with N = 0 it then follows that

.
E =ω · I .

ω = −ω · (ω× (Iω)) = 0

(as ω× (Iω) is perpendicular to ω). ■

Remark. Since L = |L| and E are both scalars, when N = 0 they are also constant (i.e., time-
independent) in the body frame. ■
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5.5 Inertial motion of a symmetric top

We shall study in this section the rotational motion of an axially symmetric top when the total
torque of the external forces with respect to either the CM, or a point simultaneously fixed in the
body and in an inertial frame (when such a point exists), vanishes. This will obviously happen
(in both cases) if the body is free, that is, in the absence of external forces. More generally, as we
saw at the end of Section 5.4.1, the torque NCM will vanish provided that the only external force
acting on the body is Earth’s gravity (assuming the body’s size to be negligible compared to its
distance to Earth’s center). Before starting our analysis, it is convenient to prove the following
fact regarding the angular velocity vector ω:

The instantaneous angular velocity ω of a set of axes with respect to another is additive.

In other words, let S0, S1, and S2 be three sets of axes, and suppose that at a certain time t
the axes of S1 have angular velocity ω1 relative to those of S0, and that the axes of S2 have in
turn angular velocity ω2 with respect to those of S1. Then the angular velocity of the axes of S2

relative to those of S0 is

ω =ω1 +ω2 . (5.39)

Indeed, let {e′i}1àià3, {ei}1àià3, and {e′′i }1àià3 respectively denote the axes of the frames S0, S1,
and S2. By definition of angular velocity,(

dei
dt

)
0
=ω1 × ei ,

(
de′′i
dt

)
1

=ω2 × e′′i ,
(

de′′i
dt

)
0

=ω× e′′i .

But then (
de′′i
dt

)
0

=
(

de′′i
dt

)
1

+ω1 × e′′i =ω2 × e′′i +ω1 × e′′i = (ω1 +ω2)× e′′i ,

whence Eq. (5.39) follows.

Note. Recall that we are denoting by L and I the angular momentum and the inertia tensor with
respect to either O′ or the CM, depending on whether N = 0 or NCM = 0 (in the first case, it is
assumed that O′ is simultaneously fixed in the body and the inertial system). ■

By definition, in an axially symmetric top two principal moments of inertia, which we shall take
as I1 and I2, coincide, while the third one (i.e., I3) differs from the other two. In other words, we
have I1 = I2 ̸= I3. In this case the e3 axis is a principal axis of inertia (with moment of inertia I3),
as is any axis perpendicular to it (with moment of inertia I1). In particular, from the discussion
in Example 5.1 it follows that a solid of revolution around the x3 axis is an axially symmetric
top with symmetry axis along the vector e3. This is not, however, the most general example;
for instance, a homogeneous rectangular parallelepiped with sides l1 = l2 ̸= l3 is also an axially
symmetric top with I1 = I2 ̸= I3 (exercise).

Substituting N = 0 and I1 = I2 in Euler’s equations (5.38) we obtain the simpler system

I1
.
ω1 − (I1 − I3)ω2ω3 = 0 ,

I1
.
ω2 − (I3 − I1)ω1ω3 = 0 ,

I3
.
ω3 = 0 ,

(5.40)

whence it immediately follows (assuming that I3 ̸= 0, i.e., that the body is not collinear) that

ω3 = const.
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Calling

Ω := I3 − I1
I1

ω3 ,

the first two equations read
.
ω1 = −Ωω2 ,

.
ω2 = Ωω1

or, in complex notation,
.
ω1 + i

.
ω2 = iΩ(ω1 + iω2) .

The solution of this linear first-order equation is

ω1 + iω2 =
(
ω1(0)+ iω2(0)

)
eiΩt . (5.41)

From (5.41) it follows that

ω2
1 +ω2

2 =
∣∣ω1 + iω2

∣∣2 =ω1(0)2 +ω2(0)2 =: ω2
0

is constant, and so are ω =
√
ω2

0 +ω2
3 and the angle α = arctan(ω0/ω3) between the vectors ω

and e3. We have thus shown the following:

The magnitude of the projection ofω onto the plane perpendicular to e3, ω3, ω, and the angle
α between the vectors ω and e3 are all constant.

In real terms, Eq. (5.41) can be written as

ω1e1 +ω2e2 = R3(Ωt) ·
(
ω1e1(0)+ω2e2(0)

)
,

where R3(ϕ) is a rotation around the e3 axis by an angle ϕ. On the other hand,

ω3e3 = R3(Ωt) · (ω3e3) = R3(Ωt) ·
(
ω3(0)e3

)
,

since ω3 is constant. Adding both equations we finally obtain

ω = R3(Ωt) ·ω(0) .

In other words:

In the frame of body axes the vectorω rotates around the e3 axis with constant angular velocity
Ω (cf. Fig. 5.1).

The latter result could have been deduced directly from Euler’s equations, since

.
ω = .

ω1e1 + .
ω2e2 = Ω(−ω2e1 +ω1e2) = Ωe3 ×ω .

Note also that the angular velocity Ω is positive for I3 > I1 (“flat” body), whereas it is negative
for I3 < I1 (“tall” body); indeed, I3 − I1 =

∫
Ω ρ(r)(x

2
1 − x2

3)d3r.

Remark. A particular solution of the Euler equations consists in a rotation around a principal
axis of inertia with constant angular velocity. Indeed, in this case

.
ω = 0 and Iω ∥ ω, so that

I
.
ω + ω × (Iω) = 0. (Note that in this case the axis of rotation ω/ω is also fixed in space,

since
.
ω holds both in the body and in the fixed frame). We shall in what follows disregard

these (trivial) solutions. For this reason, we can assume that ω3 and α do not vanish. Indeed,
if α = 0 then ω = ω3e3 is constant and hence the body rotates with constant angular velocity
around its symmetry axis, which is a principal axis of inertia. Likewise, if ω3 = 0 then Ω = 0,
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ω3

O x2

x1

x3

ω

ω1

ω2

Ω

ω1e1 +ω2e2

Figure 5.1. Procession of the vector ω about the e3 body axis.

ω =ω1e1 +ω2e2 is constant, and thus the body rotates again around a principal axis of inertia
perpendicular to the axis of symmetry with constant angular velocity. Furthermore, since we
are assuming that ω3 ̸= 0 we can choose the direction of the e3 axis so that ω3 > 0 and hence
α ∈ (0,π/2). In terms of the angle α we can write

ω3 =ω cosα , ω0 =ω sinα , ω1 + iω2 =ω sinα ei(Ωt+β) , (5.42)

where β is the angle between the vectors ω1(0)e1 +ω2(0)e2 and e1 (which could be taken as
zero choosing appropriately the initial time). ■

The previous results can be expressed in a more geometric language as follows:

Relative to the frame of body axes, the vector ω moves tracing out a cone with axis e3 and
half-angle α, with constant angular velocity Ω. This cone is called the body cone or, more
correctly, cone fixed in the body.

The motion of the angular momentum L relative to the body axes is easily determined from the
relation (5.27), which can be written using complex notation as

L3 = I3ω3 = I3ω cosα = const. , L1 + iL2 = I1(ω1 + iω2) = I1ω sinα ei(Ωt+β) . (5.43)

In other words, L lies on the plane determined by the vectors e3 and ω, with L3, L2
1 + L2

2, L and
the angle θ between L and e3 all constant with respect to the frame of body axes. Note that the
fact that L is constant in the latter frame follows also from the fact that it is constant in the fixed
frame (since N = 0). Similarly, that the vectors e3, ω, and L are coplanar can be proved directly
remarking that

e3 · (ω× L) = (I2 − I1)ω1ω2 = 0 .

From the previous discussion it follows that:

Relative to the frame of body axes, the angular momentum L rotates with constant angular
velocity Ω around the e3 axis.

The angle θ between L and e3 is easily computed noting that

tanθ =
√
L2

1 + L2
2

L3
= I1ω0

I3ω3
= I1
I3

tanα ;
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x′2

x′1

L

x′3

x1

x2

x3

ω

Space cone

Body cone

Figure 5.2. Space and body cones (in the case I1 > I3).

in particular, θ > α for a “tall” body. Note also that the angle between L and ω is |θ −α|.
Relative to the fixed frame the vector L is constant, since by hypothesis the torque of the

external forces vanishes. The direction of the latter vector, which is therefore constant with
respect to the fixed frame, is known as the invariant direction and is usually taken as the e′3
axis:

e′3 =
L

L
.

The vectors ω and e3 both rotate around L since, as we have just seen, the angle between the
latter vectors and the angular momentum, as well as their magnitude, are constant. Moreover,
ω and e3 rotate with the same angular velocity Ωp, since they are coplanar with L. In other
words:

Relative to the fixed frame, the vector ω moves tracing out a cone of axis L and half-angle
|θ − α| with angular velocity Ωp. This cone is known as the space cone (more precisely, cone
fixed in space).

Note that the body and space cones are tangent at all times along their common generatrix
parallel to the vector ω (cf. Fig. 5.2).

To compute the angular velocity Ωp, consider a third system of axes e′′i (i = 1,2,3) with

e′′3 = e3 , e′′1 =
L1e1 + L2e2√
L2

1 + L2
2

, e′′2 = e′′3 × e′′1 =
e3 × L

|e3 × L| =
e3 × L√
L2

1 + L2
2

.

Note that by construction the vectors e′′1 and e′′3 = e3 span the same plane as L and e3, i.e.,

lin
{
e′′1 ,e

′′
3

} = lin
{
L,e3

}
.

Thus the angular velocity ω′ of the axes {e′′i }1àià3 with respect to the fixed frame {e′i}1àià3 is
equal to the angular velocity with which the plane spanned by e3 and L rotates around e′3 = L/L,
which coincides with the angular velocity Ωpe′3 = ΩpL/L of the rotation of the vector e3 around
the invariant direction e′3. On the other hand, the angular velocity ω′′ of the body axes {ei}1àià3

relative to the frame {e′′i }1àià3 is equal to −Ωe3, since the plane lin{L,e3} = lin{e′′1 ,e′′3 } rotates
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L

ω

e3
Ωp

−Ωαθ

Figure 5.3. Vectors L, ω, and e3 in the inertial motion of a rigid body symmetric about the e3

axis (in the case I1 > I3).

with angular velocityΩ around e3 relative to the body axes {ei}1àià3. By the additivity of angular
velocities, the angular velocity ω of the body axes {ei}1àià3 with respect to the fixed frame
{e′i}1àià3, is given by

ω =ω′ +ω′′ = Ωp L

L
−Ωe3 . (5.44)

The previous equation, together with the argument leading to its proof, shows that the body’s
motion can be described as the composition of a precession of its symmetry axis e3 about the
invariant direction (i.e., L/|L|) with angular velocity Ωp and a rotation around its symmetry axis
with angular velocity −Ω.

From Fig. 5.3 it follows that
ω0 =ω sinα = Ωp sinθ ,

and hence

Ωp =ω sinα
sinθ

=ω sinα
L√

L2
1 + L2

2

= L
I1
. (5.45)

From Eqs. (5.43) we finally obtain

Ωp = ω
I1

√
I21 sin2α+ I23 cos2α =ω

√√√√1+ I
2
3 − I21
I21

cos2α .

In particular, Ωp < ω for a “tall” body, whereas Ωp > ω for a “flat” one.

Exercise. Deduce Eq. (5.45) directly from Eq. (5.44).

Solution. Taking the scalar product of Eq. (5.44) with e3 we obtain

Ωp
L3

L
= Ωp ω3I3

L
=ω3 +Ω =ω3 + I3 − I1I1

ω3 = I3ω3

I1
=⇒ Ωp = L

I1
,

as before.

Exercise. Study the stability of the rotation of an asymmetric top (i.e., Ii ̸= Ij for i ̸= j) around
one of its principal axes of inertia in the case of inertial motion.

Solution. Suppose, for instance, that the body is rotating around its principal axis of inertia e3

with angular velocity ω = ω3e3. Note, first of all, that ω3 must be constant, as is easily
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5.5 Inertial motion of a symmetric top

deduced from Euler’s equations with N = 0 and ω1 =ω2 = 0. Let us next see what happens if
we slightly modify the initial conditions

ω1(0) =ω2(0) = 0 , ω3(0) =ω3

leading to the previous solution. To first order in ω1 and ω2 the product ω1ω2 can be taken
as zero, so that the third Euler equation implies that ω3 remains approximately constant.
Differentiating with respect to time the first two Euler equations (with ω3 constant) we easily
obtain

..
ωi +

ω2
3

I1I2
(I1 − I3)(I2 − I3)ωi = 0 , i = 1,2 .

The solution ω1 = ω2 = 0, ω3 = const. will be stable provided that the solutions of the
latter equations are oscillatory, and unstable otherwise. Thus the stability condition is that the
product (I1− I3)(I2− I3) be positive, namely that either I3 < I1,2 or I3 > I1,2. In other words:

The inertial rotation around a principal axis of inertia of an asymmetric top is stable if and
only if the corresponding principal moment of inertia is either maximum or minimum.

Exercise. Study the inertial motion of an asymmetric rigid body with I1 > I2 > I3 in the case
L2 = 2I2E.

Solution. In a frame of principal axes of inertia the conservation of the magnitude of the angular
momentum and the (rotational) kinetic energy read

∑
i
I2iω

2
i = L2 ,

∑
i
Iiω2

i = 2E .

Combining these equations we obtain

I2(I2 − I1)ω2
2 + I3(I3 − I1)ω2

3 = L2 − 2I1E , I1(I1 − I3)ω2
1 + I2(I2 − I3)ω2

2 = L2 − 2I3E ,

whence it follows that

ω2
1 =

L2 − 2I3E − I2(I2 − I3)ω2
2

I1(I1 − I3) = I2 − I3
I1(I1 − I3)

(
2E − I2ω2

2

)
,

ω2
3 =

L2 − 2I1E − I2(I2 − I1)ω2
2

I3(I3 − I1) = I1 − I2
I3(I1 − I3)

(
2E − I2ω2

2

) = I1(I1 − I2)
I3(I2 − I3) ω

2
1 .

The Euler equation for ω2 is thus

.
ω2 = ±

√
(I2 − I3)(I1 − I2)

I1I3

(
L2

I22
−ω2

2

)
,

whose general solution is

±ν(t − t0) = arctanhh(I2ω2/L) ⇐⇒ ω2 = ± LI2 tanh
(
ν(t − t0)

)
with

ν := L
I2

√
(I2 − I3)(I1 − I2)

I1I3
.

183



Rigid body motion

Choosing appropriately the origin of t and the direction of the x2 principal axis we can simply
write

ω2 = L
I2

tanh(νt) .

From the previous equations for ω1,3 we then obtain (taking into account that, by the Euler
equation for ω2, ω1 and ω3 must have opposite signs, and changing the direction of the x1

principal axis if necessary)

ω1 = L
√

I2 − I3
I1I2(I1 − I3) sech(νt) , ω3 = −L

√
I1 − I2

I2I3(I1 − I3) sech(νt) .

Thus when t →∞ we have

ω2 → L
I2
, ω1,3 → 0 ;

in other words, in the limit t →∞ the body rotates around the x2 principal axis of inertia with
constant angular velocity.

