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1 The experimental basis of quantum
mechanics

chap.chap1

1.1 Black body radiation and Planck’s hypothesis
sec.bbr

An ideal black body is a hollow enclosure with perfectly absorbing (i.e., “black”) inner and outer walls,
whose surface is pierced by a tiny hole. If electromagnetic radiation falls into the enclosure, the smallness
of the hole makes it extremely unlikely that any radiation coming through it will eventually come out
after a certain number of reflections on the vessel’s inner surface, even if this surface is not perfectly
absorbing. On the other hand, the electromagnetic radiation entering the enclosure will be absorbed by
the atoms in its inner surface and make them vibrate, causing them to radiate electromagnetic energy.
When thermal equilibrium is reached, the energy of the electromagnetic radiation absorbed by the atoms
in the enclosure’s inner surface will equal the energy radiated by them. The electromagnetic radiation
coming from the enclosure’s walls after equilibrium is reached is called black body radiation, and
depends only on the equilibrium temperature of the enclosure’s walls. More precisely, from general
thermodynamic principles it can be shown1 that black body radiation has the following properties:

1) The energy density (i.e., energy per unit volume and frequency) of the radiation field inside the
enclosure is the same function of frequency at a given temperature, regardless of the size and shape
of the enclosure and of the material its walls are made of.

2) The energy flux of the radiation field inside the enclosure is homogeneous (i.e., is the same at all
points inside the cavity) and isotropic (i.e., is the same in all directions).

Let us therefore denote by u.�; T / the energy density per unit frequency of the radiation field at any
point inside the enclosure for frequencies in the range Œ�; � C d�� at a temperature T . In other words,
the energy of the radiation in an infinitesimal volume d3r centered on an arbitrary point r inside the
enclosure with frequencies in the range Œ�; � C d�� at a certain temperature T is u.�; T / d3r d�, and the
total energy (regardless of the frequency) is therefore U.T / d3r , where

U.T / D

Z 1
0

u.�; T / d�: (1.1) Ubb

The energy of the black body radiation field in the frequency range Œ�; � C d�� hitting the hole in the
enclosure emitted by an infinitesimal volume d3r centered at a point inside the enclosure with position
vector r with respect to the hole is thus

u.�; T /d3r d� �
dA cos �
4 r2

;

where dA is the area of the hole and � is the angle between the normal to the surface of the hole and
the vector r. Indeed, by the isotropy of the radiation field the fraction of the total energy u.�; T /d3r d�
emitted by the infinitesimal volume d3r reaching the hole must equal the cross section of the hole
(dA cos � ) divided by the surface of a sphere of radius equal to the distance r from the emitter to the
hole. The radiation in the frequency range Œ�; � C d�� going through the hole in an infinitesimal time dt
is emitted by points inside the enclosure in a solid hemisphere H of radius c dt (where c is the velocity

1The original proof of this result is due to the German physicist Gustav Robert Kirchhoff (1824–1887), in 1859–62.
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

of light in vacuo) centered at the hole. The energy of this radiation is therefore given by

u.�; T / d� dA
Z
H

cos �
4 r2

d3r D u.�; T / d� dA
Z 2 

0

d'
Z  =2

0

d� sin �
Z c dt

0

dr r2
cos �
4 r2

D u.�; T / d� dA � 2 

 Z  =2

0

sin � cos � d�

!
c dt
4 
D
c

4
u.�; T / dA d� dt:

Hence the power per unit surface area of the black body radiation coming through the hole in the fre-
quency range Œ�; � C d�� when the walls of the enclosure are at a temperature T is �.�; T / d�, with

�.�; T / D
c

4
u.�; T /: (1.2) enfluxBB

At the end of the nineteenth century there was great interest in computing from first principles the en-
ergy density u.�; T /—and hence the emitted power per unit frequency and surface area— of black body
radiation, which could be experimentally measured with great precision. The first theoretical calculation
of u.�; T / was carried out by Lord Rayleigh2 in 1900. Rayleigh argued that, since the energy density
of black body radiation is independent of the shape of the enclosure, it can be computed without loss of
generality for a cubic enclosure of size L and volume V D L3. Since the phase of the electromagnetic
waves is kr � !t , where k 2 R3 is the wave vector and ! > 0 is the angular frequency of the waves,
imposing (for instance) periodic boundary conditions on the cube’s sides we find that

kL D 2 n;

where n D .n1; n2; n3/ is a vector with integer components ni . We thus have

jnj D
Ljkj
2 
D
L!

