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Chapter 1

Ordinary differential equations

1.1 Basic concepts and definitions

A differential equation can be regarded as a relation between an unknown function u of a variable
x 2 RN , a finite number of partial derivatives of u, and the variable x, which should identically hold at
every point of an open set D � RN .

Example 1.1. Poisson’s equation

@2u.x/
@x2

C @2u.x/
@y2

C @2u.x/
@´2

D �.x/ ; x � .x; y; ´/ ;

where � (representing the charge density in electrostatics) is a known function.

� In a differential equation both u and its partial derivatives should be evaluated at the same point.
For instance

@u.x; y/

@x
C u.x C 3; y/ D 0

is not a differential equation.

If the independent variable x in a differential equation has multiple components, i.e., if x D .x1; : : : ; xN /
with N > 1, we say that the equation is a partial differential equation (PDE). On the other hand, if
N D 1 we say that the equation is an ordinary differential equation (ODE). In this course we shall be
mainly concerned with ordinary differential equations, which we shall formally define next.

Definition 1.2. An n-th order ordinary differential equation is an equation of the form

F
�
x; y; y0; : : : ; y.n/

� D 0 ; (1.1)

where F is defined in an open set U � RnC2 and
@F

@y.n/
¤ 0 in U . A solution of (1.1) is a function

u W R! R which is n-times differentiable in an open interval D � R and

F
�
x; u.x/; u0.x/; : : : ; u.n/.x/

� D 0 ; 8x 2 D : (1.2)

� The condition
@F

@y.n/
¤ 0 in U is imposed so that the equation is truly of order n. If one can solve

Eq. (1.1) explicitly for the highest derivative, that is, if one can rewrite it as

y.n/ D f �x; y; y0; : : : ; y.n�1/� ; (1.3)

we shall say that the equation is in normal form.

1



2 ORDINARY DIFFERENTIAL EQUATIONS

� In this part of the course we shall always assume that the independent variable x is real. As we shall
see in Chapter 3, in the resolution of certain type of equations it is natural to consider complex-
valued solutions. These complex solutions are then combined to yield real-valued solutions, which
is usually our purpose.

Example 1.3. As one of the simplest (but important) examples of an ODE, consider the equation

y0 D �ky ; k > 0 ; (1.4)

which describes the disintegration of a radioactive material, where y represents the mass of the material
and x the time.
Resolution: note that y D 0 is a solution of (1.4), while if y ¤ 0 we have

y0.x/

y.x/
D �k H)

Z
y0.x/

y.x/
dx D �k

Z
dx H) log jyj D �kx C c H) jyj D ece�kx

H) y D ˙ece�kx ;

where c is an arbitrary constant. Thus every solution of the equation (1.4) is of the form

y D y0e�kx ; (1.5)

where y0 is an arbitrary constant (in particular, for y0 D 0 we recover the trivial solution y D 0). We
shall say that (1.5) provides the general solution of the equation (1.4).

� Note that the general solution (1.5) of the equation (1.4) depends on an arbitrary constant. The
general solution of an n-th order equation typically contains n arbitrary constants.

1.2 Elementary integration methods

In this section we shall restrict to the simplest case of first-order equations. We shall assume that the
equation can be written in normal form

y0 D f .x; y/ : (1.6)

We shall next discuss several particular cases of this equation which can be solved by suitable elementary
methods.

1.2.1 y 0 D f .x/
Assuming that the function f is continuous in an open interval D, the equation can be easily solved
integrating both sides from x0 to x, where x0; x 2 D:

y D
Z x

x0

f .t/ dt C c ; c D y.x0/ : (1.7)

We can alternatively express the general solution in terms of an indefinite integral as

y D
Z x

f .t/ dt C c ; or (with a slight abuse of notation) y D
Z
f .x/ dx C c :

From Eq. (1.7) it follows that the initial value problem

y0 D f .x/ ; y.x0/ D y0

possesses the unique solution y D
Z x

x0

f .t/ dt C y0.
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1.2.2 Separable equations

These are equations of the form

y0 D f .x/

g.y/
; (1.8)

where f (resp. g) is continuous on the open interval U (resp. V ), and g.y/ ¤ 0 for all y 2 V .

Resolution: If y.x/ is a solution of the equation (1.8), then

g
�
y.x/

�
y0.x/ D f .x/ H)

Z x

x0

g
�
y.s/

�
y0.s/ ds D

Z x

x0

f .s/ ds

H)
tDy.s/

Z y.x/

y.x0/

g.t/ dt D
Z x

x0

f .s/ ds

Thus any solution of (1.8) satisfies the implicit equationZ
g.y/ dy D

Z
f .x/ dx C c ; (1.9)

where c is an arbitrary constant. Conversely, taking the total derivative of (1.9) with respect to x (regard-
ing y as a function of x) we conclude that any function y.x/ satisfying the relation (1.9) is a solution of
the equation (1.8). Hence (1.9) is the general solution of (1.8).

The general solution (1.9) of the equation (1.8) is given by the implicit equation

�.x; y/ D c ; where �.x; y/ D
Z
g.y/ dy �

Z
f .x/ dx : (1.10)

The implicit relation �.x; y/ D c defines a one-parameter family of curves in the plane, with each curve
corresponding to a fixed value of c (even though a curve may possess several branches). These curves are
known as the integral curves of the equation (1.8). As we have just seen, a function y.x/ is a solution
of (1.8) if and only if its graph is contained in an integral curve of the equation.

The function � in Eq. (1.10) are of class C 1.U �V / (since @�
@x
D �f .x/ and @�

@y
D g.y/ are assumed

to be continuous in U and V , respectively), and @�
@y

does not vanish in U � V . Given a point .x0; y0/ in
U �V , the integral curve (1.10) passing through it corresponds to the value c D �.x0; y0/. According to
the implicit function theorem, there is a neighborhood of .x0; y0/ on which the relation (1.10) defines
a unique differentiable function y.x/ such that

i/ y.x0/ D y0 ;
ii/ �

�
x; y.x/

� D ��x0; y0/; 8x 2 domy :

In the latter neighborhood, the integral curve passing through .x0; y0/ is thus the graph of a solution
y.x/. This solution is locally (that is, in a certain neighborhood of .x0; y0/) the unique solution of the
differential equation (1.8) satisfying the initial condition y.x0/ D y0. In other words, the initial value
problem associated with the equation (1.8) possesses a unique local solution whenever the initial data
.x0; y0/ belong to U � V .

� The fact that the general solution of the separable equation (1.8) is expressed in terms of an implicit
relation (cf. eq. (1.10)) is not a characteristic feature of this type of equation. In fact, we shall see
throughout this section that the general solution of the first-order equation (1.6) is often expressed
via an implicit relation. In general, it will not be possible to explicitly solve this relation for y as a
function of x, although the implicit function theorem will usually guarantee the local existence of
such function.



4 ORDINARY DIFFERENTIAL EQUATIONS

Example 1.4. Let us consider the separable equation

y0 D �x
y
: (1.11)

In the previous notation, f .x/ D �x, g.y/ D y, U D R, and either V D RC or V D R�, but
not V D R since the function g.y/ vanishes at y D 0. Proceeding as before (or using directly the
formula (1.9)), the general solution of (1.11) is readily found to be

x2 C y2 D c ; c > 0 : (1.12)

Thus in this case the integral curves are circles of radius
p
c > 0 centered at the origin (see Fig. 1.1). In

particular, for each point of the plane excepting the origin passes a unique integral curve. Each integral
curve contains two solutions, given by the functions

y D ˙
p
c � x2 ; x 2 .�pc;pc/ ; (1.13)

where the signs ˙ corresponds to the choice V D R˙. The equation (1.11) is not defined for y D 0,
but the solutions (1.13) have a well-defined limit (equal to zero) as x ! ˙pc� (although they are not
differentiable at these points, since they have infinite slope). Note that through each point .x0; y0/ of the
plane with y0 ¤ 0 passes a unique solution. In contrast, the integral curve passing through a point of the
form .x0; 0/ with x0 ¤ 0 does not define y as a function of x in a neighborhood of such point. However,

this integral curve indeed defines the function x.y/ D sgn x0
q
x20 � y2, y 2 .�jx0j; jx0j/, which is a

solution of the equation
x0 D �y

x
: (1.14)

We shall say that (1.14) is the associated equation of (1.11).

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

y

x

Figure 1.1: Integral curves of the equation y0 D �x=y. Each integral curve contains two solutions
(plotted in red and blue), defined in Eq. (1.13).

� In general, the associated equation of the first-order ODE (1.6) is given by

dx
dy
D 1

f .x; y/
: (1.15)

Equation (1.6) and its associated equation (1.15) possess the same set of integral curves.
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Example 1.5. Consider now the equation

y0 D �1C y
2

1C x2 ; (1.16)

which is also a separable equation. In this case f .x/ D � 1
1Cx2 and g.y/ D 1

1Cy2 are both continuous
and g is nonvanishing, so that we can take U D V D R. The equation (1.16) can be readily integrated,
with the result

arctany D � arctan x C c ; (1.17)

where jcj <   for the equation (1.17) to have a solution in y for some value of x. If c ¤ ˙ 
2

and we
call C D tan c, from Eq. (1.17) it immediately follows that

y D tan.c � arctan x/ D C � x
1C Cx : (1.18)

Note that the constant C may take any real value. On the other hand, if c D ˙ 
2

we have

y D tan
�
˙  

2
� arctan x

�
D cot.arctan x/ D 1

x
; x ¤ 0 : (1.19)

Notice that this solution is formally obtained from (1.18) in the limit C !˙1.

-4 -2 2 4

-4

-2

2

4

x

y

Figure 1.2: Solutions of the equation y0 D �1Cy2

1Cx2 .

The initial value problem associated with equation (1.16) always yields a unique local solution.
Indeed, if we impose the initial condition y.x0/ D y0, from (1.18) it follows that the constant C is
uniquely given by

C D x0 C y0
1 � x0y0

;

which is well-defined unless y0 D 1=x0, whereas in this case the corresponding solution is y D 1=x.

� The only solution of equation (1.16) which is defined on the whole real line is y D �x, corre-
sponding to C D 0. The solution (1.19) and the remaining solutions in (1.18) diverge at a certain
finite value of x (more precisely at x D 0 and x D � 1

C
, respectively). However, the right-hand

side of the equation (1.16) is continuous (in fact, of class C1) on the whole plane. In general,
the study of the singularities of the function f .x; y/ does not provide per se information about the
potential singularities of the solutions of the differential equation (1.6).
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1.2.3 Homogeneous equations

These are equations of the form (1.6) with f continuous and homogeneous of degree zero in an open set
U � R2, that is,

f .�x; �y/ D f .x; y/ ; 8.x; y/ 2 U; 8� ¤ 0 : (1.20)

An homogeneous equation becomes separable via the change variable

y D xu ; x ¤ 0 ;

where u.x/ is the new unknown function. Indeed,

y0 D uC xu0 D f .x; xu/ D f .1; u/ H) u0 D f .1; u/ � u
x

: (1.21)

If � satisfies the condition f .1; �/ D �, the equation (1.21) has the constant solution u D �, which
corresponds to y D �x. Otherwise, the equation is solved by separating variables and integrating, which
leads to the implicit relationZ

du
f .1; u/ � u D log jxj C c ; con u D y

x
: (1.22)

Example 1.6. Let us consider the equation

y0 D y � 2x
2y C x : (1.23)

Since

f .x; y/ D y � 2x
2y C x

is homogeneous of degree zero (and continuous on the whole plane except for the line y D �x=2), the
equation (1.23) is homogeneous. It is easy to verify that the equation f .1; �/ D � possesses no real
solutions, so no straight line through the origin can be a solution of (1.23). Since

1

f .1; u/ � u D �
2uC 1
2.u2 C 1/ ;

from Eq. (1.22) we readily obtain

log.1C u2/C arctanu D c � 2 log jxj ;

where c is an arbitrary constant. Substituting u for y=x and simplifying, we obtain the following implicit
expression for the integral curves of the equation (1.23):

log.x2 C y2/C arctan
y

x
D c : (1.24)

The latter expression cannot be solved explicitly for y as a function of x. However, if we express it in
polar coordinates

x D r cos � ; y D r sin � ;

we immediately obtain

2 log r C � D c H) r D C e��=2 I C D ec=2 > 0 : (1.25)

The integral curves are thus logarithmic spirals such that the radial coordinate grows exponentially as the
angular coordinate turns clockwise.
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In order to plot these spirals by hand, it is convenient to first determine the isoclines of the equa-
tion (1.23). In general, an isocline of the first-order equation order equation (1.6) is the locus of the
points at which the tangent vectors to the integral curves have all some given direction. The isoclines are
hence defined by the implicit equation

f .x; y/ D m ; m 2 R ó m D1 ;

where the value m D 1 is included in order to account for the isoclines with vertical tangent. In the
present example, the equation for the isoclines reads

y � 2x
2y C x D m: (1.26)

Thus in this case the isoclines are straight lines passing through the origin, the one with slope m being
given by

y D mC 2
1 � 2m x : (1.27)

In particular, the isoclines of slope 0;1; 1;�1 are the straight lines y D 2x, y D �x=2, y D �3x,
y D x=3, respectively. In Fig.1.3 we plot these isoclines together with the spirals corresponding to
c D 0;  =2;  ; 3 =2. Note that each spiral contains infinitely many solutions of the equation (1.23),
each of them defined in an interval of the form .x0; x1/, where .x0; y0/ and .x1; y1/ are two consecutive
intersection points between the spiral and the isocline of infinite slope y D �x=2.

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

m=0

m=-1

m=∞

m=1 y

x

Figure 1.3: Integral curves of the equation y0 D y�2x
2yCx

(in red) and isoclines with slope 0;1; 1;�1 (in
grey).

1.2.4 Exact equations

A differential equation of the form

P.x; y/CQ.x; y/y0 D 0 ; (1.28)

where P;Q are continuous functions on an open set U � R2 and Q does not vanish in U , is said to be
exact if there is a function F W U ! R such that

P.x; y/ D Fx.x; y/ ; Q.x; y/ D Fy.x; y/ ; 8.x; y/ 2 U : (1.29)
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In other words, the equation (1.28) is exact if .P;Q/ D rF in U . In this case, if y.x/ is a solution
of (1.28) we can rewrite this equation as

Fx
�
x; y.x/

�C Fy�x; y.x/�y0.x/ D d
dx
F
�
x; y.x/

� D 0 :
Thus the solutions of the exact equation (1.28)-(1.29) satisfy the implicit equation

F.x; y/ D c ; (1.30)

where c is a constant. Conversely, if (1.30) holds, since Fy D Q does not vanish in U , the implicit
function theorem defines y as a function of x in a neighborhood of each point in U , this function being
also a solution of the exact equation (1.28) in its domain. Hence the general solution of (1.28)-(1.29) is
given by equation (1.30), which defines the level curves of F .

When the functions P;Q are of class C 1.U /, a necessary condition for the equation (1.28) to be
exact is

Py.x; y/ D Qx.x; y/ ; 8.x; y/ 2 U ; (1.31)

since Fxy D Fyx in U by the Schwarz lemma. The condition (1.31) is also sufficient if the open set U
is simply connected1, as it shall be usually the case in most applications.

Let us see how to determine the function F assuming that the condition (1.31) is satisfied on an open
rectangle U D .a; b/ � .c; d/. Let .x0; y0/ be a point in U . Integrating the equation Fx D P , we get

F.x; y/ D
Z x

x0

P.s; y/ ds C g.y/ ; (1.32)

where g depends only on y. If .x; y/ 2 U , then all points of the form .s; y/ with s 2 Œx0; x� or Œx; x0�
are also in U , so that the integral in the previous formula is well-defined. Taking the partial derivative
of (1.32) with respect to y and using Eq. (1.31) it follows that

Fy.x; y/ D g0.y/C
Z x

x0

Py.s; y/ ds D g0.y/C
Z x

x0

Qx.s; y/ ds D g0.y/CQ.x; y/ �Q.x0; y/ :

From the second equation Fy D Q we obtain

g0.y/ D Q.x0; y/ H) g.y/ D
Z y

y0

Q.x0; s/ ds ; (1.33)

up to an arbitrary constant. (As before, the integral in (1.33) is well defined since all points of the
form .x0; s/ are in U when s 2 Œy0; y� or Œy; y0�.) Thus in this case the general solution (1.30) of the
equation (1.28) is given by

F.x; y/ D
Z x

x0

P.s; y/ ds C
Z y

y0

Q.x0; s/ ds D c : (1.34)

The function F in the latter formula can also be expressed in a more compact way as the line integral

F.x; y/ D
Z
0

.P;Q/ � dr ; (1.35)

where 0 is the broken line path in Fig. 1.4. Since the rectangle U is simply connected and the condi-
tion (1.31) is satisfied, the line integral of the vector field .P;Q/ along any piecewise C 1 curve contained
in U is path-independent. We can therefore write

F.x; y/ D
Z


.P;Q/ � dr ; (1.36)
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U

�0 �

a b

c

d
.x; y/.x0; y/

.x0; y0/

�0

Figure 1.4: Paths joining .x0; y0/ and .x; y/ in U .

where  is any piecewise C 1 curve joining .x0; y0/ and .x; y/ without leaving U (see Fig. 1.4).

� In fact, it may be shown that the formula (1.36) is valid for any open simply-connected set on
which condition (1.31) holds.

Example 1.7. Consider the equation

2xy C 1C .x2 C y/y0 D 0 ; (1.37)

which is of the form (1.28) with P D 2xyC1,Q D x2Cy. Since Py D 2x D Qx , the equation is exact
in any of the simply connected open sets U˙ D f.x; y/ 2 R2 W y ? �x2g in which Q is nonvanishing.
We thus look for a function F such that rF D .P;Q/ in U˙, that is,

Fx D 2xy C 1 H) F D x2y C x C g.y/

Fy D x2 C g0.y/ D x2 C y H) g0.y/ D y H) g.y/ D y2

2
;

up to a constant. Hence the integral curves of the equation (1.37) are given by the implicit equation

2x2y C 2x C y2 D c ; (1.38)

where c is an arbitrary constant. Solving the previous equation for y yields the expressions

y˙ D �x2 ˙
p
x4 � 2x C c (1.39)

for each value of c (see Fig. 1.5), where the˙ sign for the square root corresponds to the choice U˙.

Sometimes it may be interesting to discuss the behavior of the integral curves in terms of the values of the
arbitrary constant appearing in the general solution. For instance, in this example it may be shown that when
c > 3

2
3
p
2

each expression y˙ is a solution of the equation (1.37) defined on the whole real line. Alternatively,

if c < 3

2
3
p
2

each expression y˙ determines two solutions of the latter equation, respectively defined in the

intervals .�1; x0/ and .x1;1/, where x0 < x1 are the two real roots of the polynomial x4 � 2x C c in the
radicand of (1.39). Finally, if c D 3

2
3
p
2

, each expression y˙ also determines two solutions of (1.37) defined

in the intervals
� �1; 1

3
p
2

�
and

�
1

3
p
2
;1�, respectively.

1Recall that an open set U is connected if every pair of points of U can be joined by a continuous curve entirely contained
in U . The open set U is simply connected if it is connected and every continuous closed curve contained in U can be shrunk
continuously to a point in U without leaving this set. Intuitively, an open set is simply connected if it “consists of only one
piece” and “has no holes”.
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-4 -2 2 4

-4

-2

2

4

y

x

Figure 1.5: Integral curves (1.38) of the equation (1.37). The parabola y D �x2 (in grey) is an isocline
of infinite slope dividing the plane in two open simply connected sets U˙ wherein Q D x2 C y is
nonvanishing and the solutions are respectively given by y˙.

Consider again the equation (1.28), with P;Q of class C 1.U /. Suppose that Py ¤ Qx in U , so that
the equation (1.28) is not exact. If �.x; y/ is a function which does not vanish in U , the equations (1.28)
and

�.x; y/P.x; y/C �.x; y/Q.x; y/y0 D 0 (1.40)

are equivalent in the sense that their sets of solutions are coincident. If the equation (1.40) is exact,
we shall say that the function � is an integrating factor of the equation (1.28). In this case we can
solve (1.28) by integrating (1.40) using the procedure discussed above.

If U is an open simply connected set and � is of class C 1, the necessary and sufficient condition that
the function � must satisfy for the equation (1.40) to be exact is

.�P /y D .�Q/x :

In other words, � must be a solution of the first-order partial differential equation

P.x; y/�y �Q.x; y/�x C
�
Py.x; y/ �Qx.x; y/

�
� D 0 : (1.41)

Although it can be shown that this PDE has always a solution, the problem is that the usual technique for
solving it requires the knowledge of the solution of the ODE (1.28) that we started from. However, we
can look for particular solutions of (1.41) depending on a single variable, such as �.x/, �.y/, �.xCy/,
�.x2 C y2/, etc. In general, these functions will not be solutions of the PDE (1.41) unless P and Q
satisfy a suitable condition. For instance, if

Py �Qx
Q

� g.x/ ; (1.42)

then (1.41) admits an integrating factor of the form �.x/. Indeed, if (1.42) holds and �y D 0, equa-
tion (1.41) yields

�0.x/ D g.x/�.x/ H) �.x/ D ce
R
g.x/ dx : (1.43)

Likewise, if
Py �Qx

P
� h.y/ ; (1.44)
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then (1.41) admits as a solution the integrating factor depending solely on y

�.y/ D ce�
R
h.y/ dy ; (1.45)

Exercise. Show that the equation (1.28) possesses an integrating factor of the form �.r/ with r Dp
x2 C y2 if and only if

Py �Qx
yP � xQ D g.r/ ;

which in this case is given by

�.r/ D c e�
R
r g.r/ dr :

Example 1.8. The equation

y.1 � x/ � siny C .x C cosy/y0 D 0 ; (1.46)

is not exact, for P D y.1 � x/ � siny , Q D x C cosy do not satisfy the condition (1.31). However,
since

Py �Qx
Q

D �1 � g.x/

does not depend on y, from equation (1.43) it follows that �.x/ D e�x is an integrating factor of
equation (1.46) in any of the open simply connected sets

U˙ D f.x; y/ 2 R2 W x C cosy ? 0g:

We thus look for a function F such that rF D e�x.P;Q). In this case it is convenient to start by
integrating the second component Fy D e�xQ, which yields

Fy D e�x.x C cosy/ H) F D e�x.xy C siny/C h.x/
Fx D e�x.y � xy � siny/C h0.x/ D e�x

�
y.1 � x/ � siny

� H) h0.x/ D 0 :

Hence we can choose
F.x; y/ D e�x.xy C siny/ ;

so that the integral curves of the equation (1.37) satisfy the transcendental equation

e�x.xy C siny/ D c ; (1.47)

where c is an arbitrary constant. The previous equation cannot be solved explicitly for y as a function of
x (although for c D 0 it can be solved for x as a function of y). However, the implicit function theorem
guarantees that if Fy.x0; y0/ D e�x0.x0Ccosy0/ ¤ 0, i.e. if .x0; y0/ 2 U˙, the equation (1.47) defines
y as a function of x in a neighborhood of .x0; y0/.

1.2.5 Linear equations

These are equations of the form

y0 D a.x/y C b.x/ ; (1.48)

where a and b are continuous functions on an open interval U . The equation (1.48) is said to be homo-
geneous if b � 0, or inhomogeneous or complete otherwise. We shall see that the general solution of a
linear equation can always be expressed via quadratures. Indeed, in the homogeneous case

y0 D a.x/y (1.49)
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it admits the trivial solution y D 0, whereas if y ¤ 0 it can be tackled as a separable equation:

y0

y
D a.x/ H) log jyj D

Z
a.x/ dx C c0 H) jyj D ec0e

R
a.x/ dx :

The general solution of (1.49) is thus

y D ce
R
a.x/ dx ; (1.50)

where c is an arbitrary constant (since either c D ˙ec0 , or c D 0 for the trivial solution).

� The set of solutions (1.50) of the homogeneous equation (1.49) is a one-dimensional vector space.

The inhomogeneous equation (1.48) can be solved by the method of variation of constants, due to
Lagrange. The method consists in making the following ansatz for the solution of the inhomogeneous
equation (1.48):

y D c.x/eA.x/ ; (1.51)

where

A.x/ D
Z
a.x/ dx

is any fixed primitive of the function a.x/. In other words, one assumes that the solution of the inho-
mogeneous equation is given by the general solution of the homogeneous equation with the arbitrary
constant c replaced by an unknown function c.x/. Inserting (1.51) into the equation (1.48) we readily
obtain

c0.x/eA.x/ C c.x/eA.x/a.x/ D a.x/c.x/eA.x/ C b.x/ ;
so that

c0.x/ D b.x/e�A.x/ H) c.x/ D c C
Z
b.x/e�A.x/ dx ;

where c is an arbitrary constant. Hence the general solution of the complete equation (1.48) is given by

y D ceA.x/ C eA.x/
Z
b.x/e�A.x/ dx : (1.52)

� The previous expression shows that the general solution of the equation (1.48) is of the form

y D yh.x/C yp.x/ ;

where yh is the general solution of the homogeneous equation and yp is a particular solution of the
complete equation.

Consider now the initial-value problem8<:y
0 D a.x/y C b.x/ ;
y.x0/ D y0 ;

(1.53)

where x0 2 U . Choosing as the primitive of a.x/ the function A.x/ D R x
x0
a.s/ ds, it follows immedi-

ately that the unique solution of Eq. (1.48) satisfying the initial condition y.x0/ D y0 is given by

y D y0e
R x
x0
a.s/ ds C e

R x
x0
a.s/ ds

Z x

x0

b.s/e�
R s
x0
a.t/ dt ds :
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Example 1.9. Solve the linear inhomogeneous equation

y0 D y

x
C x2 ; (1.54)

defined for x ¤ 0.

The general solution of the corresponding homogeneous equation reads

y0

y
D 1

x
H) log jyj D log jxj C c0 H) y D cx ;

where c 2 R (the value c D 0 comes from the trivial solution y � 0). For the complete equation we try
a particular solution of the form yp D c.x/x, which yields

y0p D c0x C c D c C x2 H) c D x2

2
H) yp D x3

2
:

The general solution of the equation (1.54) is therefore given by

y D cx C x3

2
; c 2 R :

Note that even though the differential equation is not defined if x D 0, its solutions are analytic on the
whole real line.

1.2.6 Bernoulli equation

This is an equation of the form

y0 D a.x/y C b.x/yr ; r ¤ 0; 1 ; (1.55)

where a and b are continuous functions on an open interval U . The equation (1.55) is not defined for
y < 0 unless r D p=q is an irreducible rational number with odd q, nor for y D 0 when r < 0. The
Bernoulli equation can be transformed into a linear equation (and is thus solvable via quadratures) by the
change of variable

u D y1�r :
Indeed, taking the derivative of u with respect to x and using (1.55) we get

u0 D .1 � r/y�ry0 D .1 � r/a.x/y1�r C .1 � r/b.x/ D .1 � r/a.x/uC .1 � r/b.x/ ;

which is a linear equation for the new unknown variable u.

Example 1.10. The equation

y0 D y � y2
x

; (1.56)

is a Bernoulli equation with r D 2. A possible solution is y � 0. If y ¤ 0, the suitable change of
variable u D 1=y yields

u0 D � y
0

y2
D � 1

xy
C 1

x
D �u

x
C 1

x
; (1.57)

which is linear in u. The general solution of the homogeneous equation reads

uh D c

x
:
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As to the complete equation, we try a particular solution of the form up D c.x/
x

, which leads to

c0

x
D 1

x
H) c D x H) up D 1 :

Thus the general solution of (1.57) is

u D uh C up D x C c
x

;

so that
y D x

x C c
is the general solution of (1.56). (The solution y � 0 is formally obtained in the limit c !1.)

Exercise. Solve the equation (1.56) treating it as a separable equation.

1.2.7 Riccati equation

The Riccati equation

y0 D a.x/C b.x/y C c.x/y2 ; a; c ¥ 0 ; (1.58)

where the functions a, b, c are continuous on an open interval U is of great importance in Mathematical
Physics due to its close relation with second order linear equations (such as the Schrödinger equation).
In general it is not possible to solve a Riccati equation by quadratures. However, if a particular solution
y0.x/ is known it can be transformed into a linear equation via the change of variable

u D 1

y � y0.x/
:

Indeed,

u0 D � y0 � y00.x/�
y � y0.x/

�2 D �b.x/
�
y � y0.x/

�C c.x/�y2 � y20.x/��
y � y0.x/

�2 D �b.x/u � c.x/ y C y0.x/
y � y0.x/

D ��b.x/C 2c.x/y0.x/�u � c.x/ ;
which is a linear equation for u.

Example 1.11. Consider the Riccati equation

y0 D y2 � 2

x2
: (1.59)

If we try a solution of the form y D �=x, we readily obtain

� �
x2
D �2

x2
� 2

x2
H) �2 C � � 2 D 0 H) � D �2; 1 :

Let us take the particular solution y0 D 1=x. The change of variable

u D 1

y � 1=x (1.60)

leads to the linear equation

u0 D � y
0 C 1=x2

.y � 1=x/2 D �
y2 � 1=x2
.y � 1=x/2 D �

y C 1=x
y � 1=x D �

2u

x
� 1 : (1.61)
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The general solution of the homogeneous equation is given by

uh D C

x2
:

In order to determine a particular solution of the inhomogeneous equation, we can use the method of
variation of constants, or more directly, try a solution of the form up D kx. Substituting into Eq. (1.61)
we obtain

k D �2k � 1 H) k D �1
3
:

Thus

u D C

x2
� x
3
D �x

3 C c
3x2

; c D �3C ;
is the general solution of (1.61). From (1.60) it immediately follows that

y D 1

x
� 3x2

x3 C c :

is the general solution of (1.59).

Remark. As we have mentioned above, the Riccati (1.58) equation is closely related to second order
linear equations. More precisely, it is possible to transform (1.58) into a second-order linear equation
through the change of variable

y D � 1

c.x/

u0

u
:

Indeed,

y0 D � 1

c.x/

u00

u
C c0.x/

c.x/2
u0

u
C 1

c.x/

u02

u2
D a.x/ � b.x/

c.x/

u0

u
C 1

c.x/

u02

u2
;

so that u satisfies the equation

u00 �
�
b.x/C c0.x/

c.x/

�
u0 C a.x/c.x/u D 0 :

In the next chapter we shall see that the general solution of the latter equation is of the form

u D k1 u1.x/C k2 u2.x/ ;
where k1, k2 are real constants and u1, u2 are two linearly independent solutions, which in general will
not be possible to compute in closed form. When this is the case, the general solution of the initial Riccati
equation (1.58) can be expressed in terms of u1 y u2 as

y D � 1

c.x/

k1u
0
1.x/C k2u02.x/

k1u1.x/C k2u2.x/
:

(Note that this solution depends on a single arbitrary constant, namely k2=k1 or k1=k2.)

1.3 Existence and uniqueness of solutions

In this section we shall study the existence and uniqueness of solution of the initial value problem(
y0 D f .x; y/ ;
y.x0/ D y0 :

(1.62)

In several examples of the previous section in which the function f was sufficiently regular we have seen
that this problem has a unique local solution. In this section we will state without proof a fundamental
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result guaranteeing the existence of a unique (in general, local) solution of the initial value problem. We
shall assume that the dependent variable y and the function f are vector-valued2. In other words, we
shall consider the initial value problem for a system of first-order equations:

Definition 1.12. A system of n first-order ordinary differential equations in normal form for an
unknown function y D .y1; : : : ; yn/ is a vector-valued equation

y0 D f .x; y/ ; (1.63)

where f D .f1; : : : ; fn/ is defined on an open set U � RnC1 and takes values in Rn. Given .x0; y0/ 2
U , the initial value problem associated with the system (1.63) consists in finding a solution y.x/ defined
on an interval I containing x0 such that

y.x0/ D y0 : (1.64)

� The system (1.63) is equivalent to the n scalar equations
‚
y 01 D f1.x; y1; : : : ; yn/ ;

:::

y 0n D fn.x; y1; : : : ; yn/ ;
while the initial data (1.64) corresponds to the n conditions

y1.x0/ D y01 ; : : : ; yn.x0/ D y0n :

� The initial value problem (1.63)–(1.64) includes as a particular case the initial value problem
associated with a scalar n-th order equation in normal form(

u.n/ D F �x; u; u0; : : : ; u.n�1/� ;
u.x0/ D u0 ; u0.x0/ D u1 ; : : : ; u.n�1/.x0/ D un�1 :

(1.65)

Indeed, if we introduce the n dependent variables

y1 D u ; y2 D u0 ; : : : ; yn D u.n�1/ ;
the initial value problem (1.65) may be rewritten as the system of first-order equations given by

†
y 01 D y2 ;

:::

y 0n�1 D yn ;
y 0n D F.x; y1; : : : ; yn/ ;

with the initial conditions

y1.x0/ D u0 ; y2.x0/ D u1 ; : : : ; yn.x0/ D un�1 :
(More in general, a system of m ordinary differential equations of order n may be written as a
system of mn first-order equations.)