Remark. In the generic case Ii ̸= Ij for i ̸= j, the solution of Euler’s equations with N = 0 can
be found by quadratures using the conservation of E and L2. Indeed, let us suppose as in the
previous exercise that I1 > I2 > I3. Proceeding as before we can solve for ω1,3 in terms of L and
E to find

ω2
1 =

L2 − 2I3E − I2(I2 − I3)ω2
2

I1(I1 − I3) , ω2
3 =

2I1E − L2 − I2(I1 − I2)ω2
2

I3(I1 − I3) . (5.46)

From these equations it follows that the motion is only possible if 2EI3 à L2 à 2EI1. Note that
L2 = 2EI3 implies that

ω1 =ω2 = 0, ω2
3 =

2I1E − L2

I3(I1 − I3) ,
so that the body is rotating around its third principal axis of inertia with constant angular ve-
locity, and similarly if L2 = 2EI1. To exclude these trivial solutions, we shall suppose in what
follows that 2EI3 < L2 < 2EI1. From the Euler equation for ω2 we then obtain∫

dω2√[
L2 − 2I3E − I2(I2 − I3)ω2

2

][
2I1E − L2 − I2(I1 − I2)ω2

2

] = ± t − t0
I2
√
I1I3

. (5.47)

Onceω2(t) is found from this equation (which can be explicitly done in terms of Jacobian elliptic
functions), ω1(t) and ω3(t) can be immediately found using Eq. (5.46). ■

Exercise. Show that ω2 in Eq. (5.47) behaves as the x coordinate of a particle moving in a
certain effective one-dimensional potential. Find the particle’s effective energy and potential.
What can you say about the qualitative features of the motion of ω2?

Solution. From Eq. (5.47) it immediately follows that

1
2

.
ω2

2 +U(ω2) = 0 ,

with

U(ω2) = −(2I1I22I3)−1
(
L2 − 2I3E − I2(I2 − I3)ω2

2

)(
2I1E − L2 − I2(I1 − I2)ω2

2

)
.

Thus ω2 behaves as the x coordinate of a particle of unit mass and zero energy subject to the
one-dimensional potential U(ω2). Since the coefficients

L2 − 2I3E =: a2
1, I2(I2 − I3) =: b2

1, 2I1E − L2 := a2
2, I2(I1 − I2) =: b2

2,
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are all positive, the effective potential behaves as shown in Fig. 5.4 with

r1 = min
{
a1

b1
,
a2

b2

}
, r2 = max

{
a1

b1
,
a2

b2

}
.

Since, by Eq. (5.46)

a2
1 − b2

1ω
2
2 = I1(I1 − I3)ω2

1 á 0 , a2
2 − b2

2ω
2
2 = I3(I1 − I3)ω2

1 á 0,

we conclude that |ω2(t)| à min
{
a1
b1
, a2
b2

}
= r1. Hence the motion ofω2 (and, as a consequence,

ω1 and ω3) is always bounded. Moreover, an elementary calculation shows that the absolute
maximum Umax of U(ω2) is reached for

ω2 = ±
(r2

1 + r2
2

2

)1/2
,

and that

Umax = b2
1b

2
2

8I1I22I3
(r2

2 − r2
1 )

2 á 0 .

Since the effective energy is zero, it follows from Fig. (5.4) that ω2(t) —and, hence, ω1(t) and
ω3(t)— is a periodic function of t if Umax > 0, whereas when Umax = 0 the motion of ω2(t) is
bounded but not periodic (and similarly for ω1(t) and ω3(t)). Note, finally, that

Umax = 0 ⇐⇒ r2
1 = r2

2 ⇐⇒ a2
1b

2
1 = a2

2b
2
1 ⇐⇒ (L2 − 2I3E)(I1 − I2) = (2I1E − L2)(I2 − I3)

⇐⇒ L2 = 2EI2

(cf. the previous exercise).

ω2

U(ω2)

−r2 −r1 r1 r2

Figure 5.4. Effective potential U(ω2).
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6 Introduction to relativistic mechanics

6.1 The principles of special relativity

As we saw in Chapter 1, the laws of mechanics have the same form in all inertial frames. More
precisely, consider (for instance) the Galilean boost

t′ = t , x′1 = x1 − vt , x′2 = x2 , x′3 = x3 , (6.1)

relating the space-time coordinates (t, x1, x2, x3) of an event in an inertial reference frame S
with their counterparts (t′, x′1, x

′
2, x

′
3) in another inertial frame S′, whose origin O′ moves with

constant velocity ve1 with respect to S and whose axes are parallel to those of S. Newton’s
second law in the S frame

ma = F(t, r,
.
r)

then becomes in S′

ma′ = F′(t′, r′, .r′) , with F′(t′, r′, .r′) = F(t, r,
.
r) (r′ = r− vte1,

.
r′ = .

r− ve1).

In other words, in both frames the particle’s acceleration is the quotient between the force acting
on it and its mass, the force being the same in both frames but expressed in terms of the particle’s
coordinates and velocities in each of them. An equivalent way of stating this principle, known as
Galileo’s relativity principle, is the following:

No mechanical experiment can discriminate between two inertial frames.

Indeed, mechanical experiments are ultimately based on Newton’s second law, which determines
the acceleration of particles, and this acceleration is the same in S as in S′:

a′ = ..
r′ = d2

dt2 (r− vte1) = ..
r = a .

In other words, the following (Galilean) relativity principle holds:

All inertial frames are equivalent from the point of view of Newtonian mechanics.

At the end of the 19th century, the question arose whether Galileo’s relativity principle also
applied to Maxwell’s equations, which govern electromagnetic phenomena —in particular, the
propagation of electromagnetic waves, including light. Stated differently: is it possible to dis-
tinguish between two inertial frames by some kind of electromagnetic (in particular, optical)
phenomenon? To answer this question, recall that in empty space the electromagnetic potentials
A0 := Φ/c and A = (A1, A2, A3) obey the wave equation1

1
c2

∂2Aµ
∂t2 −

3∑
i=1

∂2Aµ
∂x2

i
= 0 , µ = 0, . . . ,3 , (6.2)

where

c = 1√ε0µ0

1We shall suppose in this chapter that the electromagnetic potentials verify the Lorenz gauge (1.51).
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is a universal constant depending on the constant parameters ε0, µ0 appearing in Maxwell’s
equations. How does Eq. (6.2) transform under the Galilean boost (6.1)? To answer this question,
note first of all that

A′µ(t′, r′) = Aµ(t, r) ,
since A0 = Φ/c is a scalar and, although A is a vector, the axes of S and S′ are parallel by
hypothesis. Hence the transformed potentials A′µ(t′, r′) also satisfy Eq. (6.2), that is2

1
c2

∂2A′µ
∂t2 −

3∑
i=1

∂2A′µ
∂x2

i
= 0 , µ = 0, . . . ,3 .

Taking into account that

∂
∂t
= ∂
∂t′

− v ∂
∂x′1

,
∂
∂xi

= ∂
∂x′i

, i = 1,2,3 ,

we immediately obtain

1
c2

∂2A′µ
∂t′2

−
(

1− v
2

c2

)∂2A′µ
∂x′21

−
3∑
i=2

∂2A′µ
∂x′2i

− 2v
c2

∂2A′µ
∂t′∂x′1

= 0 , µ = 0, . . . ,3 ,

which is not a wave equation in the space-time coordinates (t′, x′1, x
′
2, x

′
3) for any value of3 v ̸= 0.

The fact that the wave equation (6.2) (or, equivalently, Maxwell’s equations) is not invariant
under Galilean transformations raises the following three possibilities, which can only be decided
by experiment:

1. There exists a privileged reference frame in which Eqs. (6.2) (or, equivalently, Maxwell’s
equations) are valid, and electromagnetic waves propagate with speed c = 1/√ε0µ0 . Con-
sequently, the relativity principle —namely, the equivalence of all inertial frames— holds
only for mechanics but not for electromagnetism.

2. The relativity principle holds both for mechanics and electromagnetism, but Maxwell’s
equations are incorrect.

3. The relativity principle holds both for mechanics and electromagnetism, but Eq. (6.1) —
which follows from a fundamental tenet of Newtonian mechanics, namely the absolute
character of time— is not the correct formula relating the space-time coordinates of the
same event in two inertial frames.

At the end of the 19th century it was generally believed that the correct hypothesis was the first
one. The theoretical basis for this opinion was the belief that electromagnetic waves propagated
in a material medium filling all space called the ether, and therefore that Eqs. (6.2) —or, equiva-
lently, Maxwell’s equations— only hold in an inertial frame at rest with respect to the ether. It
was also thought that this privileged inertial frame coincided with that of distant stars, usually
identified with Newton’s “absolute space”. If this hypothesis were true, it would be possible in
principle to experimentally detect the motion of an inertial frame relative to the ether (“absolute
motion”) by measuring the velocity of electromagnetic waves in it.

In 1887, Michelson and Morley conducted a very sensitive interferometric experiment to detect
Earth’s motion with respect to the ether. The experiment was based on studying the trajectory

2In fact, since the wave equation (6.2) is linear this result would still hold if the potentials transformed linearly
among themselves, i.e., if

A′µ(t′, r′) =
3∑
ν=0

Λνµ(v)Aν(t, r) , µ = 0, . . . ,3 .

3Note, however, that for v ≪ c the wave equation is approximately invariant under a Galilean boost.
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Figure 6.1. The Michelson–Morley experiment.

of a light beam that is divided by a half-silvered mirror into two perpendicular rays (cf. Fig. 6.1),
so that the time taken by each of these rays to return to the mirror is different if the device is
moving with respect to the ether. Even if this effect is very small (of the order of v2/c2 ∼ 10−8,
where v is Earth’s speed relative to the ether, believed to be approximately equal to its speed
with respect to the Sun), it is possible to observe it by studying the interference fringes produced
when both rays recombine. Although the experiment was repeated numerous times, a negative
result was always obtained, i.e., no relative speed of Earth with respect to the ether was detected.
This result was totally unexpected and certainly surprising, since, even admitting that at some
point in its orbit Earth’s speed relative to the ether vanishes, Earth’s velocity varies along its orbit
as well as throughout the day (due to Earth’s rotation around its axis).

During almost two decades Michelson–Morley’s experiment remained without an explanation
consistent with other known phenomena (like the aberration of light or the speed of light in
moving material media) discarding the theory of ether drag. Finally, in 1905 Einstein observed
that the negative result of this experiment (as well as the all of the above mentioned phenomena)
can be explained on the basis of the following two fundamental assumptions:

1. The laws of physics are the same in all inertial frames (relativity principle).

2. The speed of electromagnetic waves in vacuo is the universal constant c = 1/√ε0µ0.

These two postulates are the foundations of the special theory of relativity4 (SR). The first
postulate is evidently an extension of Galileo’s relativity principle to all laws of physics (includ-
ing electromagnetism), not just mechanics. Combining this postulate with the second one we
immediately reach the following conclusion:

The speed of electromagnetic waves in vacuo is equal to c in all inertial frames.

Of course, this principle satisfactorily explains the negative result of Michelson–Morley’s experi-
ment, since it implies that the two light rays in the latter experiment travel with the same speed
c. It is, however, profoundly anti-intuitive from the point of view of Newtonian mechanics, since
it violates the familiar law of addition of velocities

.
r = .

r′ + ve1

which follows immediately differentiating Eq. (6.1). As a consequence, the Galilean transforma-
tion (6.1) cannot be correct. The same conclusion is reached by noting that the wave equation

4The general theory extends the relativity principle to non-inertial frames, thereby developing a theory of
gravitation (based on space-time geometry) compatible with the postulates of special relativity.
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(6.2) for the electromagnetic potentials —which is equivalent to Maxwell’s equations— is not
invariant under the Galilean boost (6.1), in contradiction with the two postulates of special rela-
tivity.

6.2 Lorentz transformations

6.2.1 Deduction of the equations of the transformation

As we have just remarked, the Galilean boost (6.1) is not compatible with the postulates of the
special theory of relativity. We shall apply in this section the latter postulates, together with the
homogeneity and isotropy of space-time5, to deduce the correct equations of the transformation
relating the space-time coordinates (t, r) and (t′, r′) of the same event in two different inertial
frames S and S′. We shall assume, as in the previous section, that the axes of both frames are
parallel, their origins coincide at some instant and the velocity of the origin O′ of S′ relative to
S is6 v = ve1. Choosing suitably the origin of time in S and S′, we can always arrange for O and
O′ to coincide at t = t′ = 0, so that

xµ = 0 , µ = 0, . . . ,3 =⇒ x′µ = 0 , ∀µ = 0, . . . ,3 , (6.3)

where we have introduced the notation

x0 := ct , x′0 := ct′ .

From now on we shall tacitly assume that condition (6.3) is satisfied, unless otherwise stated.

i) To begin with, using the homogeneity of space-time it can be shown that the transformation
relating the coordinates x′µ and xµ is linear, i.e., that

x′µ =
3∑
ν=0

Λµν(v)xν , µ = 0, . . . ,3 ,

where the coefficients Λµν(v) depend only on the relative velocity between both frames.
Indeed, consider a clock moving with constant velocity with respect to S, and hence (by the

first postulate of SR) to S′. If xi(t) and x′i(t
′) (i = 1,2,3) are the clock’s spatial coordinates in

the frames S and S′ we then have

d2xi
dt2 = d2x′i

dt′2
= 0 , i = 1,2,3 .

On the other hand, from the homogeneity of space-time it follows that the time τ measured by
a moving clock must satisfy

dτ
dt

= const. ,
dτ
dt′

= const.

From this equation it easily follows that

d2xi
dτ2 = d2x′i

dτ2 = 0 , i = 1,2,3 ,

and hence, calling x0 = ct, x′0 = ct′,

d2xµ
dτ2 = d2x′µ

dτ2 = 0 , i = 0, . . . ,3 .

5Space-time must be homogeneous, i.e., all its points must be equivalent. Likewise, space should be isotropic,
by which it is meant that all spatial directions must be equivalent.

6Throughout this chapter, v shall usually denote the x1 component of the velocity of the origin of the frame
S′ relative to S, which can thus be positive or negative. To avoid confusion, the magnitude of the velocity shall be
denoted by |v| = |v|.
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But then

dx′µ
dτ

=
3∑
ν=0

∂x′µ
∂xν

dxν
dτ

,
d2x′µ
dτ2 =

3∑
ν,σ=0

∂2x′µ
∂xν∂xσ

dxν
dτ

dxσ
dτ

= 0 =⇒ ∂2x′µ
∂xν∂xσ

= 0 , ∀ν,σ = 0, . . . ,3 ,

since dxµ/dτ (µ = 0, . . . ,3) is arbitrary.

ii) Secondly, it is easy to check that the spatial coordinates transversal to the velocity v must
be equal in both frames, i.e., that

x′2 = x2 , x′3 = x3 .

Indeed (for instance), since the transformation xµ , x′µ is linear we must have

x′2 =
∑
µ
aµ(v)xµ ,

where the summation index ranges from 0 to 3 (in general, from now on Greek indices will always
range from 0 to 3 and Latin ones from 1 to 3). Since x2 = 0 implies x′2 = 0 (recall that the axes
of S and S′ are parallel), all the coefficients aµ vanish except for a2, and hence

x′2 = a2(v)x2 .

By the isotropy of space, the coefficient a2 can only depend on |v|, i.e.,

a2(v) = a2(−v).