2 c
D
L�

c
;

where � is the angular frequency of the wave. Thus the number of wave vectors k whose corresponding
frequency is in the range Œ�; �C d�� is equal to the volume of a spherical shell of radius jnj D L�=c and
width L d�=c, namely

4 

�
L�

c

�2 L d�
c
D
4 L3

c3
�2 d�:

Moreover, for each wave vector k there are two possible independent polarizations, and thus two possible
independent oscillation modes of the electromagnetic field, since the electric and magnetic field vectors
must be perpendicular to k (i.e., to the direction of propagation). Thus the number dN.�/ of modes of
the electromagnetic field inside the cavity with frequency in the range Œ�; � C d�� is given by

dN.�/ D
8 L3

c3
�2 d� D

8 V

c3
�2 d�: (1.3) dNmodes

Rayleigh argued that each of these modes behaves like an oscillator, so that the radiation in the cavity can
be regarded as an ensemble of oscillators. The energy density per unit frequency of black body radiation
with frequencies in the range Œ�; � C d�� is thus

u.�; T / D
1

V

dN.�/
d�

E.�; T / D
8 

c3
�2E.�; T /; (1.4) uBB

where E.�; T / is the average energy of a mode (i.e., of one of the oscillators in the ensemble) with
frequency � at a temperature T . On the other hand, according to the fundamental principle of statistical

2John William Strutt, 3rd Baron Rayleigh (1842-1919), British mathematician and physicist and Nobel Prize winner in
1904.
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1.1 Black body radiation and Planck’s hypothesis

mechanics introduced by Gibbs3, the probability that the energy of one of the oscillators in an ensemble
at thermal equilibrium is in the range ŒE;ECdE� is proportional to e�ˇE dE, where ˇ D .kBT /�1 and
kB is Boltzmann’s4 constant5. Hence the average energy of a mode is given by

E.�; T / D

R1
0 Ee�ˇE dER1
0 e�ˇE dE

D �
@

@ˇ
log

�Z 1
0

e�ˇE dE
�
D �

@

@ˇ
log.ˇ�1/ D

@

@ˇ
logˇ D

1

ˇ
D kBT:

(1.5) equipE

Using this result in Eq. (1.4) one finally obtains the so called Rayleigh–Jeans6 formula

u.�; T / D
8 

c3
kBT �

2: (1.6) RJeq

Although this formula is in excellent agreement with experiment at low frequencies, it cannot hold for
arbitrarily large �, since in that case the total energy density of the black body radiation field U.T /would
diverge (cf. Eq. (1.1)). This divergence was informally referred to as the ultraviolet catastrophe. In fact,
the experimental measurements showed that at high frequencies

u.�; T / � A�3e�B�=T ; (1.7) WL

where A and B where two empirical constants. In 1900 Planck7 guessed a simple formula for u.�; T /
that interpolates between Eqs. (1.6) and (1.7), namely

u.�; T / D
8 h

c3
�3

eh�=kBT � 1
(1.8) Planckf

(cf. Fig. 1.1), where h a constant with units of action (energy� time or length�momentum) known ever
since as Planck’s constant. Note that Planck’s formula leads to a finite total energy density: indeed,

U.T / D
8 h

c3

Z 1
0

�3 d�
eh�=kBT � 1

D
8 k4B
h3c3

T 4
Z 1
0

x3

ex � 1
dx;

where the last integral is convergent at both endpoints since the integrand behaves as x2 for x ! 0 and
as x3e�x for x !1. In fact, this integral can be computed in closed form as follows8:Z 1
0

x3

ex � 1
dx D

Z 1
0

x3e�x

1 � e�x
dx D

Z 1
0

x3
1X
nD1

e�nx dx D
1X
nD1

Z 1
0

x3e�nx dx D 3Š
1X
nD1

1

n4
D 3Š

 4

90
D
 4

15
:

We thus obtain the following expression for the total energy density of the black body thermal radiation
inside the enclosure:

U.T / D
8 5k4B
15h3c3

T 4: (1.9) SBlaw

3J. Willard Gibbs (1839–1903), American physicist.
4Ludwig Boltzmann, Austrian physicist (1844–1906).
5In the new SI system of units approved in 2019, the following physical constants have exact values:

Speed of light in vacuo c D 299 792 458m s�1

Planck’s constant h D 6:626 070 15 � 10�34 kg m2 s�1

Electron’s charge e D �1:602 176 634 � 10�19 C

Bolzmann’s constant kB D 1:380 649 � 10
�23 J K�1

Avogadro’s number NA D 6:022 140 76 � 10
23 mol�1:

6James Jeans, British physicist, astronomer and mathematician (1877–1946).
7Max Planck (1868–1947), German physicist and Nobel Prize winner in 1918.
8Permuting the infinite sum and the integral in the following calculation is mathematically justified by the dominated (or

monotone) convergence theorem in (Lebesgue) integration theory.
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS
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Figure 1.1. Energy density per unit frequency of the radition field inside a black body as a function
of the frequency, for several values of the temperature. The dashed vertical lines indicate
the frequencies for which u is maximum for a given temperature. It is apparent that this
maximum frequency increases linearly with the temperature.fig.BBrad

By Eq. (1.2), the total power per unit area R.t/ radiated by a black body at a temperature T is given by
Stefan’s9 law

R.T / D
c

4
U.T / D �T 4; (1.10) Slaw

where

� D
2 5k4B
15h3c2

D 5:670374419 � 10�8 W m�2 K�4 (1.11) SBconstant

is called the Stefan–Boltzmann constant.
Although Planck obtained Eq. (1.8) essentially by interpolation, he later proposed a heuristic justifi-

cation thereof by postulating that the energy of an oscillation mode of frequency � of the black body
radiation field could only be an integer multiple nh� of a minimum energy h�. That this hypothesis
leads to Planck’s law (1.8) can be easily proved10 by noting that if the energy of a mode can only take
the values nh� with n D 0; 1; : : : Eq. (1.5) must be replaced by

E.�; T / D

1P
nD0

nh�e�ˇnh�

1P
nD0

e�ˇnh�
D �

@

@ˇ
log

 
1X
nD0

e�ˇnh�
!
D

@

@ˇ
log

�
1 � e�ˇh�

�
D

h�e�ˇh�

1 � e�ˇh�
D

h�

eˇh� � 1
:

Substituting this expression for E.�; T / into Eq. (1.4) we indeed obtain Planck’s distribution (1.8).