The following theorem shows that the continuity of the function f on its domain U is sufficient to
guarantee the local existence of solutions of the initial value problem (1.63)–(1.64):

2Hereafter we shall drop the vector notation, e.g., we shall write y instead of y
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x0 � ˛ x0 C ˛x0

y0

U

Figure 1.6: If the function f .x; y/ satisfies the hypothesis of the existence and uniqueness theorem
on the open set U , the initial value problem (1.63)–(1.64) has a unique solution defined in the interval
.x0 � ˛; x0 C ˛/. The solution might not exist or be unique outside the open set U .

Peano’s theorem. Let f W U ! Rn be continuous on an open set U , and let .x0; y0/ 2 U . Then the
initial value problem (1.63)–(1.64) has (at least) one solution y.x/ defined on an interval of the form
.x0 � ˛; x0 C ˛/, with ˛ > 0 sufficiently small.

� The number ˛ can be estimated explicitly, and it depends both on the point .x0; y0/ and a bound
of the values of kf .x; y/k on U .

The continuity of the function f on the open set U does not guarantee (even locally) the uniqueness
of the solution of the initial value problem (1.63)–(1.64) with initial data in U , as illustrated by the
following example:

Example 1.13. Consider the initial value problem(
y0 D 3y2=3 ;
y.x0/ D y0 :

(1.66)

Since f .x; y/ D 3y2=3 is continuous on U D R2, according to Peano’s theorem the problem (1.66)
possesses at least a local solution for any initial data .x0; y0/. Let us show that when y0 D 0 this
solution is not unique. Indeed, y � 0 is a possible solution of the problem (1.66) for y0 D 0. On the
other hand, since the equation y0 D 3y2=3 is separable, it can be immediately integrated, with the result

y D .x C c/3 ; c 2 R : (1.67)

In particular, y D .x � x0/3 is another solution of (1.66) with y0 D 0, differing from y � 0 in any open
interval centered at x0.

Let us now present the key result that we shall apply to establish the existence and uniqueness of
solution of the initial value problem (1.63)–(1.64).

Existence and uniqueness theorem. If the function f W U � RnC1 ! Rn and its partial derivatives
@fi

@yj
(1 6 i; j 6 n) are continuous on the open set U , then for all .x0; y0/ 2 U the initial value

problem (1.63)–(1.64) has a unique solution on an interval of the form .x0 � ˛; x0 C ˛/, with ˛ > 0

depending on .x0; y0/.
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The previous theorem is a consequence of a more general result, known as the Picard–Lindelöf
theorem, whose statement and proof can be found for instance in F. Finkel y A. González-López, Manual
de Ecuaciones Diferenciales I, UCM, 20093. Sometimes we shall make use of the following direct
corollary of the existence and uniqueness theorem:

Corollary 1.14. If f W U � RnC1 ! Rn is of class C 1 on an open set U , the initial value prob-
lem (1.63)–(1.64) has a unique local solution for any initial data .x0; y0/ 2 U .

� If the hypothesis of the existence and uniqueness theorem (or its Corollary 1.14) hold, then no two
solutions can intersect each other inside U , since otherwise there would be two solutions in U with
the same initial data (see Fig. 1.6).

� The hypothesis of the existence and uniqueness theorem are definitely not necessary for the initial
value problem (1.63)–(1.64) to have unique solution. For instance, the function

f .x; y/ D
˚
�2y
x
C 4x ; x ¤ 0 ;

0 ; x D 0 ;

is discontinuous on the vertical axis x D 0. Since the equation y0 D f .x; y/ is linear it can be
easily solved, with the result

y D c

x2
C x2 :

Thus, the differential equation y0 D f .x; y/ with the initial condition y.0/ D 0 has the unique so-
lution y D x2, corresponding to c D 0. On the other hand, for the initial condition y.0/ D y0 ¤ 0
the initial value problem has no solution, for the only solution of the differential equation defined
at x D 0 is y D x2.

The existence and uniqueness theorem (or its Corollary 1.14) can also be employed to determine if
there is a unique integral curve passing through a given point.

Example 1.15. Let us study for which points of the plane passes a unique integral curve of the differential
equation

y0 D y2

2x.y � x/ : (1.68)

Notice in the first place that the function

f .x; y/ D y2

2x.y � x/

is of class C 1 on the whole real plane excepting the lines x D 0, y D x. According to Corollary 1.14,
through any point .x0; y0/ 2 R2 not belonging to these lines passes a unique local solution, and thus a
unique integral curve. In order to determine if this is also the case when the initial data .x0; y0/ belong
to the lines x D 0 or y D x, we consider the associated equation

dx
dy
D 2x.y � x/

y2
;

whose integral curves (but not its solutions!) coincide with those of the original equation. Since the
right-hand side of the previous equation is of class C 1 on the whole plane excepting the line y D 0,
from Corollary 1.14 it follows that through any point on the lines x D 0 or y D x but the origin passes a

3From now on we shall use the abbreviation [EDI2009] to cite this reference.

http://teorica.fis.ucm.es/ffinkel/edi/Ecuaciones_Diferenciales_I_files/edi-ffag.pdf
http://teorica.fis.ucm.es/ffinkel/edi/Ecuaciones_Diferenciales_I_files/edi-ffag.pdf
http://teorica.fis.ucm.es/ffinkel/edi/Ecuaciones_Diferenciales_I_files/edi-ffag.pdf
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unique solution of the associated equation, which is also an integral curve (with vertical tangent) of the
equation (1.68)4

The only point in the plane where the existence and uniqueness theorem cannot be applied to either
the starting equation or its associated one is the origin. In order to determine how many integral curves
pass through this point there is no choice other than solving the differential equation, which in this
case can be done since it is a homogeneous equation. Performing the change of variable y D xu in
equation (1.68) we obtain

xu0 C u D u2

2.u � 1/ H) xu0 D u.2 � u/
2.u � 1/ :

The latter equation admits the particular solutions u D 0, u D 2, corresponding to the linear solutions
y D 0 and y D 2x. If u ¤ 0; 2, solving the equation for u as a separable equation we obtain

�
Z

2u � 2
u2 � 2u du D � log ju2 � 2uj D log jxj C c0 H) u.u � 2/ D c

x
; c 2 R :

Expressing u in terms of y in the previous expression yields

y.y � 2x/ D cx ;

which includes the previous solutions y D 0 and y D 2x when c D 0. Since the above equation is
satisfied identically for x D y D 0 and arbitrary c, all integral curves have a branch passing through
the origin. In summary, through every point in the plane except the origin passes a single integral curve,
while an infinite number of integral curves pass through the origin (cf. Fig. 1.7).

– 2 – 1 1 2

– 2

– 1

1

2

Figure 1.7: Integral curves of the equation (1.68).

4Note that the line x D 0 is clearly a solution of the associated equation, and thus an integral curve of the equation (1.68).
However, the line y D x is not an integral curve.
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Chapter 2

Linear equations and systems

2.1 Space of solutions of a linear system

Definition 2.1. A first order linear system is a system of n equations of the form

y0 D A.x/ y C b.x/ ; (2.1)

where A W R!Mn.R/ (resp. b W R! Rn) is a matrix-valued (resp. vector-valued) function, that is,

A.x/ D

�
a11.x/ : : : a1n.x/
:::

: : :
:::

an1.x/ : : : ann.x/

�

; b.x/ D

�
b1.x/
:::

bn.x/

�

: (2.2)

The system (2.1) is said to be homogeneous if b � 0, or inhomogeneous otherwise.

� The set Mn.R/ of square matrices of order n with real entries is a vector space of dimension n2.
The canonical basis of this space consists of the matrices Eij whose only nonzero element is a
1 at the i -th row and the j -th column. The coordinates of a matrix A in this basis are its matrix
elements aij .

� Recall that a vector function b W R ! Rn is continuous at x if and only if its components bi W
R ! R are continuous. Similarly, a matrix function A W R ! Mn.R/ is continuous at x if and
only if its n2 matrix elements aij W R! R are continuous functions at x.

If the matrix function A and the vector function b are continuous on an open interval I , the existence
and uniqueness theorem discussed in the previous chapter implies that the initial value problem(

y0 D A.x/ y C b.x/ ;
y.x0/ D y0

(2.3)

associated with the linear system (2.1) has a unique local solution for any initial data .x0; y0/ 2 I �Rn.
In fact, for linear systems it can proved the following stronger result, whose proof can be found in
[EDI2009]:

Theorem 2.2. If A W I ! Mn.R/ and b W I ! Rn are continuous on an interval I � R, then the
initial value problem (2.3) has a unique solution defined on the entire interval I for any initial data
.x0; y0/ 2 I �Rn .

In what follows we shall assume that the functions A y b in the linear system (2.1)-(2.2) are contin-
uous on an interval I � R, and the hypothesis of Theorem 2.2 hold. We shall denote by S the set of
solutions of the system (2.1), that is,

S D ˚y W I ! Rn j y0.x/ D A.x/y.x/C b.x/ ; 8x 2 I	 � C 1.I;Rn/ :
21
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Likewise, we shall denote by S0 the set of solutions of the corresponding homogeneous system

y0 D A.x/ y : (2.4)

� If '1; '2 are two solutions of the homogeneous system (2.4), then any linear combination �'1 C
�'2 with coefficients �;� 2 R is also a solution. Indeed,

.�'1C�'2/0.x/ D �'10.x/C�'20.x/ D �A.x/'1.x/C�A.x/'2.x/ D A.x/��'1.x/C�'2.x/�:
In other words, the set S0 of solutions of the homogeneous system (2.4) is a real vector space.
This important property of homogeneous linear systems is known as the linear superposition
principle.

� Since A.x/ is a real matrix, if ' is a complex solution of the homogeneous system (2.4), then '
is also a solution of this system. Similarly, if ' is a solution of (2.4), then Re' and Im' are both
solutions of this system. Is this also the case for the inhomogeneous system (2.1)?

� The general solution of the inhomogeneous system (2.1) is of the form y D yp C yh, where yp
is a fixed particular solution of that system and yh is the general solution of the corresponding
homogeneous system (2.4). Indeed, if y is of this form it is clearly a solution of (2.1). Conversely,
if y is any solution of (2.1), then y � yp is obviously a solution of the homogeneous system (2.4).
In mathematical language, we say that the set of solutions of the inhomogeneous system is the
affine space S D yp C S0 ; where yp is a fixed element of S.

Using the existence and uniqueness Theorem 2.2, we shall prove next that the dimension of the space
S0 of solutions of the homogeneous system (2.4) is precisely n:

Theorem 2.3. The solution set of the homogeneous system y0 D A.x/y , with y 2 Rn, is a real
vector space of dimension n.

Proof. Let x0 2 I be a fixed but arbitrary point of I , and let ei be the i -th vector of the canonical basis
of Rn. If Y i .x/ denotes the solution of the initial value problem(

y0 D A.x/y ;
y.x0/ D ei ;

(2.5)

let us first show that fY 1.x/; : : : ; Y n.x/g span the vector space S0. Indeed, let y.x/ be any solution of
the homogeneous system (2.4), and let

y0 D y.x0/ � .y01; : : : ; y0n/ D
nX
iD1

y0iei :

Then the function

Qy.x/ D
nX
iD1

y0iY
i .x/

is a solution of the homogeneous system (2.4) (being a linear combination of solutions), and satisfies the
initial condition

Qy.x0/ D
nX
iD1

y0iei D y0 D y.x0/ :

From the existence and uniqueness Theorem 2.2 it follows that Qy D y in I . Then any solution is a
linear combination of the n solutions Y i , which are in turn a generator set of S0. Let us prove that the
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n solutions Y i are also linearly independent, so that they form a basis of S0. Indeed, consider the linear
combination

nX
iD1

�i Y
i D 0 ;

with �1; : : : ; �n 2 R. The previous equality is equivalent to

nX
iD1

�i Y
i .x/ D 0 ; 8x 2 I ;

whence
nX
iD1

�i Y
i .x0/ D

nX
iD1

�i ei D 0 ;

which implies that �1 D � � � D �n D 0 since fe1; : : : ; eng is a basis of Rn. This shows that fY 1; : : : ; Y ng
is a basis of S0, and thus dimS0 D n. �

2.2 Homogeneous systems

Definition 2.4. A fundamental system of solutions of the homogeneous system (2.4) is a basis fy1; : : : ; yng
of its solution space S0.

In other words, a fundamental system of solutions of (2.4) is a set of n linearly independent solutions. For
instance, the n solutions Y i of the initial value problem (2.5) are a fundamental system of solutions of
the homogeneous system y0 D A.x/y. Note that, by construction, these solutions satisfy Y i .x0/ D ei .

By definition, any solution y.x/ of the homogeneous system (2.4) is a linear combination of the
elements of a fundamental system of solutions fy1; : : : ; yng, that is,

y.x/ D
nX
iD1

ciy
i .x/ ; x 2 I ; (2.6)

for certain real constants c1; : : : ; cn. The vector equality (2.6) is equivalent to the n scalar equalities

yk.x/ D
nX
iD1

ciy
i
k.x/ ; k D 1; : : : ; n ;

for each of the components of the solution y.x/. In turn, we can write the equality (2.6) in matrix form
as

y.x/ D Y.x/ c ; (2.7)

where

Y.x/ D �y1.x/ � � � yn.x/� �
�
y11.x/ : : : yn1 .x/
:::

: : :
:::

y1n.x/ : : : ynn.x/

�

; c D

�
c1
:::

cn

�

:

Definition 2.5. A fundamental matrix of the homogeneous system (2.4) is any matrix-valued function
Y W I !Mn.R/ whose columns form a fundamental system of solutions.

� From what we have just seen, if Y.x/ is a fundamental matrix of the homogeneous system (2.4),
the system’s general solution is given by Eq. (2.7).
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� A matrix-valued function Y W I ! Mn.R/ is a fundamental matrix of the homogeneous sys-
tem (2.4) if and only if its columns are linearly independent, and it satisfies

Y 0.x/ D A.x/Y.x/ ; 8x 2 I :

Indeed, the latter matrix equality is equivalent to the n vector equalities

yi 0.x/ D A.x/yi .x/ ; 8x 2 I ; 8i D 1 ; : : : ; n ;

where yi .x/ is the i -th column of Y.x/.

� A homogeneous linear system obviously has infinitely many fundamental matrices. If Y1.x/ and
Y2.x/ are two fundamental matrices of (2.4) such that Y1.x0/ D Y2.x0/, then Y1 D Y2 on the
whole interval I . Indeed, each column of Y1 and the corresponding column of Y2 are solutions of
the system taking the same value at x0, so they must coincide in all I by virtue of the existence
and uniqueness Theorem 2.2.

2.2.1 Wronskian

Given n solutions '1; : : : ; 'n (not necessarily independent) of the homogeneous system (2.4), let us
consider the matrix of solutions

˚.x/ D �'1.x/ � � � 'n.x/�
whose i -th column is given by the solution 'i . Since by hypothesis 'i 0.x/ D A.x/'i .x/ for i D
1; : : : ; n, the matrix ˚.x/ satisfies the matrix equation

˚ 0.x/ D A.x/˚.x/ : (2.8)

Definition 2.6. Given n solutions '1; : : : ; 'n of the homogeneous system (2.4), their Wronskian is the
determinant of the corresponding matrix of solutions ˚.x/, that is,

W Œ'1; : : : ; 'n�.x/ � det˚.x/ D

ˇ̌̌̌
ˇ̌̌'
1
1.x/ : : : 'n1 .x/
:::

: : :
:::

'1n.x/ : : : 'nn.x/

ˇ̌̌̌
ˇ̌̌ : (2.9)

Notation. When it is clear from the context to which solutions '1; : : : ; 'n we are referring to we will
denote their Wronskian simply as W.x/.

The key property of the Wronskian is that its vanishing at any point of the interval I implies the
linear dependence of the solutions '1; : : : ; 'n in that interval, according to the following

Proposition 2.7. Let '1; : : : ; 'n be solutions of the homogeneous system (2.4) on the interval I . Then
f'1; : : : ; 'ng are linearly independent () W Œ'1; : : : ; 'n�.x/ ¤ 0, 8x 2 I .

Proof. Consider first the implication ((). If the solutions f'1; : : : ; 'ngwere linearly dependent, the vec-
tors f'1.x/; : : : ; 'n.x/g would be linearly dependent at any point x 2 I . But then W Œ'1; : : : ; 'n�.x/ D
0 for all x 2 I .

Regarding the implication ()), if there is a point x0 2 I such thatW Œ'1; : : : ; 'n�.x0/ D 0, then the
vectors f'1.x0/; : : : ; 'n.x0/g would be linearly dependent, that is, there would be n real constants �k
not all equal to zero such that

nX
kD1

�k'
k.x0/ D 0 :
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But then

y.x/ D
nX
kD1

�k'
k.x/

would be a solution of the system (2.4) satisfying the initial condition y.x0/ D 0. From the existence
and uniqueness Theorem 2.2 it would follow that y � 0 on I , and hence f'1; : : : ; 'ng would be linearly
dependent. �

� If '1; : : : ; 'n are solutions of the system y0 D A.x/y , from the latter proof it follows that either
W Œ'1; : : : ; 'n�.x/ ¤ 0 for all x 2 I , or W Œ'1; : : : ; 'n�.x/ D 0 for all x 2 I .

� Note that a matrix-valued function ˚ W I !Mn.R/ is a fundamental matrix of the system (2.4) if
and only if

i/ ˚ 0.x/ D A.x/˚.x/ ; 8x 2 I; (2.10a)

ii/ det˚.x/ ¤ 0 ; 8x 2 I: (2.10b)

Indeed, the second condition is equivalent to the linear independence of the columns of ˚.x/ by
virtue of the previous proposition.

� If ˚.x/ is a fundamental matrix and P is any invertible constant matrix, it is immediate to check
that 	.x/ D ˚.x/P satisfies i) and ii), and is therefore a fundamental matrix. Conversely, let
˚.x/ and 	.x/ be two fundamental matrices of the system. Since the matrices ˚.x0/ and 	.x0/
are invertible on account of the Proposition 2.7, the matrix P D ˚.x0/

�1	.x0/ is well-defined
and invertible, and satisfy 	.x0/ D ˚.x0/P by construction. Then 	.x/ and ˚.x/P are both
fundamental matrices of the system (2.4) and coincide at x0, so they must be equal on the whole
interval I by virtue of the remark on page 24. In summary, any fundamental matrix of the homo-
geneous system (2.4) can be obtained from a fixed fundamental matrix by right-multiplying it by
an appropriate invertible matrix.

Exercise. If ˚.x/ is a fundamental matrix of the system (2.4) and P is a constant invertible matrix, what
can be said about the matrix 	.x/ D P˚.x/?
Definition 2.8. The canonical fundamental matrix of the homogeneous system (2.4) at the point x0 is
the unique fundamental matrix Y.x/ of this system satisfying the condition Y.x0/ D 1.

� Given any fundamental matrix Y.x/ of the system (2.4), it is immediate to check that Y.x/Y.x0/�1

is its canonical fundamental matrix at the point x0.

� If Y.x/ is the canonical fundamental matrix of the system (2.4) at x0, the solution of the initial
value problem (

y0 D A.x/y
y.x0/ D y0

associated with this system is given by

y.x/ D Y.x/y0 :

Remark. Given n arbitrary differentiable functions '1; : : : ; 'n (not necessarily solutions of a homoge-
neous linear system of the form (2.4) with A continuous on I ), the vanishing of their Wronskian (even
identically) does not imply their linear dependence. For instance, the functions

'1.x/ D
�

sin x
x

�
; '2.x/ D

�
ex sin x

exx

�
are linearly independent in spite of the fact that their Wronskian vanish identically on R.
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2.2.2 The Abel–Liouville formula

Let 'k , k D 1; : : : ; n, be solutions of the homogeneous system (2.4), and let W.x/ be their Wronskian.
Then

W 0.x/ D
nX
iD1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
'11.x/ : : : 'n1 .x/
:::

:::

'1i
0.x/ : : : 'ni

0.x/
:::

:::

'1n.x/ : : : 'nn.x/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ : (2.11)

Since 'k is a solution of (2.4) it follows that

'ki
0.x/ D

nX
jD1

aij .x/'
k
j .x/ ; k D 1; : : : ; n :

Then

W 0.x/ D
nX
iD1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

'11.x/ : : : 'n1 .x/
:::

:::
nP

jD1

aij .x/'
1
j .x/ : : :

nP
jD1

aij .x/'
n
j .x/

:::
:::

'1n.x/ : : : 'nn.x/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌
D

nX
iD1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

'11.x/ : : : 'n1 .x/
:::

:::

ai i .x/'
1
i .x/ : : : ai i .x/'

n
i .x/

:::
:::

'1n.x/ : : : 'nn.x/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ ;

since a determinant does not change if one adds to a row a linear combination of the remaining ones.
Thus

W 0.x/ D
nX
iD1

ai iW.x/ D trA.x/ �W.x/ :

Integrating the latter first-order linear equation starting from a certain point x0 2 I , we obtain

W.x/ D W.x0/ e
R x
x0

trA.t/ dt
; 8x 2 I : (2.12)

This identity is known as the Abel–Liouville formula. From this formula we can also deduce that either
W.x/ does not vanish on I , or it vanishes identically on I .

2.3 Space of solutions of an n-th order linear differential equation

Definition 2.9. An n-th order linear equation is a differential equation of the form

u.n/ C an�1.x/ u.n�1/ C � � � C a1.x/ u0 C a0.x/ u D b.x/ ; (2.13)

where the functions ai W R ! R (i D 0; : : : ; n � 1) and b W R ! R are continuous on an interval I .
We shall say that the equation (2.13) is homogeneous if b � 0 on I , and inhomogeneous or complete
otherwise.

As we have seen in Chapter 1 (page 16), any differential equation of order n can be written as a
system of n first order equations. The first-order system (1.65) associated with the equation (2.13) is the
linear system

y0 D A.x/ y C b.x/ en ; (2.14)
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where

A.x/ D

�
0 1 0 : : : 0

0 0 1 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 1

�a0.x/ �a1.x/ �a2.x/ : : : �an�1.x/

�

(2.15)

is called the companion matrix of the equation (2.13). Note, in particular, that

trA.x/ D �an�1.x/ ; (2.16)

which shall be used in the sequel. Since the entries of the companion matrix A.x/ and the function b.x/
are continuous on the interval I , from Theorem 2.2 it follows that the initial value problem given by the
equation (2.13) with the initial conditions

u.x0/ D u0 ; u0.x0/ D u1 ; : : : ; u.n�1/.x0/ D un�1 .x0 2 I / (2.17)

has a unique solution defined on the entire interval I :

Theorem 2.10. If the functions ai W I ! R .i D 0; : : : ; n � 1/ and b W I ! R are continuous on
the interval I , the initial value problem (2.13)-(2.17) possesses a unique solution defined on the entire
interval I for any initial data .x0; u0; : : : ; un�1/ 2 I �Rn.

We will use a notation analogous to that for first-order linear systems, denoting by S the set of
solutions of the equation (2.13), and by S0 that of the corresponding homogeneous equation

u.n/ C an�1.x/ u.n�1/ C � � � C a1.x/ u0 C a0.x/ u D 0 : (2.18)

Note that both sets are contained in C n.I /. Reasoning as in the case of the first-order systems one can
easily prove the following properties:

� If '1; '2 are two solutions of the homogeneous equation (2.18), then any linear combination �'1C
�'2 with coefficients �;� 2 R is also a solution. In other words, the set S0 of solutions of the
homogeneous equation homogeneous equation (2.18) is a real vector space (linear superposition
principle).

� If ' is a complex solution of the homogeneous equation (2.18), then ', Re' and Im' are also
solutions of this equation.

� The general solution of the inhomogeneous equation (2.13) is of the form u D up C uh, where up
is a fixed particular solution of this equation and uh is the general solution of the corresponding
homogeneous equation (2.18). Equivalently, the solution set of the inhomogeneous equation (2.13)
is the affine space S D up C S0, where up is a fixed element of S.

In order to determine the dimension of the space S0 we shall use the following property:

� If '1; : : : ; 'k are solutions of the homogeneous linear equation (2.18), and yi D .'i ; '0i ; : : : ; '.n�1/i /,
i D 1; : : : ; k, denote the corresponding solutions of the associated first-order linear system, then

f'1; : : : ; 'kg are linearly independent () fy1; : : : ; ykg are linearly independent :

The implication ()) is trivial. Regarding the converse, assume that

�1'1 C � � � C �k'k D 0 ; �i 2 R :

Differentiating n � 1 times this equality it follows that

�1y
1 C � � � C �kyk D 0 ;

and thus �1 D � � � D �k D 0, since fy1; : : : ; ykg are linearly independent by hypothesis.
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Theorem 2.3 and the previous property yield the following result:

Theorem 2.11. The space S0 of solutions of the homogeneous equation (2.18) is of dimension n.

Definition 2.12. A fundamental system of solutions of the homogeneous equation (2.18) is a basis
f'1; : : : ; 'ng of its solution space S0.

� If f'1; : : : ; 'ng is a fundamental system of solutions of (2.18), any solution u of this equation may
be expressed as

u.x/ D
nX
iD1

ci'i .x/ ; ci 2 R :

Definition 2.13. Given n solutions '1; : : : ; 'n (not necessarily independent) of the homogeneous equa-
tion (2.18), its Wronski matrix is defined as the matrix of the corresponding solutions of the associated
linear system, i.e.,

˚.x/ D

ˇ
'1.x/ : : : 'n.x/

'01.x/ : : : '0n.x/
:::

:::

'
.n�1/
1 .x/ : : : '

.n�1/
n .x/



: (2.19)

Definition 2.14. Given n solutions '1; : : : ; 'n of the homogeneous equation (2.18), its Wronskian is
the determinant of the corresponding Wronski matrix, that is,

W Œ'1; : : : ; 'n�.x/ D det˚.x/ D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
'1.x/ : : : 'n.x/

'01.x/ : : : '0n.x/
:::

:::

'
.n�1/
1 .x/ : : : '

.n�1/
n .x/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌ : (2.20)

We shall also use the abbreviated notation W.x/ instead of W Œ'1; : : : ; 'n�.x/ when it is clear from
the context to which solutions '1; : : : ; 'n we are referring to. As in the case of a first-order linear sys-
tem, the Wronskian can be used to easily determine the linear independence of a set of n solutions of the
homogeneous linear equation (2.18):

Proposition 2.15. Let '1; : : : ; 'n be solutions of the homogeneous equation (2.18) over an interval I .
Then f'1; : : : ; 'ng are linearly independent () W Œ'1; : : : ; 'n�.x/ ¤ 0, 8x 2 I .

Proof. If y1; : : : ; yn are the solutions of the associated first-order system corresponding to '1; : : : ; 'n,
from the remark just before Theorem 2.11 and Proposition 2.7 it follows that

f'1; : : : ; 'ng l.i. () fy1; : : : ; yng l.i. () W Œy1; : : : ; yn�.x/ ¤ 0; 8x 2 I :

But W Œy1; : : : ; yn�.x/ D W Œ'1; : : : ; 'n�.x/ by definition. �

� If '1; : : : ; 'n are solutions of the equation (2.18), by the remark following Proposition 2.7 either
W Œ'1; : : : ; 'n�.x/ ¤ 0 for all x 2 I , or W Œ'1; : : : ; 'n�.x/ D 0 for all x 2 I . Thus it suffices to
check that W Œ'1; : : : ; 'n�.x0/ ¤ 0 at any point x0 2 I to ensure the linear independence of these
solutions on I .
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� Let '1; : : : ; 'n be solutions of the equation (2.18), and let W.x/ be their Wronskian. Since the
companion matrix (2.15) satisfies trA.x/ D �an�1.x/, the Abel–Liouville formula (2.12) be-
comes

W.x/ D W.x0/ e�
R x
x0
an�1.t/ dt

; x 2 I : (2.21)

Note that the statement in the previous remark follows directly from this formula, and that the
Wronskian is constant if the coefficient an�1.x/ vanishes identically over I .

2.3.1 Reduction of order

In general, it is not possible to compute a fundamental system of solutions of the homogeneous equa-
tion (2.18) in closed form, namely in terms of the coefficients ai .x/ and their primitives. However, in
the case of a second-order equation

u00 C a1.x/u0 C a0.x/u D 0 ; (2.22)

if a nontrivial solution is known, one can determine the general solution in terms of quadratures. Indeed,
if '.x/ is a nontrivial particular solution of the equation (2.22) and u is any solution of the latter equation,
from the Abel–Liouville formula (2.21) it follows that

'.x/u0 � '0.x/ u D k e�
R x
x0
a1.s/ ds

;

where k D W Œ'; u�.x0/. Integrating this first-order linear equation for u we easily obtain the following
expression for the general solution of (2.22):

u.x/ D c'.x/C k'.x/
Z x

x0

e�
R t
x0
a1.s/ ds

'2.t/
dt :

Thus '.x/ and the new solution

 .x/ D '.x/
Z x

x0

e�
R t
x0
a1.s/ ds

'2.t/
dt (2.23)

constitute a fundamental system of solutions of the homogeneous equation (2.22), since (by construction)
W Œ'; �.x0/ D 1 ¤ 0.

Remark. In the case of the homogeneous equation (2.18) of order n > 2, the explicit knowledge of a
nontrivial particular solution '.x/makes it possible to transform the equation into a homogeneous linear
equation of order n � 1 via the change of variable

´ D
�

u

'.x/

�0
: (2.24)

For instance, assume that '.x/ 6� 0 is a particular solution of the third-order equation

u000 C a2.x/u00 C a1.x/u0 C a0.x/u D 0 ; (2.25)

Writing the change of variable (2.24) as u D '.x/ R x ´, we obtain

u0 D '0.x/ R x ´C '.x/´ ;
u00 D '00.x/ R x ´C 2'0.x/´C '.x/´0 ;
u000 D '000.x/ R x ´C 3'00.x/´C 3'0.x/´0 C '.x/´00 :
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Substituting these expressions into (2.25), and taking into account that '.x/ is a solution of this equation, we
obtain the following second-order equation for ´:

'.x/´00 C �3'0.x/C a2.x/'.x/�´0 C �3'00.x/C 2a2.x/'0.x/C a1.x/'.x/�´ D 0 :
In general, it may be proved (see, e.g., L. Elsgolts, Differential Equations and the Calculus of Varia-
tions, University Press of the Pacific, 2003) that if k linearly independent solutions of a homogeneous
linear equation of order n are known, it is possible to transform this equation into a homogeneous lin-
ear equation of order n � k by successive changes of variable of the form form (2.24). In particular, if
n� 1 solutions of the equation (2.18) are known, it is possible to express its general solution in terms of
quadratures after transforming it by this procedure into a first-order linear equation.

2.4 Method of variation of constants

In general, it is not possible to determine explicitly a fundamental system of solutions of the homoge-
neous system (2.4) or of the homogeneous equation (2.18). However, if such a fundamental system is
known it will be possible to determine the general solution of the corresponding system or inhomoge-
neous equation by using the method of variation of constants, which we shall explain in what follows.