By the relativity principle, the velocity of O relative to O′ must be −ve1, and hence

x2 = a2(−v)x′2 = a2(−v)a2(v)x2 = a2
2(v)x2 =⇒ a2(v) = ±1 .

By continuity (since a2(0) = 1) we must have a2(v) = 1, which implies the equality of x2 and x′2.
Obviously, a similar argument applies to x3 and x′3.

iii) Since the origin of S′ moves with velocity ve1 relative to S, the coordinate x′1 must vanish
when x1 − vt = 0, and thus (since the relation between x′µ and xν is linear)

x′1 = γ(v)(x1 − vt) , (6.4)

where γ is an even function of v by the isotropy of space. The relativity principle implies the
analogous relation

x1 = γ(v)(x′1 + vt′) . (6.5)

Solving for t′ in the latter equation and using the value of x′1 from Eq. (6.4) we obtain

x1 = γ2(v)(x1 − vt)+ γ(v)vt′ =⇒ t′ = γ(v)
[
t + (γ(v)−2 − 1

) x1

v

]
. (6.6)

Equations (6.4)-(6.6) determine the transformation (t, x1) , (t′, x′1) in terms of the unknown
coefficient γ(v).

So far we have only applied the relativity principle (the first postulate of SR) and the homo-
geneity and isotropy of space-time. If we assumed at this point that t′ = t (i.e., that time is
absolute), from Eq. (6.6) we would immediately conclude that γ(v) = 1, which yields the Galilean
boost (6.1). We know, however, that this transformation is incorrect, so that necessarily t′ ̸= t.
This contradicts one of the fundamental assumptions of Newtonian mechanics, namely the ab-
solute character of time. In fact, in order to find the correct relation between t and t′ we must
apply Einstein’s second postulate, which so far had played no role in our argument. More pre-
cisely, according to this postulate the equation x1 − ct = 0 (which describes the propagation of
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a plane electromagnetic wave in the x1 direction emitted at t = t′ = 0 from the origin of both
frames) must imply x′1 − ct′ = 0. Substituting these relations into Eqs. (6.4) and (6.5) we obtain

ct′ = γ(v)(c − v)t , ct = γ(v)(c + v)t′ .
Multiplying both equations and canceling the common factor tt′ we easily arrive at the relation

c2 = γ2(v)(c2 − v2) =⇒ γ(v) = ± 1√
1− v2

c2

.

We must again take, by continuity, the “+” sign (since v = 0 we must have t = t′, and hence
γ(0) = 1), so that

γ(v) = 1√
1− v2

c2

. (6.7)

Substituting into Eqs. (6.5)-(6.6) we finally arrive at the sought-for equations relating the coordi-
nates xµ and x′µ in both inertial frames:

t′ = γ(v)
(
t − vx1

c2

)
, x′1 = γ(v)(x1 − vt) , x′k = xk (k = 2,3) . (6.8)

The transformation (6.7)-(6.8) between the coordinates xµ and x′µ , which replaces the Galilean
boost (6.1), is known as a Lorentz boost (in the x1 direction). Note that in terms of the coordinate
x0 = ct (which has dimensions of length), and using the dimensionless parameter β := v/c, the
previous equation adopt the more symmetric form

x′0 = γ(v)
(
x0 − βx1

)
, x′1 = γ(v)(x1 − βx0) , x′k = xk (k = 2,3) . (6.9)

The following facts are a direct consequence of Eq. (6.8) for a Lorentz boost:

i) From Eq. (6.7) for the function γ(v) it follows that the relative speed between two inertial
frames must be strictly less than the speed c of electromagnetic waves in vacuo.

ii) In particular, the speed of all material particles (i.e., with non-vanishing mass) is necessarily
less than c, since a set of such particles can be used to construct a reference frame.

iii) In fact, it is easy to show that the propagation speed of any physical signal cannot exceed
c, where by physical “signal” is meant the exchange of information between two observers.

To prove the last assertion, suppose that a signal is sent from a point P to a second point Q with
speed u > c measured in an inertial frame S. Let us choose the axes of S in such a way that P
and Q both lie on the x1 axis with a spatial separation ∆x1 > 0, and let ∆t > 0 be the time taken
by the signal to reach Q according to S (cf. Fig. 6.2). By Eqs. (6.7)-(6.8), the corresponding time
measured in the second inertial frame S′ is

∆t′ = γ(v)
(
∆t − v∆x1

c2

)
= γ(v)∆t

(
1− uv

c2

)
.

If the speed v of the origin of S′ relative to S satisfies

c2

u
< v < c ,

which is possible since u > c by hypothesis, we shall have ∆t′ < 0. In other words, according to
S′ the signal is received by Q before it was emitted by P , which violates the causality principle (a
cause must always precede its effect).
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ct

x1

ct1

ct2

P Q

∆x1

c∆t

Figure 6.2. Transmission of a signal from P to Q with sped u > c relative to an inertial frame S.

Exercise. Show that in general the Lorentz transformation between to inertial frames S and S′

with parallel axes is given by

t′ = γ(v)
(
t − v · x

c2

)
, x′ = x− γ(v)vt + (γ(v)− 1

)v · x

v2 v , (6.10)

where v is the velocity of O′ relative to S.

Solution. Setting n = e1 = v/v we have

x1 = n · x = x · v

v
, x2e2 + x3e3 = x− x1n = x− x · v

v2 v

and hence

t′ = γ(v)
(
t − v · x

c2

)
, x′ = γ(v)

(
x · v

v
− vt

)
v

v
+ x− x · v

v2 v ,

which upon simplification yields Eq. (6.10).

6.2.2 Relativistic addition of velocities

Although we have just shown that the two postulates of SR lead to the equations (6.7)-(6.8) of a
Lorentz boost, we must still check that this transformation is actually consistent with the latter
postulates. As to the first postulate, using the the Lorentz transformation equations and setting

ui := dxi
dt

, u′i := dx′i
dt′

= dx′i
dt

/
dt′

dt
, i = 1,2,3,

we immediately obtain

u′1 =
dx′1
dt′

= u1 − v
1− u1v

c2

, u′k =
dx′k
dt′

= uk

γ(v)
(

1− u1v
c2

) (k = 2,3) .

Thus if a particle moves with constant velocity u with respect to S it also moves with constant
velocity u′ relative to S′. This is consistent with Newton’s first law (i.e., if the law of inertia
applies in the inertial frame S it will also apply in S′).

The expression of u as a function of u′ can be obtained solving for ui in terms of u′i from the
previous equations, or simply (by the relativity principle) replacing v by −v and u′i by ui in the
latter equations:

u1 = u′1 + v
1+ u

′
1v
c2

, uk =
u′k

γ(v)
(

1+ u
′
1v
c2

) (k = 2,3) . (6.11)
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This is the relativistic law for the addition of velocities which replaces its Galilean analogue
u = u′ + ve1. From Eq. (6.11) it easily follows that(

1+ u
′
1v
c2

)2

(u2 − c2) = u′21 +
1

γ2(v)
(u′22 +u′23 )+ v2 − c2 − v

2u′21
c2 = u′2 − c2

γ2(v)
.

Since |u′1| à c and |v| < c the term in parentheses in the LHS is always positive, and therefore
u2−c2 and u′2−c2 have the same sign. In particular, if |u′| = c then |u| = c, which is consistent
with the second postulate of special relativity. Moreover, from the previous equation it also
follows that if |u′| < c then |u| < c. In other words, the addition of two speeds smaller than the
speed of light produces a speed which is also smaller than c.

Exercise. Show that in general (i.e, when the relative velocity v between the inertial frames S
and S′ with parallel axes is not necessarily directed along the e1 = e′1 direction) the relation
between the velocities u and u′ is

u = u′

γ(v)
(

1+ u · v

v2

) + v .

Solution. When v = ve1 equation (6.11) yields

u = u′

γ(v)
(

1+ u
′
1v
c2

) + ve1

1+ u
′
1v
c2

+
(
1− γ(v)−2

) u′1e1

1+ u
′
1v
c2

= u′

γ(v)
(

1+ u
′
1v
c2

) + v +
v2u′1
c2

1+ u
′
1v
c2

e1 = u′

γ(v)
(

1+ u
′
1v
c2

) + ve1 .

Setting ve1 = v and u′1 = u′ · v/v we obtain the sought-for relation.

6.2.3 Interval

Consider the propagation of a light signal (in general, an electromagnetic pulse) emitted from
the origin of S at the time t = 0, governed by the equation

c2t2 − x2 = 0 , x := (x1, x2, x3)

in an inertial frame S. By the second postulate, the equation of the wave front in the frame S′

whose origin O′ coincides with O at t = t′ = 0 should be

c2t′2 − x′2 = 0 .

Hence c2t2 − x2 = 0 must imply c2t′2 − x′2 = 0. In fact, using the Lorentz transformation
equations (6.7)-(6.8) in the expression c2t′2 − x′2 we readily obtain

c2t′2 − x′2 = γ2(v)
(
ct − vx1

c

)2

− γ2(v)(x1 − vt)2 − x2
2 − x2

3

= γ2(v)(c2 − v2)t2 − γ2(v)
(

1− v
2

c2

)
x2

1 − x2
2 − x2

3 = c2t2 − x2 .

We have thus shown the following fundamental property of Lorentz transformations:
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ct

x1

P

∆x1 = c∆t∆x1 = −c∆t Q1

Q2

Q′
1

Q′
2

Figure 6.3. In this figure we have represented 5 events P, Qi, Q
′
i (i = 1,2), where for the sake

of simplicity we have taken x2 = x3 = 0. The intervals Qi −P are time-like, whereas
the remaining intervals Q′

i −P are space-like. The event Q1 is in the future of P
(t(Q1) − t(P) > 0), while Q2 is in its past (t(Q2) − t(P) < 0). The event Q′

2 cannot
have influenced P, nor Q′

1 have been influenced by P.

The quadratic form c2t2−x2 ≡ x2
0−x2 is invariant under the Lorentz transformation (6.7)-(6.8).

In general, the interval between two events with space-time coordinates xµ and xµ+∆xµ (with
x0 = ct) is defined as

∆s2 := c2∆t2 −
3∑
i=1

∆x2
i = ∆x2

0 −
3∑
i=1

∆x2
i = ∆x2

0 −∆x2 . (6.12)

Note that, in spite of what the notation might suggest, the interval ∆s2 may be negative. Since
the Lorentz transformation (6.7)-(6.8) is linear, the differences ∆xµ transform in the same way
as the coordinates xµ , and hence:

The interval between two events is invariant under the Lorentz transformation (6.7)-(6.8):

∆s2 = ∆x2
0 −∆x2 = ∆x′20 −∆x′2 . (6.13)

Thus the interval between two events is an intrinsic property of their mutual relation, indepen-
dent of the reference frame used to describe them.

By definition, the interval between two events is time-like if ∆s2 > 0, light-like if ∆s2 = 0, and
space-like if ∆s2 < 0 (cf. Fig. (6.3)).
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Note that

∆s2 > 0 ⇐⇒ ∆x0 ̸= 0 ,
∣∣∣∣ ∆x

∆x0

∣∣∣∣ < 1 ,

∆s2 < 0 ⇐⇒ |∆x| ̸= 0 ,
|∆x0|
|∆x| < 1 ,

⇐⇒ ∆x0 = 0, |∆x| > 0 or ∆x0 ̸= 0 ,
∣∣∣∣ ∆x

∆x0

∣∣∣∣ > 1 ,

∆s2 = 0 ⇐⇒ ∆x0 = |∆x| = 0 or ∆x0 ̸= 0 ,
∣∣∣∣ ∆x

∆x0

∣∣∣∣ = 1 .

It follows that two events separated by a time-like (or light-like) interval can influence each other
(in particular, one can be the cause of the other), since it is possible to transmit a signal from
one to the other at a speed |∆x|/|∆t| not exceeding the speed of light. On the contrary, two
events separated by a space-like interval cannot influence each other, since a hypothetical signal
transmitted from one to the other would travel at a speed greater than c.

If the interval between two events is time-like, there exists an inertial reference frame relative
to which they occur at the same point in space.

Indeed, let us choose the axes of the original inertial frame S so that

∆x2 = ∆x3 = 0 ,

and consider a second inertial frame S′ moving with velocity ve1 relative to S. Since

∆x′2 = ∆x′3 = 0 , ∆x′1 = γ(∆x1 − v∆t) ,

in order to guarantee that ∆x′ = 0 it suffices to take

v = ∆x1

∆t
.

This is certainly possible, since ∆s2 > 0 implies that

|v|
c
=
∣∣∣∣∆x1

∆x0

∣∣∣∣ < 1 .

The time lapse ∆t′ between both events, measured in the frame S′ relative to which they take
place at the same point in space, is known as the proper time lapse and is usually denoted by
∆τ . It follows from the invariance of the interval that in any other inertial frame S we have

∆s2 = c2∆t2 −∆x2 = c2∆t′2 = c2∆τ2 =⇒ ∆τ = ∆t
√√√√1− ∆x2

∆x2
0

,

where we have taken into account that ∆τ = ∆t′ and ∆t have the same sign7 (cf. Eq. (6.14) below).
Thus the coordinate time lapse ∆t is always greater than or equal to the proper time lapse, and
in fact only coincides with the latter in the inertial frame with respect to which both events take
place at the same point in space.

7Since P and Q are separated by a time-like interval, it is possible to transmit a signal from P to Q or vice
versa. If ∆t and ∆t′ had opposite signs the effect would precede the cause in either S or S′, which would of course
violate the causality principle.

196



6.2 Lorentz transformations

If the interval between two events is space-like, it is possible to find an inertial frame relative
to which they appear to be simultaneous.

Indeed (supposing, again, that ∆x2 = ∆x3 = 0), since

∆t′ = γ
(
∆t − v∆x1

c2

)
∆t′ will vanish provided that

v = c2∆t
∆x1

= c∆x0

∆x1
.

This is again possible, since ∆s2 < 0 implies that

|v|
c
=
∣∣∣∣∆x0

∆x1

∣∣∣∣ < 1 .

Note also that in this case √
−∆s2 = |∆x′1|

coincides with the distance between both events in the reference frame relative to which they are
simultaneous, known as the events’ proper distance. Since

|∆x′1| =
√
−∆s2 =

√
∆x2 −∆x2

0 à |∆x| ,
the proper distance is always less than or equal to the spatial distance |∆x| in any other inertial
frame, and only coincides with the latter in a frame in which both events are simultaneous. Note,
however, that the concept of proper distance is different (and less useful) than that of proper
length that we shall define below.

Finally, if two events are separated by a light-like interval

∆s2 = c2∆t2 −∆x2 = 0 ,

and hence both events lie along the path of a light ray.

• Consider two events separated by a space-like interval, like P and Q′
1 in Fig. 6.3. As we have

just seen, although in the inertial frame S the event P precedes Q′
1 there is an inertial frame

relative to which P and Q′
1 are simultaneous. In fact, it is easy to show that there are inertial

frames S′′ in which Q′
1 precedes P (exercise). In other words:

The concept of simultaneity is not absolute, but depends on the inertial reference frame used.

This fact is called the relativity of simultaneity, and is one of the most radical differences
between the special theory of relativity and the Newtonian concept of time.

• It is important to realize that the relativity of simultaneity does not violate the causality princi-
ple, since it applies to events separated by a space-like interval, between which there can be no
transfer of information (indeed, a hypothetical signal connecting both events would travel with
a speed |∆x|/|∆t| greater than c). Thus two events separated by a space-like interval cannot
influence one another.