Remark. Before the introduction of Planck’s constant, the dependence of u.�; T / on � and T could have
been determined on dimensional grounds as follows. To begin with, if the existence of h is not known
u.�; T / can be expected to depend only on �, kBT , and c. Since u.�; T / has dimensions of�

u.�; T /� D
E

L3t�1
DML�1t�1;

and
Œ�� D t�1; ŒkBT � DML

2t�2; Œc� D Lt�1;

for �˛.kBT /ˇ t to have the same dimension as u.�; T / the exponents ˛; ˇ;  must satisfy the linear
system

ˇ D 1; 2ˇ C  D �1; �˛ � 2ˇ �  D �1;

9Josef Stefan (1835–1893), Slovenian physicist.
10The following argument is actually due to Lorentz. Planck’s deduction, much more involved, was based on thermody-

namical considerations.

© Artemio González López 4



1.1 Black body radiation and Planck’s hypothesis

whose unique solution is
˛ D 2; ˇ D 1;  D �3:

Thus on dimensional grounds we must have

u.�; T / D a
�2kBT

c3
;

where a is a dimensionless constant (in particular, independent of � and T ). This is essentially the
Rayleigh–Jeans formula (1.6). Since this formula cannot be valid for high frequencies (as it leads to an
infinite value for the total energy U.T /), we conclude that there must be an additional universal constant
on which u.�; T / depends. �

Exercise 1.1. Show that the power per unit wavelength �.�; T / radiated by a black body is given bya

�.�; T / D
2 hc2��5

ehc=�kBT � 1
:

Find the wavelength �max.T / for which this power is maximum for a given temperature T .

Solution. First of all, since obviously

�.�; T / d� D ��.�; T / d�;

where the minus sign takes into account that � D c=� decreases when � increases, we obtain

�.�; T / D ��.�; T /
d�
d�
D

c

�2
�.�; T / D

c2

4�2
u.�; T / D

2 hc2��5

ehc=�kBT � 1
:

Calling x D hc=�kBT we can write the previous formula as

�.�; T / D
2 

h4c3
.kBT /

5f .x/; with f .x/ D
x5

ex � 1
: (1.12) rhofx

It is straightforward to show that f .x/ has a unique maximum x0 on the positive real axis. Indeed,
f .x/ behaves as x4 for small x > 0 and tends to 0 as x5e�x for x !1. On the other hand,

f 0.x/ D
5x4.ex � 1/ � x5ex

.ex � 1/2
D

x4ex

.ex � 1/2
g.x/; with g.x/ WD 5.1 � e�x/ � x:

The function g.x/ vanishes for x D 0 and tends to �1 as x ! 1. Moreover, g0.x/ D 5e�x � 1 is
positive for x < log 5 and negative for x > log 5, and vanishes for x D log 5. Thus g is increasing
for 0 6 x 6 log 5, has a maximum at x D log 5 with g.log 5/ D 4 � log 5 > 0 and decreases
monotonically for x > log 5. Since g.x/! �1 for x !1, it follows that there is a unique number
x0 > log 5 such that g.x0/ D 0. Thus f 0.x/ D x4exg.x/ is positive for 0 < x < x0 and negative
for x > x0, so that f .x/ has a unique global maximum at x D x0. Solving numerically the equation
f 0.x/ D 0, or equivalently

5.1 � e�x/ � x D 0; (1.13) eqlamax

we obtainb

x0 D 4:9651142317 � � � :

From Eq. (1.12) it then follows that for a fixed temperature the function �.�; T / has a unique maximum
at

�max.T / D
hc

kBT x0
D
ahc

kBT
; with a D x�10 D 0:201405235 � � � :

5 © Artemio González López



THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

In particular, from the previous equation we deduce that the product

�max.T /T D
ahc

kB

is constant, a result that is known as Wien’s law.

Note: the frequency �max.T / for which �.�; T / is maximum for a given temperature T can be com-
puted in the same way, expressing �.�; T / as

�.�; T / D
c

4
u.�; T / D

2 h

c2
�3

eh�=kBT � 1
D

2 

h2c2
.kBT /

3h.x/;

with

x D
h�

kBT
; h.x/ D

x3

ex � 1
:

Proceeding as above we obtain

�max.T / D y0
kBT

h
;

where
y0 D 2:8214393721 � � �

is the unique maximum of h.x/ for x > 0, determined by the transcendental equation

3.1 � e�x/ � x D 0:

In particular, the product �max.T /T is again constant. Note, finally, that �max.T / ¤ c=�max.T /;
indeed,

1

c
�max.T /�max.T / D

y0

x0
' 0:568253:

aStrictly speaking, the power per unit wavelength is a function of its arguments .�; T / different from the function
�.�; T /, and should therefore be represented by a different symbol, for instance O�.�; T /. Following widespread physical
usage, with a slight abuse of notation we shall represent both functions by the same symbol � when no possible confusion
can arise.