2.4.1 Method of variation of constants for an inhomogeneous system

Similarly to the scalar case (see p. 12), in this method one considers as a trial solution of the system (2.1)
the function obtained by substituting the constant vector c in the general solution (2.7) of the homoge-
neous system by a vector-valued function c.x/, that is,

y.x/ D Y.x/c.x/ ; c.x/ D

�
c1.x/
:::

cn.x/

�

:

Inserting this expression into (2.1), we obtain

y0.x/ D Y 0.x/c.x/C Y.x/c0.x/ D A.x/Y.x/c.x/C b.x/ ;
which yields, taking into account that the fundamental matrix Y.x/ satisfies the conditions (2.10),

c0.x/ D Y �1.x/b.x/ ; 8x 2 I :
Thus

c.x/ D c C
Z x

Y �1.s/b.s/ ds ; c 2 Rn :

Hence the general solution of the inhomogeneous system (2.1) is given by

y.x/ D Y.x/ c C Y.x/
Z x

Y �1.s/b.s/ ds ; 8x 2 I : (2.26)

In accordance with Proposition 2.1, the solution (2.26) is of the form

y.x/ D yh.x/C yp.x/ ;

where yh.x/ is the general solution of the homogeneous system and yp.x/ is a particular of the inho-
mogeneous one. Finally, it can be easily checked that the solution of the initial value problem (2.3)
is

y.x/ D Y.x/Y �1.x0/ y0 C
Z x

x0

Y.x/Y �1.s/b.s/ ds ; 8x 2 I : (2.27)
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2.4.2 Method of variation of constants for an inhomogeneous equation

Just as for first-order linear systems, if a fundamental system of solutions of the homogeneous equa-
tion (2.18) is known, it is possible to express the general solution of the corresponding inhomogeneous
equation (2.13) by means of quadratures. Indeed, let f'1; : : : ; 'ng be a fundamental system of solutions
of the equation (2.18), and let

˚.x/ D

ˇ
'1.x/ : : : 'n.x/

'01.x/ : : : '0n.x/
:::

:::

'
.n�1/
1 .x/ : : : '

.n�1/
n .x/



be their corresponding Wronski matrix. The general solution of the first-order linear system (2.14)
associated with the inhomogeneous equation (2.13) is (cf. eq. (2.26))

y.x/ D ˚.x/c C
Z x

b.t/ ˚.x/˚.t/�1en dt ; c D

�
c1
:::

cn

�

2 Rn : (2.28)

The general solution of (2.13) is the first component of the right-hand side of the last equation. In order
to write this solution more explicitly, note that the first component of ˚.x/˚.t/�1en is given by

nX
iD1

˚1i .x/
�
˚.t/�1

�
in
D

nX
iD1

'i .x/.�1/iCnMni .t/

W.t/
D 1

W.t/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
'1.t/ : : : 'n.t/

'01.t/ : : : '0n.t/
:::

:::

'
.n�2/
1 .t/ : : : '

.n�2/
n .t/

'1.x/ : : : 'n.x/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ ;

where Mni .t/ denotes the minor of the matrix ˚.t/ associated with the matrix element ni , and the last
equality is obtained by expanding the determinant by the last row. Substituting the latter expression
into (2.28) we finally obtain the following expression for the general solution of the equation (2.13):

u.x/ D
nX
iD1

ci 'i .x/C
Z x

ˇ̌̌̌
ˇ̌̌̌
ˇ

'1.t/ ::: 'n.t/

'01.t/ ::: '0n.t/

:::
:::

'
.n�2/
1 .t/ ::: '

.n�2/
n .t/

'1.x/ ::: 'n.x/

ˇ̌̌̌
ˇ̌̌̌
ˇ
b.t/

W.t/
dt : (2.29)

In particular, for the second-order equation

u00 C a1.x/ u0 C a0.x/ u D b.x/ (2.30)

we have

u.x/ D c1 '1.x/C c2 '2.x/C
Z x b.t/

W.t/

�
'1.t/'2.x/ � '2.t/'1.x/

�
dt : (2.31)

Note that the function

up.x/ D
Z x

x0

b.t/

W.t/

�
'1.t/'2.x/ � '2.t/'1.x/

�
dt (2.32)

is a particular solution of the inhomogeneous equation (2.30) satisfying the initial conditions

up.x0/ D u0p.x0/ D 0 :
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Example 2.16. Consider the second-order equation

u00 C u D tan x : (2.33)

Although we shall postpone to next chapter the problem of how to construct a fundamental system of
solutions of the homogeneous equation

u00 C u D 0 ; (2.34)

it is immediate to verify that the functions

'1.x/ D cos x ; '2.x/ D sin x

form such a system, as they are obviously solutions of the equation (2.34) and their Wronskian is

W.x/ D
ˇ̌̌̌
ˇ cos x sin x
� sin x cos x

ˇ̌̌̌
ˇ D 1 ¤ 0 :

(Notice that W.x/ is a constant; this is a consequence of the Abel–Liouville formula (2.21), since in this
case an�1 � a1 D 0.) From equation (2.31) it follows that a particular solution of the equation (2.33) is
given by

up D
Z x

tan t Œcos t sin x � sin t cos x� dt

D sin x
Z x

sin t dt � cos x
Z x 1 � cos2 t

cos t
dt D � cos x

Z x

sec t dt : (2.35)

In order to evaluate the latter integral we perform the change of variable s D tan t
2

, so that

ds D 1
2
.1C tan2 t

2
/ dt D 1

2
.1C s2/ dt H) dt D 2

1C s2 ds :

On the other hand,
†

cos t D 2 cos2 t
2
� 1 D 2

sec2 t
2

� 1 D 2

1C tan2 t
2

� 1 D 2

1C s2 � 1 D
1 � s2
1C s2 ;

sin t D 2 sin t
2

cos t
2
D 2 tan t

2

sec2 t
2

D 2s

1C s2 ;

and thusZ
sec t dt D

Z
1C s2
1 � s2 �

2

1C s2 ds D
Z

2

1 � s2 ds D
Z

ds
1 � s C

Z
ds
1C s D log

ˇ̌̌̌
1C s
1 � s

ˇ̌̌̌
D log

ˇ̌̌̌
1C s2
1 � s2 C

2s

1 � s2
ˇ̌̌̌
D log j sec t C tan t j :

Substituting this expression into (2.35) and adding the general solution of the homogeneous equation we
finally conclude that

u D c1 cos x C c2 sin x � cos x log j sec x C tan xj ; c1; c2 2 R

is the general solution of the equation (2.33).



Chapter 3

Linear equations and systems with
constant coefficients

3.1 Equations with constant coefficients. Method of undetermined coeffi-
cients

As we have seen in the previous chapter, the difficulty in solving the inhomogeneous equation (2.13) lies
in determining a fundamental system of solutions of the corresponding homogeneous equation. Indeed,
the method of variation of constants makes it possible to express the general solution of the inhomoge-
neous equation via quadratures provided that such system is known (cf. eq. (2.29)). A particular case of
great practical interest for which it is possible to find the general solution of the linear equation (2.13)
occurs when the coefficients ai .x/ are constant, that is,

u.n/ C an�1 u.n�1/ C � � � C a1 u0 C a0 u D b.x/ ; a0; : : : ; an�1 2 R : (3.1)

In this section we shall see that one can construct a fundamental system of solutions of the corresponding
homogeneous equation

u.n/ C an�1 u.n�1/ C � � � C a1 u0 C a0 u D 0 (3.2)

provided that one can determine all the zeros of the characteristic polynomial of the equation (3.2),
defined as

p.�/ � �n C an�1�n�1 C � � � C a1�C a0 : (3.3)

� The companion matrix of the equation (3.2) is the constant matrix

A D

�
0 1 0 : : : 0

0 0 1 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 1

�a0 �a1 �a2 : : : �an�1

�

: (3.4)

Note that the characteristic polynomial (3.3) coincides with the characteristic polynomial of the
matrix A, defined by

pA.�/ � det.�1 � A/ ;
as it can be easily verified by expanding the latter determinant by the last row,

Let us begin by rewriting equation (3.2) in the form

�
Dn C an�1Dn�1 C � � � C a1D C a0

�
u � p.D/u D 0 ; D � d

dx
:

33
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From the equality
.D � �/�f .x/e�x� D f 0.x/e�x ;

it immediately follows that

.D � �/k�f .x/e�x� D f .k/.x/e�x ; (3.5)

which is a very useful identity, as we shall see later in this section. Assume that the characteristic
polynomial can be factorized as

p.�/ D .� � �1/r1 � � � .� � �m/rm ; r1 C � � � C rm D n ;
where the (possibly complex) roots �1; : : : ; �m are all distinct. If �i is one of these roots we can thus
write

p.�/ D q.�/.� � �i /ri ;

where q.�/ is a polynomial of degree n � ri with q.�i / ¤ 0. Then p.D/ D q.D/.D � �i /ri , and from
equation (3.5) it follows that

p.D/
�
xke�ix

� D q.D/ �e�ix
dri

dxri
xk
�
D 0 ; k D 0; 1; : : : ; ri � 1 :

This shows that the functions

xke�ix ; i D 1; : : : ; m ; k D 0; 1; : : : ; ri � 1 ; (3.6)

are all solutions of the equation (3.2). Since there are precisely r1C � � � C rm D n solutions of this type,
in order to show that they form a fundamental system of solutions of the latter equation it suffices to
check that they are linearly independent.

Lemma 3.1. The functions (3.6) are linearly independent,

Proof. Consider the linear combination

mX
iD1

ri�1X
kD0

cikx
ke�ix D 0 ; 8x 2 R ; (3.7)

where the coefficients cik are complex constants. We can rewrite the latter equality as

P1.x/e�1x C � � � C Pm.x/e�mx D 0 ; 8x 2 R ; (3.8)

where Pi .x/ D
ri�1P
kD0

cikx
k is a polynomial of degree at most ri � 1. Note that proving that all the coeffi-

cients cik in equation (3.7) are zero is equivalent to showing that the polynomials Pi vanish identically.
In order to establish this result, we first multiply the equation (3.8) by e��1x , obtaining

P1.x/C P2e�2x C � � � C Pm.x/e�mx D 0 ; 8x 2 R ; (3.9)

where the exponents �i � �i � �1 ¤ 0 are all distinct. Differentiating this equation r1 times we get

Q2.x/e�2x C � � � CQm.x/e�mx D 0 ; 8x 2 R ; (3.10)

where Qi is a polynomial of the same degree as Pi . Repeating this procedure m � 1 times one finally
arrives at an equation of the form

Rm.x/e�mx D 0 ; 8x 2 R ; (3.11)

where Rm is a polynomial of the same degree as Pm. From the latter condition it immediately follows
that Rm � 0, which implies that Pm � 0 on account that degPm D degRm. Since the ordering of the
roots �i is irrelevant for the previous argument, we conclude that all the polynomials Pi are identically
zero. �
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The previous discussion and Lemma 3.1 lead to the following theorem:

Theorem 3.2. The functions (3.6), where ri is the multiplicity of the root �i of the characteristic
polynomial (3.3), form a fundamental system of solutions of the homogeneous linear equation with
constant coefficients (3.2).

� If the root �j D aj C ibj is complex, from the 2rj complex solutions

xkeajxe˙ibjx ; k D 0; 1; : : : ; rj � 1 ;

associated with the roots �j and �j of the characteristic polynomial, we obtain the 2rj real solu-
tions

xkeajx cos.bjx/ ; xkeajx sin.bjx/ k D 0; 1; : : : ; rj � 1

taking the real and imaginary parts of the solutions corresponding to the root �j (or �j ).

Example 3.3. Let us find the general solution of the fourth-order equation with constant coefficients

u.4/ C u000 C u0 C u D 0 : (3.12)

The characteristic polynomial associated with this equation reads

p.�/ D �4 C �3 C �C 1 D .�C 1/2.�2 � �C 1/ : (3.13)

The zeros are thus �1 D �1 (with multiplicity r1 D 2) and the roots of the equation

�2 � �C 1 D 0 ;

given by

�2;3 D 1

2

�
1˙ i
p
3
�
;

with multiplicity r2 D r3 D 1. The general solution of the equation (3.12) is then

u.x/ D e�x.c1 C c2x/C e
x
2

h
c3 cos

�p
3
2
x
�C c4 sin

�p
3
2
x
�i
; (3.14)

with c1; : : : ; c4 arbitrary real constants.

3.1.1 Method of undetermined coefficients

Once a fundamental system of solutions of the homogeneous equation (3.2) has been found, the general
solution of the inhomogeneous equation (3.1) can be computed for any function b.x/ using the method of
variation of constants (see equation (2.29)). However, for certain simple forms of the function b.x/ that
appear frequently in the applications, the method of undetermined coefficients that we shall discuss in
what follows enables one to compute a particular solution of (3.1) in a simpler way. The general solution
of (3.1) is then found by adding to this particular solution the general solution of the corresponding
homogeneous equation.

Suppose first that
b.x/ D q.x/e�x ; (3.15)

where q.x/ is a polynomial. If r is the multiplicity of � as a root of the characteristic polynomial (3.3)
of the homogeneous equation (3.2), then

p.�/ D p1.� � �/r C p2.� � �/rC1 C � � � C pn�r.� � �/n�1 C .� � �/n ;
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with p1; : : : ; pn�r 2 R (or C, if � is complex) and p1 ¤ 0. Note that this expression is also valid when
� is not a root of the characteristic polynomial, with r D 0 in this case. From the previous expression
and equation (3.5) it follows that

p.D/
�
f .x/e�x

� D hp1f .r/.x/C p2f .rC1/.x/C � � � C pn�rf .n�1/.x/C f .n/.x/i e�x :

This suggest trying a particular solution of the form

up.x/ D xrQ.x/e�x ; (3.16)

where
Q.x/ D Q0 CQ1x C � � � CQdxd ; d � deg q (3.17)

is a polynomial to be determined by the condition

p1.x
rQ/.r/ C p2.xrQ/.rC1/ C � � � C pn�r.xr Q/.n�1/ C .xr Q/.n/ D q : (3.18)

It may be proved that the last equation yields a linear system with d C 1 equations for the d C 1

coefficients of Q, which is always compatible. Therefore, the constant coefficients equation (3.1) with
the inhomogeneous term (3.15) always has a particular solution of the form (3.16)-(3.17), where r is
the multiplicity of � as a root of the characteristic polynomial and the polynomial Q is determined via
equation (3.18) (or by direct substitution of (3.16)-(3.17) into (3.1)).

Example 3.4. Let us find a particular solution of the equation

u.4/ C u000 C u0 C u D xe�x : (3.19)

Here � D �1 is a double root of the characteristic polynomial of the homogeneous equation (see the
equation (3.13) in Example 3.3), and q.x/ D x is a first-degree polynomial. We thus look for a particular
solution of the form

up.x/ D x2.aC bx/e�x :
In order to compute p.D/ up it is convenient to expand p.D/ in powers ofDC1, since .DC1/k�f .x/e�x� D
f .k/.x/e�x on account of equation (3.5). Using Taylor’s formula to expand �2 � � C 1 in powers of
�C 1 we obtain

p.�/ D .�C 1/2�3 � 3.�C 1/C .�C 1/2�:
Thus

p.D/up D
�
3.2aC 6bx/ � 3 � 6b�e�x D xe�x () 3.2aC 6bx/ � 18b D x ;

so that
6a � 18b D 0 ; 18b D 1 :

Hence, the sought-for particular solution reads

up.x/ D 1

18
.x3 C 3x2/e�x : (3.20)

The general solution of the equation (3.19) is the sum of this particular solution and the general solu-
tion (3.14) of the homogeneous equation.

Example 3.5. Consider next the equation

u.4/ C 4u D x�1C ex cos x
�
: (3.21)

The characteristic polynomial of the homogeneous equation is

p.�/ D �4 C 4 ;
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whose zeros �k are the fourth roots of �4:

�k D
p
2 ei. 

4
Ck  

2
/ ; k D 0; 1; 2; 3 ;

i.e.,
�0 D 1C i ; �1 D �1C i ; �2 D �1 � i ; �3 D 1 � i :

Thus the general solution of the homogeneous equation is given by

uh.x/ D ex.c1 cos x C c2 sin x/C e�x.c3 cos x C c4 sin x/ ; ci 2 R : (3.22)

It seems that the method of undetermined coefficients cannot be applied to the equation (3.21), since the
inhomogeneous term is not of the form (3.15). However, since the right-hand side of (3.21) is the sum of
the terms

b1.x/ D x ; b2.x/ D xex cos x ;

the sum of the corresponding particular solutions ui .x/ of the equations

u.4/ C 4u D bi .x/ ; i D 1; 2 ; (3.23)

is (by linearity) a particular solution of (3.21). The inhomogeneous term of the first of these equations is
clearly of the form (3.15), with q.x/ D x and � D 0. Since 0 is not is not a root of the characteristic
polynomial, we look for a particular solution of the form u1.x/ D a C bx. Substituting it into the
corresponding complete equation (3.23), we readily obtain

u1.x/ D x

4
:

Turning to the second equation in (3.23), since b2.x/ D Re
�
xe.1Ci/x

�
we can look for a particular

solution of the form u2.x/ D Reu.x/, where u.x/ is any solution of the equation

u.4/ C 4u D xe.1Ci/x : (3.24)

The right-hand side of the latter equation is again of the form (3.15), with q.x/ D x and � D 1 C i a
simple root of the characteristic polynomial, so we try a particular solution of the form

u.x/ D x.aC bx/e.1Ci/x � f .x/e�x :

Substituting this expression into (3.24) and using the general Leibniz rule

.fg/.n/ D
nX
kD0

 
n

k

!
f .k/g.n�k/

we obtain

�4e�xf C 4�3e�xf 0 C 6�2e�xf 00 C 4e�xf D xe�x () 4�3.aC 2bx/C 6�2 � 2b D x ;

where we have taken into account that �4 D �4. Thus
‚
8�3b D 1

�aC 3b D 0
H)

‚
b D 1

8�3
D �

�32 D �
1

32
.1C i/

a D �3b
�
D 3

32
;

so that
u.x/ D x

32

�
3 � .1C i/x

�
e.1Ci/x :
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Taking the real part of this function we get

u2.x/ D x

32
ex
h
.3 � x/ cos x C x sin x

i
:

Therefore, the inhomogeneous equation (3.21) admits the particular solution

up.x/ D u1.x/C u2.x/ D x

4
C x

32
ex
h
.3 � x/ cos x C x sin x

i
:

The general solution of the equation (3.21) is the sum of the latter particular solution and the general
solution (3.22) of the homogeneous equation.

� In general, the method of undetermined coefficients can be applied to the equation (3.1) when the
inhomogeneous term is of the form

b.x/ D
lX
iD1

bi .x/ ; (3.25)

where
bi .x/ D e˛ix

�
qi .x/ cos.ˇix/C Qqi .x/ sin.ˇix/

�
; (3.26)

with ˛i ; ˇi 2 R (ˇi > 0), and qi ; Qqi are polynomials. Note that if ˇi D 0 the function bi .x/ is of
the form (3.15) with � D ˛i . It may be verified that the equation (3.1) with the inhomogeneous
term (3.25)-(3.26) possesses a particular solution of the form

up.x/ D
lX
iD1

ui .x/ ; (3.27)

where
ui .x/ D xri e˛ix

�
Qi .x/ cos.ˇix/C eQi .x/ sin.ˇix/

�
: (3.28)

Here ri is the multiplicity of �i D ˛i C iˇi as a root of the characteristic polynomial of the homo-
geneous equation, and Qi ; eQi are polynomials such that degQi ; deg eQi 6 max.deg qi ; deg Qqi /,
with coefficients to be determined upon substitution of (3.27)-(3.28) into (3.1).

3.2 Systems with constant coefficients. Exponential of a matrix

In Section 2.4 we proved that if a fundamental matrix of the homogeneous system (2.4) is known,
then it is possible to express the general solution of the inhomogeneous system (2.1) by quadratures
(cf. eq. (2.26)). The problem is that in general it is not possible to determine such a fundamental matrix
explicitly. In this section we will show that when the matrix A.x/ of the system (2.1) is constant it is
possible in principle to construct a fundamental matrix of the corresponding homogeneous system

y0 D Ay ; A 2Mn.R/ : (3.29)

More explicitly, we shall prove that the canonical fundamental matrix at x0 D 0 of the system (3.29) is
given by the matrix exponential exA, whose definition shall be discussed next.

Let E.x/ denote the canonical fundamental matrix at x0 D 0, which satisfies the matrix initial value
problem (

E 0.x/ D AE.x/ ;
E.0/ D 1 :

(3.30)
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Differentiating repeatedly the above equation it follows that

E.k/.x/ D AkE.x/ ; k D 0; 1; : : : ; (3.31)

where by definition B0 � 1 for any matrix B , so that

E.k/.0/ D Ak ; k D 0; 1; : : : : (3.32)

It may be shown (see, e.g., [EDI2009]) that for any matrix A the Taylor series of E.x/ centered at the
origin converges for all x 2 R, that is,

E.x/ D
1X
kD0

Ak

kŠ
xk ; 8x 2 R : (3.33)

By analogy with the scalar case, the exponential of a matrix B 2Mn.C/ is defined as

eB D
1X
kD0

Bk

kŠ
: (3.34)

Again, it can be shown (cf. [EDI2009]) that the previous series converges for any matrix B . From the
latter definition and (3.33) it follows that

E.x/ D exA ;

Hence, the solution of the initial value problem(
y0 D Ay
y.0/ D y0

is given by

y.x/ D exAy0 : (3.35)

In this course we shall make use of the following properties of the matrix exponential:

i/ e.xCt/A D exAetA D etAexA ; 8x; t 2 R ; (3.36)

ii/
�
exA

��1 D e�xA ; 8x 2 R ; (3.37)

iii/ ePBP
�1 D P eBP�1 ; (3.38)

where A 2Mn.R/ and B ,P 2Mn.C/, with P invertible1.

Proof. For any fixed t 2 R, the matrix E.x C t / (regarded as a function of x) is a fundamental matrix
of the system (3.29), since it is invertible everywhere (recall that E.x/ is invertible for all x 2 R, for it
is a fundamental matrix) and satisfies

d
dx
E.x C t / D E 0.x C t / D AE.x C t / ; 8x 2 R :

On the other hand, E.x/E.t/ is also a fundamental matrix of (3.29), since E.t/ is constant invertible
matrix. At x D 0, both E.x C t / and E.x/E.t/ take the same value E.t/ (since E.0/ D 1), so that
E.x C t / D E.x/E.t/ for all x; t 2 R. This establishes the first property. Property ii) follows from
property i) taking t D �x and noting that e0�A D E.0/ D 1. Regarding the third property,

P eBP�1 D P
 
1X
kD0

Bk

kŠ

!
P�1 D

1X
kD0

PBkP�1

kŠ
D
1X
kD0

.PBP�1/
k

kŠ
D ePBP

�1

:

�
1In fact, property i) is a consequence of the following more general property [EDI2009]: if any two matricesA yB commute

(i.e., ŒA; B� � AB � BA D 0), then eACB D eAeB D eBeA.

http://teorica.fis.ucm.es/ffinkel/edi/Ecuaciones_Diferenciales_I_files/edi-ffag.pdf
http://teorica.fis.ucm.es/ffinkel/edi/Ecuaciones_Diferenciales_I_files/edi-ffag.pdf
http://teorica.fis.ucm.es/ffinkel/edi/Ecuaciones_Diferenciales_I_files/edi-ffag.pdf
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From the identities (3.36)-(3.37) we deduce that exA.ex0A/�1 D e.x�x0/A is the canonical funda-
mental matrix of (3.29) at x0. Thus, the solution of the initial value problem(

y0.x/ D Ay.x/
y.x0/ D y0

is given by

y.x/ D eA.x�x0/y0 :

On the other hand, from the identities (3.36)-(3.37) and the variation of constants formula (2.26) it
follows that the general solution of the inhomogeneous system associated with (3.29)

y0 D Ay C b.x/ ; con b W I ! Rn continuous,

is given by

y.x/ D exAc C exA
Z x

e�sAb.s/ ds D exAc C
Z x

e.x�s/Ab.s/ ds ; c 2 Rn : (3.39)

If we impose the initial condition y.x0/ D y0, the solution thus obtained reads (cf. eq. (2.27))

y.x/ D eA.x�x0/y0 C
Z x

x0

e.x�s/Ab.s/ ds : (3.40)

Example 3.6. Let us determine the canonical fundamental matrix at the origin of the system y0 D Ay,
where

A D

�
0 0 1 0

0 0 0 �1
�1 0 0 0

0 1 0 0

˘

; (3.41)

directly from the definition (3.34). Since the matrix (3.41) satisfies A2 D �1, its powers are given by

A2k D .�1/k1 ; A2kC1 D .�1/kA ; k D 0; 1; : : : :
Splitting the series for the exponential into even and odd powers of A and using the above expressions
we obtain

exA D
1X
kD0

x2k

.2k/Š
.�1/k1C

1X
kD0

x2kC1

.2k C 1/Š .�1/
kA

D cos x 1C sin x A D

�
cos x 0 sin x 0

0 cos x 0 � sin x
� sin x 0 cos x 0

0 sin x 0 cos x

˘

� In most cases it is not convenient to use directly the definition (3.34) to compute the canonical
fundamental matrix exA of the system (3.29), since it is not easy to obtain a general expression
for the powers of the matrix A, let alone summing the resulting series for the exponential. There
are many different practical methods for computing the matrix exponential (see, e.g., [EDI2009]),
most of which presuppose the knowledge of concepts in linear algebra that may not have been
explained in the first year of the Degree. In the next section we will discuss some practical methods
for computing the matrix exponential which require only a basic knowledge of linear algebra. In
any case, if a fundamental matrix Y.x/ of the system (3.29) is known (obtained by any method),
then it is always possible to compute the matrix exA using the formula

exA D Y.x/Y.0/�1 : (3.42)

http://teorica.fis.ucm.es/ffinkel/edi/Ecuaciones_Diferenciales_I_files/edi-ffag.pdf
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Example 3.7. Let us determine the canonical fundamental matrix at the origin of the system

�
y01 D y1
y02 D y1 C 2y2
y03 D y1 � y3 :

(3.43)

In other words, we have to compute exA, where

A D
�
1 0 0

1 2 0

1 0 �1

�
:

Let us first find a fundamental matrix of the system. To this purpose, note that the equation for y1 is
uncoupled from the remaining ones, and it can be readily solved as it is a homogeneous equation with
constant coefficients (the characteristic polynomial is p1.�/ D � � 1):

y1.x/ D c1ex ; c1 2 R :

Substituting this expression into the equations for y2 and y3 we get the following inhomogeneous equa-
tions with constant coefficients: (

y02 D 2y2 C c1ex

y03 D �y3 C c1ex :

The solution for y2 is of the form

y2.x/ D c2e2x C y2;p.x/ ; c2 2 R :

with y2;p.x/ D ˛ex for some constant ˛ (according to the method undetermined coefficients). Substi-
tuting y2;p.x/ into its corresponding equation we easily obtain ˛ D �c1. Thus

y2.x/ D c2e2x � c1ex :

Similarly,

y3.x/ D c3e�x C c1

2
ex ; c3 2 R :

In summary, the general solution of the system (3.43) is given by

y.x/ �
�
y1.x/

y2.x/

y3.x/

�
D c1ex

�
1

�1
1
2

�
C c2e2x

�
0

1

0

�
C c3e�x

�
0

0

1

�
D Y.x/

�
c1
c2
c3

�
;

so that

Y.x/ D
�

ex 0 0

�ex e2x 0
1
2

ex 0 e�x

�

is a fundamental matrix. The canonical fundamental matrix of the system (3.43) at the origin is thus

exA D Y.x/Y.0/�1 D
�

ex 0 0

�ex e2x 0
1
2

ex 0 e�x

��
1 0 0

1 1 0

�1
2

0 1

�
D
�

ex 0 0

e2x � ex e2x 0
1
2
.ex � e�x/ 0 e�x

�
:
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3.3 Practical methods for computing the matrix exponential

In this section we shall present some practical methods for the computation of the canonical fundamental
matrix exA of the system y0 D Ay, withA 2Mn.R/. We shall distinguish two different cases, depending
on whether the matrix A is diagonalizable or not. Let us start with a brief reminder of some basic notions
of linear algebra.

� We say that � 2 C is an eigenvalue of the matrix A if there exists a nonzero vector v 2 Cn such
that Av D �v. In this case, we say that v is an eigenvector of A with eigenvalue �. The matrix
A is diagonalizable if there exists an invertible constant matrix2 P such that J � P�1AP is a
diagonal matrix. The elements of the main diagonal of J are the eigenvalues of the matrix A, and
the columns of P are a basis of Cn formed by eigenvectors of A.

� It is well known that the eigenvalues �1; : : : ; �m of the matrix A (where we are assuming that
�i ¤ �j if i ¤ j ) are the roots of the characteristic polynomial of A, defined as

pA.�/ D det.�1 � A/ : (3.44)

In other words, the characteristic polynomial factors as

pA.�/ D
mY
iD1

.� � �i /ri : (3.45)

The integer ri > 1 is called the algebraic multiplicity of the eigenvalue �i . Since pA is an n-th
degree polynomial, from (3.45) it follows that

mX
iD1

ri D n : (3.46)

� An elementary result in linear algebra states that A is diagonalizable if and only if the algebraic
multiplicity ri of each eigenvalue �i coincides with its geometric multiplicity si , defined as3

si D dim ker.A � �i / : (3.47)

Thus si is the maximum number of linearly independent eigenvectors corresponding to the eigen-
value �i . It is well known that the geometric multiplicity cannot exceed the algebraic one, i.e.,
si 6 ri for all i . Therefore, when all eigenvalues are simple (i.e., if ri D 1 for all i ) the matrix A
is always diagonalizable.

� Another criterion for determining whether a matrix A is diagonalizable is based on the notions of
minimal polynomial and index of an eigenvalue. Recall that the minimal polynomial �A.�/ of a
matrixA is the monic polynomial4 of lowest degree annihilating this matrix (i.e., �A.A/ D 0). The
existence of the minimal polynomial is a consequence of the Cayley–Hamilton theorem, according
to which pA.A/ D 0. It can be proved that if the characteristic polynomial is given by (3.45), then
the minimal polynomial is of the form

�A.�/ D
mY
iD1

.� � �i /di ; 1 6 di 6 ri :

2In general, complex.
3For simplicity’s sake, from now on we shall write A � � instead of A � �1.
4A polynomial is monic if the coefficient of the highest degree term appearing in that polynomial is equal to 1. For instance,

from (3.44) or (3.45) it follows that the characteristic polynomial of any matrix is monic.
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Note, in particular, that the minimal polynomial always divides the characteristic polynomial. The
multiplicity di of �i as a root of the minimal polynomial is known as the index of the eigen-
value �i . It can be shown (see, e.g., [EDI2009]) that

ri D si () di D 1 : (3.48)

Thus
A diagonalizable () di D 1 ; 8i D 1; : : : ; m : (3.49)

3.3.1 A diagonalizable

In this section we shall see that when the matrix A is diagonalizable it is straightforward to compute the
matrix exponential exA. Indeed, let fv1; : : : ; vng be a basis of Cn formed by eigenvectors of A, and let
�1; : : : ; �n be their corresponding eigenvalues:

Avi D �ivi ; i D 1; : : : ; n: (3.50)

(Note that in this notation the eigenvalues �i may not be distinct from each other.) Thus, if

J D

�
�1

: : :

�n

�

; P D .v1 � � � vn/ ;

then
A D PJP�1 :

From the equation (3.38) it immediately follows that

exA D P exJP�1 ; (3.51)

where

exJ D
1X
kD0

xk

kŠ
J k D

1X
kD0

xk

kŠ

�
�k1

: : :

�kn

�

D

�
1P
kD0

xk�k
1

kŠ

: : :
1P
kD0

xk�k
n

kŠ

�

D

�
e�1x

: : :

e�nx

�

:

� Since exA is a fundamental matrix of the homogeneous system (3.29) andP is an invertible matrix,
multiplying the equality (3.51) from the right by P it follows that

P exJ D �e�1xv1 � � � e�nxvn
�

(3.52)

is also a fundamental matrix of this system (see the remarks on page 25). In fact, it is usually easier
to determine P exJ than exA, since for the former it is not necessary to compute P�1. However
(unlike exA, which is always real when A is real) the matrix P exJ may be complex, so that it
might be necessary to take linear combinations of its columns in order to obtain a real fundamental
matrix.

� If the matrix A is diagonalizable, from the previous remark it follows that˚
e�1xv1; : : : ; e�nxvn

	
(3.53)

is a fundamental system of solutions of the homogeneous system. If an eigenvalue �i is real we
can always choose vi to be real, so that the corresponding solution e�ixvi is also real. On the

http://teorica.fis.ucm.es/ffinkel/edi/Ecuaciones_Diferenciales_I_files/edi-ffag.pdf


44 LINEAR EQUATIONS AND SYSTEMS WITH CONSTANT COEFFICIENTS

other hand, if �i D a C ib 2 CnR, there exists another eigenvalue �j D �i D a � ib with the
same algebraic multiplicity as �i (since the characteristic polynomial is real), and we can always
choose vj D vi . If vi D uC iv (with u;w 2 Rn/, we can substitute the two complex solutions
associated with �i ; �j

e.a˙ib/x.u˙ iw/

by the real and imaginary parts of any of them:

eax
�
u cos.bx/ � w sin.bx/

�
; eax

�
u sin.bx/C w cos.bx/

�
: (3.54)

(Note that the functions (3.54) are still solutions of the system, on account of the general remarks
on page 22.)