• On the other hand, if the interval between two events P ̸= Q is time-like or light-like, and P
precedes Q in an inertial frame S, the same must be true in any other inertial frame S′ related
to S by a Lorentz transformation (6.7)-(6.8), since otherwise the causality principle would be
violated. Indeed, the coordinate time lapses ∆t and ∆t′ between both events satisfy8

∆t′ = γ(v)∆t
(

1− v
c
∆x1

∆x0

)
, (6.14)

where the term in parentheses is always positive if ∆s2 > 0 (since |v|/c and |∆x1|/|∆x0| are
both less than 1).

8Recall that if two different events are separated by a time-like or light-like interval the coordinate time lapse ∆t
cannot vanish in any inertial frame.
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6.2.4 Minkowski product

If x = (x0,x) and y = (y0,y) denote the coordinates of two events in a certain inertial frame S,
from the invariance of the interval and of the quadratic form x2

0 − x2 it follows that

(y0 − x0)2 − (y− x)2 = y2
0 − y2 + x2

0 − x2 − 2(x0y0 − xy)

= (y′0 − x′0)2 − (y′ − x′)2 = y′20 − y′2 + x′20 − x′2 − 2(x′0y
′
0 − x′y′)

= y2
0 − y2 + x2

0 − x2 − 2(x′0y
′
0 − x′y′) ,

and thus

x0y0 − xy = x′0y′0 − x′y′ . (6.15)

In other words, the bilinear form

x ·y := x0y0 − xy , (6.16)

known as the Minkowski product, is also invariant under Lorentz transformations (6.7)-(6.8).
Note that, according to this definition,

x2 := x · x = x2
0 − x2 , ∆s2 = (∆x)2 . (6.17)

The vector space R4 whose elements are the space-time coordinates of events (or space-time,
for short), endowed with the Minkowski product (6.16), is usually known as Minkowski space.
Note that, since the quadratic form (6.17) associated with the Minkowski product (essentially,
the interval) is not positive definite, Eq. (6.16) does not define a true scalar product in Minkowski
space. We can, however, use the Minkowski product to define a geometric structure in Minkowski
space which is of great help in uncovering the properties of space-time in SR.

6.2.5 Lorentz group

Let S and S′ be two inertial frames whose origins coincide for t = t′ = 0, and denote by v the
velocity of the origin of S′ relative to S. In order to find the relation between the space-time
coordinates x and x′ of a certain event respectively in S and S′, we can proceed as follows. First
of all, consider an inertial frame S′′ at rest relative to S, whose x′′1 axis is in the direction of the
relative velocity v. We then have

x′′ = R1x ,

where R1 is a rotation of the spatial coordinates:

x′′0 = x0, x′′ =Rx,

with R ∈ SO(3). Secondly, let S′′′ be a new inertial frame moving with velocity v = ve′′1 (with
v = |v| > 0) relative to S′′, with axes parallel to those of S′′ and whose origin coincides with that
of S′′ for t′′ = t′′′ = 0. Hence the coordinates in S′′ and S′′′ are related by

x′′′ = L(v)x′′ ,

where L(v) is the Lorentz transformation (6.7)-(6.8) with x replaced by x′′ and x′ by x′′′. Finally,
since S′ and S′′′ move with the same velocity v with respect to S, and their origins initially
coincide, the space-time coordinates x′ and x′′′ are related simply by a spatial rotation R2, i.e.,

x′ = R2x′′′ .
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Combining these equations we finally obtain

x′ = R2L(v)R1x =: Λx . (6.18)

The transformation Λ, which is known as a general Lorentz transformation, is the most general
transformation relating the coordinates of the same event in two inertial frames whose space-
time origins coincide (i.e., t = xi = 0 ⇐⇒ t′ = x′i = 0 ). Obviously, if we do not make the latter
assumption then we obtain the Poincaré transformation

x′ = Λx + a ,

with a ∈ R4 constant.
The Lorentz transformation (6.7)-(6.8) can be written in matrix form as

x′ = L(v)x , (6.19)

where L(v) is the 4× 4 matrix

L(v) =


γ(v) −β(v)γ(v) 0 0

−β(v)γ(v) γ(v) 0 0
0 0 1 0
0 0 0 1

 , β(v) := v
c
. (6.20)

Using matrix notation, the Minkowski product of two four-vectors x,y ∈ R4 can be expressed
as

x ·y = xTGy ,

where x,y in the RHS are regarded as column vectors and G is the diagonal matrix

G =


1

−1
−1

−1

 . (6.21)

The invariance of the Minkowski product under the transformation (6.8) can be written in matrix
form as

x′ ·y′ = (L(v)x)TG
(
L(v)y

) = xT(L(v)TGL(v))y = x ·y = xTGy , ∀x,y ∈ R4 ,

or equivalently
L(v)TGL(v) = G . (6.22)

On the other hand, the Minkowski product is also invariant under rotations, since they do not
affect time and leave invariant the scalar product of the spatial components of two four-vectors:

RTGR = G (6.23)

for any rotation R. If Λ = R2L(v)R1 is a general Lorentz transformation, from Eqs. (6.22)-(6.23)
it immediately follows that

ΛTGΛ = G . (6.24)

In other words:
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The Minkowski product, and hence the interval, are invariant under general Lorentz transfor-
mations.

From the mathematical point of view, the set of matrices satisfying Eqs. (6.24) make up a group
usually denoted by O(1,3) and known as the Lorentz group, of fundamental importance in
physics. It can be shown that general Lorentz transformations (6.18) are a subgroup of the
Lorentz group, denoted by SO+(1,3) and known as proper orthochronous, defined by Eq. (6.24)
and the additional conditions detΛ = 1 and Λ00 > 0.

• Consider, again, the Lorentz boost in the x1 direction (6.7)-(6.8). Since β(v) ∈ (−1,1), there is
a unique φ ∈ R such that

β(v) = tanhφ.

In terms of this parameter, usually called rapidity, γ(v) is given by

γ(v) = 1√
1− β(v)2

= 1√
1− tanh2φ

= coshφ,

and thus the matrix L(v) adopts the following simple expression

L(v) =


coshφ − sinhφ 0 0
− sinhφ coshφ 0 0

0 0 1 0
0 0 0 1

 . (6.25)

Suppose that we successively perform two Lorentz boosts with velocities v1 = c tanhφ1 and
v2 = c tanhφ2. Using the addition formulas satisfied by cosh and sinh it is easy to show that
the resulting transformation is another Lorentz boost, with rapidity φ1+φ2. The velocity of this
boost is thus

v = c tanh(φ1 +φ2) = c tanhφ1 + tanhφ2

1+ tanhφ1 tanhφ2
= v1 + v2

1+ v1v2

c2

.

We obtain in this way the relativistic law for the addition of two parallels velocities v1e1 and
v2e2, which is a particular case of Eq. (6.11)).

6.3 Physical consequences of Lorentz transformations

Equations (6.7)-(6.8) have important physical consequences that we shall briefly review in this
section.

6.3.1 Time dilation

Let, again, S and S′ be two inertial frames with parallel axes9 moving with relative velocity ve1,
and consider a clock attached at the origin of S′. According to S′, x′ = 0 for all t′ along the
clock’s trajectory. Hence when the clock records a time t′ the corresponding time t measured in
S is given by

t = γ(v)
(
t′ + vx

′
1

c2

)
= γ(v)t′ = t′√

1− v2

c2

> t′ . (6.26)

9From now on, we shall tacitly assume that the origins of S and S′ coincide at t = t′ = 0 unless otherwise
stated.
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In other words, the clock attached to the origin of S′ appears to run slow relative to the clocks in
S. For small velocities v compared to the speed of light c the difference t− t′ is very small, since

t = t′
(

1+ v2

2c2 +O(v4/c4)
)
.

However, for velocities comparable to c this difference can be arbitrarily large, since it tends to
infinity as v → c. For instance, if v = 3c/5 we have t = 5t′/4. It is important to bear in mind the
following considerations:

• The effect just described, known as time dilation, is symmetric among both inertial frames,
in accordance with Einstein’s first postulate. In other words, if we attach a clock to the
origin of S the relation between the time t recorded by this clock and the corresponding
time t′ measured by the clocks in S′ is

t′ = γ(v)t , (6.27)

since now x = 0 for all t.

• The apparent discrepancy between Eqs. (6.26) and (6.27) is explained taking into account
that in these equations both t and t′ denote different times. The point is that in both cases
there is a clear asymmetry between the proper time measured by a single clock at rest in
a certain inertial frame and the coordinate time recorded by the clocks in another frame
relative to which the clock is moving —necessarily more than one, since the “ticks” of a
clock at rest in an inertial frame occur in different positions as seen from another inertial
frame. It would be incorrect to say that time flows more slowly in S than in S′, or vice
versa, since all inertial frames are equivalent, and there is no absolute motion (or rest). It
is however true that the proper time of a clock runs more slowly than the coordinate time
measured by the clocks in any inertial frame in motion with respect to the clock.

• Time dilation is constantly being verified in experiments measuring the half-life of elemen-
tary particles. By definition, the half-life t1/2 of a certain particle is the lapse of time after
the particle is produced for which the probability that the particle decays reaches 1/2. In
other words, given a large sample of such particles produced at t = 0 about half of the
sample will have decayed at t = t1/2. If the half-life of a particle is ∆t0 in an inertial frame
relative to which the particle is at rest —i.e., in the particle’s rest frame—, its half-life in
the laboratory frame will be

∆t = γ(v)∆t0 , (6.28)

v being the particle’s velocity with respect to the latter frame. The half-life ∆t0 can often
be computed using quantum field theory techniques, which makes it possible to check the
validity of Eq. (6.28) by measuring v and ∆t. All the (extremely numerous) experiments
performed to date have confirmed the validity of Eq. (6.28). For instance, muons present
in cosmic rays can reach a speed

v = 0.999 c

when they enter Earth’s atmosphere. For this value of v , the muon’s half-life measured in
Earth’s frame (approximately inertial) is given by

∆t = ∆t0√
1− (1− 10−3)2

≃ 22.3663∆t0 .

In the case of muons,

∆t0 ≃ 1.5 · 10−6 s =⇒ ∆t ≃ 3.35 · 10−5 s .
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Note that the distance traveled by the muon in the time ∆t is

v∆t ∼ 10 Km ,

while the distance traveled at that speed during the time ∆t0 is merely

v∆t0 ∼ 450 m .

Thus if it weren’t for time dilation muons in cosmic rays would decay long before reaching
Earth’s surface.

Example 6.1. Twins paradox. Suppose that a traveler departs from the origin O of an inertial
frame S with velocity ve1 and after a certain time ∆t/2 (measured in S) reverts its velocity,
arriving back to O at a time ∆t (cf. Fig. 6.4). What is the time elapsed according to the traveler?
In the first part of the trip (until reaching the event denoted by P in Fig. 6.4 left), the traveler’s
reference frame is an inertial frame S′ moving with constant velocity ve1 with respect to S.
Thus the time assigned to the event P by the traveler is

∆t′1 =
∆t

2γ(v)

(cf. Eq. (6.26)). In the second part of the trip (from P on), the traveler’s reference frame is
another inertial frame S′′ whose velocity with relative to S is−ve1. The travel time according to
S for this part of the trip is again (by symmetry) ∆t/2, while for the traveler the corresponding
time lapse will be

∆t′2 =
∆t

2γ(−v) =
∆t

2γ(v)
.

Thus the trip’s total duration according to the traveler is

∆t′ = ∆t′1 +∆t′2 =
∆t
γ(v)

=
√

1− v
2

c2 ∆t ,

which can be considerably less than ∆t if v/c is close to 1. This result may seem paradoxical,
since one might think that from the point of view of the traveler it is the observer at O who has
moved with speed ∓ve1, and hence the duration of the trip measured by the traveler should
be γ(v)∆t > ∆t. The fallacy consists in assuming that the relation between the observer at
O and the traveler is symmetric, which is very far from being true. Indeed, while O is at
rest in an inertial reference frame at all times, the traveling twin is at rest with respect to no
inertial frame during the whole trip, due to the change in the direction of his velocity at P. In
other words, while the observer has not been subject to any acceleration, the traveler has felt
an (infinite) acceleration when changing course. It is clear that this will happen regardless of
the trajectory described by the traveler. Indeed, since this trajectory begins and ends at the
origin of the inertial frame S, the traveler must necessarily feel an acceleration at some point
(otherwise he or she would move away from the observer with constant speed).
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x0

x1

P

c∆t

c∆t
2

ve1

−ve1

x0

x1

ct1 P

ct2 Q

ct

c(t + dt)

Figure 6.4. World line of the traveler in the twins paradox (left) and of the material particle
used in the definition of proper time (right).

More generally, suppose that a material particle follows a trajectory C with equation

x = x(t) , t1 à t à t2 ,

relative to an inertial frame S. We shall define the particle’s proper time lapse as the time
elapsed between the two events P = (ct1,x(t1)) and Q = (ct2,x(t2)) according to a clock (i.e.,
an observer) traveling with the particle, i.e., for which the particle is at rest at all times. Since
such an observer does not define an inertial frame unless its velocity

.
x(t) is constant, in order

to compute the proper time we subdivide the particle’s trajectory in Minkowski space, known
as its world line, in small, approximately straight arcs. In each of these arcs the coordinate
time of S varies between t and t + dt, and the particle’s velocity is approximately constant and
equal to

.
x(t) (cf. Fig. 6.4 right). Hence the proper time dτ taken by the particle to trace out this

infinitesimal arc is equal to the proper time lapse measured by an inertial frame S′ moving with
speed

.
x(t) relative to S, namely

dτ =
√

1−
.
x2(t)
c2 dt . (6.29)

“Adding up” all these infinitesimal proper times dτ , i.e., integrating with respect to t, we obtain
the following expression for the total lapse of proper time ∆τ(C) as the particle travels from P
to Q along C :

∆τ(C) =
∫ t2
t1

√
1−

.
x2(t)
c2 dt . (6.30)

Note that ∆τ(C) is invariant under Lorentz transformations by its own definition. This can also
be checked directly, since by Eq. (6.29) we have

dτ2 = 1
c2 (c

2 dt2 − dx2) = ds2

c2 .

Obviously ∆τ(C) is always less than or equal to the coordinate time lapse ∆t = t2 − t1, and
∆τ(C) = ∆t if and only if

.
x(t) = 0 for all t ∈ [t1, t2], i.e., if the particle is at rest relative to

S. It is also important to realize that the proper time ∆τ depends in general on the trajectory
followed by the particle, and not just on the initial and final events

(
ti,x(ti)

)
, i = 1,2, thereof

(cf. Fig. 6.5).

203



Introduction to relativistic mechanics

x1

x0

ct2
Q

ct1
P

Figure 6.5. World lines connecting two events P and Q.

Exercise. Let P and Q be two events separated by a time-like interval. Prove that the world line
with endpoints P and Q along which the elapsed proper time is maximum is a straight line
(corresponding to rectilinear motion with constant speed). What happens if the two points are
separated instead by a space-like or light-like interval?