bA solution of the latter equation can be easily obtained recursively setting

xnC1 D 5.1 � e�xn/;

with (for instance) x1 D 5. Note that if this sequence converges its limit x must satisfy

lim
n!1

xnC1 D x D 5 lim
n!1

.1 � e�xn/ D 5.1 � e�x/;

so that x is the unique solution of the transcendental equation (1.13). Computing the first 5 terms in the sequence we obtain

x2 D 4:96631027; x3 D 4:96515593; x4 D 4:96511569; x5 D 4:96511428; x6 D 4:96511423; : : : ;

which is accurate to 8 decimal places.

1.2 The photoelectric effect. Photons
sec.photoel

In his heuristic derivation of the black body radiation law (1.8), Planck had actually supposed that the
energies of the oscillators that made up the enclosure’s walls were quantized (i.e., took on a discrete
set of values proportional to a minimum energy h� dependent on the oscillators’ frequency �), and that
this caused in turn the quantization of the energy of the Fourier modes of the electromagnetic radiation
emitted by the walls. It was Albert Einstein who in 1905 actually imposed the quantization of energy to
the electromagnetic field itself, postulating that the energy of an electromagnetic wave of frequency � can
only be an integer multiple of h�, where h is Planck’s constant. The minimum energy h� carried by an
electromagnetic wave of frequency � was called by Einstein a quantum of light. Although the wavelike

© Artemio González López 6



1.2 The photoelectric effect. Photons

nature of light was well established by the end of the nineteenth century from interference and diffraction
phenomena, Einstein’s hypothesis suggested that light of frequency � was made up of individual particles
of energy h� which we now call photons11. This assumption was in fact supported by his successful
explanation of the photoelectric effect, which we shall next describe.

A metal is a lattice of atoms that have each lost one or more outer electrons —the so called conduction
electrons. These electrons, which are able to move freely inside the metal, are responsible for the good
electrical and thermal conductivity characteristic of metals. The positively charged ions fixed at the lattice
sites in a metal create an electric field that keeps the conduction electrons inside the metal. Thus to extract
an electron from the metal it is necessary to provide a certain energy � characteristic of each metal, called
the work function. At the end of the nineteenth century, it was observed that when a metal is illuminated
by ultraviolet light a negative electric charge can be extracted from the metal’s surface. It was naturally
assumed that this charge was carried by electrons, which had been discovered by J. J. Thomson12 in 1897.
It was also believed that the energy of the emitted electrons should increase with the intensity of the light
illuminating the metal. Precise experiments carried by Lennard13, however, conclusively showed that
this is not the case. More precisely, Lennard found that no electrons are ejected from the metal until the
frequency reaches a certain threshold (usually in the ultraviolet range). When this threshold is exceeded,
the energy of the electrons expelled from the metal (usually called photoelectrons) grows linearly with
the frequency. Moreover, the intensity of the light only affects the number of photoelectrons emitted, not
their individual energies.

Lennard’s experimental findings can be elegantly explained by Einstein’s light quanta hypothesis.
Indeed, when an electron absorbs a photon of frequency � its energy increases by h�, and it cannot
therefore leave the metal unless this energy exceeds the work function �. On the other hand, it is ex-
tremely unlikely that an electron absorbs more than one photon. Thus the frequency threshold below
which no electrons are emitted is clearly �=h. When � exceeds this threshold14 the (kinetic) energy E
of a photoelectron is simply

E D h� � �; (1.14) photoeleff

which indeed increases linearly with �. Millikan’s15 Chicago experiments in 1914–1916 fully confirmed
Einstein’s relation (1.14). In fact, the latter equation was used by Millikan to determine the value of h.
To this end, when h� > � an electric current of increasing voltage is applied to the metal plate until no
photoelectrons are ejected when the voltage reaches a certain value V (usually referred to as the retarding
potential). This will be the case when the energy h� � eV (where e > 0 is the absolute value of the
electron’s charge) supplied to the electrons exactly matches the work function �, so that

h� � eV D �:

11The name photon was coined by the American physical chemist Gilbert N. Lewis (1875–1946) in 1926.
12British physicist (1856–1940) and Nobel Prize winner in 1906.
13Philipp Lennard (1862–1947), German physicist and Nobel Prize winner in 1905.
14In order to trigger the emission of photoelectrons, the frequency � of the light beam illuminating the metal must thus

satisfy the condition

h� D
hc

�
> �;

or in terms of the wavelength

� <
hc

�
:

Since for most metals � is typically of the order of a few eV, taking, for instance, � � 5 eV � 8 � 10�19 J we obtain

� .
6:6 � 10�34 � 3 � 108

8 � 10�19
m � 2:5 � 10�7 m D 250 nm:

A wavelength of about 250 nm (or less) corresponds to the ultraviolet region of the spectrum, since the wavelength of the
visible spectrum extends from about 380 nm (violet) to about 700 nm (red).