Example 3.8. Let us determine the solution of the inhomogeneous system(
y01 D 5y1 � 6y2 C 3e2x

y02 D 3y1 � 4y2

satisfying the initial condition y1.0/ D 2, y2.0/ D 1. We shall first compute the matrix exponential exA,
where

A D
�
5 �6
3 �4

�
is the matrix of the homogeneous system, and then determine the sought-for solution making use of the
equation (3.40). The characteristic polynomial of A is

pA.�/ D
ˇ̌̌̌
� � 5 6

�3 �C 4
ˇ̌̌̌
D �2 � � � 2 D .� � 2/.�C 1/ :

Since the eigenvalues �1 D 2 and �2 D �1 are simple, the matrix A is diagonalizable. Thus the
homogeneous system possesses a fundamental system of solutions of the form e�ixvi (i D 1; 2), where
vi is an eigenvector with eigenvalue �i . The eigenvectors can be easily computed solving the linear
systems .A � �i /vi D 0 (i D 1; 2), with the result

�1 D 2 W v1 D
�
2

1

�
I �2 D �1 W v2 D

�
1

1

�
:

From the equation (3.51) it follows that the canonical fundamental matrix at the origin is given by

exA D P
�

e2x 0

0 e�x

�
P�1 D

�
2 1

1 1

��
e2x 0

0 e�x

��
1 �1
�1 2

�
D
�
2e2x � e�x 2e�x � 2e2x

e2x � e�x 2e�x � e2x

�
:

Finally, we determine the solution of the homogeneous system satisfying the given initial condition using

equation (3.40) with x0 D 0, y0 D
�
2

1

�
D v1, b.s/ D

�
3e2s

0

�
:

y.x/ D exA
�
2

1

�
C
Z x

0

e.x�s/A
�
3e2s

0

�
ds D e2x

�
2

1

�
C 3

Z x

0

�
2e2x � e3s�x

e2x � e3s�x

�
ds

D
 
2e2x

e2x

!
C 3

 �
2e2xs � 1

3
e3s�x

�x
0�

e2xs � 1
3

e3s�x
�x
0

!
D
 
.6x C 1/ e2x C e�x

3x e2x C e�x

!
:

Notice that in the second equality we have taken into account the following general property: if v is an
eigenvector of A with eigenvalue �, then

exAv D
 
1X
kD0

xk

kŠ
Ak

!
v D

1X
kD0

xk

kŠ
Akv D

1X
kD0

xk

kŠ
�kv D e�xv :



Practical methods for computing the matrix exponential 45

3.3.2 A non-diagonalizable

In this section we shall present a general method for the computation of the exponential exA, valid for
any A matrix (whether or not it is diagonalizable). The method is based on the following result, which is
a direct consequence of the existence of the minimal polynomial of the matrix A:

Lemma 3.9. Let A 2Mn.R/, and let �A.�/ be its minimal polynomial. Then each matrix element u.x/
of exA is a solution of the linear equation with constant coefficients �A.D/u D 0.

Proof. From the identity
DkexA D AkexA (3.55)

(cf. eq. (3.31)), it immediately follows that P.D/ exA D P.A/ exA for any polynomial P . In particular,

�A.D/ exA D �A.A/ exA D 0

by the definition of the minimal polynomial. In other words, each entry of exA is a solution of the scalar
equation �A.D/u D 0. �

The obvious question that arises in view of the previous lemma is which concrete solution of the equation
�A.D/u D 0 appears in each matrix element of exA, a question that we shall answer next. Let d be the
degree of the minimal polynomial, and let f'1; : : : ; 'd g be a fundamental system of solutions of the
equation �A.D/u D 0, which will be assumed to be real. By virtue of Lemma 3.9, each matrix element
.exA/ij is a linear combination of f'1; : : : ; 'd g, that is, there exist d real constants c1ij ; : : : ; c

d
ij such that

.exA/ij D c1ij '1.x/C c2ij '2.x/C � � � C cdij 'd .x/ : (3.56)

Equivalently, if

Ck D

ˇ
ck11 ck12 : : : ck1n

ck21 ck22 : : : ck2n
:::

:::
:::

ckn1 ckn2 : : : cknn



; k D 1; : : : ; d ;

we can express the equality (3.56) in matrix form as

exA D '1.x/C1 C '2.x/C2 C � � � C 'd .x/Cd D
�
'1.x/ '2.x/ : : : 'd .x/

�
ˇ
C1

C2
:::

Cd



: (3.57)

Differentiating repeatedly this expression taking into account equation (3.55), and evaluating the result-
ing expression at x D 0 we obtain

'
.k/
1 .0/C1 C '.k/2 .0/C2 C � � � C '.k/d .0/Cd D Ak ; k D 0; : : : ; d � 1 : (3.58)

These d equations are equivalent to the formal matrix equation

ˇ
'1.0/ '2.0/ : : : 'd .0/

'01.0/ '02.0/ : : : '0
d
.0/

:::
:::

:::

'
.d�1/
1 .0/ '

.d�1/
2 .0/ : : : '

.d�1/

d
.0/

ˇ
C1

C2
:::

Cd



D

ˇ
1

A
:::

Ad�1



;
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i.e.,

˚.0/

ˇ
C1

C2
:::

Cd



D

ˇ
1

A
:::

Ad�1



where˚.0/ is the Wronski matrix of the solutions '1; : : : ; 'd evaluated at x D 0. Since˚.0/ is invertible
(why?), from the latter equation it follows that

ˇ
C1

C2
:::

Cd



D ˚.0/�1

ˇ
1

A
:::

Ad�1



:

Substituting this expression into (3.57) we obtain the following formula for computing exA:

exA D �'1.x/ '2.x/ : : : 'd .x/
�
˚.0/�1

ˇ
1

A
:::

Ad�1



: (3.59)

� A variant of the method just explained consists in using the characteristic polynomial pA.�/ in-
stead of the minimal polynomial �A.�/. In that case we would obtain a formula analogous to (3.59)
substituting d by n, and ˚.0/�1 would be the inverse of the Wronski matrix evaluated at x D 0 of
a fundamental system of solutions f'1; : : : ; 'ng of the scalar equation pA.D/u D 0. The advan-
tage of this variant is that it is not necessary to determine the minimal polynomial, but if n > d

it has the disadvantage of having to compute higher powers of the matrix A and inverting ˚.0/,
which in this case would be an n � n matrix.

Example 3.10. Find the solution of the initial value problem(
y0 D Ay
y.0/ D y0 ;

with A D
�
3 �4
1 �1

�
; y0 D

�
1

0

�
:

From the equation (3.35) it follows that the sought-for solution is

y.x/ D exA
�
1

0

�
;

that is, the first column of exA. The characteristic polynomial of A is

pA.�/ D
ˇ̌̌̌
� � 3 4

�1 �C 1
ˇ̌̌̌
D .� � 1/2 ;

so that A only has the eigenvalue �1 D 1 with algebraic multiplicity 2. Since A is not diagonalizable
(any matrix with just an eigenvalue is diagonalizable if and only if it is a multiple of the identity) the
index of �1 is 2, and the minimal and characteristic polynomials coincide. A fundamental system of
solutions of the equation

�A.D/u D .D � 1/2u D 0
consists of the functions '1 D ex and '2 D xex , whose corresponding Wronski matrix is

˚.x/ D
�

ex xex

ex .x C 1/ex
�
:
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Thus

˚.0/�1 D
�
1 0

1 1

��1
D
�
1 0

�1 1

�
:

Using the formula (3.59), we have

exA D �ex xex
� � 1 0

�1 1

��
1
A

�
D �.1 � x/ ex xex

� �1
A

�
D .1�x/ ex 1CxexA D

�
.1C 2x/ ex �

xex �
�
;

so that the sought-for solution is

y.x/ D
�
.1C 2x/ ex

xex

�
:

Example 3.11. Let us apply the formula (3.59) to determine again exA, where A is the matrix (3.41) of
the Example 3.6. The characteristic polynomial of A is

pA.�/ D

ˇ̌̌̌
ˇ̌̌̌� 0 �1 0

0 � 0 1

1 0 � 0

0 �1 0 �

ˇ̌̌̌
ˇ̌̌̌ D �2.�2 C 1/C �2 C 1 D .�2 C 1/2 ;

and thus its eigenvalues are˙i, both with algebraic multiplicity 2. Since the matrix A satisfies A2 D �1
and the minimal polynomial divides the characteristic one, in this case �A.�/ D �2 C 1. (Note that the
indices of the eigenvalues˙i are both 1, so A is diagonalizable). A fundamental system of real solutions
of the equation

�A.D/u D .D2 C 1/u D u00 C u D 0
is made up by the functions '1 D cos x, '2 D sin x, with Wronski matrix

˚.x/ D
�

cos x sin x
� sin x cos x

�
:

From equation (3.59) it then follows that

exA D �cos x sin x
� �1 0

0 1

��1 �
1
A

�
D �cos x sin x

� �1
A

�
D cos x 1C sin x A ;

in agreement with the expression previously obtained.

Example 3.12. Let us compute the canonical fundamental matrix at x D 0 of the system

y0 D Ay ; A D
�
1 1 1

2 1 �1
0 �1 1

�
: (3.60)

The characteristic polynomial of the matrix A reads

pA.�/ D
ˇ̌̌̌
ˇ̌� � 1 �1 �1
�2 � � 1 1

0 1 � � 1

ˇ̌̌̌
ˇ̌ D .��1/.�2�2�/C2.2��/ D .��2/.�2���2/ D .�C1/.��2/2 :

The eigenvalues of A are thus �1 D �1, �2 D 2, with respective algebraic multiplicities r1 D 1, r2 D 2.
Since

.AC 1/.A � 2/ D
�
2 1 1

2 2 �1
0 �1 2

���1 1 1

2 �1 �1
0 �1 �1

�
D
� � � �
� � �
�2 � �

�
¤ 0 ;
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the index of the eigenvalue �2 is n2 D 2, so that the minimal and characteristic polynomials coincide
and A is not diagonalizable. (Alternatively, since the rank of

A � 2 D
��1 1 1

2 �1 �1
0 �1 �1

�

is clearly 2, it follows that

s2 D dim ker.A � 2/ D 3 � rank.A � 2/ D 1 < r2 ;

so that A is non-diagonalizable and n2 D 2.) A fundamental system of solutions of the equation

�A.D/u D .D C 1/.D � 2/2u D 0

is made up by the functions '1 D e�x , '2 D e2x , '3 D xe2x , with corresponding Wronski matrix

˚.x/ D
�

e�x e2x xe2x

�e�x 2e2x .1C 2x/e2x
e�x 4e2x 4.1C x/e2x

�
:

Thus

˚.0/�1 D
�

1 1 0

�1 2 1

1 4 4

��1
D 1

9

�
4 �4 1

5 4 �1
�6 �3 3

�
:

From the formula (3.59) it follows that

exA D 1

9

�
e�x e2x xe2x

�� 4 �4 1

5 4 �1
�6 �3 3

��
1
A

A2

�

D 1

9

�
4e�x C 5e2x � 6xe2x � 4e�x C 4e2x � 3xe2x e�x � e2x C 3xe2x

�� 1
A

A2

�

D 1

9

�
3e�x C 6e2x 3e2x � 3e�x 3e2x � 3e�x

2.3x C 2/e2x � 4e�x 4e�x C .3x C 5/e2x 4e�x C .3x � 4/e2x
2.1 � 3x/e2x � 2e�x 2e�x � .3x C 2/e2x 2e�x C .7 � 3x/e2x

�
;

where in the last equality we have taken into account that

A2 D
�

3 1 1

4 4 0

�2 �2 2

�
:



Chapter 4

Analytic functions

4.1 Algebraic properties of complex numbers

Definition 4.1. C D ˚R2;C; �	, with sum and multiplication defined as

.x1; y1/C .x2; y2/ D .x1 C x2; y1 C y2/
.x1; y1/ � .x2; y2/ D .x1x2 � y1y2; x1y2 C x2y1/:

Justification:

� The sum and product of pairs of the form .x; 0/ coincides with those of the real numbers x 2 R

H) we can identify the complex number .x; 0/ with the real number x 2 R

H) we can identify R with the subset f.x; 0/ W x 2 Rg � C (real axis)

Note that for all � 2 R we have �.x; y/ D .�; 0/.x; y/ D .�x; �y/. Thus the set of complex
numbers can be regarded as the vector space R2 (with the usual operations of sum of vectors and
scalar multiplication) with an additional operation of multiplication of complex numbers).

� i � .0; 1/ H) i2 D i � i D .0; 1/ � .0; 1/ D .�1; 0/ � �1
� .x; y/ D .x; 0/C y.0; 1/ � x C iy

H) .x1 C iy1/.x2 C iy2/ D .x1x2 � y1y2/C i.x1y2 C x2y1/ ;
which is the usual rule for multiplying the complex numbers x1 C iy1 and x2 C iy2.

� If ´ D x C iy .x; y 2 R/, we define

Re ´ D x; Im ´ D y
(real and imaginary parts of the complex number ´)

� Since C D R2 (as sets), equality in C is defined as

´ � x C iy D w � uC iv() x D u; y D v :
In particular,

´ D x C iy D 0() x D y D 0:
Proposition 4.2. C is a field: for all ´;w; s 2 C we have

´C w D w C ´ ´w D w ´
´C .w C s/ D .´C w/C s ´ .w s/ D .´w/ s

´C 0 D ´ 1 ´ D ´
9 � ´ 2 C t.q. ´C .�´/ D 0 ´ ¤ 0 H) 9´�1 2 C t.q. ´ ´�1 D 1

´.w C s/ D ´w C ´ s:

49
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Proof. Obviously, ´ D x C iy H) �´ D �x � iy. The existence of the inverse with respect to the
product for all ´ D x C iy ¤ 0 is deduced from the following calculation:

´�1 D uC iv H) ´ ´�1 D .x u � y v/C i .x v C y u/ D 1

()
(
x u � y v D 1
y uC x v D 0

() u D x

x2 C y2 ; v D � y

x2 C y2 .note that ´ ¤ 0 H) x2 C y2 ¤ 0/

() ´�1 D x

x2 C y2 � i
y

x2 C y2 :

The remaining properties can be easily checked from the definition of the operations in C. �

� As in every field, the inverses �´ and ´�1 (if ´ ¤ 0) of the number ´ 2 C with respect to the sum and
product are unique.

Notation:
´

w
� ´w�1; ´n D ´ � ´ � � � � �š́

n times

.n 2 N/.

� C is not an ordered field: if it were so, then

i2 D i � i D �1 > 0:

4.1.1 Square roots (algebraic method)

If ´ D x C iy, let us find all w � uC iv 2 C such that w2 D ´:

w2 D ´() u2 � v2 C 2iuv D x C iy

()
(
u2 � v2 D x
2 u v D y

H) x2 C y2 D .u2 C v2/2 H) u2 C v2 D
q
x2 C y2

H) u2 D 1

2

�
x C

q
x2 C y2

�
; v2 D 1

2

�
� x C

q
x2 C y2

�
Since (by the second equation) the sign of uv must coincide with that of y, it follows that

w D

†
˙
 r

xC
p
x2Cy2

2
C i sgny

r
�xC
p
x2Cy2

2

!
; y ¤ 0

˙px; y D 0; x > 0
˙i
p�x; y D 0; x < 0:

The square roots of a complex number ´ ¤ 0 are therefore two distinct complex numbers (of opposite
signs). The square roots of ´ are real if and only if ´ 2 RC [ f0g, and pure imaginary if and only if
´ 2 R�.

Example: The square roots of 3 � 4 i are

˙
 r

8

2
� i

r
2

2

!
D ˙.2 � i/:
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� Any quadratic equation with complex coefficients can be solved using the usual formula:

a ´2 C b ´C c D 0 () ´ D 1

2a

�
�b ˙

p
b2 � 4ac

�
; a; b; c 2 C ; a ¤ 0;

where ˙
p
b2 � 4ac denotes the two square roots of the complex number b2 � 4ac. Indeed, it

suffices to complete the square

a ´2 C b ´C c D a
�
´C b

2a

�2
� 1

4a
.b2 � 4ac/

and apply the previous result on the existence of square roots in C.

Example 4.3. The solutions of the equation ´2 � 8i´ � .19 � 4i/ D 0 are the complex numbers

4i˙p�16C 19 � 4i D 4i˙
p
3 � 4i D 4i˙ .2 � i/ D

(
2C 3i
�2C 5i :

� Newton’s binomial theorem is valid in the complex case:

.aC b/n D
nX
kD0

 
n

k

!
akbn�k ; a; b 2 C; n 2 N :

Indeed, as in the real case, the proof of this identity uses only the field properties of the complex
numbers.

4.1.2 Modulus and conjugation

Geometrically, complex numbers can be regarded as points on the plane by identifying the complex
number ´ D x C iy with the point with coordinates .x; y/. Hence the set C is often called the complex
plane. When using this geometric representation of C it is also common to refer to the horizontal axis
the as the real axis, and to the vertical one as the imaginary axis, cf. fig. 4.1.

z

z–

Figure 4.1: Complex plane.

� If ´ D x C iy 2 C, its modulus and complex conjugate are respectively defined as
˚
j´j D

q
x2 C y2 (distance of ´ to the origin)

´ D x � iy (reflection of ´ with respect to the real axis)
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H) Re ´ D 1

2
.´C ´/; Im ´ D 1

2i
.´ � ´/ :

The number ´ 2 C is real if and only if ´ D ´, and purely imaginary if and only if ´ D �´.

� Properties:

i) ´ D ´
ii) ´C w D ´C w

iii) ´ � w D ´ � w H) 1=´ D 1=´ (if ´ ¤ 0)

iv) j´j D j´j

v) ´´ D j´j2 H)

�
´ ¤ 0 H) ´�1 D ´

j´j2

j´j D 1 () ´ D ´�1

vi) j´ � wj D j´j � jwj (square this equality to prove it) H) ˇ̌
´�1

ˇ̌ D j´j�1 (si ´ ¤ 0)

vii) w ¤ 0 H) ´=w D ´=w; j´=wj D j´j = jwj (consequence of iii) and vi))

viii) jRe ´j 6 j´j ; jIm ´j 6 j´j .i.e., � j´j 6 Re ´; Im ´ 6 j´j/
� Triangle inequality: j´C wj 6 j´j C jwj

In fact:

j´C wj2 D .´C w/.´C w/ D j´j2 C jwj2 C .´w C ´w/ D j´j2 C jwj2 C 2Re.´w/

6 j´j2 C jwj2 C 2 j´wj D j´j2 C jwj2 C 2 j´j jwj D .j´j C jwj/2:

� Consequences:

i) jj´j � jwjj 6 j´ � wj
Indeed:

j´j D j.´ � w/C wj 6 j´ � wj C jwj H) j´j � jwj 6 j´ � wj ;

and interchanging ´ and w one obtains the inequality jwj � j´j 6 j´ � wj.
ii) j´j > jwj H) 1

j´ � wj 6
1

j´j � jwj

4.1.3 Argument

z

Figure 4.2: Definition of argument.

� If 0 ¤ ´ 2 C, there exists � 2 R such that

´ D j´j .cos � C i sin �/ (cf. Fig. 4.2).
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Geometrically, the number � is the angle formed by the positive real axis with the vector ´, and is
thus defined up to an integer multiple of 2 . For instance,

´ D i H) � 2
�
 

2
;
 

2
˙ 2 ;  

2
˙ 4 ; : : :

�
D
n 
2
C 2k  W k 2 Z

o
:

Definition 4.4. arg ´ (argument of ´): any � 2 R such that ´ D j´j .cos � C i sin �/.

In other words, arg ´ is any of the oriented angles formed by the positive real axis with the vector ´.
Thus arg ´ takes infinitely many values, which differ from each other by an integer multiple of 2 . Note,
in particular, that arg is not a function.

Example:

arg i 2 ˚ 
2
C 2k  W k 2 Z

	
; arg.�1 � i/ 2 ˚5 

4
C 2k  W k 2 Z

	 D ˚�3 
4
C 2k  W k 2 Z

	
:

� The argument � can be made unique by imposing the additional condition that it belongs to a
certain half-open interval I of length 2  (such as Œ0; 2 /, .� ; �, � �  

2
; 3 
2

�
, etc.). In so doing

we say that we have chosen the branch I of the argument, denoted as argI . In other words:

Definition 4.5. argI .´/ � unique value of arg ´ which belongs to the interval I .

Note, in particular, that
argI W C n f0g ! I

is a function.

Example: argŒ0;2 /.�1 � i/ D 5 
4

, arg.� ; �.�1 � i/ D �3 
4

.

� Principal value or main branch of the argument:

Arg � arg.� ; �

Example:
´ 1 1C i i �1C i �1 �1 � i �i 1 � i

Arg ´ 0  =4  =2 3 =4   �3 =4 � =2 � =4

� Clearly, Arg W C n f0g ! .� ; � is a discontinuous function on R� [ f0g. Likewise, argŒ0;2 / is
discontinuous on RC[f0g. In general, the branch argŒ�0;�0C2 /

(or arg.�0;�0C2 �
) is discontinuous

on the closed half-line forming an angle �0 with the positive real axis.

� Polar or trigonometric form of a complex number:

´ ¤ 0 H) ´ D r.cos � C i sin �/; r D j´j ; � D arg ´:

� ´;w ¤ 0I ´ D w () � j´j D jwj ; arg ´ D argw mod 2 
�
.

� Geometric interpretation of the product of complex numbers: if ´k D rk.cos �k C i sin �k/ ¤ 0

(k D 1; 2) then

´1´2 D r1.cos �1 C i sin �1/ r2.cos �2 C i sin �2/

D r1r2 Œ.cos �1 cos �2 � sin �1 sin �2/C i.cos �1 sin �2 C sin �1 cos �2/�

D r1r2 Œcos.�1 C �2/C i sin.�1 C �2/�

From this calculation it follows that j´1´2j D j´1j j´2j (property vi) on page 52), together with

arg.´1´2/ D arg ´1 C arg ´2 mod 2  : (4.1)
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� Note that, in general, Arg.´1´2/ ¤ Arg ´1 C Arg ´2. For example,

Arg.�i/ D � 
2
¤ Arg.�1/C Arg i D 3 

2
:

� Consequences: given nonzero ´;w, then

.´´�1 D 1 H)/ arg.´�1/ D � arg ´ mod 2 

.´´ D j´j2 > 0 H)/ arg.´/ D � arg ´ mod 2 

H) arg.´=w/ D arg ´ � argw mod 2 :

4.1.4 De Moivre’s formula

� If ´ D r.cos � C i sin �/, from (4.1) it may be proved by induction de Moivre’s formula

´n D rn� cos.n�/C i sin.n�/
�
; n 2 N :

� ´�1 D r�1� cos.��/C i sin.��/� H) the formula is valid for all n 2 Z.

� De Moivre’s formula can be used to express cos.n�/ or sin.n�/ as a polynomial in cos � and sin � .
For instance:

.cos � C i sin �/3 D cos.3�/C i sin.3�/

D .cos3 � � 3 cos � sin2 �/C i.3 cos2 � sin � � sin3 �/

H)
8<:

cos.3�/ D cos3 � � 3 cos � sin2 �

sin.3�/ D 3 cos2 � sin � � sin3 �:

4.1.5 n-th roots

If ´ D r.cos � C i sin �/ ¤ 0 and n 2 N, the n-th roots of ´ are the solutions w 2 C of the equation
wn D ´:

w ¤ 0 H) w D �.cos' C i sin'/

wn D �n� cos.n'/C i sin.n'/
� D r.cos � C i sin �/

()
8<:�

n D r () � D n
p
r � r1=n

n' D � C 2k ; k 2 Z

() w D n
p
r

�
cos

�
�

n
C 2k 

n

�
C i sin

�
�

n
C 2k 

n

��
; k D 0; 1; : : : ; n � 1 (4.2)

(since k and k C ln, with l 2 Z, yield the same number w).

) A nonzero complex number has n distinct n-th roots. In particular, n
p
´ is not a function.

Example: the cube roots of i are the numbers

w D cos
�
 

6
C 2k 

3

�
C i sin

�
 

6
C 2k 

3

�
; k D 0; 1; 2

() w D 1

2
.
p
3C i/;

1

2
.�
p
3C i/; �i:
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� Geometrically, the n n-th roots of a number ´ ¤ 0 are the vertices of a regular polygon with n
sides inscribed in the circle of radius n

p
j´j centered at the origin.

� In particular, the n n-th roots of unity (´ D 1) are the numbers

"n;k D cos
�
2k 

n

�
C i sin

�
2k 

n

�
; k D 0; 1; : : : ; n � 1:

� From de Moivre’s formula it follows that "n;k D ."n/k , where

"n � "n;1 D cos
�
2 

n

�
C i sin

�
2 

n

�
.

Example: the six sixth roots of unity areh
cos

� 
3

�
C i sin

� 
3

�ik
D 1

2k
.1C i

p
3/k; k D 0; 1; : : : ; 5

D 1; 1
2
.1C i

p
3/;

1

2
.�1C i

p
3/; �1; �1

2
.1C i

p
3/;

1

2
.1 � i

p
3/:

Exercise. Let ´ be a nonzero complex number.

i) Show that its n-th roots are given by

!0 � ."n/k; k D 0; 1; : : : ; n � 1;
where !0 is any n-th root of ´.

ii) Prove that the sum of all n-th roots of ´ is 0.

4.2 Elementary functions

4.2.1 Exponential function

If t 2 R,

et D
1X
kD0

tk

kŠ

cos t D
1X
kD0

.�1/k t2k

.2k/Š

sin t D
1X
kD0

.�1/k t2kC1

.2k C 1/Š :

If ´ D x C iy 2 C (with x; y 2 R), the identity et1Ct2 D et1et2 suggests defining e´ D exeiy . On the
other hand, proceeding formally we obtain

eiy D
1X
nD0

in
yn

nŠ
D
1X
kD0

i2k
y2k

.2k/Š
C i

1X
kD0

i2k
y2kC1

.2k C 1/Š
D cosy C i siny .ya que i2k D .i2/k D .�1/k/:

Definition 4.6. Given ´ D x C iy 2 C (with x; y 2 R), we define

e´ D ex.cosy C i siny/ :
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Remark: If ´ 2 R, the complex exponential obviously reduces to the real one.

Particular cases:
e0 D 1; e i=2 D i; e i D �1; e3 i=2 D �i; e2 i D 1 :

Properties: For all ´;w 2 C we have

i) je´j D eRe´; arg.e´/ D Im ´ mod 2 , e´ D e´.

ii) e´Cw D e´ew .

iii) e´ ¤ 0, for all ´ 2 C.

iv) e´ D 1() ´ D 2k i, with k 2 Z.

v) e´ is a periodic function with periods 2k i, where k 2 Z.

Proof:

i) Immediate consequence of the definition.

ii) If ´ D x C iy, w D uC iv, from the previous property and equation (4.1) it follows that

e´ew D exeu Œcos.y C v/C i sin.y C v/� D exCu Œcos.y C v/C i sin.y C v/� D e´Cw :

iii) e´e�´ D e0 D 1 H) .e´/�1 D e�´.

iv) e´ D ex.cosy C i siny/ D 1() ex D 1; y D 0 mod 2  () x D 0; y D 2k  .k 2 Z/.

v) e´ D e´Cw () ew D 1() w D 2k i .k 2 Z/.

� ´ D j´j ei arg´:

� From the definition of the complex exponential and the formula (4.2) it follows that the n-th roots
of a nonzero number ´ are given by

n
p
j´j e i

n
.arg´C2k /; k D 0; 1; : : : ; n � 1: (4.3)

4.2.2 Trigonometric and hyperbolic functions

If y is real then

eiy D cosyCi siny; e�iy D cosy�i siny H) cosy D 1

2

�
eiy C e�iy� ; siny D 1

2i

�
eiy � e�iy� :

Definition 4.7. For all ´ 2 C we define

cos ´ D 1

2

�
ei´ C e�i´� ; sin ´ D 1

2i

�
ei´ � e�i´� :

Note that for real ´, both cos ´ and sin ´ reduce to the corresponding real-valued functions.

Properties: for all ´;w 2 C we have

i) cos.�´/ D cos.´/; sin.�´/ D � sin ´.

ii) cos ´ D cos ´; sin ´ D sin ´.
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iii) cos.´C w/ D cos ´ cosw � sin ´ sinw ; sin.´C w/ D sin ´ cosw C cos ´ sinw.

iv) cos ´ D sin
�
 
2
˙ ´�.

v) cos2 ´C sin2 ´ D 1.

vi) sin ´ D 0() ´ D k  .k 2 Z/, cos ´ D 0() ´ D  
2
C k  .k 2 Z/.

vii) cos ´ y sin ´ are periodic functions with periods 2k , where k 2 Z.

Proof:

i) Immediate.

ii) Consequence of ew D ew .

iii) For instance,

cos ´ cosw � sin ´ sinw D 1

4

�
ei´ C e�i´� �eiw C e�iw�C 1

4

�
ei´ � e�i´� �eiw � e�iw�

D 1

2
.ei´eiw C e�i´e�iw/ D cos.´C w/:

iv) Particular case of iii).

v) Take w D �´ in the formula for cos.´C w/.
vi) sin ´ D 0() ei´ � e�i´ D 0() e2i´ D 1() 2i´ D 2k i .k 2 Z/() ´ D k  .k 2 Z/.

From item iv) it follows the corresponding formula for the zeros of cos.

vii) By item iv), it suffices to prove the statement for the sine function. From the identity

sin.´C w/ � sin ´ � sin
�
´C w

2
C w

2

�
� sin

�
´C w

2
� w
2

�
D 2 sin

�w
2

�
cos

�
´C w

2

�
it follows that sin.´C w/ � sin ´ D 0 for all ´ if and only if sin.w=2/ D 0 (take ´ D �w=2). By
the previous item, this condition is fulfilled if and only if w is an integer multiple of 2 .

As in the real case, the remaining trigonometric functions are defined in terms of sin and cos:

tan ´ D sin ´
cos ´

; sec ´ D 1

cos ´
.´ ¤  

2
C k ; k 2 Z/I

cot ´ D cos ´
sin ´

D 1

tan ´
; csc ´ D 1

sin ´
.´ ¤ k ; k 2 Z/ :

Hyperbolic functions: for all ´ 2 C we define

cosh ´ D 1

2

�
e´ C e�´

�
; sinh ´ D 1

2

�
e´ � e�´

�
:

H) cosh ´ D cos.i´/; sinh ´ D �i sin.i´/

� The properties of the hyperbolic functions can be deduced from the latter equalities. For instance:

cosh2 ´ � sinh2 ´ D cos2.i´/C sin2.i´/ D 1 :

� The remaining hyperbolic functions are defined just as in the trigonometric case. For instance,

tanh ´ � sinh ´
cosh ´

D �i tan.i´/ .´ ¤  i
2
C k i; k 2 Z/; etc.
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� sin ´ D sin.x C iy/ D sin x cos.iy/C cos x sin.iy/ D sin x coshy C i cos x sinhy.

In particular, notice that sin ´ is real if ´ is real, or if ´ D  
2
C iy C k  with arbitrary y 2 R and

k 2 Z. Likewise, cos ´ is real if ´ 2 R, or if ´ D iy C k  with arbitrary y 2 R and k 2 Z.

Exercise. If ´ D x C iy (with x; y 2 R), show that

j sin ´j2 D sin2 x C sinh2 y ; j cos ´j2 D cos2 x C sinh2 y :

Deduce the inequalities j sinhyj 6 j sin ´j 6 coshy and j sinhyj 6 j cos ´j 6 coshy. In particular,
note that sin and cos are not bounded on C.

4.2.3 Logarithms

� In the real case, exp W R ! RC (where exp.t/ � et ) is a bijection. Its inverse is the function
log W RC ! R. By definition

log x D y () x D ey .H) x > 0/:

� In the complex case, exp is not invertible for it is not injective (since it is periodic). By definition,
the logarithms of ´ 2 C are all complex numbers w such that ew D ´. We then have:

ew D ´ H) ´ ¤ 0I
w D uC iv H) eu.cos v C i sin v/ D ´ ¤ 0

()
(

eu D j´j () u D log j´j
v D arg ´ mod 2 

() w D log j´j C i arg ´ mod 2 i:

If ´ ¤ 0, the equation ew D ´ thus have infinitely many solutions, differing from each other by an
integer multiple of 2 i. These solutions w are called the logarithms of ´ ¤ 0. In other words,

´ ¤ 0 H) log ´ D log j´j C i arg ´C 2k i; k 2 Z :

Note, in particular, that log (just as arg) is not a function.

� Example:

log.�2i/ D log 2 �  i
2
C 2k i ; k 2 Z ;

where log 2 2 R is the real logarithm of 2.

Notation: In general, if x 2 RC we shall denote by log x the real logarithm of x, whereas logC x D
log x C 2k i (with k 2 Z) will denote its complex logarithms.