Solution. Suppose, first of all, that the events P and Q are separated by a time-like interval,
and let C denote the straight world line from P to Q. Since ∆τ is Lorentz invariant, we can
compute the proper time ∆τ(C) along the world line C in any inertial frame. In particular,
choosing the frame S in which P and Q take place at the same point in space (i.e., the proper
frame for the latter events) we have

∆τ(C) = t2 − t1 á
∫ t2
t1

√
1−

.
x2(t)
c2 dt ,

where the last expression is the proper time elapsed along an arbitrary path x = x(t). This
shows that the proper time ∆τ is maximum along C , as claimed. On the other hand, if P and
Q are joined by a space- or light-like interval, no curve joining P and Q can be the world line
of a material particle (i.e., no material particle can travel from P to Q). Indeed, along the world
line of a material particle we must have

|∆x| =
∣∣∣∣∣
∫ t2
t1

.
x(t) dt

∣∣∣∣∣ à
∫ t2
t1
| .x(t)|dt < c∆t =⇒ ∆s2 > 0 .

(Note also that if the interval separating P and Q is space-like then both events are simulta-
neous in an appropriate inertial frame, which also implies that no material or even massless
particle can travel from P to Q.)

Note. If P and Q are separated by a light-like interval, and we only assume that v à c along
the path from P to Q, it can be shown that the only possible world line joining both events is
that of a light ray. Indeed, from the above argument it follows that in this case | .x(t)| = c for
all t (exercise). If l(C) denotes the (spatial) length of the trajectory C we then have

∆t = l(C)
c

= |∆x|
c

=⇒ l(C) = |∆x| ,
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so that the path is indeed a straight line traced out with constant speed c.

6.3.2 Lorentz–Fitzgerald contraction

Let, again, S and S′ be two reference frames with parallel axes moving with relative speed ve1.
Consider a ruler at rest in S′, which we can assume to be determined by two marks at the points
x′1 and x′1 + l0 on the x′1 axis (with l0 > 0). The distance l0, i.e., the ruler’s length in its proper

frame S′, is known as the ruler’s rest length. To determine the ruler’s length l in the frame S, it
is necessary to measure the coordinates x1 and x1 + l of its endpoints at the same time t. Using
Eqs. (6.7)-(6.8) of the Lorentz transformation relating S to S′ we obtain

∆x′1 = l0 = γ(v)(∆x1 − v∆t) = γ(v)∆x1 = γ(v)l =⇒ l = l0
γ(v)

= l0
√

1− v
2

c2 < l0 .

Thus in the frame S the ruler appears to be contracted by a factor 1/γ(v) =
(
1− v2

c2

)1/2
, a

phenomenon known as the Lorentz–Fitzgerald contraction.

• Note that this contraction only occurs in the direction of the velocity of the inertial frame S′

(relative to which the ruler is at rest) with respect to S, since in the transversal directions xk = x′k
(k = 2,3).

• Again, it should be stressed that this phenomenon is symmetric with respect to both reference
frames. In other words, rulers at rest in S also appear to be contracted in S′ (along the x′1
direction) by the same factor 1/γ(v).

• The asymmetry is again between the inertial reference frame in which the ruler is at rest and
any other inertial frame. Indeed, in the ruler’s proper frame its length can be determined directly
(comparing it, for example, with a calibrated ruler), without the need of measuring simultaneously
the spatial coordinates of its two endpoints.

More precisely, in the ruler’s proper frame the world lines of its endpoints are the vertical lines

(t′,0,0,0) , (t′, l0,0,0) ,

where for simplicity’s sake we have taken x′1 = 0. In another inertial frame S these world lines
become the lines(

γ(v) t′, γ(v)vt′,0,0
)
,

(
γ(v)

(
t′ + vl0

c2

)
, γ(v)(l0 + vt′),0,0

)
.

According to S, when the observer in the ruler’s proper frame measures the distance between its
endpoints he/she is doing it at two different instants t = γ(v)t′ and t +∆t, separated by a time
difference

∆t = γ(v)vl0
c2 .

In this time ∆t the right endpoint has moved, according to the observer in S, by

v∆t = v2

c2 γ(v)l0 .

Thus from the latter observer’s point of view at the time t = γ(v)t′ the endpoints of the ruler
are located at the points

x1 = γ(v)vt′ , x1 +∆x1 = γ(v)(l0 + vt′)− v
2

c2 γ(v)l0 ,
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and the ruler’s length measured in S is therefore

l = ∆x1 = γ(v)l0 − v
2

c2 γ(v)l0 = γ(v)l0
(

1− v
2

c2

)
= l0
γ(v)

.

We see, in particular, that the Lorentz–Fitzgerald contraction is closely related to the relativity of
simultaneity.

6.4 Four-velocity and four-momentum. Relativistic kinetic energy

In Newtonian mechanics, the velocity and momentum of a particle of mass m are related by

p =mv , (6.31)

and the particle’s equation of motion is Newton’s second law

dp

dt
= F . (6.32)

The previous relations are incompatible with the postulates of special relativity. For instance, if
m and F are constant the previous equation implies that

v(t) = v(0)+ F

m
t ,

so the particle’s speed will become greater than c for |t| large enough. It is clear, therefore,
that Eqs. (6.31)-(6.32) cannot be valid (at least for speeds comparable to c), and thus the ques-
tion arises of what are the correct equations that should replace them. A fundamental guiding
principle in this endeavor is the principle of relativity, according to which the correct equations
should have the same form in all inertial reference frames. In other words, they must be Lorentz
covariant, i.e., they should maintain their form when we apply to them any Lorentz (or more
generally, Poincaré) transformation. In general, the easiest way of obtaining Lorentz covariant
equations is writing down a relation between two scalars (such as the Minkowski product x · y ,
the interval x2 = x · x, etc.), vectors (such as space-time coordinates x) or, in general, tensors,
under Lorentz transformations. The problem here is that v, p and F are vectors in R3, covariant
only under rotations. An even more serious issue is that, while in Newtonian mechanics the time
t is a scalar (essentially invariant under Galilean transformations), according to the theory of
special relativity t actually depends on the reference frame.

The simplest generalization of the Newtonian definition of velocity

v = dx

dt
, x = (x1, x2, x3) ,

which is manifestly covariant under Lorentz transformations is the four-velocity

u = dx
dτ

. (6.33)

In the latter equation τ is the particle’s proper time, which as we know is related to the coordinate
time t in any inertial reference frame by

dτ =
√

1− v2

c2 dt = dt
γ(v)

. (6.34)

To show that u transforms as a vector under a general Lorentz transformation x′ = Λx, it
suffices to note that

dx′ = Λdx ,
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whereas dτ is a Lorentz scalar (dτ = dτ′), and therefore

u′ = dx′

dτ′
= dx′

dτ
= Λ dx

dτ
,

i.e.,

u′ = Λu .

This shows that u ∈ R4 is indeed a vector under Lorentz transformations, since it transforms in
the same way as the coordinates x of a space-time event. In fact, u is actually a vector under
Poincaré transformations x′ = Λx+a, since differentiating the latter equation it still follows that
dx′ = Λdx. Let us write

u =: (u0,u) , with u = (u1, u2, u3) ∈ R3 .

The spatial coordinates of the four-velocity in an arbitrary inertial frame are then given by

u = dx

dτ
= dx

dt
dt
dτ

= γ(v)v . (6.35)

In particular, if the particle’s velocity is much smaller than c then γ(v) ≃ 1 and u ≃ v. As to the
time-like coordinate u0,

u0 = dx0

dτ
= c dt

dτ
= cγ(v) , (6.36)

and hence

u = γ(v)(c,v) . (6.37)

From the previous equation it immediately follows the important relation

u2 = c2 . (6.38)

This identity can also be deduced directly from the definition of u, since

dx2 = c2 dt2 − dx2 = c2 dτ2 .

Note. The vector u is not the particle’s velocity in any inertial frame. For instance, since

u2 = γ2(v)v2 = v2

1− v2

c2

,

|u| > c if v > c/
√

2, and in fact |u| → ∞ for v → c. ■

In view of the definition of the four-velocity, it is natural to define the four-momentum p by

p =mu, (6.39)

where m > 0 is the particle’s mass. By Eqs. (6.37)-(6.38), the components of the four-momentum
are

p =mγ(v)(c,v) , (6.40)

and its square is given by

p2 =m2c2 . (6.41)

In particular,
pi =mγ(v)vi , i = 1,2,3 , (6.42)

so that for small velocities compared to c we have

pi ≃mvi (v ≪ c) .

207



Introduction to relativistic mechanics

From now on, we shall denote by p the vector

p = (p1, p2, p3) =mγ(v)v , (6.43)

which coincides with the non-relativistic momentum mv only in the limit v → 0. We shall refer
to p as the relativistic three-momentum.

On the other hand, the time-like component p0 of p is given by

p0 =mcγ(v) á mc > 0 .

Using the identity (6.41), written as

p2
0 = p2 +m2c2 , (6.44)

and taking into account that p0 > 0, we obtain

p0 =
√

p2 +m2c2 . (6.45)

Since u and p are proportional we have

u

u0
= v

c
= p

p0
=⇒ v = cp

p0
, (6.46)

and hence, by Eq. (6.45),

v = cp√
p2 +m2c2

= p/m√
1+ p2

m2c2

. (6.47)

Note that the previous equation implies that the velocity of a material particle (with non-vanishing
mass) must be less than c, in accordance with the principles of special relativity. We can also use
Eq. (6.45) to solve for γ(v) in terms of p:

γ(v) = p0

mc
= 1
mc

√
p2 +m2c2 . (6.48)

If v ≪ c, expanding cp0 in powers of v/c and keeping only the first non-constant term we obtain

cp0 =mc2
(

1− v
2

c2

)−1/2
=mc2

(
1+ v2

2c2 +O(v4/c4)
)
=mc2 + 1

2
mv2 +O(v4/c2) , (6.49)

which, apart form the constant mc2, coincides to first order in v2/c2 with the non-relativistic
kinetic energy. The previous equation suggests defining the relativistic kinetic energy T by

T = cp0 −mc2 =mc2(γ(v)− 1
)
, (6.50)

and hence

p0 = 1
c
(mc2 + T) . (6.51)
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6.5 Four-momentum conservation. Relativistic energy

Newton’s first law establishes the conservation of the (non-relativistic) momentum p =mv of a
particle subject to no external forces. The most natural Lorentz covariant generalization of this
principle is the conservation of four-momentum for a relativistic particle moving in the absence
of external forces, namely

p = const. ,

or equivalently
cp0 =mc2 + T = const. , pi =mγ(v)vi = const. .

These equations reduce to the conservation of non-relativistic kinetic energy and momentum in
the limit v ≪ c. As in the Newtonian case, by Eq. (6.46) both conservation laws are equivalent to
the constancy of the components vi of the ordinary velocity (in any inertial frame).

Consider next the collision of N particles of mass mn (n = 1, . . . ,N) on which no external
forces act. The total four-momentum P is then defined by

P =
N∑
n=1

pn =: (P0,P) , (6.52)

where pn is the four-momentum of the n-th particle. Hence

P0 =
N∑
n=1

pn,0 = c
N∑
n=1

mnγ(vn) , P =
N∑
n=1

pn =
N∑
n=1

mnγ(vn)vn . (6.53)

According to Newtonian mechanics, even if the collision is not elastic the system’s total linear
momentum should be conserved. Moreover, this non-relativistic momentum tends to P in the
limit in which the speeds vn of all the particles are small compared to c. This fact makes it
plausible to postulate the conservation of P also in relativistic mechanics, i.e.,

Pi = Pf , (6.54)

where Pi and Pf denote the total four-momentum respectively before and after the collision.
This equation is not Lorentz covariant, since only involves the spatial components of a four-
vector. However, if Eq. (6.54) holds in all inertial frames then the full four-momentum P is also
necessarily conserved, i.e., we must have

Pi = Pf . (6.55)

Indeed, suppose that Pi = Pf holds in some inertial frame S, and consider a second inertial frame
S′ moving with velocity we1 relative to S. Since by hypothesis P′i = P′f should also hold in S′, it
follows that

P ′i,1 = γ(w)
(
Pi,1 − wc Pi,0

)
= P ′f ,1 = γ(w)

(
Pf ,1 − wc Pf ,0

)
.

From Pi,1 = Pf ,1 and the latter equation it follows that Pi,0 = Pi,0, and hence Pi = Pf . Actually,
the relativistic law of four-momentum conservation (6.55) has been (and is being) experimen-
tally verified in multiple situations for speeds arbitrarily close to c, especially in the analysis of
collisions taking place in particle accelerators.

The conservation of the time-like component of the four-momentum can be expressed as∑
n
(mnc2 + Tn)i =

∑
n
(mnc2 + Tn)f ,
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or equivalently (
Mc2 + T)i = (Mc2 + T)f ,

where

M =
∑
n
mn , T =

∑
n
Tn

respectively denote the system’s total mass and total kinetic energy. It is important to note at
this point that in relativistic mechanics the number of particles before and after a collision need
not be the same, since, as we shall see below, particles can be created or destroyed under the
appropriate conditions. For this reason, from now on it shall be understood that the sums over n
appearing in expressions like the previous ones are tacitly extended to all particles in the system
before or after the collision, without explicitly specifying their number Ni (before the collision)
or Nf (after the collision).

In Newtonian mechanics the total mass M is conserved10, and therefore the conservation of P0

is equivalent to that of the system’s kinetic energy

Ti = Tf .

According to what we have just seen, however, in relativistic mechanics only cP0 = Mc2+T need
be conserved, not M and T separately. In particular:

There may be processes in which the system’s total mass decreases (resp. increases), provided
that this decrease (resp. increase) is compensated by a corresponding increase (resp. decrease)
of the kinetic energy.

More precisely, denoting by ∆M = Mf − Mi and ∆T = Tf − Ti, the conservation of P0 can be
expressed as

∆T = −∆(Mc2) . (6.56)

In other words:

Kinetic energy can be transformed into mass, and vice versa, the conversion factor energy/mass
being equal to the square of the velocity of EM waves in vacuo.

This is one of the most important predictions of the theory of special relativity, which so far has
been experimentally corroborated without exception.

By the previous discussion, we are practically forced to interpret the quantity

cP0 =
∑
n
cpn,0 =

∑
n
(mnc2 + Tn) = Mc2 + T

as the system’s total relativistic energy E (in the absence of external forces). We thus have

cP0 = Mc2 + T = E , (6.57)

and the system’s total momentum can be expressed as

P = (E/c,P)

10The conservation of the total mass in classical mechanics is a consequence of the conservation of total mo-
mentum and Galilean invariance. Indeed, applying a Galilean boost with velocity w to the equality Pi = Pf we
obtain:

P′i =
∑
n
mnv′n,i =

∑
n
mn(vn,i −w) = Pi −Miw = P′f = Pf −Mfw =⇒ Mi = Mf .
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For a single particle
p = (p0,p) = (E/c,mγ(v)v) ,

and from Eq. (6.48) it follows that relativistic energy can be expressed in terms of the particle’s
velocity by the formula

E = cp0 =mc2γ(v) . (6.58)

Note that the total relativistic energy E is necessarily positive. In particular, when v = 0 the
particle possesses a rest energy

E0 =mc2 .

Note also that from Eq. (6.44) and (6.57) it follows the important relation

E = c
√

p2 +m2c2 (6.59)

between relativistic energy and momentum. Writing this relation as

E =mc2

√
1+ p2

m2c2

and expanding in powers of p2 we obtain

E =mc2 + p2

2m
+O(|p|4/(m3c2)

)
.