15Robert Andrews Millikan (1868–1953), American physicist and Nobel Prize winner in 1923.
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

Repeating the experiment for two values �i of the frequency we obtain the linear system

h�1 � eV1 D �; h�2 � eV2 D �

which can be used to determine Planck’s constant h and the metal’s work function � from the equations

h D
e.V1 � V2/

�1 � �2
; � D

e.V1 � V2/

�1 � �2
�1 � eV1 D

e.�2V1 � �1V2/

�1 � �2
:

In this way Millikan found a value for Planck’s constant h in excellent agreement with the value obtained
from earlier measurements of black body radiation spectra.

1.3 Compton scattering
sec.Compscatt

Einstein’s hypothesis of light quanta was further confirmed by the experiments on scattering of X rays
(electromagnetic radiation with much shorter wavelength than visible light) by electrons in atoms per-
formed by Compton16 in 1922–23. Indeed, since the energy of X rays is much greater than the binding
energy of electrons in light atoms17, it is possible to regard the electrons as free particles. Moreover,
since X rays are much more energetic than visible or ultraviolet light, photons are not merely absorbed
but collide elastically with these electrons. As photons travel at the speed of light c they must have zero
rest mass, as otherwise the relativistic relation between energy E, velocity v and momentum p

p D
mvq
1 � v2

c2

would assign photons an infinite momentum. From the relativistic formula

E2 � c2p2 D m2c4

it follows that the momentum of a photon of frequency � is

p D
h�

c
n;

where n D p
jpj is a unit vector in the direction of the photon’s velocity. Thus the 4-momentum p of a

photon of frequency � is given by

p D

�
E

c
;p
�
D
h�

c

�
1;

p
jpj

�
:

If a photon of frequency � collides with an electron at rest, conservation of energy-momentum requires
that

p C pe D p
0
 C p

0
e;

where p ; pe denote the initial four-momenta of the photon and the electron, and p0 ; p
0
e their final four-

momenta. Using the relativistic identity p � p � p2 D m2c4, where the dot stands for Minkowski
product, we easily obtain the relation

m2ec
4
D .p � p

0
 C pe/

2
D .p � p

0
 /
2
C 2.p � p

0
 / � pe Cm

2
ec
4

D 2.p � p
0
 / � pe � 2p � p

0
 Cm

2
ec
4
H) p � p

0
 D .p � p

0
 / � pe;

16Arthur Holly Compton, American physicist (1892-1962) and Noble Prize winner in 1927.
17Typically, (hard) X rays have energies of a few keV (i.e., thousands of eV), while the ionization energy of (say) the

electron in a hydrogen atom is about 13:6 eV. In terms of wavelengths, for X rays

� D
c

�
D
hc

E
�
6:6 � 10�34 � 3 � 108

1:6 � 10�16
m �

10�25

10�16
m D 1nm;

while the visible part of the electromagnetic spectrum starts at wavelengths of about 380 nm.
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1.4 Bohr’s atomic model

whereme denotes the electron’s mass. Choosing the x axis along the direction of motion of the incoming
photon, and calling � the photon’s scattering angle and �0 the frequency of the scattered photon, we can
write

p D
h�

c
.1; 1; 0; 0/ ; p0 D

h�0

c
.1; cos �; sin �; 0/; pe D .mec; 0; 0; 0/ ;

and therefore
h2��0

c2
.1 � cos �/ D hme.� � �0/:

Expressed in terms of the wavelengths � D c=�, �0 D c=�0, the previous identity yields Compton’s
formula

�0 � � D �e.1 � cos �/; (1.15) Compton

where

�e D
h

mec
D 2:42631023867.73/ � 10�12 m (1.16) elComp

is called the electron’s Compton wavelength. Compton’s experiments established the validity of the
previous formula, thus lending further support to the existence of photons.

Although the photoelectric and Compton effects fully supported Einstein’s light quanta hypothesis,
which amounted to a corpuscular theory of light, for several decades it remained a mystery how this
hypothesis could be reconciled with the results of interference and diffraction experiments, all of which
supported a wave theory of light. This apparent contradiction could not be satisfactorily explained till
the discovery of quantum mechanics in the mid nineteen-twenties, as we shall see in the sequel.

1.4 Bohr’s atomic model
sec.Bohratom

When an electric current is made to go through a gas like hydrogen or helium, the gas is excited and as a
consequence emits light —or, in general, electromagnetic radiation— of characteristic frequencies. The
set of these frequencies is called the emission spectrum of the gas. These emission spectra were inten-
sively studied at the end of the nineteenth century since, as we shall see, they throw considerable light
on the fundamental structure of the gas under study at the atomic level. For hydrogen, the wavelengths
of the emission spectrum known in the early twentieth century obeyed the simple empiric formula

��1n D RH

�
1

4
�
1

n2

�
; n D 3; 4; : : : ; (1.17) Balmer

where
RH ' 1:09677576 � 10

7 m�1: (1.18) RyH

is the so called Rydberg18 constant. This set of wavelengths, called the Balmer series after the discov-
erer19 of Eq. (1.17), is entirely in the visible spectrum, since it is in the range

.�1; �3� D .364:705; 656:47� nm:

By 1911, the experiments carried out by Rutherford20, Geiger21 and Marsden22 had conclusively estab-
lished that atoms consisted of a positively charged nucleus around which orbited the negatively charged
electrons, bound to the nucleus by their mutual electromagnetic attraction. For example, in the case of