Definition 4.8. Given a half-open interval I of length 2 , the branch I of the logarithm is defined as

logI ´ D log j´j C i argI ´; 8´ ¤ 0 :

For instance, logŒ0;2 /.�2i/ D log 2C 3 i
2

.

� Note that logI W C n f0g ! fs 2 C W Im s 2 I g � R � I is a function.

� The principal branch of the logarithm is defined by

Log D log.� ; � :
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Example: Log.�2i/ D log 2 �  i
2

, Log.�1/ D  i, Log.�1 � i/ D 1

2
log 2 � 3 i

4
.

Properties:

i) For all ´ ¤ 0, elogI ´ D ´.

ii) logI .e
w/ D w mod 2 i. In particular, logI .e

w/ D w() Imw 2 I .

iii) logI W C n f0g ! R � I is a bijection, with inverse function given by exp W R � I ! C n f0g,
where exp.´/ D e´ .

iv) ´;w ¤ 0 H) logI .´ � w/ D logI ´C logI w mod 2 i.

Proof:

i) ´ ¤ 0 H) elogI ´ D elogj´jCi argI ´ D elogj´jei argI ´ D j´j ei argI ´ D ´.

ii) If w D uC iv then

logI .e
w/ D log.eu/C i argI .e

w/ D uC iv � w mod 2 i :

since jew j D eu, argI .e
w/ D Imw mod 2 . On the other hand, from the previous calculation it

follows that
logI .e

w/ D w() argI .e
w/ D v() v � Imw 2 I :

iii) In order to establish that logI is a bijection, one must show that for any w with Imw 2 I there is a
unique ´ 2 C n f0g such that logI ´ D w. But this clearly holds in view of the previous properties,
with ´ D ew � exp.w/.

iv) The exponentials of both sides of the equality coincide, so that this property follows from ii). As
an alternative proof observe that

logI .´w/ D log j´wj C i argI .´w/

D log j´j C log jwj C i.argI ´C argI w/ mod 2 i

D .log j´j C i argI ´/C .log jwj C i argI w/ mod 2 i

� logI ´C logI w mod 2 i:

Note: In general, Log.´w/ ¤ Log ´C Logw. For example,

Log.�i/ D � i
2
¤ Log.�1/C Log i D  iC  i

2
D 3 i

2
:

4.2.4 Complex powers

If a; b 2 C and a ¤ 0; e, we define

ab D eb loga ; where log a D logI aC 2k i; k 2 Z :

Therefore, in general ab denotes a collection of complex numbers:

ab D e2kb ieb logI a; k 2 Z:

More precisely, it can be shown that:
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i) b 2 Z H) ab takes a single value:
�
a � a � � � � � aš

b times

if b > 0;

1 ; if b D 0

a�1 � a�1 � � � � � a�1�
�b times

; if b < 0 :

ii) If b D p=q 2 Q, with p 2 Z and 1 < q 2 N coprime, then ab D ap=q takes exactly q values (the
q q-th roots of ap).

iii) If b 2 C nQ, ab takes infinitely many values which differ from each other by a factor of the form
e2kb i, with k 2 Z.

Example:

.�1C i/i D eiŒLog.�1Ci/C2k i� D e�2k ei. 1
2

log2C 3 i
4 / .k 2 Z/

D e
5 
4
C2n e

i
2

log2 .n 2 Z/:

� If a ¤ 0; e, each branch of log defines a function a´I � e´ logI a.

Exercise. Given a; b; c 2 C with a ¤ 0; e, discuss the validity of the equality

abCc D abac :

4.3 Cauchy–Riemann equations

4.3.1 Basic topological concepts

i) A neighborhood of a 2 C is any open disc centered at a with radius r > 0, i.e.,

D.aI r/ D ˚´ 2 C W j´ � aj < r	:
We shall denote by D.aI r/ D ˚´ 2 C W j´ � aj 6 r	 the corresponding closed disc.

ii) Punctured neighborhood of a 2 C � D.aI r/ � fag D ˚´ 2 C W 0 < j´ � aj < r	.
iii) A set A � C is open if it contains a neighborhood of each of its points:

8a 2 A; 9r > 0 s.t. D.aI r/ � A:

iv) A set A � C is closed() its complement C n A is open.

v) A set A � C is compact() A is closed and bounded (A is bounded if A � D.0IR/ for some
R > 0).

vi) An open set A � C is connected if for any two points ´;w 2 A there is a continuous curve
 W Œ0; 1� ! A such that .0/ D ´, .1/ D w. [Note: it can be shown that in the latter definition
the term “continuous” may replaced by “differentiable” or even C1.]

vii) A region is a non-empty connected open subset of C.
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4.3.2 Limits

Notation: (
f W C ! C

´ D x C iy 7! f .´/ � u.x; y/C iv.x; y/:

Note: The notation f W C ! C does not imply that f be defined on all of C.

� u W R2 ! R and v W R2 ! R (the real and imaginary parts of f , respectively) are scalar
real-valued functions

Definition 4.9. If f W C ! C is defined on a punctured neighborhood of a 2 C and l 2 C, we shall
say that lim

´!a
f .´/ D l if

8" > 0 9ı > 0 s.t. 0 < j´ � aj < ı H) jf .´/ � l j < ":
� Since the modulus of the complex number w D uC iv is equal to the norm of the vector .u; v/ 2

R2, the latter definition of limit coincides with the usual one for a function f W R2 ! R2.

Properties:

i) If the limit lim
´!a

f .´/ exists, it is necessarily unique.

ii) lim
´!a

f .´/ D l () lim
.x;y/!a

u.x; y/ D Re l and lim
.x;y/!a

v.x; y/ D Im l .

iii) 9 lim
´!a

f .´/; lim
´!a

g.´/ H) lim
´!a

Œf .´/C g.´/� D lim
´!a

f .´/C lim
´!a

g.´/.

iv) 9 lim
´!a

f .´/; lim
´!a

g.´/ H) lim
´!a

Œf .´/g.´/� D lim
´!a

f .´/ � lim
´!a

g.´/.

v) 9 lim
´!a

g.´/ ¤ 0 H) lim
´!a

1

g.´/
D 1

lim
´!a

g.´/
.

Proof:

i)–iii) are well-known properties of the limits of functions R2 ! R2

iv)–v) are demonstrated as in the real case, replacing the absolute value by the modulus.

4.3.3 Continuity

Definition 4.10. Let f W C ! C be defined on a neighborhood of a 2 C. We shall say that f is
continuous at a if

lim
´!a

f .´/ D f .a/ :
We shall say that f W C ! C is continuous on a set A � C if and only if f is continuous at every point
of A.

Properties:

i) f and g continuous at a H) f C g y fg continuous at a.

ii) If, in addition, g.a/ ¤ 0, then f=g is continuous at a.

iii) f W C ! C continuous at a and h W C ! C continuous at f .a/ H) h B f continuous at a.

Proof:

i)–ii) are an immediate consequence of the properties iii)–v) of limits, whereas iii) is proved as in the
case of functions R! R.

� A polynomial or a rational function is continuous at all points of its domain.
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4.3.4 Differentiability

Definition 4.11.

� A function f W C ! C defined on a neighborhood of a 2 C is differentiable at a if there exists

lim
´!a

f .´/ � f .a/
´ � a � f 0.a/ :

The number f 0.a/ 2 C is called the derivative of f at a.

� f W C ! C is analytic (or holomorphic) on an open set A if it differentiable at each point of A.

� f is analytic on an arbitrary set B if it analytic on an open set A � B , or, equivalently, if it is
analytic on a neighborhood of each point of B .

In particular, f is analytic at a point a 2 C if it is differentiable on a neighborhood of a. Therefore, f
analytic at a is a stronger condition than f differentiable at a.

Proposition 4.12. f W C ! C differentiable at a 2 A H) f continuous at a.

Proof. Indeed,

lim
´!a

Œf .´/ � f .a/� D lim
´!a

�
f .´/ � f .a/

´ � a � .´ � a/
�
D lim
´!a

f .´/ � f .a/
´ � a � lim

´!a
.´�a/ D f 0.a/�0 D 0:

�

Algebraic properties:

If f W C ! C and g W C ! C are differentiable at ´ 2 C, and a; b 2 C, then:

i) af C bg is differentiable at ´, with .af C bg/0.´/ D af 0.´/C bg0.´/ (linearity).

ii) fg is differentiable at ´, with .fg/0.´/ D f 0.´/g.´/C f .´/g0.´/ (Leibniz rule).

iii) If g.´/ ¤ 0, then f=g is differentiable at ´, with

.f =g/0.´/ D g.´/f 0.´/ � f .´/g0.´/
g.´/2

:

� Polynomials and rational functions are differentiable at all points of their domain, and their deriva-
tives are computed as in the real case.

4.3.5 Cauchy–Riemann equations

� If a D a1 C ia2 2 C, let Ma W R2 ! R2 be the linear mapping

Ma � ´ D a ´ ; 8´ 2 R2 � C :

Since

Ma � .1; 0/ �Ma � 1 D a � .a1; a2/ ; Ma � .0; 1/ �Ma � i D ia D �a2C ia1 � .�a2; a1/ ;

the matrix representing Ma in the canonical basis of R2 is given by
�
a1 �a2
a2 a1

�
:
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� Recall that a function f W C ! C defined on a neighborhood of ´0 2 C is differentiable in the
real sense at ´0 if there is a linear mapping Df.´0/ W R2 � C ! R2 � C such that

lim
´!´0

jf .´/ � f .´0/ �Df.´0/ � .´ � ´0/j
j´ � ´0j

D 0 :

(Notice again that the modulus of ´ D x C iy 2 C is the norm of the corresponding vector
.x; y/ 2 R2.) The linear mappingDf.´0/ is called the derivative in the real sense of f at ´0. The
matrix representingDf.´0/ in the canonical basis of R2, called the Jacobian matrix of f at ´0, is
given by

Jf .´0/ D
�
ux.´0/ uy.´0/

vx.´0/ vy.´0/

�
;

where we have used the customary notation ux � @u

@x
, and similarly for uy ; vx; vy .

Theorem 4.13. Let f D uC iv W C ! C be defined on a neighborhood of ´0 D x0C iy0 2 C. Then
f is differentiable at ´0 if and only if the following two conditions hold:

i) f is differentiable in the real sense at .x0; y0/.

ii) The Cauchy–Riemann equations

@u

@x
.x0; y0/ D @v

@y
.x0; y0/;

@u

@y
.x0; y0/ D �@v

@x
.x0; y0/

are satisfied.

Proof.
H)) f is differentiable in the real sense at ´0 D .x0; y0/ with derivative Df.´0/ DMf 0.´0/, since

lim
´!´0

jf .´/ � f .´0/ � f 0.´0/.´ � ´0/j
j´ � ´0j

D lim
´!´0

ˇ̌̌̌
f .´/ � f .´0/ � f 0.´0/.´ � ´0/

´ � ´0

ˇ̌̌̌
D lim
´!´0

ˇ̌̌̌
f .´/ � f .´0/

´ � ´0
� f 0.´0/

ˇ̌̌̌
D 0 ;

for f is (by hypothesis) differentiable at ´0. Let us denote
@u

@x
.x0; y0/ as ux , and similarly for the other

partial derivatives of u and v at .x0; y0/. Equating the matrix representingDf.´0/ in the canonical basis
of R2 —that is, the Jacobian matrix Jf .´0/— with that of Mf 0.´0/, one obtains�

ux uy
vx vy

�
D
�

Ref 0.´0/ � Imf 0.´0/

Imf 0.´0/ Ref 0.´0/

�
;

which yield the Cauchy–Riemann equations, together with the relations

f 0.´0/ D ux C ivx D 1

i
.uy C ivy/:

(H) From the Cauchy–Riemann equations it follows that the Jacobian matrix of f at ´0 is of the form�
ux �vx
vx ux

�
;

which thus corresponds to the matrix representing the linear operator Mc , with c � ux C ivx . This
implies that Df.´0/ DMc , that is, Df.´0/ � .´ � ´0/ D c.´ � ´0/, so that

0 D lim
´!´0

jf .´/ � f .´0/ � c.´ � ´0/j
j´ � ´0j D lim

´!´0

ˇ̌̌̌
f .´/ � f .´0/

´ � ´0 � c
ˇ̌̌̌
H) lim

´!´0

f .´/ � f .´0/
´ � ´0 D c :
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This shows that f is differentiable (in the complex sense) at ´0, and

f 0.´0/ D c � ux C ivx D 1

i
.uy C ivy/;

where the last equality follows again from the Cauchy–Riemann equations. �

� From the proof of the previous theorem it follows that if f D uC iv is differentiable at ´0 D x0C iy0
then

f 0.´0/ D ux.x0; y0/C ivx.x0; y0/ � @f

@x
.´0/

D 1

i

�
uy.x0; y0/C ivy.x0; y0/

� � 1

i
@f

@y
.´0/:

These equalities can also be easily deduced from the definition of derivative of f in Definition 4.11
(exercise). Note also that the Cauchy–Riemann equations are equivalent to the relation

@f

@x
.´0/ D 1

i
@f

@y
.´0/ :

� Theorem 4.13 can also be rephrased in the following alternative form:

Theorem 4.14. A function f W C ! C defined on a neighborhood of ´0 D x0 C iy0 2 C is
differentiable at ´0 if and only if the following two conditions hold:

i) f is differentiable in the real sense at .x0; y0/

ii) There is a complex number c such that Df.x0; y0/ DMc .

In addition, if the above conditions are satisfied then f 0.´0/ D c.

An immediate consequence of Theorem 4.13 is the following

Proposition 4.15. If f W C ! C is analytic on a region A, and f 0.´/ D 0 for all ´ 2 A, then f is
constant on A.

Proof. Indeed, f differentiable (in the complex sense) at ´ 2 A implies that f is differentiable in the
real sense at this point, withDf.´/ DMf 0.´/ D 0. The statement then follows from the analogous result
for functions Rn ! Rm. �

4.3.6 Derivatives of the elementary functions

Derivative of the exponential

f .´/ D e´ H) u.x; y/ D ex cosy; v.x; y/ D ex siny H) u and v are of class C1.R2/ H)
f differentiable in the real sense on all of R2. Moreover,

ux D ex cosy D vy ; uy D �ex siny D �vx :

Thus e´ is differentiable (in the complex sense) on C, with

.e´/0 D ux C ivx D ex cosy C iex siny D e´ ; 8´ 2 C:
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Chain rule:

Proposition 4.16. If f W C ! C is differentiable at ´ and g W C ! C is differentiable at f .´/, then
g B f is differentiable at ´, with

.g B f /0.´/ D g0�f .´/� � f 0.´/: (4.4)

Proof. Indeed, using the continuity of f at ´ and the fact that g is defined on a neighborhood of f .´/
(for it is differentiable at this point), it is easy to check that g B f is defined on a neighborhood of ´.
On the other hand, by the previous theorem f y g are differentiable in the real sense at ´ and f .´/,
respectively, with

Df.´/ DMf 0.´/ ; Dg
�
f .´/

� DMg 0.f .´// :

By the chain rule for functions Rn ! Rm, it follows that g B f is differentiable in the real sense at ´,
and we have:

D.g B f /.´/ D Dg�f .´/� �Df.´/ DMg 0.f .´// �Mf 0.´/ DMg 0.f .´//f 0.´/ ;

which implies (4.4) by Theorem 4.14. �

Derivatives of the trigonometric and hyperbolic functions.

From the properties of the complex derivative (linearity and chain rule) and the derivative of the expo-
nential function f .´/ D e´, it follows that sin and cos are differentiable on C, with

.sin ´/0 D iei´ C ie�i´

2i
D cos ´; .cos ´/0 D 1

2
.iei´ � ie�i´/ D � sin ´ :

From the latter formulas we deduce that the remaining trigonometric functions are differentiable on their
respective domains. For instance,

.tan ´/0 D cos2 ´C sin2 ´
cos2 ´

D sec2 ´; 8´ ¤  

2
C k  .k 2 Z/:

As in the real case, the derivative of the exponential together with the chain rule immediately yield the
derivatives of the functions sinh y cosh:

.sinh ´/0 D cosh ´ ; .cosh ´/0 D sinh ´ :

Again, from these formulas one can readily deduce the expressions for the derivatives of the remaining
hyperbolic functions. For instance,

.tanh ´/0 D cosh2 ´ � sinh2 ´
cosh2 ´

D sech2 ´; 8´ ¤  i
2
C k i .k 2 Z/:

Inverse function theorem:

Theorem 4.17. Let f W C ! C be analytic on the open set A (with f 0 continuous on A). If a 2 A
and f 0.a/ ¤ 0, there are two open sets U 3 a and V 3 f .a/ such that U � A, f 0does not vanish on
U and f W U ! V is bijective. Moreover, f �1 W V ! U is analytic on V , with

.f �1/0.w/ D 1

f 0
�
f �1.w/

� ; 8w 2 V:
Remark. We shall see later on (Section 5.3.3) that if f is analytic on A then f 0 is automatically contin-
uous on A.
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Proof. f is differentiable in the real sense for all ´ 2 A, and the determinant of its Jacobian matrix

Jf .´/ D
�
ux.´/ �vx.´/
vx.´/ ux.´/

�
is u2x.´/C v2x.´/ D jf 0.´/j2. In particular, detDf.a/ D jf 0.a/j2 ¤ 0. By the inverse function theorem
for functions R2 ! R2 (notice that the continuity of f 0 implies the continuity of the partial derivatives
of u and v), there are two open sets U 3 a and V 3 f .a/ such that U � A, f W U ! V is a bijection,
Df is invertible on U and f �1 W V ! U is differentiable in the real sense on V , with

D.f �1/.w/ D �Df �f �1.w/���1 ; 8w 2 V:
Note that f 0 does not vanish on U , since jf 0.´/j2 D detDf.´/. Calling ´ D f �1.w/ and using
Theorem 4.14, we have

D.f �1/.w/ D ŒDf .´/��1 DM�1f 0.´/ DM1=f 0.´/ :

Again by Theorem 4.14, it follows that f �1 is differentiable in the complex sense at w, with derivative
1=f 0.´/. �

Derivative of logI .

� Log W Cnf0g ! f´ 2 C W �  < Im ´ 6  g is discontinuous on R�[f0g (due to the discontinuity
of Arg), and thus it is not differentiable on the latter set.

� However, Log is differentiable on the open set B D C n .R� [ f0g/. Indeed, Log is the global
inverse of

exp W A D f´ 2 C W �  < Im ´ <  g ! B;

and exp satisfies the conditions of the inverse function theorem at each point ofA (since exp0 D exp
does not vanish and is continuous on A)

� If ´ 2 A and w D e´ 2 B , there are two open sets U 3 ´ and V 3 w such that exp W U � A! V

is invertible on U , and

.exp�1/0.w/ D 1

exp0.´/
D 1

e´
D 1

w
:

Since U � A we have exp�1 D Log, and thus

.Logw/0 D 1

w
; 8w 2 C n .R� [ f0g/ :

In the same way, one can prove that the derivative of logI (with I D Œy0; y0C2 / or .y0; y0C2 �)
on the open set C n .fw W argw D y0 mod 2 g [ f0g/ is also given by log0I .w/ D 1=w.

4.3.7 Harmonic functions

Definition 4.18. A function u W R2 ! R is harmonic on the open set A � R2 if u 2 C 2.A/ and it
satisfies Laplace’s equation

r2u � @2u

@x2
C @2u

@y2
D 0

at each point of A.

Proposition 4.19. If f W A ! C is analytic on an open set A, then u D Ref and v D Imf are
harmonic on A. (The functions u and v are then said to be harmonic conjugates on A).
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Proof. Indeed, we shall see later on (Section 5.3.3) that f analytic on A H) u; v 2 C1.A/. From the
Cauchy–Riemann equations it then follows that

uxx D @vy

@x
D vyx D vxy D �@uy

@y
D �uyy ;

and similarly for v. (Note that vxy D vyx , since v is of class C 2.A/.) �

Proposition 4.20. If u W R2 � C ! R is harmonic on the open set A, ´0 2 A and U � A is a
neighborhood of ´0, there is a function f W U ! C analytic on U such that Ref D u.

Proof. Indeed, if ´ D x C iy 2 U then v D Imf should satisfy:

vy D ux H) v.x; y/ D
Z y

y0

ux.x; t/ dt C h.x/I

vx.x; y/ D
Z y

y0

uxx.x; t/ dt C h0.x/ D �
Z y

y0

uyy.x; t/ dt C h0.x/

D �uy.x; y/C uy.x; y0/C h0.x/ D �uy.x; y/() h0.x/ D �uy.x; y0/

H) h.x/ D �
Z x

x0

uy.t; y0/ dt C c .c 2 R/

H) v.x; y/ D
Z y

y0

ux.x; t/ dt �
Z x

x0

uy.t; y0/ dt C c ; 8.x; y/ 2 U : (4.5)

If v is given by the above formula, the function f D uCiv satisfies by construction the Cauchy–Riemann
equations in U , and is differentiable in the real sense in that set (since u, and thus v, are of class C 2 on
U ) H) f is analytic on U . �

� The previous proposition guarantees the existence of a harmonic conjugate of u in any open disk
contained in A (although not necessarily in all A, as we shall see below).

� In a region, the harmonic conjugate v (if it exists) is determined up to a constant. In fact, if v1 and
v2 are harmonic conjugates of a harmonic function u in a regionA, then the functions f1 D uCiv1
and f2 D uC iv2 are analytic on A, so that f D f1�f2 D i.v1�v2/ is also analytic on A. Since
Ref D 0 in A, the Cauchy–Riemann equations imply that the partial derivatives of Imf vanish
in A. Since A is a region, Imf D v1 � v2 must be constant in A.

� We may rewrite the formula (4.5) for the harmonic conjugate v as

v.´/ D
Z
0

.ux dy � uy dx/C c �
Z
0

.�uy ; ux/ � drC c ; 8´ 2 U ;

where dr � .dx; dy/ and 0 is the broken line formed by the horizontal segment joining ´0 �
x0 C iy0 with x C iy0 and the vertical segment joining the latter point with ´ � x C iy. Since
the vector field .�uy ; ux/ is conservative (since u is harmonic), this line integral is independent
of the path, so we can also write

v.´/ D
Z


.ux dy � uy dx/C c ; 8´ 2 U ;

where  is any (piecewise C 1) curve contained in U joining ´0 with ´.
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� The existence of the harmonic conjugate of a harmonic function on an open set A is not globally
guaranteed in A. Consider, for instance, the function u W A D R2 n f0g ! R defined by u.x; y/ D
1
2

log.x2Cy2/. If U is any open disc contained in A, then the function logI ´ D log j´jC i argI ´
is analytic on U if the branch I is chosen so that the ray on which argI is discontinuous does not
cut U . Thus Re logI D u is harmonic on U , and v D argI ´ C c (with c 2 R) is a harmonic
conjugate of u in the disc U . This shows, in particular, that u is harmonic in all A, as can be easily
checked by computing its partial derivatives.

Let us now see that u cannot admit a harmonic conjugate defined on all A. Indeed, if there existed
an analytic function f on A with Re f D u, then f and (for instance) Log would differ by a
(purely imaginary) constant in the region B D C n .R� [ f0g/ � A (since Log is analytic in B ,
and Re Log ´ D u.´/). But this is impossible, due to the fact that for x < 0 one would have (since
f D LogCc in B and f is continuous on A)

2 i D lim
y!0C

�
Log.xCiy/�Log.x�iy/

� D lim
y!0C

�
f .xCiy/�f .x�iy/

� D f .x/�f .x/ D 0 :



Chapter 5

Cauchy’s theorem

5.1 Contour integrals

� If h1; h2 W R! R are integrable (e.g., continuous) on an interval Œa; b� � R and h D h1 C ih2 W
R! C, we define Z b

a

h �
Z b

a

h.t/ dt D
Z b

a

h1.t/ dt C i
Z b

a

h2.t/ dt 2 C:

Example:
Z  

0

eit dt D
Z  

0

cos t dt C i
Z  

0

sin t dt D 2i.

� A continuous curve or contour is an application  W Œa; b� ! C which is continuous on Œa; b�
(i.e., Re  and Im  are both continuous on Œa; b�).

� A continuous curve  is piecewise C 1 if there is a (finite) partition a D a0 < a1 < � � � < an�1 <
an D b of Œa; b� such that  0 exists and is continuous on each subinterval Œai�1; ai � (1 6 i 6 n).
In other words,  is continuous on Œa; b� andC 1 on Œa; b�nfa0; : : : ; ang, and the limits limt!aC 

0.t/,
limt!b� 

0.t/ and limt!ai˙ 
0.t/, i D 1; : : : ; n � 1, exist, although the left and right limits at

each point ai do not necessarily coincide.

� In what follows, we shall refer to continuous piecewise C 1 curves simply as arcs.

Definition 5.1. If f W A � C ! C is continuous on the open set A and  W Œa; b� ! C is an arc such
that .Œa; b�/ � A, we defineZ



f �
Z


f .´/ d´ D
Z b

a

f
�
.t/

�
 0.t/ dt �

nX
iD1

Z ai

ai�1

f
�
.t/

�
 0.t/ dt 2 C :

Note that f
�
.t/

�
 0.t/ is continuous on each subinterval Œai�1; ai �, so that all integrals in the latter

formula are well defined.

� If f D uC iv and .t/ D x.t/C iy.t/, thenZ


f D
Z b

a

�
u
�
x.t/; y.t/

�C iv
�
x.t/; y.t/

�� �
x0.t/C iy0.t/

�
dt

D
Z b

a

�
u
�
x.t/; y.t/

�
x0.t/ � v�x.t/; y.t/�y0.t/� dt

C i
Z b

a

�
u
�
x.t/; y.t/

�
y0.t/C v�x.t/; y.t/� x0.t/� dt

D
Z


.u dx � v dy/C i
Z


.v dx C u dy/ :
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5.1.1 Properties of
R

f

Linearity. For all �;� 2 C we haveZ


.�f C �g/ D �
Z


f C �
Z


g :

Chains. If  W Œa; b�! C is an arc, the opposite arc � W Œa; b�! C is defined as

.�/.t/ D .aC b � t /; 8t 2 Œa; b�:

In other words, � is just the arc  traversed in the opposite sense. If .Œa; b�/ is contained in the open
set A and f W A! C is continuous on A we haveZ

�

f D
Z b

a

f
�
.aC b � t /�� �  0.aC b � t /� dt

sDaCb�tD
Z a

b

f
�
.s/

�
 0.s/ ds

D �
Z b

a

f
�
.s/

�
 0.s/ ds D �

Z


f: (5.1)

If 1 W Œa; b� ! C and 2 W Œc; d � ! C are two arcs satisfying 1.b/ D 2.c/, we define their sum
1 C 2 W Œa; b C d � c�! C as

.1 C 2/.t/ D
8<:1.t/; t 2 Œa; b�
2.c � b C t /; t 2 Œb; b C d � c�:

If 1.Œa; b�/; 2.Œc; d �/ � A and f W A ! C is continuous on the open set A, it is immediate to check
that Z

1C2

f D
Z
1

f C
Z
2

f : (5.2)

The general sum 1 C � � � C n is defined similarly provided the final endpoint of the arc i coincides
with the initial one of the following arc iC1, and we have againZ

1C���Cn

f D
nX
iD1

Z
i

f:

Likewise, if the final endpoints of the arcs 1 and 2 coincide, we define 1 � 2 D 1 C .�2/. From
equations (5.1) and (5.2) it follows thatZ

1�2

f �
Z
1C.�2/

f D
Z
1

f C
Z
�2

f D
Z
1

f �
Z
2

f :

The above considerations can be summarized asZ
"11C���C"nn

f D
nX
iD1

"i

Z
i

f ;

where "i D ˙1 for all i , and it is assumed that the final endpoint of the arc "ii coincides with the initial
one of "iC1iC1. The expression "11 C � � � C "nn shall be referred to as a chain.

Invariance under reparametrization. Given an arc  W Œa; b� ! C, a reparametrization thereof is a
curve Q W Œ Qa; Qb�! C of the form Q D  B �, where � W Œ Qa; Qb�! �.Œ Qa; Qb�/ D Œa; b� is a C 1 function with
positive derivative on . Qa; Qb/.
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Note that since �0 > 0 on . Qa; Qb/, the change of parameter � is an increasing function on Œ Qa; Qb�. Since
� is also surjective by hypothesis, it follows that �. Qa/ D a, �. Qb/ D b. Moreover, if  is piecewise C 1

so is Q , and .Œa; b�/ D Q.Œ Qa; Qb�/. Thus Q is an arc with the same range as  . In addition, since � is an
increasing function, the arcs  and Q have the same orientation.

Example: Q.s/ D eis
�
s 2 � 

3
; 2 
3

� �
is a reparametrization of .t/ D �t C i

p
1 � t2 �t 2 ��1

2
; 1
2

� �
.

Indeed, Q.s/ D .� cos s/, so that in this case �.s/ D � cos s is of class C 1 and �0.s/ D sin s > 0 on�
 
3
; 2 
3

�
.

Proposition 5.2. If Q W Œ Qa; Qb� ! C is a reparametrization of  W Œa; b� ! C, .Œa; b�/ � A, and
f W A! C is continuous on the open set A, thenZ

Q

f D
Z


f:

Proof. Let Q D  B �, with � W Œ Qa; Qb�! Œa; b� � Œ�. Qa/; �. Qb/�. We then have:Z
Q

f D
Z Qb
Qa

f
� Q.s/� Q 0.s/ ds D

Z Qb
Qa

f
�
.�.s//

�
 0
�
�.s/

�
�0.s/ ds

tD�.s/D
Z b

a

f
�
.t/

�
 0.t/ dt D

Z


f:

�

5.1.2 Integral with respect to the arc length

If f W A ! C is continuous on the open set A and  W Œa; b� ! C is an arc with .Œa; b�/ � A, we
define Z



f .´/ jd´j D
Z b

a

f
�
..t/

� ˇ̌
 0.t/

ˇ̌
dt :

� If .t/ D x.t/ C iy.t/ then j 0.t/j dt D
p
x02.t/C y02.t/ dt is the element ds of arc length

along the curve  . If f D uC iv, it follows thatZ


f .´/ jd´j D
Z


u ds C i
Z


v ds :

� In particular, Z


jd´j D
Z


ds D l./ � length of  :

Properties:

i)
Z


�
�f .´/C �g.´/

� jd´j D � Z


f .´/ jd´j C �
Z


g.´/ jd´j ; 8�;� 2 C.

ii)
Z
�

f .´/ jd´j D
Z


f .´/ jd´j.

iii)
Z
"11C���C"nn

f .´/ jd´j D
nX
iD1

Z
i

f .´/ jd´j.

iv) If Q is a reparametrization of  , then
Z
Q

f .´/ jd´j D
Z


f .´/ jd´j.
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Fundamental inequality:
ˇ̌̌̌Z


f .´/ d´
ˇ̌̌̌
6
Z


jf .´/j jd´j .

In particular, if max
t2Œa;b�

ˇ̌
f
�
.t/

�ˇ̌ DM then

ˇ̌̌̌Z


f .´/ d´
ˇ̌̌̌
6M l./:

Indeed, the second inequality is a consequence of the first one (by the properties of the integral of real-
valued functions of a real variable). If

R
 f D 0, the first inequality trivially holds. Otherwise, calling

� D Arg.
R
 f / we have:ˇ̌̌̌Z


f

ˇ̌̌̌
D e�i�

Z


f D Re
�

e�i�
Z


f

�
D
Z b

a

Re
h
e�i�f

�
.t/

�
 0.t/

i
dt

6
Z b

a

ˇ̌̌
e�i�f

�
.t/

�
 0.t/

ˇ̌̌
dt D

Z b

a

ˇ̌
f
�
.t/

�ˇ̌ ˇ̌
 0.t/

ˇ̌
dt �

Z


jf .´/j jd´j :

5.1.3 Fundamental theorem of calculus. Path independence

Lemma 5.3. If  W R! C is differentiable at t 2 R (that, if Re ; Im  W R! R are both differentiable
at t ) and f W C ! C is differentiable at .t/, then f B  is differentiable at t , with derivative

.f B /0.t/ D f 0�.t/�  0.t/ :
Proof. By Theorem 4.13, the function f is differentiable in the real sense at .t/, with Df..t/

� D
Mf 0..t//. The chain rule for functions Rn ! Rm implies that the composite function f B  is differen-
tiable at t , with derivative

.f B /0.t/ D Df �.t/�  0.t/ DMf 0..t//  0.t/ � f 0�.t/�  0.t/ :
�

Fundamental theorem of calculus. Let F W A! C be analytic on the open setA (with F 0 continuous
on A). If  W Œa; b�! C is an arc such that .Œa; b�/ � A, thenZ



F 0 D F �.b/� � F �.a/�:
In particular, if the arc  is closed (i.e., .b/ D .a/) thenZ



F 0 D 0:

Note: We shall see in Section 5.3.3 that if F is analytic on A then F 0 is automatically continuous on A.