Note finally that from Eqs. (6.46) and (6.59) we obtain the following relations follow the particle’s
velocity, energy and momentum:

v = c2p

E
. (6.60)

Note. An alternative formulation of the previous results consists in defining a velocity dependent
mass

m(v) :=mγ(v) = m√
1− v2

c2

,

in terms of which the relativistic momentum and energy are simply given by

p =m(v)v , E =m(v)c2 .

Note, however, that the previous formula for the kinetic energy

T = (m(v)−m)c2 ,

does not reduce to the classical expression replacing m by m(v). At any rate, we shall not use
the concept of variable mass in these notes.

6.6 Massless particles

As we have just seen, the four-momentum p of a particle of mass m > 0 has components

p = (E/c,p) , with E = c
√

p2 +m2c2 .

These relations also make sense if the particle’s mass vanishes. Indeed, ifm = 0 the last equation
reduces to

E = c|p| , (6.61)
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and hence

p = (|p|,p) . (6.62)

Moreover, for a massive particle velocity and relativistic three-momentum are related by Eq. (6.60).
Taking the limit as m → 0 of this equation, and using Eq. (6.61), we immediately obtain

v = c p

|p| . (6.63)

Thus the speed of a massless particle is equal to c.
The only known massless particle11 is the photon, which is the quantum of energy of the

electromagnetic field (i.e., the particle carrying the EM field’s quanta of energy-momentum). Ac-
cording to quantum mechanics, the relation between the energy of a photon and the frequency
ω of its associated electromagnetic wave is given by Planck’s equation

E = ℏω = hν = hc
λ
, (6.64)

where λ is the wavelength and

h = 2πℏ = 6.62606957 · 10−34 J s

is Planck’s constant. From the relations12

ω = c|k| , v = c k

|k| (6.65)

and Eqs. (6.61), (6.63), and (6.64), it follows that the wave vector k of the EM wave associated to
the photon is given by

k = ω
c

v

c
= ω
c

p

|p| =
ωp

E
= p

ℏ
=⇒ p = ℏk .

This suggests defining a wave four-vector k = (k0,k) by

k = p/ℏ ,

with time-like component

k0 = p0

ℏ
= E
ℏc

= ω
c
= 2π

λ
= |k| .

11The existence of a massless particle mediating strong interactions, called gluon, has been experimentally
confirmed, although gluons are not directly observable because they are confined inside hadrons. For theoretical
reasons, it is believed that a similar massless particle known as graviton should also exist for the gravitational
field.

12Recall that in a plane wave propagating with speed c the angular frequency ω, the period τ , the wave vector
k, the wavelength λ and the propagation velocity v are related by

ω = 2π
τ
, |k| = 2π

λ
, v = ck

|k| , c = λ
τ
= λω

2π
= ω
|k| .

All of these relations easily follow from the fact that in a plane wave the wave fronts are moving planes with
equation ωt − k · x = const.
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x1

x3
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α

Figure 6.6. Geometry of the relativistic Doppler effect.

It is important to note that k is a vector under Lorentz transformations, being proportional to the
four-momentum p of the wave’s photons. In other words, if S′ is another inertial system and
x′ = Λx we have

k′ = Λk . (6.66)

More generally, if two inertial frames S and S′ are related by a Poincaré transformation

x′ = Λx + a , (6.67)

where Λ is a general Lorentz transformation, we know that u′ = Λu. For m > 0 momentum and
velocity are proportional, and thus

p′ = Λp .

Since this relation is independent of the particle’s mass, taking the limit m → 0 we conclude that
it must also hold for massless particles. Finally, since k is proportional to p we conclude that
the transformation law of the wave four-vector k under the Poincaré transformation (6.67) is still
given by Eq. (6.66). In other words, the wave four-vector is a vector under Poincaré transforma-
tions.

6.6.1 Relativistic Doppler effect

The Lorentz covariance of the wave four-vector k makes it easy to deduce the equations of the
relativistic Doppler effect. Indeed, let S′ be an inertial frame traveling with speed ve1 relative
to the laboratory inertial frame S, with axes parallel to those of S and origin not necessarily
coinciding with that of S at t = 0. Suppose that an electromagnetic wave with frequency ω0

and wavelength λ0 = 2πc/ω0 is emitted from S′ (ω0 and λ0 are respectively called the wave’s
proper frequency and proper wavelength). Let us choose the axes so that the wave’s propagation
direction lies in the plane x2 = 0 and makes an angle π + α with the x1 axis according to the
observer at S (cf. Fig 6.6).

k = −|k|(cosα,0, sinα) .

(Note that we can assume without loss of generality that 0 à α à π/2, changing the orientation
of the x1 axis if necessary.) By the remark at the end of the previous section, we can find the
wave four-vector k′ in the frame S′ in which the wave was emitted by applying to the wave
four-vector k a Lorentz transformation L(v) with velocity ve1, namely

k′ = L(v)k .
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Since k′2 = k2 = 0, the spatial components of k′ are also of the form

k′ = −|k′|(cosα′,0, sinα′) .

On the other hand, the time-like component k′0 is given by

k′0 =
ω0

c
= γ

(
k0 − βk1

)
= γ

(
ω
c
+ β|k| cosα

)
= γω

c
(1+ β cosα) ,

and hence

ω = ω0

γ(1+ β cosα)
=⇒ λ = γ(1+ β cosα)λ0 . (6.68)

The relation between the angles α and α′ is also easily computed from the equations

k′1 = γ(k1 − βk0) = γ(k1 − β|k|) = −γ|k|(cosα+ β) , k′3 = k3 = −|k| sinα ,

whence

tanα′ = k′3
k′1
= sinα
γ(β+ cosα)

. (6.69)

A particularly important case is the so-called longitudinal Doppler effect, in which α′ = 0, i.e,
the electromagnetic wave propagates in the direction of the relative motion between the observer
S and the source S′. From the above formulas it follows that α = 0 and hence

λ = γ(1+ β)λ0 =
√

1+ β
1− β λ0 . (6.70)

Thus if the source S′ moves away from the observer S (i.e, if β > 0) then λ > λ0, so that the
observer perceives a shift towards the red in the wavelength of the electromagnetic wave emitted
by S′. On the contrary, if the source moves towards the observer then β < 0, and hence λ < λ0.
Thus in this case the the wavelength of the electromagnetic wave emitted by S′ appears shifted
towards the blue to the observer in S.

On the other hand, if α = π/2, i.e, when according to the observer in S the wavefront is
perpendicular to the direction of the emitter’s velocity, from Eqs. (6.68)-(6.69) we obtain

tanα′ = 1
γβ

, λ = γλ0 > λ0 .

Hence in this case the observer perceives a shift towards the red regardless of the sign of v . This
is the so-called transversal Doppler effect, which does not have a classical analogue.

6.6.2 Compton effect

We shall consider next the so-called Compton effect, which occurs when a photon is scattered
by an electron. In the inertial frame in which the electron is at rest (which usually coincides with
the laboratory frame) the initial momenta of the photon and the electron are respectively

pγ =
(
E
c
, |p|,0,0

)
= E
c
(1,1,0,0) , pe = (mc,0,0,0) ,

m being the electron’s mass. Let us choose the axes of the frame S so that the collision takes
place in the x3 = 0 plane, and denote by θ the angle between the three-momentum of the
scattered photon and the x1 axis. The photon’s momentum after the collision is then given by

p′γ =
E′

c
(1, cosθ, sinθ,0) .
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By the law of momentum conservation we must then have

pγ + pe = p′γ + p′e ,

or equivalently

pe + (pγ − p′γ) = p′e .

Squaring and taking into account that

p2
γ = p′2γ = 0 , p2

e = p′2e =m2c2

we arrive at the relation

pe(pγ − p′γ) = pγp′γ ,

in which we have eliminated the momentum p′e of the scattered electron. Substituting the previ-
ous expressions for pγ , p′γ , and pe we obtain

m(E − E′) = EE′

c2 (1− cosθ) =⇒ mc2
(

1
E′
− 1
E

)
= 1− cosθ ,

and taking into account Eq. (6.64) we finally arrive at the relation

λ′ − λ = h
mc

(1− cosθ) (6.71)

known as Compton’s equation. We thus see that the wavelength of the scattered photon is
always greater than or equal to that of the incoming one.

Exercise. Show that the angle −θe between the scattered electron and the x1 axis and its kinetic
energy Te are determined by the equations

cotθe =
(

1+ E
mc2

)
tan(θ/2) , Te = E

1+ mc2

2E csc2(θ/2)
.

6.7 Relativistic collisions

The conservation of the (four-)momentum of a system of particles on which no external forces
act is of fundamental importance in the study of collisions in the framework of the special theory
relativity. Indeed, as we saw in the previous sections, in the absence of external forces the
system’s total momentum P is conserved, so in particular the momentum Pi immediately before
a collision must coincide with the momentum Pf after it (cf. Eq. (6.55)). This conservation law is
equivalent to the conservation of relativistic energy

P0 =
∑
n
pn,0 =

∑
n
γ(vn)mnc (6.72)

along with the conservation of three-momentum

P =
∑
n

pn =
∑
n
γ(vn)mnvn . (6.73)
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6.7.1 Center of momentum frame

The relation (6.55) is valid in any inertial reference frame. In the analysis of the collisions of
a system of ultra-relativistic particles (moving at speeds comparable to c) there is, however,
a particularly useful inertial frame known as the center of momentum (CM) frame. This is a
frame, analogous to the center of mass system in Newtonian mechanics, in which the spatial
components of the system’s total momentum vanish, i.e., in which the equality

P = 0

holds. In order to establish the existence of such a frame, it suffices to show that the total
momentum P of a system of particles is a time-like four-vector, i.e., that P2 > 0 (cf. the discussion
on p. 196). In fact, this fact is a consequence of the following general result:

The sum P = ∑
n pn of any number of future time-like four-vectors pn (that is, p2

n > 0 and
pn,0 > 0 for all n) is also a future time-like four-vector.

Proof. Indeed, since pn is a future time-like vector we have

p2
n = p2

n,0 − p2
n > 0 =⇒ |pn,0| = pn,0 > |pn| .

Thus, if pm is another such vector then

pn · pm à |pn||pm| < pn,0pm,0
and therefore

pn · pm = pn,0pm,0 − pn · pm > 0 .

Hence

P2 =
(∑
n
pn
)2

=
∑
n,m

pn · pm =
∑
n
p2
n +

∑
n̸=m

pn · pm > 0 ,

and of course (since pn,0 > 0 for all n)

P0 =
∑
n
pn,0 > 0 . ■

• It is easy to see that the previous result extends to the case in which some of the four-vectors
(but not all) are light-like, i.e., it is valid as long as p2

n á 0 for all n and p2
k > 0 for some k (with,

as before, pn,0 > 0 for all n).

6.7.2 Threshold energy

Consider a process like
a+ b → a+ b + c ,

in which two particles a and b collide producing a third particle c as a result of the collision.
In the laboratory frame one of the particles (for instance, b) is the target (i.e., pb = 0), while
the other one (the projectile) has a three-momentum pa ̸= 0. What is the threshold energy of
particle a, that is, the minimum energy that this particle must have so that the creation of the c
particle is possible? Obviously, the conservation of relativistic energy requires that

Ea
c2 +mb =maγ(v′a)+mbγ(v′b)+mcγ(v′c) ,

where the primes indicate the speeds after the collision in the laboratory frame. Since γ(v′i) á 1,
from this relation it follows that

Ea á (ma +mc)c2 .
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However, in order to achieve equality in the previous inequality it is necessary that γ(v′a) =
γ(v′b) = γ(v′c) = 1, i.e., v′a = v′b = v′c = 0. This is, however, impossible, since by momentum
conservation p′a + p′b + p′c = pa ̸= 0, so the speeds of all three particles cannot vanish after the
collision. Hence the threshold energy for the process is strictly greater than (ma +mc)c2.

Let us next compute the threshold energy Emin in the more general case

a+ b → c1 + · · · + cN , (6.74)

in which the production of an arbitrary number of additional particles ci of mass mi > 0 is
allowed. To this end, we analyze the collision in the center of momentum (CM) frame, in which
the total momentum (before or after the collision) is given by

PCM = ECM

c
(1,0,0,0) .

Computing the CM energy ECM after the collision we obtain

ECM =
∑
i
miγ(vi)c2 á

∑
i
mic2 = Mc2 .

Note that in this case equality can be achieved if all the particles are at rest in the CM system
—i.e., if all of them move with the same speed v in the laboratory frame—, which is of course
possible since none of them has zero mass. Therefore the minimum value of the energy in the
CM frame is simply Mc2:

ECM á Mc2 .

In order to find the threshold energy of particle a in the laboratory frame it suffices to apply the
law of momentum conservation and the invariance of the Minkowski product, which yield the
relation

P2
CM =

E2
CM

c2 = P2
L = (pa + pb)2 = c2(m2

a +m2
b)+ 2pa · pb . (6.75)

Here PL is the initial momentum in the laboratory frame and pa, pb the momenta of particles a
and b before the collision in the laboratory frame:

pa =
(
Ea
c
,pa

)
, pb =mbc(1,0,0,0) .

Substituting into Eq. (6.75) and operating we obtain

E2
CM

c2 = c2(m2
a +m2

b)+ 2Eamb .

Thus the energy of particle a in the laboratory frame is given by

Ea = c2

2mb

(
E2

CM

c4 −m2
a −m2

b

)
.

In particular, replacing ECM by its minimum value Mc2 we obtain the formula

Emin = c2

2mb

(
M2 −m2

a −m2
b
)
. (6.76)

Note that the previous result is also valid if the a particle (the projectile) is massless.
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Exercise. A proton collides with another proton at rest in the laboratory frame, producing a
proton-antiproton pair as a result of the collision (p+p → p+p+p+p). What is the minimum
kinetic energy of the incident proton for this process to be possible?

Solution. Since the mass of a particle is the same as that of its antiparticle, we can apply the
latter equation with

ma =mb =: m, M = 4m,

where m ≃ 938.272046 MeV/c2 is the proton’s mass. We thus obtain

Emin = c2

2m
(16m2 − 2m2) = 7mc2 .

Hence the minimum kinetic energy of the incident proton is

Tmin = Emin −mc2 = 6mc2 ≃ 5.63 GeV .

Exercise. Show that an isolated photon cannot decay into an electron-positron pair (γ ̸→ e−+e+).
Prove that, however, the process γ +N → N + e− + e+ (where N is a heavy nucleus) is possible,
and that the photon’s threshold energy is in this case approximately equal to 2mec2.

Solution. Let us check, to begin with, that the process γ → e− + e+ is impossible regardless
of the photon’s energy. Indeed, in the center of momentum frame of the e−- e+ pair the final
three-momentum P vanishes, and hence the photon’s three-momentum should also vanish in
this frame. But this is impossible, since for a massless particle p = 0 implies that E = c|p| = 0,
i.e., the particle would have zero energy or momentum. (According to the special theory of
relativity the energy of any particle must be strictly positive, even when for zero mass.) Let us
next consider the process

γ +N → N + e− + e+

mediated by a heavy nucleus N . Using Eq. (6.76) with

ma = 0 , mb =mN , M = 2me +mN

we obtain

Emin = c2

2mN

[
(2me +mN)2 −m2

N
] = 2mec2

(
1+ me

mN

)
Ý 2mec2 ,

since me ≪mN .