18Johannes Robert Rydberg (1854–1919), Swedish physicist.
19Johann Jakob Balmer (1825–1898), Swiss mathematician.
20Ernest Rutherford (1871–1937), British physicist and Nobel Prize winner in Chemistry in 1908.
21Hans Wilhelm Geiger (1882–1945), German physicist.
22Sir Ernest Marsden (19 February 1889–1970), British physicist.
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

hydrogen there is a single electron of charge �e orbiting around the nucleus with charge e > 0, so that
the interaction potential binding the electron to the nucleus is the Coulomb one:

V.r/ D �
e2

4 "0r
:

In the SI unit system the constant "0 appearing in the previous formula, called the vacuum permittivity,
has the value23

"0 D 8:8541878128.13/ � 10
�12F m�1:

According to a standard result in classical electrodynamics, a particle (in this case, the electron) moving
along a circular orbit with frequency � will emit electromagnetic radiation of the same frequency �. It
could be thought that this radiation accounts for the emission spectrum of hydrogen detected experimen-
tally. This explanation is however unsatisfactory, since classically the frequency of the electron’s orbital
motion, and hence of the radiation emitted by it, could be any positive number. More importantly, the
classical model of the atom described above is clearly inconsistent, since the fact that the orbiting elec-
tron must radiate electromagnetic energy implies that it is steadily losing energy. Since the radius a of
a circular orbit (or, more generally, the major semiaxis of an elliptic orbit) in the Coulomb potential is
related to its energy by the formula

E D �
e2

8 "0a
< 0;

a decrease of the electron’s energy (i.e., an increase in jEj) implies a decrease in the radius of its orbit.
In other words, classical electrodynamics predicts that the electron in the hydrogen atom will fall onto
the nucleus following a spiral trajectory. The time � taken by the electron to fall into the nucleus —i.e.,
the classical lifetime of a hydrogen atom— can also be computed combining classical electrodynamics
with classical mechanics, with the result

� D
4c3 2"20m

2
er
3
0

e4
; (1.19) Hlifet

where r0 is the electron’s initial distance to the nucleus. Taking r0 as what is nowadays called the Bohr
radius of the atom, namely

r0 D
"0h

2

 mee2
' 5:29177210903.80/ � 10�11 m;

we obtain the estimate

� D
4c3h6"50
 mee10

' 1:55618 � 10�11 s:

Thus Rutherford’s atomic model is inconsistent, since it predicts that hydrogen should disintegrate in a
very short time.

Exercise 1.2. Prove Eq. (1.19) using Larmor’sa formula for the power P radiated by a charge q moving
with an acceleration a:

P D
q2a2

6 "0c3
:

Solution. When the electron moves along a circular orbit of radius r , its acceleration and energy are
respectively given by

a D
F

me
D

e2

4 "0mer2
; E D �

e2

8 "0r
:

By energy conservation, the power P radiated by the electron must equal the rate �dE
dt at which the

23The Farad (abbreviated F) is the unit of capacitance, and has dimensions of kg�1m�2 s4 A2.
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1.4 Bohr’s atomic model

electron loses its mechanical energy. We thus obtain the differential equation

�
dE
dt
D �

e2

8 "0r2
dr
dt
D

e2a2

6 "0c3
D

e6

96 3"30m
2
ec
3r4

H)
dt
dr
D �

12 2"20m
2
ec
3

e4
r2 :

Integrating between r D r0 for t D 0 and r D 0 for t D � we obtain

� D
12 2"20m

2
ec
3

e4

Z r0

0

r2 dr D
4 2"20m

2
ec
3r30

e4
;

as claimed.

aSir Joseph Larmor (1857–1942), Irish physicist.

In 1913, Bohr24 developed a heuristic model of the atom which addressed the deficiencies of the
Rutherford model mentioned above. Bohr realized that the fact that the frequencies in the emission
spectrum of hydrogen and other gases were quantized (i.e., formed discrete sequences like the Balmer
series for hydrogen) suggested that the frequencies, and therefore the radii, of the circular orbits of
electrons in atoms should also be quantized. In other words, electrons could only orbit around the
nucleus along circular orbits whose radii belonged to a certain discrete set frn W n D 1; 2; : : : g. For a
hydrogen-like (ionized) atom, consisting of a nucleus of charge Ze and a single electron, the energy of
the electron along one of these allowed orbits of radius rn is

En D �
kZe2

2rn
; n D 1; 2; : : : ; (1.20) EnBohr

where

k WD
1

4 "0
:

Thus the quantization of the radius of circular orbits leads to the quantization of the electron’s energy.
To avoid the instability problem of Rutherford’s model of the atom, Bohr further postulated that these
allowed circular orbits were stable, i.e., that when the electron moved along them it did not radiate.
Emission of light —or, in general, of electromagnetic radiation— occurred instead when the electron fell
from one of these stable orbits of radius rn and energy En to a less energetic orbit of radius rl < rn and
energy El < En. More precisely, following Einstein’s hypothesis of light quanta, Bohr assumed that in
the transition from the orbit of energy En to the orbit of energy El the atom emitted a photon of energy
En �El and frequency