Proof. Z


F 0 D
Z b

a

F 0
�
.t/

�
 0.t/ dt D

Z b

a

.F B /0.t/ dt D F �.b/� � F �.a/�;
by the fundamental theorem of Calculus for function R ! R applied to the real and imaginary parts of
F B  . �
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Path independence theorem. If f W A ! C is continuous on a region A, the following statements
are equivalent:

i)
R
 f is path independent:

R
1
f D R

2
f for every pair of arcs 1 and 2 contained in A

having the same endpoints.

ii)
R
� f D 0 for any closed arc � contained in A.

iii) f admits an antiderivative (or primitive function) onA, that is, there is a function F W A! C
analytic on A such that F 0.´/ D f .´/ for all ´ 2 A.

Proof.

ii) H) i) If 1 and 2 are two arcs contained in A joining ´1 2 A with ´2 2 A then � D 1 � 2 is a
closed arc, so that Z

1

f �
Z
2

f D
Z
1�2

f D
Z
�

f D 0 :

i) H) ii) Since � is closed, its opposite arc �� has the same endpoints as � . From i) it follows thatZ
�

f D
Z
��

f D �
Z
�

f H)
Z
�

f D 0 :

iii) H) i) By the fundamental theorem of calculus (since F 0 D f is continuous by hypothesis).

i) H) iii) Let ´0 be an arbitrary (fixed) point in A. If ´ is any point in A, since A is a region there is an
arc  � A joining ´0 with ´, and let

F.´/ D
Z


f:

By virtue of i) the function F does not depend on the arc  � A used to connect ´0 with ´.
Let us finally prove that F is differentiable at every point ´ 2 A, with F 0.´/ D f .´/. If " > 0, since

A is open and f is continuous on A, there exists ı > 0 such that jf .�/ � f .´/j < " if � 2 D.´I ı/ � A.
Given any point w 2 D.´I ı/ distinct from ´, let L � D.´I ı/ � A be the segment joining ´ with w. We
then have:

F.w/ � F.´/ D
Z
CL

f �
Z


f D
Z
L

f:

By the fundamental theorem of calculus, w � ´ D R
L d� (since 1 D �0), and thus .w � ´/f .´/ D

f .´/
R
L d� D

R
L f .´/ d�. Henceˇ̌̌̌

F.w/ � F.´/
w � ´ � f .´/

ˇ̌̌̌
D jF.w/ � F.´/ � .w � ´/f .´/jjw � ´j D

ˇ̌R
L f .�/ d� �

R
L f .´/ d�

ˇ̌
jw � ´j

D
ˇ̌R
L Œf .�/ � f .´/� d�

ˇ̌
jw � ´j <

" l.L/

jw � ´j D ":

�

5.2 Cauchy’s theorem

5.2.1 The Cauchy–Goursat theorem

� A closed arc  W Œa; b�! C is simple if a < s < t < b H) .s/ ¤ .t/.

Cauchy’s theorem (original version). If  is a simple closed arc and f W C ! C is analytic with

continuous derivative on and inside  , then
Z


f D 0.
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Proof. By Green’s theorem (traversing the curve counterclockwise, so that the interior VD of  lies to the
left of  ), if f D uC iv we haveZ


f d´ D
Z


.u dx � v dy/C i
Z


.v dxCu dy/ D �
Z
D

.uy C vx/ dx dyC i
Z
D

.ux � vy/ dx dy D 0;

by virtue of the Cauchy–Riemann equations. �

� This result is insufficient for our purposes, since it is not necessary to assume that f 0 is continuous
(we shall prove that this assumption follows from the analyticity of f ). Moreover, the result holds
for much more general arcs than simple closed ones.

Cauchy–Goursat theorem for a rectangle. Let R be a closed rectangle with sides parallel to the
axes, and let @R be the boundary of R. If f W C ! C is analytic on R thenZ

@R

f D 0:

Proof. Assume that @R is traversed counterclockwise (the result is obviously independent from the ori-
entation of @R). If we divide R into four congruent subrectangles R.i/ .i D 1; : : : ; 4/ (also oriented
counterclockwise) then Z

@R

f D
4X
iD1

Z
@R.i/

f ;

since the integrals along the inner sides of the rectangles R.i/ cancel each other. Thus, there is some
k 2 f1; : : : ; 4g such that ˇ̌̌̌Z

@R

f

ˇ̌̌̌
6 4

ˇ̌̌̌Z
@R.k/

f

ˇ̌̌̌
:

Let us call R1 D R.k/. Repeating indefinitely this bisection process, we obtain a sequence of closed
nested rectangles R0 � R � R1 � R2 � � � � � Rn � RnC1 � : : : such thatˇ̌̌̌Z

@Rn�1

f

ˇ̌̌̌
6 4

ˇ̌̌̌Z
@Rn

f

ˇ̌̌̌
H)

ˇ̌̌̌Z
@R

f

ˇ̌̌̌
6 4n

ˇ̌̌̌Z
@Rn

f

ˇ̌̌̌
; 8n 2 N:

Moreover, if Pi y Di respectively denote the perimeter and the diagonal of the i -th rectangle and P �
P0, D � D0, we have:

Pi D P

2i
; Di D D

2i
; 8i 2 N:

From Cantor’s intersection theorem it follows that
T
n2N

Rn D fag, with a 2 R (for Rn � R for all n).

Notice that
´ 2 Rn H) j´ � aj 6 Dn D 2�nD;

since a 2 Rn for every n 2 N. Given " > 0, take ı > 0 sufficiently small so that f be analytic on
D.aI ı/ and also ˇ̌

f .´/ � f .a/ � .´ � a/f 0.a/ˇ̌ < " j´ � aj ; 8´ 2 D.aI ı/; ´ ¤ a:
(Note that by hypothesis f is differentiable on a neighborhood of each point of R.) Take now n suffi-
ciently large so that Dn D 2�nD < ı, and thus Rn � D.aI ı/. On the other hand, by the fundamental
theorem of calculus, Z

@Rn

d´ D
Z
@Rn

´ d´ D 0:
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From these considerations it follows thatˇ̌̌̌Z
@R

f

ˇ̌̌̌
6 4n

ˇ̌̌̌Z
@Rn

f

ˇ̌̌̌
D 4n

ˇ̌̌̌Z
@Rn

�
f .´/ � f .a/ � f 0.a/.´ � a/� d´

ˇ̌̌̌
< 4n

Z
@Rn

" j´ � aj jd´j 6 4n � 2�nD" � Pn D 4n � 2�nD" � 2�nP D PD":

Since " > 0 is arbitrary and PD is constant, the theorem is proved. �

Generalized Cauchy–Goursat theorem. Let a be an interior point inR, and assume that the function

f W C ! C is analytic on R n fag and lim
´!a

Œ.´ � a/f .´/� D 0. Then
Z
@R

f D 0.

Proof. Let Q � R be a square centered at a with sides parallel to the axes of length l > 0 sufficiently
small so that j.´ � a/f .´/j < " if ´ 2 Q n fag. By prolonging the sides of Q we can subdivide the
rectangle R into 9 subrectangles Q, R1; : : : ; R8. ThusZ

@R

f D
Z
@Q

f C
8X
iD1

Z
@Ri

f :

The function f is analytic on each of the rectangles Ri , since a … Ri � R. By the Cauchy–Goursat
theorem

R
@Ri

f D 0 for i D 1; : : : ; 8, and henceˇ̌̌̌Z
@R

f

ˇ̌̌̌
D
ˇ̌̌̌Z
@Q

f

ˇ̌̌̌
< "

Z
@Q

jd´j
j´ � aj 6 " �

2

l
� 4l D 8" ;

and the theorem follows. �

5.2.2 Homotopy. Cauchy’s theorem. Deformation theorem

� Let A � C be a region, and let 1 and 2 be two continuous curves in A with the same endpoints
´1; ´2 2 A (´1 ¤ ´2), or two closed continuous curves in A. We shall say that 1 is homotopic
to 2 in A if it can be deformed in a continuous way into 2 without leaving A. In the first case
(homotopy of open curves with fixed endpoints), the endpoints of all deformed curves must remain
equal to ´1 and ´2, whereas in the second one (homotopy of closed curves) all deformed curves
must be closed.

� It is important to note that the concept of homotopy A depends on the region A considered. In
other words, two homotopic curves in a certain region A may not be homotopic in another region
A0.

� Note that a point ´0 2 A is a constant closed curve: .t/ D ´0, 8t 2 Œa; b�. In particular,R
´0
f D 0 for any function f .

Cauchy’s theorem. Let  be a closed arc homotopic to a point in a region A. If f W A ! C is
analytic on A then Z



f D 0: (5.3)

Sketch of the proof. Let us assume, for simplicity, that  � A is a simple closed arc. Since  is homotopic
to a point in A, it is intuitively clear (and can be rigorously proved) that the interior D of  is contained
in A. Given " > 0, we cover the plane with a lattice of closed squares Qj with sides parallel to the axes
of length ı > 0. Let us denote by J the collection of indices such that Qj � D if j 2 J . (The set J is



76 CAUCHY’S THEOREM

finite, forD is bounded since the image of the arc  is a compact set.) It can be shown that if ı is chosen
sufficiently small then ˇ̌̌̌Z



f �
Z
@Q

f

ˇ̌̌̌
< " ; (5.4)

where @Q is the boundary of Q � S
j2J

Qj traversed counterclockwise1. On the other hand, it is clear

that Z
@Q

f D
X
j2J

Z
@Qj

f (5.5)

(where @Qj is the boundary of the square Qj traversed counterclockwise), since the integrals along the
sides of the squares Qj not belonging to @Q cancel in pairs. Since Qj � D � A for all j 2 J and f is
analytic on A, the Cauchy–Goursat theorem implies thatZ

@Qj

f D 0 ; 8j 2 J;

and from (5.4) and (5.5) it follows that ˇ̌̌̌Z


f

ˇ̌̌̌
< " :

Since " > 0 is arbitrary, the theorem is proved. �

Definition 5.4. A region A � C is simply connected if every continuous closed curve  contained in A
is homotopic to a point in A.

Note: Intuitively, a simply connected region is an open set that “consists of only one only one piece” and
“has no holes”. For example, C or an open disk are simply connected regions, but an open disk without
one of its points is not. However, the complex plane minus a ray is simply connected.

Applying Cauchy’s theorem to a simply connected region, we deduce the following two corollaries:

Corollary 5.5. If A � C is a simply connected region and f W A! C is analytic on A thenZ


f D 0;

for any closed arc contained in A.

Proof. Indeed, if A is a simply connected region any closed arc  contained in A is homotopic to a point
in that set, so

R
 f D 0 by virtue of Cauchy’s theorem. �

Corollary 5.6. If f W A ! C is analytic on a simply connected region A then f admits a primitive
function on A.

Proof. By the previous corollary,
R
 f D 0 for every closed arc  contained in A. This implies that f

possesses a primitive function on A, by virtue of the equivalence ii) () iii) of the path independence
theorem on page 73. �

Using Cauchy’s theorem one can prove the following general result, which plays a fundamental role
in complex analysis.

1Without loss of generality, it may be assumed that  is positively oriented, since
R
 f D 0()

R
� f D 0.
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Deformation theorem. Let 1 and 2 be two homotopic arcs in a region A, and let f W A ! C be
analytic on A. Then Z

1

f D
Z
2

f:

Sketch of the proof. Assume, to begin with, that 1; 2 � A are two homotopic arcs in A with the same
endpoints ´1 ¤ ´2. It is intuitively clear that 1 � 2 is a closed arc homotopic to a point in A. By
Cauchy’s theorem,

0 D
Z
1�2

f D
Z
1

f �
Z
2

f ;

which establishes the theorem in this case. Consider next two closed arcs 1; 2 � A homotopic in A.
Suppose, for the sake of concreteness, that 1 and 2 are both simple and (for instance) 1 is interior to
2 (cf. Fig. 5.1 left). Since 1 and 2 are homotopic in A, it is intuitively clear that the set D bounded
by both arcs is entirely contained in A. Let ´1 2 1 and ´2 2 2, and call L the segment joining ´1 with
´2. The arc LC 2�L� 1 is closed, is contained in A (since L � D � A) and is homotopic to a point
in that region (cf. Fig. 5.1 right). By Cauchy’s theorem,

0 D
Z
LC2�L�1

f D
Z
L

f C
Z
2

f �
Z
L

f �
Z
1

f D
Z
2

f �
Z
1

f ;

which proves the theorem also in this case. �

Figure 5.1: Homotopic arcs 1 and 2 (left) and intermediate curve of the deformation of the closed arc
LC 2 � L � 1 to a point (right).

We will also need the following generalization of Cauchy’s theorem, which is proved using the de-
formation theorem together with the generalized Cauchy–Goursat theorem:

Generalized Cauchy’s theorem. Let  W Œa; b�! C be a closed arc homotopic to a point in a region

A, and let ´0 2 An.Œa; b�/. If f is analytic on Anf´0g and lim
´!´0

Œ.´�´0/f .´/� D 0 then
Z


f D 0.

Sketch of the proof. If ´0 is in the exterior of the curve, then  is homotopic to a point in the region
A n f´0g, and

R
 f D 0 by Cauchy’s theorem applied to that region. Alternatively, if ´0 lies in the

interior of  , since this curve is homotopic to a point in A it can be shown that there is a sufficiently
small square Q � A centered at ´0 such that  is homotopic to @Q in A n f´0g. By the deformation
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theorem applied to f in the region A n f´0g,Z


f D
Z
@Q

f D 0 ;

where the last equality follows from the generalized Cauchy–Goursat theorem. �

5.3 Cauchy’s integral formula and its consequences

5.3.1 Index

� If  is a closed arc and a …  , we define the index of a with respect to  as

n.; a/ D 1

2 i

Z


d´
´ � a :

� If  is the circle with center a and radius r > 0 traversed m times counterclockwise (.t/ D
aC r eit , with t 2 Œ0; 2m �) then

n.; a/ D 1

2 i

Z 2m 

0

ireit

reit
dt D m:

Likewise, if  is the circle with center a and radius r > 0 traversed m times clockwise,

n.; a/ D �m:

By virtue of the deformation theorem, this suggests that n.; a/ provides the number of turns that
the curve makes around a, counting as positive the turns made counterclockwise.

Example: If ´0 is exterior to a circle (or any other simple closed curve)  , then .´� ´0/�1 is analytic on
A D C n f´0g and  is homotopic to a point in A H) n.; ´0/ D 0, by Cauchy’s theorem.

Proposition 5.7. n.; ´0/ is an integer.

Proof. Assume, for simplicity, that  W Œa; b�! C is C 1 on Œa; b�. Let

h.t/ D
Z t

a

 0.s/

.s/ � ´0
ds ;

so that n.; ´0/ D h.b/=.2 i/. On the other hand, h is differentiable on Œa; b� (the integrand is continu-
ous, since the denominator does not vanish), and

h0.t/ D  0.t/

.t/ � ´0
H) d

dt

�
e�h.t/ Œ.t/ � ´0�

�
D 0; 8t 2 Œa; b�:

Thus e�h.t/
�
.t/ � ´0

�
is constant on Œa; b�, and hence (since h.a/ D 0)

.a/� ´0 D e�h.b/..b/� ´0/ D e�h.b/..a/� ´0/
´0…H) e�h.b/ D 1 H) h.b/ D 2n i; n 2 Z:

�
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5.3.2 Cauchy’s integral formula

The following result, which can be easily proved using the generalized Cauchy theorem, is one of the
cornerstones of complex analysis.

Cauchy’s integral formula. Let f W A! C be analytic on a regionA, let  be a closed arc homotopic
to a point in A, and let a 2 A be a point not on  . Then

n.; a/ � f .a/ D 1

2 i

Z


f .´/

´ � a d´ :

Proof. The function

g.´/ D
8<:
f .´/ � f .a/

´ � a ; ´ ¤ a
f 0.a/; ´ D a

is analytic on A n fag and lim
´!a

Œ.´ � a/g.´/� D lim
´!a

Œf .´/ � f .a/� D 0 (since f is continuous on a for

it is differentiable at that point). From the generalized Cauchy theorem it follows that

0 D
Z


g D
Z


f .´/ � f .a/
´ � a d´ D

Z


f .´/

´ � a d´ � f .a/
Z


d´
´ � a D

Z


f .´/

´ � a d´ � f .a/ � 2 in.; a/:

�

If f W C ! C is analytic on an open set A and ´ 2 A, we can apply Cauchy’s integral formula to
the circle  centered at ´ with radius r sufficiently small so that D.´I 2r/ � A, since  is homotopic
to a point on D.´I 2r/ and hence on A. If the circle  is positively oriented then n.; ´/ D 1, and thus
Cauchy’s integral formula makes it possible to express f .´/ as

f .´/ D 1

2 i

Z


f .w/

w � ´ dw:

Taking formally the derivative with respect to ´ under the integral sign we obtain

f .k/.´/ D kŠ

2 i

Z


f .w/

.w � ´/kC1 dw; 8k 2 N : (5.6)

In particular, if (5.6) holds, f is differentiable infinitely many times at any point ´ 2 A. Let us see next
how the differentiation under the integral sign leading to equation (5.6) can be rigorously justified:

Lemma 5.8. Consider the Cauchy-type integral

G.´/ D
Z


g.w/

w � ´ dw;

where g W C ! C is a continuous function on an arc  (not necessarily closed) and ´ … .Œa; b�/.
Then G is differentiable infinitely many times at any point ´0 … .Œa; b�/, with

G.k/.´0/ D kŠ
Z


g.w/

.w � ´0/kC1
dw: (5.7)

Proof. The proof proceeds by induction on k.
i) Assume, to begin with, that k D 1. Let ´0 … .Œa; b�/, and define
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Figure 5.2: Cauchy-type integral

2� D min
t2Œa;b�

j.t/ � ´0j > 0; M D max
t2Œa;b�

ˇ̌
g
�
.t/

�ˇ̌
:

Note that � > 0 and M < 1 by the continuity of  and g B  on the compact interval Œa; b�. If
´ 2 D.´0I �/ with ´ ¤ ´0 we have

G.´/ �G.´0/
´ � ´0

D
Z


1

´ � ´0

�
1

w � ´ �
1

w � ´0

�
g.w/ dw:

But

1

´ � ´0

�
1

w � ´ �
1

w � ´0

�
D 1

.w � ´/.w � ´0/
D 1

.w � ´0/2
w � ´0
w � ´ D

1

.w � ´0/2
�
1C ´ � ´0

w � ´
�
:

(5.8)
If w lies on the curve  , from the definition of M and � it follows that

jg.w/j 6M ; jw � ´0j > 2� ; jw � ´j > � :
Thus ˇ̌̌̌

G.´/ �G.´0/
´ � ´0 �

Z


g.w/

.w � ´0/2 dw
ˇ̌̌̌
D j´ � ´0j

ˇ̌̌̌Z


g.w/

.w � ´0/2.w � ´/ dw
ˇ̌̌̌

6 j´ � ´0j � M l./

4�2 � � ����!´!´0

0:

ii) Assume now that the lemma holds for k D 1; : : : ; n � 1, and let us prove it for k D n. Let us first
show that G.n�1/ is continuous at ´0 2 C n .Œa; b�/. Indeed, by the induction hypothesis we have

G.n�1/.´/ D .n � 1/Š
Z


g.w/

.w � ´/n dw :

Multiplying the first equality in (5.8) by 1=.w � ´/n�1 we obtain

1

.w � ´/n D
1

.w � ´/n�1.w � ´0/
C ´ � ´0
.w � ´/n.w � ´0/

;

and thus

G.n�1/.´/ �G.n�1/.´0/ D .n � 1/Š
�Z


g.w/

.w � ´/n�1.w � ´0/
dw �

Z


g.w/

.w � ´0/n
dw
�

C .n � 1/Š .´ � ´0/
Z


g.w/

.w � ´/n.w � ´0/
dw : (5.9)
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By the induction hypothesis applied to g.w/=.w � ´0/ (which is also continuous on  , since ´0 …
.Œa; b�//, the function Z



g.w/

.w � ´/n�1.w � ´0/ dw

is differentiable, and hence continuous, if ´ 2 C n .Œa; b�/. This implies that the term in brackets in the
right-hand side of (5.9) tends to 0 as ´ ! ´0. As to the integral in the second term of the RHS of the
latter equation, proceeding as in the case k D 1 it can be shown thatˇ̌̌̌Z



g.w/

.w � ´/n.w � ´0/ dw
ˇ̌̌̌
6
Ml./

2�nC1
; 8´ 2 D.´0I �/ ;

which implies that the second term of the RHS of (5.9) also tends to 0 as ´! ´0.
Let us see, finally, that G.n�1/ is differentiable at ´0. Indeed, if ´ 2 D.´0I �/ n f´0g, dividing (5.9)

by ´ � ´0 we obtain

G.n�1/.´/ �G.n�1/.´0/
´ � ´0

D .n � 1/Š
´ � ´0

�Z


g.w/

.w � ´/n�1.w � ´0/
dw �

Z


g.w/

.w � ´0/n
dw
�

C .n � 1/Š
Z


g.w/

.w � ´/n.w � ´0/
dw : (5.10)

Again by the induction hypothesis applied to g.w/=.w � ´0/, when ´! ´0 the first term of the RHS of
this identity tends to

.n � 1/Š d
d´

ˇ̌̌̌
´D´0

Z


g.w/

.w � ´/n�1.w � ´0/
dw D .n � 1/ dn�1

d´n�1

ˇ̌̌̌
´D´0

Z


g.w/

.w � ´/.w � ´0/
dw

D .n � 1/.n � 1/Š
Z


g.w/

.w � ´0/nC1 dw :

As to the second term of (5.10), from what was proved above about the continuity ofG.n�1/.´0/ applied
now to the Cauchy-type integral Z



g.w/

.w � ´/n.w � ´0/
dw

it follows that the latter integral is a continuous function at ´0, and thus it tends toZ


g.w/

.w � ´0/nC1
dw :

when ´! ´0. From these assertions it follows from (5.10) that G.n�1/ is differentiable at ´0, with

G.n/.´0/ D .n � 1/.n � 1/Š
Z


g.w/

.w � ´0/nC1
C .n � 1/Š

Z


g.w/

.w � ´0/nC1
dw

D nŠ
Z


g.w/

.w � ´0/nC1
dw :

�

5.3.3 Cauchy’s integral formula for the derivatives

From the previous lemma it is easy to prove the following theorem, which generalizes Cauchy’s integral
formula to the derivatives of arbitrary order of an analytic function:
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Cauchy’s integral formula for the derivatives. Let f W A! C be an analytic function on a region
A. Then f is infinitely differentiable at any point of A. Moreover, if  W Œa; b� ! A is a closed arc
homotopic to a point in A and ´0 2 A n .Œa; b�/ then

n.; ´0/ � f .k/.´0/ D kŠ

2 i

Z


f .w/

.w � ´0/kC1
dw; k 2 N: (5.11)

Proof. Let ´0 2 A n .Œa; b�/, and let D be a neighborhood of ´0 contained in A not intersecting  (for
instance, the disc D.´0I �/ in the proof of the previous lemma). Since n.; ´/ is a Cauchy-type integral
(with g D 1=2 i), it is a continuous function of ´ for all ´ 2 D, and since it must be an integer number
it is necessarily constant on the latter disc. Thus, if

F.´/ D 1

2 i

Z


f .w/

w � ´ dw ; ´ 2 D;

from the Cauchy integral formula it follows that

F.´/ D n.; ´/f .´/ D n.; ´0/f .´/ ; 8´ 2 D : (5.12)

Since F is also of Cauchy type, equations (5.7) and (5.12) imply that

F .k/.´/ D kŠ

2 i

Z


f .w/

.w � ´/kC1 dw D n.; ´0/f .k/.´/ ; 8´ 2 D :

Equation (5.11) then follows by setting ´ D ´0. �

From the previous theorem one can easily prove the following fundamental property of analytic func-
tions:

Theorem 5.9. If f W C ! C is analytic on an arbitrary set C , then f is differentiable infinitely many
times at every point of C .

Proof. Given a point ´ 2 C , it suffices to apply the previous theorem to any neighborhood A of ´ on
which f be analytic. �

The previous result makes it possible to easily prove the following theorem, a (partial) converse of
Cauchy’s theorem:

Morera’s theoerm. If f W C ! C is continuous on a region A and
R
 f D 0 for any closed arc 

contained in A, then f is analytic on A.

Proof. The path independence theorem implies that there is a function F W C ! C analytic on A such
that f D F 0 on A. Since F is analytic on A, it is infinitely differentiable on this region. In particular,
f 0 D F 00 exists at every point of A. �

Exercise. Does the above result hold if we just assume that
R
 f D 0 for any closed arc  � A homotopic

to a point in A?
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5.3.4 Liouville’s theorem

The following inequalities for the modulus of the derivatives of an analytic function can be easily proved
using Cauchy’s integral formula for the derivatives:

Cauchy’s inequalities. Let f be analytic on a region A, let a 2 A, and assume that D.aIR/ � A. If
M.R/ D max

j´�ajDR
jf .´/j then

ˇ̌̌
f .k/.a/

ˇ̌̌
6
kŠ

Rk
M.R/; 8k D 0; 1; 2; : : : :

Proof. Note, to begin with, that the existence of the maximum of jf j on the circle is guaranteed, since
this set is compact and f continuous (being analytic on A). If  is the positively oriented circle of radius
R centered in a, then  is homotopic to a point in A and n.; a/ D 1. Cauchy’s integral formula for the
k-th derivative thus yieldsˇ̌̌

f .k/.a/
ˇ̌̌
D kŠ

2 

ˇ̌̌̌Z


f .´/

.´ � a/kC1 d´
ˇ̌̌̌
6
kŠ

2 

Z


jf .´/j
j´ � ajkC1

jd´j 6 kŠ

2 

M.R/

RkC1
2 R D kŠ

Rk
M.R/:

�

From the previous result one can prove the following theorem, which is a key result in the study of
global properties of analytic functions:

Liouville’s theorem. If f W C ! C is entire (that is, analytic on the whole complex plane) and jf j
is bounded on C, then f is constant.

Proof. The hypothesis implies that there is K > 0 such that jf .´/j < K for all ´ 2 C. If a 2 C, since
f is analytic on C we can apply Cauchy’s inequality for the first derivative to any closed disc D.aIR/,
obtaining ˇ̌

f 0.a/
ˇ̌
<
M.R/

R
6
K

R
; 8R > 0 :

Since the latter inequality is valid for all R > 0, it follows that jf 0.a/j D 0 at all a 2 C. Since C is a
connected set, f must be constant on C. �

Liouville’s theorem provides one of the simplest proofs of the fundamental theorem of Algebra:

Fundamental theorem of algebra. A polynomial of degree n > 1 has at least one root in C.

Proof. Let p.´/ DPn
iD0 ai´

i , with an ¤ 0 and n > 1. If p had no roots, the function f D 1=p would
be entire. We shall prove that this is impossible by showing that in such a case the function f would be
also bounded and not constant, in contradiction with Liouville’s theorem.

In order to prove that f is bounded, notice that if ´ ¤ 0

jp.´/j > j´jn
�
janj � jan�1jj´j � � � � �

ja0j
j´jn

�
:

Since
jakj
j´jn�k �����!j´j!1

0 (k D 0; : : : ; n � 1), there is M > 1 such that

j´j > M H) jakj
j´jn�k

<
janj
2n

; k D 0; : : : ; n � 1:
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Thus

j´j > M H) jp.´/j > j´jn
�
janj � n � janj

2n

�
D janj

2
j´jn > janj

2
> 0 ;

and hence
j´j > M H) jf .´/j < 2

janj
:

On the other hand, since by hypothesis f is analytic (and thus continuous) on the closed disc of radius
M centered at 0, there is c > 0 such that jf .´/j 6 c if j´j 6 M . (Recall that a function g W Rn ! R
continuous on a compact set K � Rn is bounded on K.) Therefore, we have shown that

jf .´/j D 1

jp.´/j 6 max
�
2

janj
; c

�
; 8´ 2 C:

This contradicts Liouville’s theorem, since f � 1=p is also entire but not constant (p is not constant,
for an ¤ 0 and n > 1). �



Chapter 6

Series representation of analytic functions

6.1 Power series. Taylor’s theorem

6.1.1 Sequences and series of complex numbers

Definition 6.1. A sequence of complex numbers f´ng1nD1 converges to ´ 2 C ( () lim
n!1

´n D ´) if

8" > 0; 9N 2 N such that n > N H) j´n � ´j < " :

� Note that the definition is identical to that of the real case, replacing the absolute value (or the
norm) by the modulus.

Properties:

i) lim
n!1

´n, if it exists, is unique.

ii) lim
n!1

´n D ´ � x C iy () lim
n!1

Re.´n/ D x, lim
n!1

Im.´n/ D y.

iii) lim
n!1

´n D ´; lim
n!1

wn D w H) lim
n!1

.´n C wn/ D ´C w ; lim
n!1

´nwn D ´w :

iv) If, in addition, wn ¤ 0 for all n 2 N and w ¤ 0, then lim
n!1

´n

wn
D ´

w
:

� The Cauchy criterion:

9 lim
n!1

´n() 8" > 0; 9N 2 N such that n;m > N H) j´n � ´mj < " :

Proof.

H)/ j´n � ´mj 6 j´n � ´j C j´m � ´j
(H/ ´n D xn C iyn H) jxn � xmj 6 j´n � ´mj ; jyn � ymj 6 j´n � ´mj H) fxng1nD1 y fyng1nD1
convergent (Cauchy real sequences) H) f´ng1nD1 convergent. �

Definition 6.2. The series
1X
kD1

´k converges to s 2 C

 
()

1X
kD1

´k D s
!

if the sequence of partial

sums
˚Pn

kD1 ´k
	1
nD1

converges to s, that is

1X
kD1

´k D s() lim
n!1

nX
kD1

´k D s:

85
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�
1X
kD1

´k convergent H) lim
n!1

´n D 0. Indeed,

lim
n!1

´n D lim
n!1

 
nX
kD1

´k �
n�1X
kD1

´k

!
D lim
n!1

nX
kD1

´k � lim
n!1

n�1X
kD1

´k D s � s D 0 :

Definition 6.3. The series
1X
kD1

´k is absolutely convergent if
1X
kD1

j´kj is convergent.

Proposition 6.4. An absolutely convergent series
1X
kD1

´k is convergent.

Proof. This is a consequence of the Cauchy criterion, since if (for instance) m > n we haveˇ̌̌̌
ˇ
mX
kD1

´k �
nX
kD1

´k

ˇ̌̌̌
ˇ D

ˇ̌̌̌
ˇ̌ mX
kDnC1

´k

ˇ̌̌̌
ˇ̌ 6 mX

kDnC1

j´kj D
ˇ̌̌̌
ˇ
mX
kD1

j´kj �
nX
kD1

j´kj
ˇ̌̌̌
ˇ :

�

6.1.2 Sequences and series of functions. Uniform convergence

Definition 6.5. A sequence of functions fn W A ! C defined on a set A � C (n 2 N) converges
pointwise to a function f on A if for any ´ 2 A we have lim

n!1
fn.´/ D f .´/. Likewise, the series of

functions
P1
kD1 fk converges pointwise to the function g onA if for any ´ 2 Awe have

P1
kD1 fk.´/ D

g.´/.

Definition 6.6. The sequence of functions ffng1nD1 defined on A converges uniformly to f on A if

8" > 0; 9N 2 N such that n > N H) jfn.´/ � f .´/j < "; for all ´ 2 A :

Likewise,
P1
kD1 fk converges uniformly to g on A if the sequence of functions

˚Pn
kD1 fk

	1
nD1

con-
verges uniformly to g on A, that is, if

8" > 0; 9N 2 N such that n > N H)
ˇ̌̌̌
ˇ
nX
kD1

fk.´/ � g.´/
ˇ̌̌̌
ˇ < "; for all ´ 2 A :

� Obviously, if a sequence or series of functions converges uniformly to a function f on A, then such
a sequence or series converges pointwise to this function. However, the pointwise convergence of a
sequence or series of functions does not imply, in general, its uniform convergence.