6.8 Relativistic dynamics

6.8.1 Four-force and relativistic force

In Newtonian mechanics, the motion of a material particle is governed by Newton’s law

dp

dt
= F , (6.77)

which holds in any inertial frame. From the point of view of the special theory of relativity, the
most natural generalization of the previous equation is

dp
dτ

= f , (6.78)
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where
f := (f0, f ) ∈ R4 (6.79)

is a four-vector known as four-force, depending in general on the particle’s space-time coordi-
nates and velocity. Indeed, this equation is Lorentz covariant, since p is a vector under Lorentz
transformations and the proper time τ is a scalar. In addition, we shall next see that Eq. (6.78)
essentially reduces to Newton’s second law for small speeds compared to c.

By analogy with Newtonian mechanics, we shall define the relativistic force F so that Newton’s
second law (6.77) holds if we interpret p as the relativistic three-momentum. Since

dp

dt
= dp

dτ
dτ
dt

= 1
γ(v)

dp

dτ
= f

γ(v)
,

where v is the particle’s velocity, the four-force and the relativistic force are related by

F = f

γ(v)
. (6.80)

Note that Eq. (6.77) can be written as

d
dt
(
γ(v)mv

) = d
dt

 mv√
1− v2

c2

 = F . (6.81)

Obviously, for a given force F (for instance, for constant F) the previous equation tends to its
classical analogue for particle speeds much smaller than c.

Remark. The fact that the relativistic force F is related to the space components f of a four-
vector f by Eq. (6.80) ensures that if Eq. (6.77) is valid in an inertial frame it is valid in all of
them. Of course, Eq. (6.80) imposes very stringent conditions on relativistic forces; in particular,
note that although F is a vector under rotations it does not transform as the spatial components
of a four-vector under Lorentz transformations. ■

Let us next show that the time-like component of the four-force is determined by the spatial
ones. To this end, it suffices to differentiate with respect to τ the identity

p2 = p · p =m2c2 ,

which yields

p · f = 0 . (6.82)

In other words, the four-force and the four-momentum are orthogonal (with respect to the
Minkowski product) at all times. From the definition of Minkowski product we thus obtain the
relation

f0 = f · p

p0
= f · v

c
= γ(v)

c
F · v , (6.83)

where we have taken into account Eq. (6.46). Hence the four-force f can be expressed in terms
of the relativistic force F by the equation

f = γ(v)
(

F · v

c
, F
)
. (6.84)

In Newtonian mechanics

F · v = dT
dt
, (6.85)
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where

T = 1
2
mv2

is the particle’s kinetic energy. The relativistic analogue of this equation is obtained from the
time-like component of the equation of motion (6.78), namely

dp0

dτ
= f0 .

Indeed, by Eq. (6.83) we have

dp0

dτ
= dp0

dt
dt
dτ

= γ(v) dp0

dt
= f0 = γ(v)

c
F · v ,

which yields the identity

d
dt
(cp0) = d

dt
(mc2 + T) = dT

dt
= F · v . (6.86)

Thus Eq. (6.85) is still valid, if we interpret T as the relativistic kinetic energy and F as the
relativistic force.

Suppose now that, in a certain inertial frame S, the relativistic force F can be obtained from a
time-independent scalar potential V(x) through the usual equation

F = −∂V(x)
∂x

. (6.87)

This is the case, for instance, for a constant time-independent force, with V = −F ·x linear in the
particle’s spatial coordinates. If Eq. (6.87) holds we have

F · v = F · dx

dt
= −∂V

∂x
· dx

dt
= −dV

dt
,

and Eq. (6.86) can be written as
d

dt
(
cp0 + V(x)

) = 0 . (6.88)

Thus in this case the total relativistic energy

E = cp0 + V(x) =mc2 + T + V(x) =mc2γ(v)+ V(x) (6.89)

is conserved.

Exercise. Find the general solution of the equation of motion of a relativistic particle moving
in one dimension under a potential V(x) (in a certain inertial frame).

Solution. By conservation of energy we must have

mc2γ(
.
x)+ V(x) = E ,

where the constant E is the relativistic energy. Since γ(
.
x) á 1, the motion is only possible

in the region V(x) à E −mc2, where E −mc2 is the analogue of the non-relativistic energy
(indeed, for small velocities | .

x| we have E −mc2 = 1
2m

.
x2 +V(x)+O(| .

x|4/c2)). Squaring and
solving for

.
x we obtain

1−
.
x2

c2 =
m2c4(

E − V(x))2 =⇒ .
x = ±c

√√√√1− m2c4(
E − V(x))2

and hence

t = ±1
c

∫
dx√

1− m2c4(
E−V(x)

)2

.
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Note that the expression under the radical is non-negative, on account of the inequality V(x) à
E −mc2.

6.8.2 Lorentz force

The most important example of a relativistic force is the Lorentz force

F = q(E+ v× B) (6.90)

where v denotes the particle’s velocity. Indeed, it is an experimental fact that the equation of
motion of a particle of charge q in an electric field E and a magnetic one B is exactly (even at
speeds arbitrarily close to c) Eq. (6.77) with the Lorentz force (6.90). We shall check in this section
that if the fields E and B transform appropriately under Lorentz transformations the equation of
motion (6.77)-(6.90) is indeed valid in any inertial frame.

Notation. As is customary in most textbooks on relativistic mechanics, in this section we shall
denote by aµ the components in a given inertial frame S of a four-vector under Lorentz trans-
formations a := (a0,a); in particular, a = (a1, a2, a3). The components a′µ of the same vector
in another inertial frame S′, related to S by a Poincaré transformation x′ = Λx + x′0, can be
obtained from the formula

a′µ =
∑
ν
Λµνaν (6.91)

in terms of the matrix elements (Λµν)0àµ,νà3 of the Lorentz transformation Λ. This relation
can be expressed in matrix form as

a′ = Λa,
where a = (a0 a1 a2 a3)T is a column vector (and similarly a′). Consider next a linear map
B : R4 → R, which in the inertial frame S is defined by an equation of the form

B(x) =
∑
µ
bµxµ

for certain coefficients bµ ∈ R. In a different inertial frame S′ this equation becomes

B(x) =
∑
µ
b′µx′µ .

To find the relation between the components (bµ) and (b′µ) of the linear form B in the frames
S and S′ it suffices to note that

B(x) =
∑
µ
b′µx′µ =

∑
µ,ν
b′µΛµνxν =

∑
ν
bνxν =⇒ bν =

∑
µ
Λµνb′µ .

Note that this relation can be written in matrix form as

b = b′Λ ,

where b = (b0 b1 b2 b3) is a row vector (and similarly b′). We can invert this relation using the
defining equation (6.24) of Lorentz transformations, which yields

b′ = bG−1ΛTG .
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Note that, although G−1 = G by Eq. (6.21), we have chosen to distinguish G−1 from G since in
general relativity G−1 need not be equal to G. Denoting by (gµν)0àµ,νà3 and (gµν)0àµ,νà3 the
matrix elements of G and G−1, respectively, we have

b′µ =
∑

ν,µ′,ν′
bνgνν

′
Λµ

′
ν′gµ′µ =:

∑
ν
Λµνbν , Λµν =

∑
µ′,ν′

gµµ′gνν
′
Λµ

′
ν′ , (6.92)

where we have made use of the identity gµµ′ = gµ′µ .
We thus see that the transformation law (6.91) of the components (aµ) of a four-vector

a is different from the analogous law (6.92) for the components (bµ) of a linear form B. To
emphasize this distinction linear forms are often called covectors, and four-vectors are referred
to as contravariant vectors. An important example of a covector is the (four-)gradient of a scalar
function φ(x), whose components φ,µ(x) are defined by

φ,µ(x) := ∂φ(x)
∂xµ

.

Indeed, it suffices to note that the functions φ,µ(x) are the components of the linear form (in
dx)

dφ(x) =
∑
µ

∂φ
∂xµ

dxµ .

Given a contravariant vector a := (aµ), it is straightforward to check that the quantities

aµ =
∑
ν
gµνaν

transform under Lorentz transformations as the components of a covector. Indeed, since∑
µ
aµxµ =

∑
µ,ν
gµνaνxµ = a · x ,

the numbers (aµ) are the components of the linear form x , a · x. It is thus customary to
refer to the numbers (aµ) as the covariant components of the vector a, and in the same vein
call (aµ) its contravariant components. Note that from the definition (6.21) of G it follows that

a0 = a0 , ai = −ai .

In general, an r -contravariant and s-covariant tensor T in Minkowski space can be defined as a
set of 4r+s quantities

(
Tµ1...µr
ν1...νs

)
—or, more precisely, an assignment of 4r+s numbers

(
Tµ1...µr
ν1...νs

)
to each inertial frame S— which transform under a Lorentz transformation Λ as

T ′µ
′
1...µ

′
r

ν′1...ν
′
s
=

∑
µ1,...,µr
ν1,...,νs

Λµ
′
1µ1 · · ·Λµ

′
r µrΛν′1

ν1 · · ·Λν′sνsT
µ1...µr
ν1...νs .

In other words, the contravariant indices µi transform as the components of a contravariant
vector (cf. Eq. (6.91)), while the covariant indices νj transform as the components of a covector
(cf. Eq. (6.92)). (More formally, T is a mapping from (V∗)r × V s to R, where V = R4 and V∗ is
the dual space of V , which is linear in each of its r + s arguments. Note, in this respect, that a
vector space V is canonically isomorphic to its bidual V∗∗ := (V∗)∗.)

The condition (6.82), or equivalently u · f = 0, is a strong constraint on the form of the
covariant four-force f . To begin with, it implies that a nonzero four-force f must necessarily
depend on the particle’s velocity, since even if f is independent of v in a certain inertial frame
S its time-like component f 0 = f · v is velocity-dependent. The simplest example of nontrivial

222



6.8 Relativistic dynamics

covariant four-force is a linear function of the four-velocity u, i.e.,

f µ =
∑
ν
Fµν(x)uν . (6.93)

From the condition u · f = 0 we then obtain∑
µ
f µuµ =

∑
µ,ν
Fµν(x)uνuµ =

∑
µ,ν,σ

gµσFµν(x)uνuσ = 0 ,

or equivalently ∑
µ,ν
Fµν(x)uµuν = 0 , with Fµν(x) :=

∑
σ
gνσFµσ (x) .

Note that from the equality

G−1G = 1 ⇐⇒
∑
µ
gρµgµσ = δρσ ,

where δρσ is Kronecker’s delta, it follows that

Fµν(x) =
∑
σ
gνσFµσ (x) = gννFµν(x) . (6.94)

Since the condition ∑
µ,ν
Fµν(x)uµuν = 1

2

∑
µàν

(
Fµν(x)+ Fνµ(x)

)
uµuν = 0

must hold for all values of uµ , it follows that

Fµν(x) = −Fνµ(x) .

Thus the matrix
(
Fµν(x)

)
0àµ,νà3 is antisymmetric, and has therefore 6 independent components.

The relativistic force f associated with the linear four-force (6.93) has components

F i = f i

γ(v)
=
∑
ν
F iν

uν

γ(v)
= cF i0(x)+

∑
j
F ij(x)vj = cF i0(x)−

∑
j
F ij(x)vj .

This expression is reminiscent of the Lorentz force acting on a charged particle, since it consists
of a term independent of the velocity (proportional to the electric field strength) and another one
linear in the velocity (associated with the magnetic field). In fact, let us define

Ei(x) := cF i0(x) = −cF0i(x) . (6.95)

Moreover, since F ij(x) is antisymmetric we can write

F ij(x) = −
∑
k
εijkBk(x) , (6.96)

where εijk is Levi-Civita’s completely antisymmetric symbol; indeed, Bk = −1
2

∑
i,j εijkF ij(x). We

then have
F i = Ei(x)+

∑
j,k
εijkvjBk(x) ⇐⇒ F = E(x)+ v× B(x) .

This is the correct form of the electromagnetic force for a unit charge. For an arbitrary charge q
the electromagnetic four-force is therefore

f µ = q
∑
µ
Fµν(x)uν = q

∑
µ
Fµν(x)uν , (6.97)
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where the elements of the 4×4 matrix Fµν(x) are related to the electric and magnetic fields E(x)
and B(x) by Eqs. (6.95)-(6.96). The corresponding relativistic force is the familiar Lorentz force

F = q
(
E(x)+ v× B(x)

)
. (6.98)

It follows that the relativistic equation of motion of a charge q in an electromagnetic field
(E(x),B(x)) is simply

dp

dt
= q

(
E(x)+ v× B(x)

)
,

where p = mγ(v)v is the relativistic three-momentum. Note that this equation is exact (i.e., it
holds for particle speeds arbitrarily close to c) and is valid in every inertial frame.

From Eq. (6.97), and the fact that f and u are contravariant vectors, it follows that the quan-
tities (Fµν) are the components of a twice contravariant antisymmetric tensor under Lorentz
transformations, which in turn implies that (Fµν) is a once covariant and once contravariant
tensor (cf. next exercise). By Eqs. (6.95)-(6.96), the components of the tensor (Fµν), which is
known as the electromagnetic field tensor, are related to the fields E and B by

(Fµν) =


0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0

 . (6.99)

Exercise. Show that the quantities (Fµν) transform under a Lorentz transformation x′ = Λx
between two inertial frames S and S′ as the components of a twice contravariant tensor.

Solution. Indeed, note that, since

u · f
q

=
∑
µ,ν
Fµνuµuν =

∑
µ,ν
Fµνuµuν

is a Lorentz scalar, we must have∑
µ′,ν′

F ′µ
′ν′u′µ′u

′
ν′ =

∑
µ,ν
Fµνuµuν =

∑
µ,ν,µ′,ν′

FµνΛµ
′
µΛν

′
νu′µ′u

′
ν′ , ∀u ∈ R4 ,

and hence
F ′µ

′ν′ =
∑
µ,ν
Λµ

′
µΛν

′
νFµν , (6.100)

as claimed. Note, finally, that from the latter equation it easily follows that (Fµν) is a once
covariant and once contravariant tensor. Indeed,

F ′µ
′
ν′ =

∑
ρ′
gν′ρ′Fµ

′ρ′ =
∑
ρ′,µ,ν

gν′ρ′Λµ
′
µΛρ

′
νFµν =

∑
ρ′,µ,ν,σ

gν′ρ′Λµ
′
µΛρ

′
νgνσFµσ

=
∑
µ,σ
Λµ

′
µΛν′σFµσ ,

where in the last step we have made use of Eq. (6.92). Likewise, (Fµν) transforms as a rank
2 (antisymmetric) covariant tensor, which is defined by some authors as the electromagnetic
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field tensor instead of (Fµν). Since

Fµν =
∑
ρ,σ
gµρgνσFρσ = gµµgννFµν ,

by Eq. (6.99), the components of (Fµν) are given by

(Fµν) =


0 E1/c E2/c E3/c

−E1/c 0 −B3 B2

−E2/c B3 0 −B1

−E3/c −B2 B1 0



Exercise. Find the transformation law of the fields E and B under a Lorentz boost in the x1

direction with velocity v .