�n!l D
En �El

h
D
kZe2

2h

�
1

rl
�
1

rn

�
: (1.21) nunl

To determine the radii rk of the allowed circular orbits, Bohr observed that Planck’s constant h has the
same dimensions as an angular momentum, which lead him to hypothesize that the angular momentum
of the electron’s allowed circular orbits must be an integer multiple of an elementary angular momentum
„ expected to be proportional to h. In other words, the electron’s allowed angular momenta are

Ln D n„; n D 1; 2; : : : : (1.22) LnBohr

The above relation is easily transformed into a formula for the radii of the stable circular orbits by noting
that the electron’s centripetal acceleration along a circular orbit of radius r is given by

ar D
v2

r
D
kZe2

mer2
;

24Niels Bohr (1885–1962), Danish physicist and Nobel Prize winner in 1922.
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and therefore

v2 D
kZe2

mer
:

We thus have

L2n D n
2
„
2
D m2ev

2r2n D m
2
e

kZe2

mern
r2n D kZe

2mern:

The radii of the stable orbits in Bohr’s atom are therefore

rn D
n2„2

kZe2me
; n D 1; 2; : : : ; (1.23) rnBohr

whose corresponding energies are obtained from Eq. (1.20):

En D �
k2meZ

2e4

2n2„2
; n D 1; 2; : : : : (1.24) EnBohrfinal

The wavelength of the photon emitted by the atom in the transition En ! El (where n > l) is computed
combining Eqs. (1.21) and (1.23), namely

1

�n!l
D
�l!n

c
D R1Z

2

�
1

l2
�
1

n2

�
; n > l; (1.25) laBohr

where

R1 D
k2mee

4

2ch„2
: (1.26) Ryinfhh

Equation (1.26) determines the emission spectrum of hydrogen-like atoms in terms of the unknown con-
stant „. To compute this constant Bohr applied what he called the correspondence principle, according
to which the predictions of the new quantum theory should coincide with the classical results for large
quantum numbers. Indeed, when n!1 the quotient

EnC1 �En

jEnj
D 1 �

EnC1

En
D 1 �

n2

.nC 1/2
D

2nC 1

.nC 1/2
'
2

n

tends to zero, and thus the energies are virtually continuous. In this case, according to classical electro-
dynamics the frequency of the electromagnetic radiation emitted by the atom should coincide with the
frequency of the electron’s motion, which for a circular orbit of radius rn can be easily computed from
the law of areas and Eqs. (1.22)-(1.23):

Ln

2me�n
D  r2n H) �n D

Ln

2 mer2n
D

n„

2 me

k2Z2e4m2e
n4„4

D
k2Z2e4me

2 n3„3
D
cR1Z

2

 n3
h

„
:

According to Bohr’s correspondence principle, this frequency should coincide with the frequency �nC1!n
of the photon emitted by the ion in the transition from the n-th to the .n � 1/-th energy level, given by

�n!n�1 D cR1Z
2

�
1

.n � 1/2
�
1

n2

�
D cR1Z

2 2n � 1

n2.n � 1/2
'
2cR1Z

2

n3
:

Imposing that �n!n�1 D �n we deduce that the unknown constant „, nowadays called the reduced
Planck constant, is given by

„ D
h

2 
: (1.27) hbar
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1.4 Bohr’s atomic model

From this equation we obtain the following explicit expression for the Rydberg constant R1:

R1 D
k2mee

4

4 „3c
D

mee
4

64 3"20„
3c
D

mee
4

8"20h
3c
' 1:0973731568160.21/ � 107 m�1: (1.28) Ryinf

In the special case Z D 1 and l D 2 Eqs. (1.25)-(1.28) yield the Balmer series (1.17) with �n D �n!2,
together with the value RH D R1 for the empiric constant RH . We thus see that the n-th wavelength
in the Balmer series correspond to the transition of the electron from the n-th allowed orbit to the second
one. Moreover, Bohr’s formula (1.25) predicts the existence of other spectral series corresponding to l D
1; 3; 4; etc. In fact, the spectral series for l D 1; 3; 4; 5 (the so called Lyman, Paschen, Brackett and Pfund
series) were discovered shortly after Bohr proposed his atomic model, lending it strong experimental
support. Further confirmation of the existence of quantized energy levels in atomic spectra came from the
experiment with vapor of mercury performed in 1914 by Franck25 and Hertz26, who offered compelling
evidence of the existence of a gap of 4:9eV between the first excited state and the ground state of mercury.