� Cauchy criterion for the uniform convergence: ffng1nD1 converges uniformly on A if and only if

8" > 0; 9N 2 N such that n;m > N H) jfn.´/ � fm.´/j < "; for all ´ 2 A :

Proof. First of all, clearly the uniform convergence of fn to f on A implies the Cauchy criterion.
Conversely, the Cauchy criterion for numerical sequences implies that the sequence ffng1nD1 converges
pointwise to a function f on A. Taking the limit m ! 1 in the uniform Cauchy condition it follows
that if n > N then jfn.´/ � f .´/j 6 " for all ´ 2 A. �



Power series. Taylor’s theorem 87

Similarly, the series
1P
kD1

fk converges uniformly to a function g on A if and only if

8" > 0; 9N 2 N such that m > n > N H)
ˇ̌̌̌
ˇ̌ mX
kDnC1

fk.´/

ˇ̌̌̌
ˇ̌ < "; for all ´ 2 A:

Weierstrass M -test. Consider the sequence of functions fk W A � C ! C (k 2 N ), and assume
that jfk.´/j 6 Mk for all ´ 2 A and all k 2 N. If the numerical series

P1
kD1Mk converges, thenP1

kD1 fk converges absolutely and uniformly on A.

Proof. According to the Cauchy criterion for numerical series, for any " > 0, there is N 2 N such that

m > n > N H)
ˇ̌̌̌
ˇ̌ mX
kDnC1

Mk

ˇ̌̌̌
ˇ̌ < ":

But then

m > n > N H)
ˇ̌̌̌
ˇ̌ mX
kDnC1

fk.´/

ˇ̌̌̌
ˇ̌ 6 mX

kDnC1

jfk.´/j 6
mX

kDnC1

Mk D
ˇ̌̌̌
ˇ̌ mX
kDnC1

Mk

ˇ̌̌̌
ˇ̌ < "; 8´ 2 A :

By the Cauchy criterion for uniform convergence,
P1
kD1 fk converges absolutely and uniformly on A.

�

� If ffng1nD1 converges uniformly to f on A and fn W A! C is continuous on A for all n 2 N, then f
is continuous on A. Similarly, if fn is continuous on A for all n 2 N and

P1
kD1 fk converges uniformly

to g on A, then g is continuous on A.
The proof of this result is identical to that of the real case, simply replacing the absolute value by the
modulus.

Lemma 6.7. Let fn be continuous on A for all n 2 N. If ffng1nD1 converges uniformly to f over an
arc  contained in A then

lim
n!1

Z


fn D
Z


f �
Z


lim
n!1

fn :

In particular, if fk is continuous on A for all k 2 N and
P1
kD1 fk converges uniformly over  we haveZ



1X
kD1

fk D
1X
kD1

Z


fk :

Proof. Note to begin with that f is continuous on  � A due to the uniform convergence of fn to f on
 , and hence the integral

R
 f exists. Given " > 0, there is N 2 N such that jfn.´/ � f .´/j < " for all

´ 2  and n > N . We then have:

n > N H)
ˇ̌̌̌Z


fn �
Z


f

ˇ̌̌̌
D
ˇ̌̌̌Z


.fn � f /
ˇ̌̌̌
6
Z


jfn.´/ � f .´/j jd´j 6 " l./ :

�

Definition 6.8. We say that a sequence of functions fn W C ! C converges normally to a function f
on an open set A � C if fn ! f uniformly on any closed disc contained in A. Likewise, the series of
functions

P1
kD1 fn converges normally to g on A if the sequence of partial sums

Pn
kD1 fn converges

uniformly to g on any closed disc contained in A.
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Clearly, if A � C is an open set we have

fn ! f uniformly on A H) fn ! f normally on A H) fn ! f pointwise on A

and similarly

1X
nD1

fn ! g uniformly on A H)
1X
nD1

fn ! g normally on A

H)
1X
nD1

fn ! g pointwise on A :

Analytic convergence theorem. Let ffng1nD1 be a sequence of analytic functions on an open set A
such that fn ! f normally over A. Then f is analytic on A, and f 0n ! f 0 normally over A.

Proof. In the first place, by the uniform convergence of fn to f on closed discs contained in A, f is
continuous on each closed disc contained in A, and is thus continuous on A. Let D.aI r/ � A. If  is a
closed arc contained in D.aI r/ then Z



f D lim
n!1

Z


fn D 0;

by Lemma 6.7 and Cauchy’s theorem (fn is analytic on D.aI r/ � A and D.aI r/ is simply connected).
By Morera’s theorem, f is analytic on D.aI r/, and thus on A.

In order to show that f 0n ! f 0 uniformly onD.aI r/, note that there isR > r such thatD.aIR/ � A.
Given " > 0, there is N 2 N such that jfn.w/ � f .w/j < " for all w 2 D.aIR/ and n > N . If
´ 2 D.aI r/ and  is the (positively oriented) circle of radius R centered at a, from Cauchy’s integral
formula for the first derivative it follows that

ˇ̌
f 0n.´/ � f 0.´/

ˇ̌ D 1

2 

ˇ̌̌̌Z


fn.w/ � f .w/
.w � ´/2 dw

ˇ̌̌̌
6

1

2 

"

.R � r/2 2 R D
"R

.R � r/2 ; 8n > N:

�

Corollary 6.9. Let
P1
kD1 gk be a series of analytic functions on an open set A converging normally

to a function g over A. Then g is analytic on A, and
P1
kD1 g

0
k

converges normally to g0 on A.

In particular, notice that

d
d´

1X
kD1

gk D
1X
kD1

g0k.´/ in A I

in other words, if the hypothesis of the latter corollary hold the series can be differentiated term by term
on A.

6.1.3 Power series

A power series centered at ´0 2 C is a series of the form

1X
kD0

ak.´ � ´0/k; ak 2 C .k D 0; 1; : : : /: (6.1)



Power series. Taylor’s theorem 89

Abel’s theorem. For any power series (6.1) there is a unique R with 0 6 R 6 1, called the radius
of convergence of the series, satisfying:

i) The series converges absolutely and normally if j´ � ´0j < R.

ii) The series diverges if j´ � ´0j > R.

iii) If R > 0, the sum of the series is an analytic function on the convergence disk D.´0IR/, whose
derivative is obtained by differentiating the series term by term.

Proof. Clearly, from i) and ii) it follows that R is unique if it exists. We shall prove that

R D sup I ; I � ˚r > 0 W fjanj rng1nD0 bounded
	
:

Note that if fjanj rng1nD0 is bounded, so is fjanj �ng1nD0 for all � 6 r , so that the set I is an interval with
lower endpoint 0. In particular, R D 1 if fjanj rng1nD0 is bounded for all r > 0. With this definition,
the assertion ii) is trivial: indeed, if j´ � ´0j > R the sequence˚janj j´ � ´0jn	1nD0 D fjan.´ � ´0/njg1nD0
is not bounded (since j´ � ´0j … I ), and thus the general term of the series does not tend to zero as
n!1.

In order to prove i), note to begin with that if R D 0 the series diverges for all ´ ¤ ´0, and there
is nothing to prove. Otherwise, assume that R > 0, and let 0 < r < R. Then r 2 I (by definition
of supremum), and (again by definition of supremum) there are r < � < R and M > 0 such that
janj �n < M for all n. If j´ � ´0j 6 r we have:

jan.´ � ´0/nj D janj �n
� j´ � ´0j

�

�n
6M

�
r

�

�n
:

By the WeierstrassM -test, the series
P1
nD0 an.´�´0/n converges absolutely and uniformly onD.´0I r/;

in particular, it converges absolutely on D.´0IR/. This also implies that the series converges uniformly
on any closed disc contained in D.´0IR/, since a closed disc contained in D.´0IR/ is also contained in
some closed disc centered at ´0 with radius smaller than R. This establishes assertion i). Assertion iii)
then follows from the analytic converge theorem. �

� The radius of convergence of the derivative of a power series is equal to the radius of convergence of
the power series.

In fact, by Abel’s theorem, it suffices to see that the series
1P
kD1

kak.´�´0/k�1 diverges if j´ � ´0j > R,

where R is the radius of convergence of the original series
1P
kD0

ak.´ � ´0/k . And indeed

k jakj j´ � ´0jk�1 D j´ � ´0j�1 � k jakj j´ � ´0jk > j´ � ´0j�1 � jakj j´ � ´0jk :

By definition of R, the last term is not bounded when j´ � ´0j > R. Then the general term of the
series

P1
kD1 kak.´ � ´0/k�1 does not tend to zero if j´ � ´0j > R, so that the latter series diverges if

j´ � ´0j > R.

Repeated application of Abel’s theorem and the previous result yield the following
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Theorem 6.10. Let 0 < R 61 be the radius of convergence of the series f .´/ D
1P
kD0

ak.´ � ´0/k .

Then f is infinitely differentiable on D.´0IR/, with

f .n/.´/ D
1X
kDn

k.k � 1/ � � � .k � nC 1/ak.´ � ´0/k�n

D
1X
kD0

.k C n/.k C n � 1/ � � � .k C 1/akCn.´ � ´0/k; 8n 2 N; 8´ 2 D.´0IR/:

The radius of convergence of the above series is again R, and the coefficients an are given by

an D f .n/.´0/

nŠ
; 8n D 0; 1; 2; : : : :

Corollary 6.11 (Uniqueness of power series). If there is r > 0 such that

1X
kD0

ak.´ � ´0/k D
1X
kD0

bk.´ � ´0/k; 8´ 2 D.´0; r/;

then ak D bk for all k D 0; 1; 2; : : : .
Proof. ak D bk D f .k/.´0/=kŠ, where f .´/ is the sum of either series. �

� The ratio and root tests are valid in the complex case. Indeed, let us consider the series
P1
kD0 ´k , and

assume that limn!1 j´nC1j = j´nj D c, with c 2 RC or c D C1. If c < 1, the series of nonnegative
real numbers

P1
kD0 j´kj is convergent, so that the series

P1
kD0 ´k is absolutely convergent. If, on the

other hand, c > 1 (o c D C1) then j´nj is not bounded as n!1, so that the series
P1
kD0 ´k diverges

(since its general term does not tend to zero as n ! 1). The root test is established using a similar
argument.

� If there exists (or isC1) lim
n!1

janj
janC1j

, then R D lim
n!1

janj
janC1j

.

Likewise, if there exists (or isC1) lim
n!1

n
p
janj then R D 1= lim

n!1

n
p
janj .

Let us prove e.g. the first formula. By the root test, if ´ ¤ ´0 the series
1P
kD0

ak.´ � ´0/k converges if

lim
n!1

janC1j j´ � ´0jnC1
janj j´ � ´0jn

D j´ � ´0j lim
n!1

janC1j
janj

< 1;

and diverges if

j´ � ´0j lim
n!1

janC1j
janj

> 1:

The second formula follows by a similar argument using the root test.

� The radius of convergenceR of the power series
P1
kD0 ak.´�´0/k can be computed using Hadamard’s

formula
R D 1= lim sup

n!1

n
p
janj :

Note: if xn > 0 for all n 2 N,

lim sup
n!1

xn D lim
n!1

sup fxk W k > ng :
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The limit superior always exist, is equal to infinity if and only if fxng1nD1 is not bounded above, and
coincides with the ordinary limit when this limit exists.

Example 6.12. Let us consider the geometric series with ratio ´ 2 C, given by
P1
kD0 ´

k . This is a
power series centered at ´0 D 0, with unit radius of convergence (since an D 1 for all n). Thus the
geometric series converges absolutely if j´j < 1 and diverges if j´j > 1. This result can be proved in a
more elementary way noting that if j´j > 1 the general terms of the series is not bounded (its modulus
tends to infinity as n ! 1), so that the series is divergent. On the contrary, if j´j < 1 the n-th partial
sum of the series is given by

nX
kD0

´k D 1 � ´nC1
1 � ´ ����!

n!1

1

1 � ´ ;

since j´jnC1 ����!
n!1

0 for j´j < 1. Note that the geometric series is divergent at all points of the boundary

of the convergence disc, since j´j D 1 implies that the general term of the series has unit modulus, and
thus cannot tend to zero as k !1. In summary,

1X
kD0

´k D 1

1 � ´ ; j´j < 1 :

6.1.4 Taylor’s theorem

In the previous subsection we have shown that the sum of a power series is an analytic function in its
convergence disk. We will now prove that, conversely, an analytic function on an open disk can be rep-
resented by a convergent power series on that disk:

Taylor’s theorem. If f is analytic on the disc D.´0I r/ (with r > 0), it admits the Taylor series
expansion

f .´/ D
1X
kD0

f .k/.´0/

kŠ
.´ � ´0/k; for all ´ 2 D.´0I r/: (6.2)

z

w

z0

ρ

γ

D(z0;r)
  

Figure 6.1: Taylor’s theorem

Proof. Let ´ be a fixed point inD.´0I r/, and let � > 0 such that j´ � ´0j < � < r . If  is the (positively
oriented) circle with radius � and center ´0, from Cauchy’s integral formula it follows that

f .´/ D 1

2 i

Z


f .w/

w � ´ dw:
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On the other hand,

1

w � ´ D
1

w � ´0 C ´0 � ´
D 1

w � ´0
1

1 � ´ � ´0
w � ´0

D 1

w � ´0
1X
kD0

�
´ � ´0
w � ´0

�k
:

Note that the geometric series in the right-hand side is convergent, for w 2  H) j´ � ´0j < � D
jw � ´0j. Since f .w/ is analytic on  , it is bounded  (which is a compact set), so thatˇ̌̌̌

f .w/

w � ´0

ˇ̌̌̌ ˇ̌̌̌
´ � ´0
w � ´0

ˇ̌̌̌k
<
M

�

ˇ̌̌̌
´ � ´0
�

ˇ̌̌̌k
; 8w 2  :

The numerical series (that is, independent from w) M
�

1P
kD0

ˇ̌
´�´0

�

ˇ̌k is convergent (geometric series with

ration smaller than 1). By the Weierstrass M -test, the series

g.w/ �
1X
kD0

f .w/

w � ´0

�
´ � ´0
w � ´0

�k
converges uniformly and absolutely over  . Integrating term by term (cf. Lemma 6.7) we obtain

f .´/ D 1

2 i

Z


g.w/ dw D 1

2 i

1X
kD0

Z


f .w/

.w � ´0/kC1
.´ � ´0/k dw

D
1X
kD0

.´ � ´0/k 1

2 i

Z


f .w/

.w � ´0/kC1
dw D

1X
kD0

f .k/.´0/

kŠ
.´ � ´0/k;

where the last equality follows from Cauchy’s integral formula for the k-th derivative. �

Let f be analytic on a nonempty open set A � C. If ´0 2 A ¤ C, we define the distance of ´0 to
the boundary @A of A as

d.´0I @A/ D inf fj´ � ´0j W ´ 2 @Ag :
It is easy to show that d.´0I @A/ 2 .0;1/. If A D C, which has no boundary, by definition we shall say
that the latter distance is infinite. Clearly, the open disc centered at ´0 with radius d.´0I @A/ is contained
in A. Applying Taylor’s theorem to the latter disc we obtain the following

Corollary 6.13. The radius of convergence of the Taylor series centered at ´0 2 A of a function f
analytic on A is greater than or equal to the distance of ´0 to the boundary of A.

� The radius of convergence of the Taylor series of f (6.2) may be greater than d.´0I @A/. This is
for example the case if f .´/ D Log ´ and ´0 D �1C i (see the following exercise).

Exercise. Show that the Taylor series of Log ´ centered at �1C i has radius of convergence
p
2, while

the distance from �1C i to the boundary of the analyticity region of Log is equal to 1. To which function
does the above Taylor series converge on D.�1C iIp2/?
Solution. The function f .´/ D Log ´ is analytic on A D C n �R� [ f0g�, so that @A D R� [ f0g. If
´0 D �1C i then

d.´0I @A/ D 1 � d :
On the other hand,

f 0.´/ D 1

´
H) f .k/.´/ D .�1/k�1 .k � 1/Š

´k
; k D 1 ; 2 ; : : : :
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Therefore, the Taylor series of f centered at ´0 is

f .´/ D Log.´/ D Log ´0 C
1X
kD1

.�1/k�1
k´k0

.´ � ´0/k (6.3)

(notice that Log.´0/ D 1
2

log 2C 3 i
4

, although this fact is not important). By the root test, the radius of
convergence of this series is

R D lim
k!1

k

q
kj´0jk D j´0j lim

k!1

k
p
k D j´0j D

p
2 > d D 1 :

The Taylor series of Log ´ centered at ´0 � �1 C i converges to F.´/ D logŒ0;2 / on D.´0I
p
2/.

Indeed, f and F clearly coincide on D.´0I 1/, so that

F .k/.´0/ D f .k/.´0/ ; k D 0; 1; : : : :
Thus the Taylor series of F centered at ´0 coincides with that of f . Since F is analytic on the disc
D.´0I

p
2/, F.´/ is equal on the latter disc to the sum of its Taylor series centered at ´0, that is, to the

sum of the series (6.3).

Proposition 6.14. Let f be analytic on A, let ´0 2 A, and assume that f is not bounded on the disc
with center ´0 and radius d.´0I @A/. Then the radius of convergence of the Taylor series of f centered
at ´0 is exactly equal to d.´0I @A/.
Proof. Let R be the radius of convergence of the Taylor series of f centered at ´0, and assume that
R > d.´0I @A/ � d . If

F.´/ D
1X
kD0

f .k/.´0/

kŠ
.´ � ´0/k ; j´ � ´0j < R ;

then F D f onD.´0I d/. On the other hand, F is bounded onD.´0I d/, for this closed disc is a compact
set entirely contained in D.´0IR/, and F is continuous (analytic) on the latter disc. In particular, F is
bounded on the open disc D.´0I d/. But this contradicts the hypothesis, since F D f on D.´0I d/. �

6.1.5 Zeros of analytic functions

In this subsection we shall summarize some fundamental properties of the set of zeros of an analytic
function.

Proposition 6.15. Let f W C ! C be analytic on a point a 2 C, and assume that f .a/ D 0.
Then either f vanishes identically on a neighborhood of a, or f does not vanish on a punctured
neighborhood of the latter point.

Proof. If f is analytic at a then f is differentiable on some neighborhood D.aI r/ � D of a. By
Taylor’s theorem,

f .´/ D
1X
kD1

ck.´ � a/k ; j´ � aj < r :

If the coefficients ck are all zero, then f D 0 on D. On the contrary, if there is n 2 N such that

c0 D � � � D cn�1 D 0; cn ¤ 0;
and thus

f .´/ D
1X
kDn

ck.´ � a/k D .´ � a/n
1X
kD0

ckCn.´ � a/k � .´ � a/ng.´/ ; j´ � aj < r :
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The function g.´/ is analytic on D (since it is the sum of a convergent power series on D), and g.a/ D
cn ¤ 0. Since g is continuous at a, there is 0 < ı < r such that g.´/ ¤ 0 for all ´ 2 D.aI ı/. In
particular, f .´/ D .´�a/ng.´/ does not vanish on the punctured neighborhoodD.aI ı/�fag of a. �

� As before, let f be analytic at a 2 C and not identically zero on a neighborhood of a. If f .a/ D 0,
by the previous lemma there is n 2 N such that

f .´/ D .´ � a/ng.´/ ;

with g analytic an nonzero on a neighborhood of a. Moreover, in this case we have

f .a/ D � � � D f .n�1/.a/ D 0; f .n/.a/ ¤ 0 ;

since f .k/.a/ D kŠck . We then say that f has a zero of order n at a.

� With the help of the previous proposition one can prove the following fundamental property of analytic
functions, which is the basis of the principle of analytic continuation:

Theorem 6.16. If f W C ! C is analytic on a region A and vanishes on a neighborhood of a point
´0 2 A, then f is identically zero on all of A.

6.2 Laurent series. Laurent’s theorem

6.2.1 Laurent series

A series of the form

f .´/ D
1X
kD1

bk

.´ � ´0/k
(6.4)

is a power series in the variable w D .´ � ´0/�1. Thus, if � is the radius of convergence of this power
series and R D 1=� (with 0 6 R 6 1), the series (6.4) converges if j´ � ´0j > R and diverges if
j´ � ´0j < R, the convergence being absolute and uniform in the complement of any disc D.´0I r/ with
r > R. Moreover, the function f is analytic on the region of convergence j´ � ´0j > R, since it is the
composition of the power series g.w/ � P1

kD1 bk w
k , analytic for jwj < � � 1=R, with the function

h.´/ D .´ � ´0/�1.
Consider next the more general series

f .´/ D
1X
kD1

a�k

.´ � ´0/k
C
1X
kD0

ak.´ � ´0/k �
1X

kD�1

ak.´ � ´0/k : (6.5)

The first series converges absolutely to an analytic function for j´ � ´0j > R1, while the second one
does so if j´ � ´0j < R2. Thus, f is well-defined and analytic on the open annulus

C.´0IR1; R2/ D f´ W R1 < j´ � ´0j < R2g ;

called the annulus of convergence, whenever 0 6 R1 < R2 61. In addition (by the results on power
series) the convergence of both series (6.5) is absolute and uniform on any closed subannulus contained
in C.´0IR1; R2/. A series of the form (6.5) is known as a Laurent series centered at ´0.

Proposition 6.17. If the Laurent series

f .´/ D
1X

kD�1

ak.´ � ´0/k
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converges on the annulus C.´0IR1; R2/ (with 0 6 R1 < R2 61) then

an D 1

2 i

Z
r

f .´/

.´ � ´0/nC1
d´ ; 8n 2 Z ;

where r is the positively oriented circle with center ´0 and radius r (with R1 < r < R2).

Proof. Indeed, by definition of f we have:

1

2 i

Z
r

f .´/

.´ � ´0/nC1
d´ D 1

2 i

Z
r

1X
kD�1

ak.´ � ´0/k�n�1 d´ :

The series under the integral sign is a Laurent series converging on the annulus C.´0IR1; R2/, and thus
converging uniformly on the circle r (by the properties of Laurent series). Applying Lemma 6.7 we
obtain:

1

2 i

Z
r

f .´/

.´ � ´0/nC1
d´ D

1X
kD�1

ak �
1

2 i

Z
r

.´ � ´0/k�n�1 d´ :

By the fundamental theorem of calculus, for any integer j ¤ �1 we haveZ
r

.´ � ´0/j d´ D
Z
r

d
d´

"
.´ � ´0/jC1
j C 1

#
d´ D 0 ;

and thus
1

2 i

Z
r

f .´/

.´ � ´0/nC1
d´ D an � 1

2 i

Z
r

d´
´ � ´0

D an � n.r ; ´0/ D an :

�

Corollary 6.18 (uniqueness of Laurent series). If

1X
kD�1

ak.´ � ´0/k D
1X

kD�1

ck.´ � ´0/k ; R1 < j´ � ´0j < R2 ; (6.6)

then ak D ck for all k 2 Z.

6.2.2 Laurent’s theorem

As we have seen above, Laurent series are analytic functions in their annuli of convergence. Conversely,
we shall prove below that an analytic function on an open annulus is the sum of a Laurent series:

Laurent’s theorem. Let f be an analytic function on the annulus C.´0IR1; R2/, with 0 6 R1 <

R2 6 1. If R1 < r < R2, let r be the positively oriented circle with center ´0 and radius r , and
define

ak D
1

2 i

Z
r

f .´/

.´ � ´0/kC1
d´; 8k 2 Z: (6.7)

Then f admits the Laurent series expansion

f .´/ D
1X

kD�1

ak.´ � ´0/k ; R1 < j´ � ´0j < R2 ; (6.8)

where the series on the right-hand side converges absolutely and uniformly on each closed subannulus
contained in C.´0IR1; R2/.
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z

w2

z0

γ2

  

γ1

R1

R2

w1

S

Figure 6.2: Laurent’s theorem

Proof. Let ´ 2 C.´0IR1; R2/ and take r1 y r2 such that R1 < r1 < j´ � ´0j < r2 < R2, so that the
closed annulus A D C.´0I r1; r2/ is contained in C.´0IR1; R2/. Let us denote r1

� 1, r2
� 2.

The closed curve S C 2 � S � 1 is homotopic to a point in C.´0IR1; R2/ (see fig. 6.2). By Cauchy’s
integral formula,

f .´/ D 1

2 i

Z
SC2�S�1

f .w/

w � ´ dw D 1

2 i

Z
2

f .w/

w � ´ dw � 1

2 i

Z
1

f .w/

w � ´ dw � f2.´/ � f1.´/ :

The proof of Laurent’s theorem basically consists in expanding f1 y f2 as power series in .´�´0/�1 and
´ � ´0, respectively. For f2, repeating the argument used in the proof of Taylor’s theorem one obtains

f2.´/ D 1

2 i

Z
2

f .w/
1

w � ´0
1X
kD0

�
´ � ´0
w � ´0

�k
dw D

1X
kD0

.´ � ´0/k � 1
2 i

Z
2

f .w/

.w � ´0/kC1
dw;

where the last step is justified by the uniform convergence of the series over 2 (w 2 2 H) j´ � ´0j = jw � ´0j D
j´ � ´0j =r2 < 1). As to f1, it suffices to observe that if r1 < j´ � ´0j then

1

w � ´ D �
1

´ � ´0
1

1 � w � ´0
´ � ´0

D � 1

´ � ´0
1X
kD0

�
w � ´0
´ � ´0

�k
:

Again, the convergence of the geometric series of the right-hand side is uniform over 1, since

w 2 1 H) jw � ´0j
j´ � ´0j

D r1

j´ � ´0j
< 1 ;

Applying Lemma 6.7 we obtain

�f1.´/ D 1

2 i

Z
1

f .w/

1X
kD0

.w � ´0/k
.´ � ´0/kC1

dw D
1X
kD0

.´ � ´0/�k�1 � 1
2 i

Z
1

f .w/.w � ´0/k dw

D
�1X

nD�1

.´ � ´0/n � 1
2 i

Z
1

f .w/

.w � ´0/nC1
dw:

By the deformation theorem,
R
r
f .w/.w � ´0/�n�1 dw is independent of r if R1 < r < R2, which

proves (6.7)–(6.8). The annulus of convergence of the Laurent series (6.7)–(6.8) is at leastC.´0IR1; R2/;
hence, from the properties of Laurent series it follows that the latter series converges absolutely and uni-
formly on any closed subannulus centered at ´0 and contained in C.´0IR1; R2/. �
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6.3 Classification of isolated singularities

Definition 6.19. A function f W C ! C has an isolated singularity at ´0 2 C if f is not differentiable
at ´0, but is analytic in some punctured neighborhood C.´0I 0; r/ (with r > 0) of ´0.

By Laurent’s theorem, if f has an isolated singularity at ´0 there is r > 0 such that f admits a
Laurent expansion (6.5) on C.´0I 0; r/:

f .´/ D
1X
kD1

bk

.´ � ´0/k
C
1X
kD0

ak.´ � ´0/k; if 0 < j´ � ´0j < r :

i) If bk D 0 for all k 2 N, we say that ´0 is a removable singularity of f .

ii) If bp ¤ 0 and bk D 0 for all k > p, the point ´0 is a pole of order p of f .

iii) Finally, if there are infinitely many coefficients bk ¤ 0 we say that f has an essential singularity
at ´0.

Definition 6.20. The series
1X
kD1

bk.´ � ´0/�k is called the principal part of the Laurent series of f

at ´0. The coefficient b1 of the Laurent series is called the residue of f at ´0:

Res.f I ´0/ D b1 :

� If f has a removable singularity at ´0, there exists the limit

lim
´!´0

f .´/ D a0 : (6.9)

If we define f .´0/ D a0, the function f is analytic onD.´0I r/ (since the power series representing f on
0 < j´ � ´0j < r converges on the latter disc). Conversely, if f is analytic on a punctured neighborhood
of ´0 and equation (6.9) is satisfied, then f has a removable singularity at ´0. Indeed, (6.9) implies that

lim
´!´0

�
.´ � ´0/f .´/

� D 0 : (6.10)

From the generalized Cauchy theorem it follows that

a�m D 1

2 i

Z


f .´/.´ � ´0/m�1 d´ D 0 ; 8m 2 N :

Thus f has a removable singularity at ´0 if and only if f .´/ has a limit when ´ tends to ´0. In fact, one
can prove the slightly more general result:

Proposition 6.21. Let ´0 2 C be an isolated singularity of f W C ! C. Then f has a removable
singularity at ´0 if and only if the condition (6.10) is satisfied.

Proof. Indeed, if f has a removable singularity at ´0 it has a limit at ´0, which implies (6.10). Con-
versely, if this condition is satisfied then the generalized Cauchy theorem implies that all the coefficients
ak with k < 0 of the Laurent expansion of f centered at ´0 are zero. �

Example 6.22. The function f .´/ D sin ´=´, defined for all ´ ¤ 0, has a removable singularity at the
origin. Indeed, although formally f is not defined (and thus is not analytic) at ´ D 0, the condition (6.10)
is satisfied, since lim´!0Œ´f .´/� D lim´!0 sin ´ D 0. The Laurent series of f on the annulus of
analyticity C.0I 0;1/ can be easily computed from the Taylor series of sin ´:

f .´/ D 1

´

1X
kD0

.�1/k ´2kC1

.2k C 1/Š D
1X
kD0

.�1/k ´2k

.2k C 1/Š ; ´ ¤ 0 :

If we define f .0/ D lim´!0 f .´/ D 1, the function f coincides with the sum of the previous series for
all ´ 2 C, and is thus an entire function.
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� By definition, f has a pole of order p at ´0 if and only if there is r > 0 such that

0 < j´ � ´0j < r H) f .´/ D 1

.´ � ´0/p
 
bp C bp�1.´ � ´0/C � � � C b1.´ � ´0/p�1

C
1X
kD0

ak.´ � ´0/kCp
!
� F.´/

.´ � ´0/p
;

where F is analytic on D.´0I r/ and F.´0/ D bp ¤ 0. Thus f has a pole of order p at ´0 if and only if
.´ � ´0/pf .´/ has a removable singularity at ´0, and

9 lim
´!´0

�
.´ � ´0/pf .´/

� ¤ 0 : (6.11)

In fact, one can prove a slightly more general result:

Proposition 6.23. Let f W C ! C be analytic on a punctured neighborhood of ´0. Then f has a pole
of order p at ´0 if and only if the condition (6.11) is satisfied.

Proof. Indeed, as we have seen above the condition (6.11) certainly holds when f has a pole of order
p at ´0. Conversely, if such a condition is satisfied then ´0 is an isolated singularity of f , since (6.11)
clearly implies that f does not have a limit when ´ ! ´0, and thus it is not differentiable at this point.
Moreover, applying Proposition 6.21 to the function .´ � ´0/pf .´/ it follows that .´ � ´0/pf .´/ has
a removable singularity at ´0. The remark just before this proposition then implies that f has a pole of
order p at ´0. �

� If f has a pole of order p at ´0, then

f .´/ D F.´/

.´ � ´0/p
; 0 < j´ � ´0j < r ;

where F is analytic on D.´0I r/ and F.´0/ D bp ¤ 0. By continuity, there is 0 < ı 6 r such that
F.´/ ¤ 0 if j´ � ´0j < ı, so that

1

f .´/
D .´ � ´0/p 1

F.´/
; 0 < j´ � ´0j < ı ;

with 1=F analytic and nonvanishing on D.´0I ı/. Thus 1=f has a removable singularity (zero of order
p) at ´0. Conversely (see Section 6.1.5) if f has a zero of order p > 0 at ´0 then 1=f has a pole of order
p at ´0. Hence:

Proposition 6.24. f has a pole of order p at ´0 if and only if the function

g.´/ D
˚

1
f .´/

; ´ ¤ ´0
0 ; ´ D ´0

has a zero of order p at ´0.

Example 6.25. Consider the function f .´/ D csc2 ´, analytic at ´ ¤ k , with k 2 Z. In this case the
function g.´/ D sin2 ´ has a double zero at each of the (obviously isolated) singularities ´ D k  of f ,
since sin ´ has a simple zero1 at these points (for sin.k / D 0, cos.k / D .�1/k ¤ 0). Thus f has a
double pole at each of the points ´ D k , with k 2 Z.

1It is immediate to show that when h.´/ has a simple zero at a point ´0, then for any n 2 N the function h.´/n has a zero
of order n at this point.
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� Assume that f D g=h, where g and h are analytic functions at ´0 and with zeros of order n > 0 and
m > 1, respectively, at that point. If g and h do not vanish identically on a neighborhood of ´0, as we
have seen in Section 6.1.5 there exists r > 0 such that

j´ � ´0j < r H) g.´/ D .´ � ´0/nG.´/ ; h.´/ D .´ � ´0/mH.´/ ;

with G and H analytic and non-vanishing on D.´0I r/. In particular, since h.´/ ¤ 0 on a punctured
neighborhood of ´0, this point is an isolated singularity of f . Using the previous expressions for g and
h we obtain

0 < j´ � ´0j < r H) f .´/ D g.´/

h.´/
D .´ � ´0/nG.´/
.´ � ´0/mH.´/

� .´ � ´0/n�mR.´/;

with R � G=H analytic (quotient of analytic functions with H.´/ ¤ 0) and nonzero at ´0 (since
G.´0/ ¤ 0). Then:

i) If n > m, f has a removable singularity (zero of order n �m) at ´0.

ii) If n < m, f has a pole of order m � n at ´0.