Solution. In this case the only nonzero components elements of (Λµν)

Λ0
0 = Λ1

1 = γ(v) , Λ0
1 = Λ1

0 = −βγ(v) , Λ2
2 = Λ3

3 = 1 ,

so that after an elementary calculation we obtain

E′1 = E1, E′2 = γ(E2 − vB3), E′3 = γ(E3 + vB2), (6.101)

B′1 = B1, B′2 = γ
(
B2 + v

c2 E
3
)
, B′3 = γ

(
B3 − v

c2 E
2
)
. (6.102)

Denoting respectively by E∥ and E⊥ the components of E parallel and perpendicular to the
velocity v, and similarly for B, the above equations can be written as

E′∥ = E∥ , E⊥ = γ(E⊥ + v× B⊥) ; B′∥ = B∥ , B′⊥ = γ
(

B⊥ − v

c2 × E⊥
)
.

Taking into account that

E∥ = E · v

v2 v , E⊥ = E− E∥

(and similarly for E′, B, B′), and using the identity

1− γ = 1− γ2

1+ γ = −β
2γ2

1+ γ ,

after a straightforward calculation we obtain

E′ = γ(E+ v× B)− γ2

1+ γ (E · β)β , B′ = γ
(

B− v

c2 × E
)
− γ2

1+ γ (B · β)β ,

where β := v/c. Note that, since these equations are written in vector form, they are in fact
valid regardless of the direction of the relative velocity v between the reference frames S and
S′.
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6.8.3 Hyperbolic motion

The simplest example of relativistic force is that of a constant force13

F =ma ,

with a ∈ R3 a constant vector with dimensions of acceleration. We shall next see that in this case,
just as in non-relativistic mechanics, the particle’s equation of motion can be exactly solved. We
shall suppose, for the sake of simplicity, that the particle is initially at rest at the origin of
coordinates, i.e.,

x(0) = p(0) = 0 .

Integrating the equation of motion
dp

dt
=ma

with the initial condition p(0) = 0 we have

p =ma t .

Substituting in Eq. (6.47) we obtain

v = dx

dt
= cp√

p2 +m2c2
= mca t√

m2c2 +m2a2t2
= a t√

1+ a2t2
c2

. (6.103)

Note that, regardless of the magnitude of the force F (i.e., of the constant acceleration a), from
the previous equation it follows that v < c for all t. Integrating the last equation with respect to
t and taking into account that x(0) = 0 we derive the law of motion:

x = a
∫ t

0

s ds√
1+ a2s2

c2

= c2a

a2

√1+ a
2t2

c2 − 1

 . (6.104)

Note that for a|t| ≪ c Eqs. (6.103) and (6.104) approximately reduce to their analogues in New-
tonian mechanics

v = at , x = 1
2

a t2 . (6.105)

On the contrary, for t → ±∞ the velocity v tends to ±ca/a and, therefore, the particle’s speed
tends to c (cf. Fig. 6.7), whereas x ∼ c|t|a/a.

If we choose the axes so that a = ae1, the law of motion (6.104) reduces to

x1 = c2

a

√1+ a
2t2

c2 − 1

 =⇒
(
x1 + c

2

a

)2

− x2
0 =

c4

a2 , x1 á 0 .

This is the equation of a (branch of an) equilateral hyperbola (cf. Fig. 6.8) centered at the point
(0,−c2/a), whose axis is the x1 axis and having as asymptotes the straight lines

x1 + c
2

a
= ±x0 .

Note that in Newtonian mechanics the particle’s world line is the parabola

x1 = a
2c2 x

2
0
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t

v1

Figure 6.7. Component in the e1 direction of the velocity of a relativistic particle of mass m sub-
ject to a constant forcemae1 as a function of time (blue curve) and its two asymptotes
v1 = ±c (dashed red lines).

x1

x0

Figure 6.8. World line of a relativistic particle of massm subject to a constant forcema in the x1

direction (blue line), along with its analogue in Newtonian mechanics (red line). The
dashed green lines represent the asymptotes x1 = − c2

a ± x0 of the particle’s world
line.

(cf. Eq. (6.105)).
From Eq. (6.103) it immediately follows that

dτ
dt

= 1
γ
=
(

1+ a
2t2

c2

)−1/2

=⇒ τ =
∫ t

0

ds√
1+ a2s2

c2

,

where for simplicity’s sake we have taken τ(0) = 0. Performing the change of variable as/c =
sinhz in the integral we easily obtain

τ = c
a

arcsinh(at/c) = c
a

log

at
c
+
√

1+ a
2t2

c2

 . (6.106)

13The statement that the force acting on a particle is constant is not Lorentz invariant, but depends on the
inertial frame considered. In other words, even if F is constant in a given inertial frame S it need not be constant
in another frame S′ in motion relative to S. It can be shown, however, that if F is constant in an inertial frame S it
will remain constant in any other frame S′ whose velocity with respect to S has the same direction as F, and in this
case F′ = F (see the exercise at the end of this section).
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Thus the coordinate time t is related to the proper time τ by

t = c
a

sinh(aτ/c) . (6.107)

Note, in particular, that for τ ≫ c/a we have

t ≃ c
2a

eaτ/c (τ ≫ c/a) ,

i.e., coordinate time increases exponentially with proper time.
It is also of interest to compute β(v) and γ(v) as functions of the proper time τ . First of all

(taking, as before, a = ae1), the parameter β(v) is easily obtained from Eqs. (6.103) and (6.107):

β(v) = v1

c
= sinh(aτ/c)√

1+ sinh2(aτ/c)
= tanh(aτ/c) . (6.108)

As for γ(v), it can be derived from the previous expression or more directly taking into account
that it is just the derivative of the coordinate time t with respect to the proper time τ :

γ(v) = dt
dτ

= cosh(aτ/c) . (6.109)

By Eq. (6.50), the particle’s kinetic energy is given by

T =mc2(γ(v)− 1
) =mc2( cosh(aτ/c)− 1

) = 2mc2 sinh2(aτ/(2c)) . (6.110)

This is the energy that must be supplied to the particle to maintain its constant acceleration a

between the proper times 0 and τ . By the law of conservation of relativistic energy (6.89), this
energy must be equal to the work F · x =ma · x done by the constant force F =ma during this
period of time. This fact is also easily verified using Eqs. (6.104) and (6.107):

ma · x =mc2

√1+ a
2t2

c2 − 1

 =mc2( cosh(aτ/c)− 1
)
. (6.111)

Again, for proper times τ ≫ c/a this energy increases exponentially τ :

T ≃ 1
2
mc2 eaτ/c (τ ≫ c/a) .

Exercise. Show that if a force F is constant in an inertial frame S it is also constant in any other
inertial frame S′ moving in the direction of F relative to S, and that moreover F′ = F.

Solution. Let us take the x1 axis of S in the direction of the force F and the axes of S′ parallel
to those of S, and denote by w = we1 the velocity of the origin O′ of S′ relative to S. In the
original frame S the four-force f has components

f1 = γ(v)F , f0 = γ(v)
c

F · v = γ(v)v1

c
F , f2 = f3 = 0 ,

and therefore

f = Fγ(v)
(
v1

c
,1,0,0

)
.

The components of the four-force in the frame S′ are obtained applying a Lorentz boost of
velocity w in the direction of the x1 axis:

f ′0 = γ(w)
(
f0−wc f1

)
= Fγ(v)γ(w)v1 −w

c
, f ′1 = γ(w)

(
f1−wc f0

)
= Fγ(v)γ(w)

(
1−v1w

c2

)
and of course f2 = f3 = 0. Taking into account that the x1 component of the particle’s velocity
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in the frame S′ is given by the relativistic law of addition of velocities

v′1 =
v1 −w
1− v1w

c2

we obtain

f ′ = Fγ(v)γ(w)
(

1− v1w
c2

)(v′1
c
,1,0,0

)
.

From the identity

γ(v)γ(w)
(

1− v1w
c2

)
= γ(v′)

(exercise) it then follows that

f ′ = Fγ(v′)
(v′1
c
,1,0,0

)
,

and in particular

F′ = f ′1
γ(v′)

e1 = Fe1 = F .

Exercise. The proper acceleration of a particle is its instantaneous acceleration relative to its
proper inertial frame. i) Express the proper acceleration as a function of the particle’s acceler-
ation a = dv/dt measured in an arbitrary inertial frame. ii) If the particle’s velocity relative to
a certain inertial frame is always parallel to the vector e1, show that in that frame the proper
acceleration equals du/dt.

Solution. i) To compute the proper acceleration at a certain time t, let us first find how the
acceleration a = dv

dt measured in a certain inertial frame S transforms under a Lorentz boost
with velocity we1. To this end, it suffices to differentiate the law of relativistic addition of
velocities, with the result

a′1 =
dv′1
dt

/
dt′

dt
= Da1 + (v1 −w)a1w

c2

γ(w)D3 = a1

γ(w)3D3 , a′k =
Dak + vk a1w

c2

γ2(w)D3 (k = 2,3) ,

where we have set
D := 1− v1w

c2 .

The vector a′ = (a′1, a′2, a′3) is the particle’s acceleration measured in an inertial frame S′ (with
axes parallel to those of S) moving relative to S with velocity w = we1. If we assume that at
some instant t the particle is moving in the direction of the axis e1, that is if v = ve1 at that
time, taking v1 = v = w (and therefore D = γ(v)−2) and v2 = v3 = 0 in the previous equations
yields the particle’s acceleration in its proper frame S′ at that instant t:

a′1 = γ(v)3a1 , a′k = γ(v)2ak (k = 2,3) .

Obviously, in an arbitrary inertial frame (whose e1 axis need not coincide with the direction of
the particle’s velocity at time t) the previous formulas should be replaced by

a′∥ = γ(v)3a|| , a′⊥ = γ(v)2a⊥ ,

where a′∥ and a′⊥ respectively denote the components of a′ in the direction of the particle’s
velocity at time t and its perpendicular.

ii) If the particle moves at all times in the direction of the x1 axis with velocity v (not necessarily
constant) in a certain inertial frame S then x2 = x3 = 0 for all t, and therefore a2 = a3 = 0.
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From the previous formulas it then follows that

a′1 = γ(v)3a1 = γ(v)3 dv
dt
, a′2 = a′3 = 0 .

Hence

du1

dt
= d

dt
(
γ(v)v

) = (γ′(v)v + γ(v)) dv
dt

=
(
γ(v)+ γ(v)3v

2

c2

)
dv
dt

= γ(v)3 dv
dt

= a′1 ,

as was to be shown. In particular, from the equation of motion under a constant force F = Fe1

it follows that
F

m
= 1
m

dp

dt
= du

dt
= a′ .

Hence in the hyperbolic motion studied in this section the proper acceleration of the particle
is constant and directed along the x1 axis.
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acceleration, 7

centripetal, 15

in cylindrical coordinates, 12

in spherical coordinates, 11

accessible region, 35

action, 98

allowed region, 35

angular velocity, instantaneous, 146

aphelion, 69

apoapsis, 69

apoastron, 69

apocenter, 69

apogee, 69

apsis, 69

axes

body, 161

fixed, 143

moving, 143

terrestrial, 149

axis of rotation, instantaneous, 146

boost

Galilean, 21

Lorentz, 192, 199

calculus of variations, 87

center of mass, 50

center of momentum frame, 215

Compton effect, 213

cone

body, 180

space, 181

conservation

of angular momentum, 23

of energy, 23

constant of motion, 22

constraint, 104

ideal, 104

coordinate

systems, orthogonal, 8

curves, 8

cyclic, 113

ignorable, 113

system, positively oriented, 8

systems, curvilinear, 7

vectors, unit, 8

coordinates

cylindrical, 11

generalized, 104, 107

spherical, 8, 9

covariance, 99

curl, 2, 23

degrees of freedom, 107

derivative

total, 95

variational, 95

Dirac’s delta function, 27

divergence, 2

Doppler effect, 212

effective gravity, 151

energy

integral, 91, 94

kinetic, 23, 53

internal, 53

of a rigid body, 165

relativistic, 207

potential, 23

relativistic

total, 209

rest, 210

rotational, 166–168

threshold, 215

total, 23, 53

equation

Binet’s, 62

Compton’s, 214

Euler–Lagrange, 90

Laplace’s, 27

Poisson’s, 27

secular, 171

wave, 29

equations
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Euler’s, 177

Euler–Lagrange, 93, 109

Hamilton’s canonical, 131

Lagrange’s, 109

Maxwell, 28

equilibrium, 34

stable, 44

field

electric, 27

electromagnetic, 28, 102

magnetic, 28

scalar, 2

vector, 2

first integral, 22, 90

force

central, 23, 25

centrifugal, 149

conservative, 23, 53

constraint, 104

Coriolis, 149

electromagnetic, 28, 220

external, 50

fictitious, 21

inertial, 21

irrotational, 23, 24

Lorentz, 28, 220

reaction, 104

relativistic, 218

Foucault’s pendulum, 155

four-force, 218

four-momentum, 206

total, 208

four-vector, 198

wave, 211

four-velocity, 205

frame

center of mass, 58

fixed, 147

inertial, 18

moving, 147

proper, 204

frame, orthonormal, 8

functional, 87

gradient, 2

group

Galilean, 21

Lorentz, 199

Hamiltonian, 131

in spherical coordinates, 134

of a charged particle, 135

in spherical coordinates, 135

inertia

moment of, 167

principal axes of, 170, 171

principal moments of, 171

product of, 167

tensor, 166, 167

integral of motion, 22

interval, 194

light-like, 195

space-like, 195

time-like, 195

invariant direction, 181

Jacobi identity, 137

Lagrangian, 98, 105, 108

in spherical coordinates, 100

of a charged particle, 103

Laplacian, 2

law

of addition of velocities, 194

of areas, 60

of momentum conservation, 209

of universal gravitation, 26

laws

conservation, 22, 51, 113, 132

Newton’s, 16

line element, 8

Lorentz–Fitzgerald contraction, 204

Lorenz gauge, 29

mass, 16

gravitational, 26

inertial, 26

reduced, 57

Minkowski product, 197

momentum, 16

angular, 22, 51

internal, 51

of a rigid body, 165, 166

canonical, 113

linear

of a rigid body, 164

total, 51

natural mechanical system, 114

normal

coordinates, 122
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frequencies, 122
modes, 122

periapsis, 69
displacement of, 70

periastron, 69
pericenter, 69
perigee, 69
perihelion, 69
period, 37

of small oscillations, 44, 46
phase map, 43
photon, 211
Poisson bracket, 136
potential, 23

effective, 61
gravitational, 27
Kepler, 67
scalar, 29
vector, 29

principle
equivalence, 26
Fermat’s, 88
Galileo’s relativity, 187
Hamilton’s, 97, 98
of least action, 99
of stationary action, 99
of virtual work, 106, 107
relativity, 189

product
triple, 1
vector, 1

proper distance, 196

rest length, 204
rigid body, 161

simultaneity, relativity of, 197
space

configuration, 107
Minkowski, 198
phase, 136

theorem
Euler’s, 143
Jacobi–Poisson, 137
Noether’s, 115
Steiner’s, 168

time
derivative, partial, 4
derivative, total, 4
dilation, 200

proper, 196, 200, 202
torque, 22

of external forces, 52
transformation

canonical, 138
Galilean, 21
Legendre, 131
Lorentz, 198

general, 198
Poincaré, 198

turning point, 35

variation, 95
velocity, 7

angular, 16
generalized, 113
in cylindrical coordinates, 12
in spherical coordinates, 10

virtual displacement, 106

work, 24
world line, 202
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