From the above discussion it follows that the singularities of the quotient of two analytic functions which
do not vanish identically must be either poles or removable singularities

Proposition 6.26. Let f D g � h, with g analytic and nonzero at ´0, and assume that ´0 is an isolated
singularity of h. Then ´0 is an isolated singularity of f , of the same type as is for h.

Proof. Clearly f has an isolated singularity at ´0, since h analytic on C.´0I 0; r/ (r > 0) and g analytic
on D.´0I r/ imply that f � g � h is analytic on C.´0I 0; r/. Moreover, f cannot be differentiable at
´0, since in such a case h D f=g would be differentiable at the latter point (quotient of differentiable
functions at ´0 with a nonvanishing denominator at ´0).

If ´0 is a removable singularity of h then h coincides with an analytic function on a punctured
neighborhood of ´0, and thus the same is true for f . Hence in this case f also has a removable singularity
at ´0. On the other hand, if h has a pole of order p at ´0, then h.´/ D .´� ´0/�pH.´/, withH analytic
on a neighborhood of ´0 andH.´0/ ¤ 0 H) f .´/ D .´� ´0/�p � g.´/H.´/ � .´� ´0/�pF.´/, with
F D gH analytic on a neighborhood of ´0 and F.´0/ D g.´0/H.´0/ ¤ 0 H) f has a pole of order p
at ´0. Finally, if h has an essential singularity at ´0 then the same is true for f , since otherwise h D 1

g
�f

would have a removable singularity or a pole at ´0 (notice that 1=g is analytic on a neighborhood of ´0,
since g.´0/ ¤ 0). �

Example 6.27. The function f .´/ D e1=´ is analytic on C n f0g, and has an essential singularity at the
origin. Indeed,

f .´/ D
1X
kD0

1

kŠ

1

´k
; 8´ ¤ 0 :

By the uniqueness of Laurent series, this is the Laurent expansion of f on the annulus C.0I 0;1/. In
particular, since

bk D
1

kŠ
¤ 0 ; 8k D 1; 2; : : : ;

´ D 0 is an essential singularity of f . Consider next the function f .´/ D ecot´, analytic on C excepting
the points ´ D k  with k 2 Z. The latter points are simple poles of cot ´ D cos ´= sin ´ (simple zeros
of sin ´, while cos ´ does not vanish). Thus, on a punctured neighborhood of k  we have

cot ´ D ck

´ � k  C gk.´/ ;
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with ck ¤ 0 and gk analytic on the latter neighborhood2. Consequently

ecot´ D e
ck

´�k  egk.´/ ;

where egk is analytic at k  (composition of analytic functions) and nonzero at this point. From Proposi-
tion 6.26 it follows that f has an essential singularity at k  for all k 2 Z.

� If f has a pole at ´0 then
lim
´!´0

jf .´/j D 1I (6.12)

in particular, jf j is not bounded on a punctured neighborhood of ´0. However, (6.12) does not hold
if f has an essenctal singularity at ´0. For instance, f .´/ D e1=´ has an essential singularity at the
origin, and f .´n/ D 1 if ´n D 1=.2n i/ ����!

n!1
0, for all n 2 N. In fact, the following theorem implies

that (6.12) only holds if f has a pole at ´0:

Casorati–Weierstrass theorem. If f has an essential singularity at ´0 and a 2 C, there is a sequence
f´ng1nD1 such that ´n ! ´0 and f .´n/! a.

Note: As a matter of fact, it can be proved (Picard’s big theorem) that for any complex number a, with
at most one exception, there is sequence f´ng1nD1 such that ´n ! ´0 and f .´n/ D a for all n 2 N
(cf. f .´/ D e1=´).

Exercise. Let f W C ! C be an entire function satisfying lim
j´j!1

jf .´/j D 1. Show that f is a

polynomial.

2By Laurent’s theorem, the previous formula is valid if 0 < j´ � k j <  .



Chapter 7

Evaluation of integrals using residues

7.1 Residue theorem

The following theorem is the basis for the application of the results of the previous two chapters to the
computation of definite integrals on the real line:

Residue theorem. Let ´1; : : : ; ´n be n distinct points in a region A, and let  be an arc homotopic to
a point in A and such that no ´i lies on  . If f is analytic on A n f´1; : : : ´ng thenZ



f D 2 i
nX
kD1

n.; ´k/ Res.f I ´k/:

Proof. By Laurent’s theorem, for each i D 1; : : : ; n there is a punctured neighborhood C.´i I 0; "i / of ´i
on which f is represented by its Laurent series expansion

f .´/ D
1X
kD1

bik.´ � ´i /�k C
1X
kD0

aik.´ � ´i /k � Si .´/C fi .´/; 0 < j´ � ´i j < "i ;

with fi analytic on the disc D.´i I "i /. Moreover, by the properties of the Laurent series the series
defining the principal part Si .´/ converges absolutely to an analytic function on Cnf´ig, the convergence
being also uniform on the exterior of any open disc centered on ´i .

Let us next show that the function

g.´/ D f .´/ �
nX
kD1

Sk.´/ ;

which clearly is analytic onAnf´1; : : : ; ´ng, has a removable singularity on the points ´i (i D 1; : : : ; n).
Indeed, for each i D 1; : : : ; n we have

g.´/ D fi .´/C Si .´/ �
nX
kD1

Sk.´/ D fi .´/ �
X

16k¤i6n

Sk.´/ ;

on a sufficiently small punctured neighborhood of ´i . Defining g.´i / D lim
´!´i

g.´/, the function g is

thus analytic on all A, so that by Cauchy’s theorem we haveZ


g D 0 H)
Z


f D
nX
kD1

Z


Sk :

Consider now the integral
R
 Sk . Since C n  is open (indeed,  is compact, and thus closed, for it is

the image of the compact interval Œa; b� under the continuous mapping which parametrizes the arc), there

101
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is ık > 0 such that D.´kI ık/ \  D ;. Therefore, the Laurent series defining Sk converges uniformly
on  , which by virtue of Lemma 6.7 yieldsZ



Sk �
Z


1X
jD1

bkj .´ � ´k/�j d´ D
1X
jD1

Z


bkj .´ � ´k/�j d´ D bk1 � 2 in.; ´k/

� 2 i � n.; ´k/ Res.f I ´k/ ;

since
R
 .´ � ´k/�j D 0 for any integer j ¤ 1 on account of the fundamental theorem of calculus. This

completes the proof. �

7.2 Methods for calculating residues

� Let f .´/ D g.´/=h.´/, with g; h analytic on a neighborhood of ´0, g.´0/ ¤ 0, h.´0/ D 0 and
h0.´0/ ¤ 0. Then f has a simple pole at ´0 (simple zero of the denominator and nonvanishing numera-
tor), with residue

Res.f I ´0/ D g.´0/

h0.´0/
:

Indeed, by Taylor’s theorem, on a neighborhood of ´0 we have

h.´/ D
1X
kD1

h.k/.´0/

kŠ
.´ � ´0/k D .´ � ´0/

1X
kD1

h.k/.´0/

kŠ
.´ � ´0/k�1 � .´ � ´0/H.´/;

with H analytic at ´0 (power series convergent on a neighborhood of ´0) and H.´0/ D h0.´0/. Thus

f .´/ D 1

.´ � ´0/
� g.´/
H.´/

:

Since g=H is analytic at ´0 (for H.´0/ D h0.´0/ ¤ 0), using again Taylor’s theorem we obtain the
expansion

g.´/

H.´/
D g.´0/

H.´0/
C
1X
kD1

ak.´ � ´0/k D
g.´0/

h0.´0/
C
1X
kD1

ak.´ � ´0/k ;

so that

f .´/ D g.´0/

h0.´0/

1

´ � ´0
C
1X
kD1

ak .´ � ´0/k�1 ;

from where it follows that the residue of f at ´0 is given by
g.´0/

h0.´0/
, as claimed.

Example 7.1. Let us compute the integral

I D
Z
j´jD8

tan ´ d´ :

The function f .´/ D tan ´ is singular at the points ´k D .2k C 1/ 
2

, with k 2 Z, none of which lies
on the circle j´j D 8. Besides, in the interior of any open disc there are obviously a finite number of
singularities of f , so that we can apply the residue theorem taking as the regionA any open disc centered
at the origin with radius greater than 8. In this way we obtain

I D 2 i
X
j´k j<8

Res.tanI ´k/ D 2 i
2X

kD�3

Res.tanI ´k/ ;
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since 5 
2
< 8 < 7 

2
. In order to compute the residue of tan at the singularity ´k , it suffices to note that

´k is a simple pole (for sin ´k ¤ 0 and cos0.´k/ D � sin ´k ¤ 0), so that

Res.tanI ´k/ D
sin ´k
� sin ´k

D �1 :

Thus I D 2 i � .�6/ D �12 i :

� If f has a pole of order n at ´0 then

Res.f I ´0/ D 1

.n � 1/Š lim
´!´0

dn�1

d´n�1
�
.´ � ´0/n f .´/

�
: (7.1)

Indeed, on a punctured neighborhood of ´0 the function f is represented by the Laurent expansion

f .´/ D bn

.´ � ´0/n
C bn�1

.´ � ´0/n�1
C � � � C b1

´ � ´0
C g.´/;

where g is analytic at ´0 (convergent power series). Thus, on a punctured neighborhood of ´0 we have

.´ � ´0/nf .´/ D bn C bn�1.´ � ´0/C � � � C b1.´ � ´0/n�1 CG.´/ � F.´/; (7.2)

where G.´/ D .´� ´0/ng.´/ is analytic at ´0 with a zero of order > n at this point, and F is analytic at
´0. By Taylor’s theorem,

Res.f I ´0/ D b1 D F .n�1/.´0/

.n � 1/Š D
1

.n � 1/Š lim
´!´0

F .n�1/.´/

D 1

.n � 1/Š lim
´!´0

dn�1

d´n�1
�
.´ � ´0/n f .´/

�
:

Note: from equation (7.2) it follows that .´ � ´0/nf .´/ has a removable singularity at ´0, so that the
formula (7.1) is often written (with a slight abuse of notation) in the simpler form

Res.f I ´0/ D 1

.n � 1/Š
dn�1

d´n�1

h
.´ � ´0/n f .´/

iˇ̌̌
´D´0

:

Exercise. If f D g=h with g and h analytic at ´0, h.´0/ D h0.´0/ D 0 and g.´0/ ¤ 0, h00.´0/ ¤ 0,
show that f has a pole of order 2 at ´0, with residue

Res.f I ´0/ D 2 g
0.´0/

h00.´0/
� 2
3

g.´0/ h
000.´0/

Œh00.´0/�
2

:

Solution. The function f clearly has a double pole at ´0, so that we can apply the formula (7.1). By
Taylor’s theorem, on a punctured neighborhood of ´0 we have

h.´/

.´ � ´0/2
D h2 C h3.´ � ´0/CH.´/ ;

with
h2 D 1

2
h00.´0/ ; h3 D 1

6
h000.´0/ (7.3)

and H analytic at ´0 with a zero of order at least 2 at this point. Applying (7.1) one thus obtains

Res.f I ´0/ D lim
´!´0

d
d´

�
g.´/

h2 C h3.´ � ´0/CH.´/
�
D h2 g

0.´0/ � h3 g.´0/
h22

:

Substituting in the latter equation h2 and h3 by the expressions (7.3) yields the proposed formula.
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7.3 Evaluation of definite integrals

In this section we shall use the notation

H D ˚´ 2 C W Im ´ > 0
	
; L D ˚´ 2 C W Im ´ 6 0

	
to respectively denote the (closed) upper and lower half-planes.

7.3.1
Z 1
�1

f .x/ dx

� Conditions:

i) f analytic onH nf´1; : : : ; ´ng, with ´k 2 H nR (i.e., f has at most a finite number of singularities
in H , none of which can lie on the real axis )

ii) 9p > 1, R > 0 y M > 0 such that

jf .´/j < M

j´jp ; 8´ 2 H; j´j > R

� Result: 2 i
nX
kD1

Res.f I ´k/ :

(Note that the sum is extended to the singularities of f in the upper half-plane H .)

Proof. Let r be the positively oriented half-circle of radius r , with r > R large enough so that all the
singularities of f in H are in the interior of r (see fig. 7.1).

γr

  
–r r

zk

Figure 7.1: half-circle r

Since n.r ; ´k/ D 1 for k D 1; : : : ; n, by the residue theorem it follows thatZ
r

f D 2 i
nX
kD1

Res.f I ´k/ D
Z r

�r

f .x/ dx C
Z  

0

f .rei� / irei� d�: (7.4)

Since jf .x/j < M jxj�p with p > 1 for jxj > R, the first integral on the right-hand side converges
to
R1
�1

f .x/ dx when r ! 1 ( comparison test). As to the second one, its modulus is bounded by
M r1�p, which tends to 0 as r !1. Taking the r !1 limit in (7.4) we obtain the above mentioned
result.

�
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� Notes.:

i) If f is analytic on L n f´1; : : : ; ´ng, with ´k 2 L nR, and condition ii) in the previous page holds
on the lower half-plane L, thenZ 1

�1

f .x/ dx D �2 i
nX
kD1

Res.f I ´k/ :

The minus sign is due to the fact that in this case we have to integrate f along the semicircle
of center 0 and radius r in the lower half-plane traversed in the clockwise direction, and thus
n.r ; ´k/ D �1.

ii) If f D P=Q, with P ¤ 0 and Q polynomials such that Q.x/ ¤ 0 for all x 2 R, then f satisfies
the previous conditions (both on H and L) if and only if degQ > degP C 2.

� Example:
Z 1
�1

x dx
.x2 C 4x C 13/2 .

In this example

f .´/ D ´

.´2 C 4´C 13/2 �
P.´/

Q.´/
;

with singularities (double poles) at the zeros ´ D �2˙ 3i … R of the denominator Q. Since degQ D
4 > degP C 2 D 3, we have

I �
Z 1
�1

x dx
.x2 C 4x C 13/2 D 2 i Res.f I �2C 3i/:

The function f has a double pole at ´0 � �2C 3i, with residue (cf. (7.1))

d
d´

h
.´ � ´0/2f .´/

iˇ̌̌
´D´0

D d
d´

´

.´C 2C 3i/2

ˇ̌̌̌
´D�2C3i

D 1

.6i/2
� 2.�2C 3i/

.6i/3
D 4

.6i/3
D 4i
63
:

Thus I D �8 
63
D �  

27
.

7.3.2 Trigonometric integrals:
Z 2 

0

R.cos �; sin �/ d�

� Conditions: R.x; y/ rational function of two variables with a nonvanishing denominator on the unit
circle x2 C y2 D 1.

� Result: 2 i
X
j´k j<1

Res.f I ´k/ , where

f .´/ D 1

i´
R

�
1

2

�
´C ´�1� ; 1

2i

�
´ � ´�1��

and ´k are the singularities of f (necessarily in finite number, since f is a rational function).

Proof. The function f .´/ has no singularities on the unit circle  , since f .ei� / D �ie�i�R.cos �; sin �/
for � 2 Œ0; 2 /. If we parametrize

R
 f in the usual way as ´ D ei� , we obtainZ


f D
Z 2 

0

R.cos �; sin �/ d� :

The result then follows from the residue theorem, since f (being a rational function of ´) has a finite
number of singularities inside the unit circle. �
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� Example:
Z 2 

0

d�
.5 � 3 sin �/2

.

In this case

f .´/ D 1

i´
�
5 � 3

2i

�
´ � 1

´

��2 D 4i´
.3´2 � 10i´ � 3/2 D

4i´

9
�
´ � i

3

�2
.´ � 3i/2

:

Thus the value of the integral is given by

I D �8 
9

Res
�
gI i
3

�
; with g.´/ D ´

.´ � 3i/2
� 1�
´ � i

3

�2 � h.´/�
´ � i

3

�2 ;
so that

Res
�
gI i
3

�
D h0.i=3/ D 1� i

3
� 3i

�2 � 2i
3� i

3
� 3i

�3 D i
3
� 3i � 2i

3� i
3
� 3i

�3 D �10i
3

�83

33 i3
D �10 � 3

2

83
:

Hence I D 10 

82
D 5 

32
.

7.3.3 Fourier transforms:
Z 1
�1

ei!xf .x/ dx

� Conditions:

i) ! > 0

ii) f analytic on H n f´1; : : : ; ´ng, with ´k 2 H n R (that is, f has at most a finite number of
singularities on the upper half-plane, none of which lying on the real axis)

iii) jf .´/j ! 0 as j´j ! 1 on H , that is

8" > 0; 9R > 0 such that j´j > R; ´ 2 H H) jf .´/j < "

� Result: 2 i
nX
kD1

Res
�
ei!´f .´/I ´k

�
.

(Again, the sum runs over the singularities of f on the upper half-plane H .)

Proof. Given " > 0, let  be the (positively oriented) rectangle with vertices at�x1; x2; x2C iy1;�x1C
iy1, with x1; x2; y1 greater than R and large enough so that all the singularities of f on H lie inside 
(cf. fig. 7.2).

  
x2–x1

–x1+iy1 x2+iy1

zk

Figure 7.2: rectangle 
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Then Z


ei!´f .´/ d´ D 2 i
nX
kD1

Res
�
ei!´f .´/I ´k

�
D
Z x2

�x1

ei!xf .x/ dx C i
Z y1

0

ei!.x2Ciy/f .x2 C iy/ dy

�
Z x2

�x1

ei!.xCiy1/f .x C iy1/ dx � i
Z y1

0

ei!.�x1Ciy/f .�x1 C iy/ dy

� I1 C I2 � I3 � I4:

If y1 is chosen large enough so that .x1 C x2/e�!y1 < 1=! we have

jI2j 6 "
Z y1

0

e�!y dy D "

!
.1 � e�!y1/ <

"

!
;

jI3j 6 " .x1 C x2/ e�!y1 <
"

!
;

jI4j 6 "

!
.1 � e�!y1/ <

"

!
:

Thus ˇ̌̌̌
ˇ
Z x2

�x1

ei!xf .x/ dx � 2 i
nX
kD1

Res
�
ei!´f .´/I ´k

�ˇ̌̌̌ˇ < 3"

!
:

Since " > 0 is arbitrary, if x1 and x2 tend separately to infinity it is shown that the integral converges to
the above stated result. �

� Notes:

i) If ! < 0 and f satisfies conditions analogous to ii)–iii) on the lower half-plane L, it can likewise
be shown that Z 1

�1

ei!xf .x/ dx D �2 i
nX
kD1

Res
�
ei!´f .´/I ´k

�
;

where ´1; : : : ; ´n are the singularities of f on L.

ii) If f D P=Q, with P ¤ 0 and Q polynomials with Q.x/ ¤ 0 for all x 2 R, the previous
conditions on f are satisfied (both on H and L) if and only if degQ > degP C 1.

� Example:
Z 1
0

cos.!x/
x4 C x2 C 1 dx D 1

2

Z 1
�1

cos.!x/
x4 C x2 C 1 dx � I.!/; ! > 0 :

The integral is the real part of

J.!/ D 1

2

Z 1
�1

ei!x

x4 C x2 C 1 dx :

In fact, since sin.!x/ is an odd function ImJ.!/ D 0, and thus I.!/ D J.!/. We can apply the previous
result to the rational function f .´/ D 1

2
.´4 C ´2 C 1/�1 on the upper half-plane (f has no singularities

on the real axis). The singularities (poles) of f are the zeros of the quartic equation

´4 C ´2 C 1 D 0() ´2 D 1

2
.�1˙ i

p
3/ D e˙

2 i
3 () ´ D ˙e˙

 i
3 :

The only singularities on the upper half-plane are

´1 D e
 i
3 D 1

2
.1C i

p
3/; ´2 D �e�

 i
3 D 1

2
.�1C i

p
3/ D �´1 :
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The residue of ei!´f .´/ in any of these singularities ´k can be easily computed, since ei!´f .´/ D
g.´/=h.´/ with g.´k/ ¤ 0, h.´k/ D 0 and h0.´k/ ¤ 0:

Res.f I ´k/ D
1

4

ei!´k

´k.2´
2
k
C 1/ :

Thus

I D  i
2

"
ei!´1

´1.2´
2
1 C 1/

� e�i!´1

´1.2´
2
1 C 1/

#
D �  Im

"
ei!´1

´1.2´
2
1 C 1/

#
� �  ImA:

Since

A D 2e
i!
2
.1Ci
p
3/

.1C i
p
3/ i
p
3
D 2e

!
2
.i�
p
3/

p
3 .i �p3/ D �

iCp3
2
p
3

e
!
2
.i�
p
3/;

we finally obtain

I D �  ImA D  

2
p
3

e�
p

3
2
!
�

cos
!

2
C
p
3 sin

!

2

�
; ! > 0 :

7.3.4 Cauchy principal value

Assume that f W R ! R is not bounded on a neighborhood of x0 2 R, and that the improper integralsR b
�1

f .x/ dx and
R1
c f .x/ dx are convergent for all b < x0 < c. In this case we define the improper

integral
R1
�1

f .x/ dx asZ 1
�1

f .x/ dx D lim
"!0C

Z x0�"

�1

f .x/ dx C lim
ı!0C

Z 1
x0Cı

f .x/ dx :

Clearly, if this improper integral exists thenZ 1
�1

f .x/ dx D lim
"!0C

�Z x0�"

�1

f .x/ dx C
Z 1
x0C"

f .x/ dx
�
:

The right-hand side of the latter expression is called the Cauchy principal value of the improper integral,
and shall be denoted as

PV
Z 1
�1

f .x/ dx D lim
"!0C

�Z x0�"

�1

f .x/ dx C
Z 1
x0C"

f .x/ dx
�
:

(This definition can be generalized in an obvious way to the case where f has a finite number of singu-
larities on the real axis). Therefore, if the improper integral exists then its principal value also exists, and
the equality Z 1

�1

f .x/ dx D PV
Z 1
�1

f .x/ dx

is then satisfied. Note, however, that the Cauchy principal value may exist when the improper integral
does not. For instance, if f is an odd function singular at x0 D 0 but otherwise integrable at ˙1 then
PV

R1
�1

f .x/ dx D 0.

Lemma 7.2. Assume that f is an analytic function with a simple pole at ´0 2 C, and let " be the arc
of a circle ".t/ D ´0 C " eit , with t 2 Œt0; t0 C ˛� (fig. 7.3). Then

lim
"!0C

Z
"

f D i˛ Res.f I ´0/:
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εα

z0

t0

Figure 7.3: curve "

Proof. From Laurent’s theorem, it follows that

f .´/ D b1

´ � ´0 C g.´/; 0 < j´ � ´0j < r;

with g analytic on D.´0I r/, so that jg.´/j < M for j´ � ´0j 6 r=2. If 0 < " 6 r=2 we haveZ
"

f D b1
Z
"

d´
´ � ´0

C
Z
"

g :

But

b1

Z
"

d´
´ � ´0 D b1

Z t0C˛

t0

i"eit

"eit dt D ib1˛ D i˛ Res.f I ´0/;

whereas ˇ̌̌̌Z
"

g

ˇ̌̌̌
6M"˛ ����!

"!0C
0 :

�

� Assume that f W C ! C satisfies:

i) f is analytic onH nf´1; : : : ; ´ng, with ´k 2 H (i.e., f has at most a finite number of singularities
on the upper half-plane), and the possible singularities of f on the real axis are all simple poles.

In addition, one of the following two conditions holds:

ii) 9p > 1, R > 0, M > 0 such that jf .´/j < M

j´jp if j´j > R and ´ 2 H ;

ii0) f .´/ D ei!´g.´/, with ! > 0 and jg.´/j ! 0 when j´j ! 1 on H .

Then PV
R1
�1

f .x/ dx exists and is given by

PV
Z 1
�1

f .x/ dx D 2 i
X

Im´k>0

Res.f I ´k/C  i
X
´k2R

Res.f I ´k/ :

r–r x0

γr

–γε
ε

zk

Figure 7.4: curve 

Proof. Assume, for instance, that f satisfies conditions i) y ii). For simplicity, we shall restrict ourselves
to the case in which f has a single singularity x0 on the real axis. If r > max.jx0j; R/ is sufficiently
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large and " > 0 is small enough so that all the singularities of f on H � fx0g lie on the interior of the
curve  in fig. 7.4, integrating f along the latter curve we haveZ



f D 2 i
X

Im´k>0

Res.f I ´k/ D
Z x0�"

�r

f .x/ dx �
Z
"

f C
Z r

x0C"

f .x/ dx C
Z
r

f :

By the discussion in Section 7.3.1, the integrals
R x0�"
�1

f .x/ dx and
R1
x0C"

f .x/ dx are convergent, and

lim
r!1

Z
r

f D 0:

Taking the limit r !1 one thus obtains

2 i
X

Im´k>0

Res.f I ´k/ D
Z x0�"

�1

f .x/ dx C
Z 1
x0C"

f .x/ dx �
Z
"

f :

The result then follows by making "! 0C and using the previous lemma with ˛ D  . �

� Note: If we replace H by L and ! > 0 by ! < 0 in the previous conditions, then

PV
Z 1
�1

f .x/ dx D �2 i
X

Im´k<0

Res.f I ´k/ �  i
X
´k2R

Res.f I ´k/ :

� Example:
Z 1
0

sin x
x

dx � I .

If we define f .x/ D sin x=x for x ¤ 0 and f .0/ D 1 then f is continuous at 0 and even, so that

I D 1

2

Z 1
�1

f .x/ dx :

This integral is not of the type studied in Section 7.3.1, since jsin ´j D �
cosh2 y � cos2 x

�1=2 ! 1
faster than any power of j´j when jyj ! 1. Neither the relation

I D 1

2
Im
Z 1
�1

eix

x
dx;

is satisfied, since the real part of the integral on the right-hand side is clearly divergent at the origin (the
integrand behaves at this point as 1=x). However,

PV
Z 1
�1

cos x
x

dx D 0

for cos x is even, while

PV
Z 1
�1

sin x
x

dx D
Z 1
�1

sin x
x

dx ;

due to the convergence of the integral on the right-hand side. Thus

I D 1

2i
PV

Z 1
�1

eix

x
dx :

The function g.´/ D ei´=´ has a simple pole at the origin and satisfies condition ii0) above (with ! D
1 > 0), so that

I D  

2
Res

�
ei´

´
I 0
�
D  

2
:
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� Example:
Z 1
0

sin2 x
x2

dx � I .

In this case

I D 1

2

Z 1
�1

sin2 x
x2

dx D 1

4

Z 1
�1

1 � cos.2x/
x2

dx D 1

4
PV

Z 1
�1

1 � e2ix

x2
dx ;

since

PV
Z 1
�1

sin.2x/
x2

dx D 0

since the integrand is an odd function. If g.´/ D .1 � e2i´/=´2 then

jg.´/j 6 1C
ˇ̌
e2i´

ˇ̌
j´j2 D 1C e�2 Im´

j´j2 6
2

j´j2 ; Im ´ > 0; ´ ¤ 0;

and thus condition ii) is satisfied on the upper half-plane. Moreover, ´ D 0 is a simple pole of g (the
numerator has a simple zero and the denominator a double one at the origin), with residue

Res.gI 0/ D d
d´

�
1 � 2ei´�ˇ̌̌̌

´D0

D �2iei´ˇ̌
´D0
D �2i:

Therefore,

I D 1

4
�  i � .�2i/ D  

2
:

� Example: PV
Z 1
�1

sin x dx
.x � 1/.x2 C 4/ � I .

Here

I D ImJ; J � PV
Z 1
�1

eix dx
.x � 1/.x2 C 4/ :

The function

f .´/ D ei´

.´ � 1/.´2 C 4/
is analytic on C n f1;˙2ig, and the singularity at ´ D 1 is clearly a simple pole. Besides, condition ii0)
is clearly satisfied on the upper half-plane (! D 1 > 0), so that

J D  i ŒRes.f I 1/C 2Res.f I 2i/� D  i
�

ei

5
C 2e�2

.2i � 1/ � 4i

�
D  i

�
ei

5
� e�2

2.2C i/

�
D  i

�
ei

5
� .2 � i/e�2

10

�
:

Thus

I D  

5

�
cos 1 � 1

e2

�
:
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Index

Abel–Liouville formula, 26, 29
annulus, 94

of convergence, 94
antiderivative, 73
arc, 69

opposite, 70
simple, 73
sum, 70

argument, 52–54
branch, 53
main branch, 53
principal value, 53

Cauchy
criterion, 85

for the uniform convergence, 86
principal value, 108–111

Cauchy’s inequalities, 83
Cauchy’s integral formula, 79

for the derivatives, 81
Cauchy–Riemann equations, 62–64
chain, 70
chain rule, 65
complex

exponential, 55–56
hyperbolic functions, 57
logarithm, 58–59

branch, 58
principal branch, 58

powers, 59–60
trigonometric functions, 56–58

conjugate, 51
contour, 69
convergence

disc, 89
normal, 87
pointwise, 86
uniform, 86

curve
continuous, 69

piecewise C 1, 69
integral, 3, 7, 10

de Moivre’s formula, 54

eigenvalue, 42
eigenvector, 42
equation

associated, 4
Bernoulli, 13–14
differential, 1

first-order, 2
ordinary, 1
partial, 1

exact, 7–11
homogeneous, 6–7
in normal form, 1
linear, 11–13

complete, 11, 26
homogeneous, 11, 26
inhomogeneous, 11, 26, 31–32
with constant coefficients, 33–38

Riccati, 14–15
separable, 3–5

Fourier transforms, 106–108
function

analytic, 62
continuous, 61
differentiable (in complex sense), 62
entire, 83
harmonic, 66

conjugates, 66
holomorphic, 62
homogeneous of degree zero, 6
primitive, 73, 76

fundamental
inequality, 72
theorem

of algebra, 83
of calculus, 72

Hadamard’s formula, 90
homotopy, 75

index
of a point with respect to a curve, 78
of an eigenvalue, 43

initial value problem, 2, 16, 17
for a linear equation, 27
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for a linear system, 21, 30, 40
integral

along an arc, 69
Cauchy-type, 79
with respect to the arc length, 71–72

integrating factor, 10–11
isocline, 7, 10

Leibniz, general rule, 37
lemma

Schwarz, 8
limit, 61
linear superposition principle, 22, 27

matrix
companion, 27
diagonalizable, 42
exponential, 39–46
fundamental, 23

canonical, 25
of solutions, 24
Wronski, 28, 46

method
of undetermined coefficients, 35–38
of variation of constants, 12, 30–32

modulus, 51
multiplicity

algebraic, 42
geometric, 42

neighborhood, 60
punctured, 60

path independence, 73
Picard’s big theorem, 100
polar form, 53
pole, 97–99
polynomial

characteristic, 33, 42
minimal, 42, 45

power
series, 88

principal part, 97
principle of analytic continuation, 94

radius of convergence, 89–91
ratio

test, 90
reduction of order, 29–30
region, 60

simply connected, 76
reparametrization, 70
residue, 97

root
test, 90

roots
n-th, 54, 56
of unity, 55
square, 50

sequence
of complex numbers, 85
of functions, 86

series, 85
absolutely convergent, 86
geometric, 91
Taylor, 91

set
closed, 60
compact, 60
connected, 9, 60
open, 60
simply connected, 8, 76

singularity
essential, 97
isolated, 97
removable, 97

solution, 1
general, 2

of a linear equation, 31
of a linear system, 30
of a second-order linear equation, 31

space
of solutions, 21–23, 27–28

system
fundamental, 23, 28, 35
linear, 21

homogeneous, 21, 23–26
inhomogeneous, 21, 30
with constant coefficients, 38–48

of differential equations, 16

theorem
Abel, 89
analytic convergence, 88
Casorati–Weierstrass, 100
Cauchy, 75

generalized, 77
Cauchy–Goursat, 74

generalized, 75
Cayley–Hamilton, 42
deformation, 77
existence and uniqueness, 17

for a linear equation, 27
for a linear system, 21
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fundamental
of algebra, 83
of calculus, 72

implicit function, 3
inverse function, 65
Laurent, 95
Liouville, 83
Morera, 82
Peano, 17
residue, 101
Taylor, 91

Weierstrass M -test, 87
Wronskian, 24–26, 28–29
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