Remark 1. According to Eqs. (1.23)-(1.24), the ground state —i.e., the state of minimum energy— of
the hydrogen atom corresponds to the circular orbit of minimum radius

r1 D
„2

ke2me
D
4 "0„

2

e2me
D

"0h
2

 e2me
; (1.29) Bohrrad

called the Bohr radius. The ground state energy of the hydrogen atom is

E1 D �
k2mee

4

2„2
D �

mee
4

32 2"20„
2
D �

mee
4

8"20h
2
' �13:6057 eV: (1.30) GSHyd

This is also the electron’s binding energy or ionization energy of the hydrogen atom, i.e., the energy
needed to remove the electron from the atom. �

Remark 2. The small discrepancy between the values of R1 and RH is due to the fact that in the
argument leading to Eqs. (1.25)-(1.28) we ignored the motion of the nucleus, or equivalently regarded
its mass as infinite. To take into account the finite value of the mass of the nucleus we should replace in
the equations derived above the mass of the electron by the reduced mass of the electron-nucleus system.
For hydrogen, this reduced mass is given by

� D
memp

me Cmp
D

�
1C

me

mp

��1
me ' 0:999456me;

where mp is the proton’s mass. The Rydberg constant for hydrogen is therefore

RH D

�
1C

me

mp

��1
R1 ' 1:09677583 � 10

7 m�1;

in excellent agreement with Eq. (1.18). �

Remark 3. In the previous deductions we have regarded the electron as non-relativistic. This is consis-
tent for light hydrogen-like atoms (Z � 100, say), since for the electron in the n-th atomic orbital we
have

v2

c2
D

kZe2

mec2rn
D
kZe2

mec2
kZe2me

n2„2
D
˛2Z2

n2
H)

v

c
D
˛Z

n
6 ˛Z;

25James Franck (1882–1964), German physicist and Nobel prize winner in 1925.
26Gustav Hertz (1887–1975), German physicist and Nobel prize winner in 1925.
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where

˛ D
e2

4 "0„c
D

e2

2"0hc
' 7:2973525693.11/ � 10�3 (1.31) finestcons

is the fine structure constant27. �

In the previous discussion of hydrogen-like atoms we assumed for simplicity’s sake (as originally done
by Bohr himself) that the electron was moving along a circular orbit. Bohr’s quantization rule (1.22) has
to be modified for the more general case of motion along an elliptic orbit. In 1915–16 Sommerfeld28,
Wilson29 and Ishiwara30 independently proposed a generalization of Bohr’s quantization of angular mo-
mentum for hydrogen-like atoms to conservative N -dimensional multi-periodic Hamiltonian systems
admitting action-angle variables. Roughly speaking, this means that there is a set of generalized coordi-
nates .q1; : : : ; qN / with corresponding canonical momenta .p1; : : : ; pN / such that along any trajectory
of the system each canonical momentum pi is a function of the corresponding generalized coordinate
qi alone, and the motion in the .qi ; pi / plane is periodic31. The Sommerfeld–Wilson–Ishiwara (SWI)
general quantization rules32 read

I
pi dqi D nih; 1 6 i 6 N; (1.32) SWIquant

where ni is a non-negative integer for all i and the integrals are extended along a period of the motion
in the .qi ; pi / plane. For a hydrogen-like atom the Lagrangian governing the electron’s motion in polar
coordinates .r; '/ can be taken as

L D
1

2
me. Pr

2
C r2 P'2/C

kZe2

r
:

The canonical momenta are therefore

pr D me Pr; p' D mer
2
P';

and the Hamiltonian is the total energy expressed in terms of the canonical momenta:

H D
1

2me

 
p2r C

p2'

r2

!
�
kZe2

r
:

Note that Hamilton’s equation of motion for p' is

Pp' D �
@H

@'
D 0;

and thus p' is conserved. In fact, p' is equal to the angular momentum L. The Sommerfeld–Wilson–
Ishiwara quantization rules are in this caseI

pr dr D nrh;
I
p' d' D n'h: (1.33) AAvarcentral

27The value of the fine structure constant is very close to 1=137.
28Arnold Sommerfeld (1868–1951), British physicist.
29William Wilson (1875–1965), British physicist.
30Jun Ishiwara (1881–1947), Japanese physicist
31More precisely, either the projection of the orbit to the .qi ; pi / plane is a closed curve (libration) or pi is a periodic

function of qi (rotation). See, e.g., H. Goldstein, Classical Mechanics, 2nd ed. (Addison Wesley, 1980), p. 463.
32Also known as Bohr–Sommerfeld, or Sommerfeld–Wilson, quantization rules.
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The system is multi-separable, since p' is constant and from the energy equation

1

2me

�
p2r C

L2

r2

�
�
kZe2

r
D E

we deduce that

pr D ˙

s
2me

�
E C

kZe2

r

�
�
L2

r2

is a function of r alone. If we parametrize the orbits with the angle ', the line integrals become ordinary
integrals over the interval Œ0; 2 � (since the angle ' goes from 0 to 2  in a period of the motion). In
particular, the last equation (1.33) becomes

p'

Z 2 

0

d' D 2 p' D 2 L D n'h H) L D n'„;

so that angular momentum is quantized as in Bohr’s original theory. On the other hand, the quantization
condition for the variables .r; pr/ can be written asZ 2 

0

pr
dr
d'

d' D nrh; (1.34) rprSWI

where it is understood that p' and r should be expressed in terms of '. Note than in circular orbits
pr D me Pr D 0 implies that nr D 0. Taking into account that

pr D me Pr D me
dr
d'
P' D

L

r2
dr
d'
D
n'„

r2
dr
d'
;

the quantization rule (1.34) becomes Z 2 

0

�
1

r

dr
d'

�2
d' D 2 

nr

n'
: (1.35) rprSWI2

The equation of the classical orbits is

r D .1C " cos'/�1;

where

 D
L2

kmeZe2
D

n2'„
2

kmeZe2
;

" is the eccentricity of the orbit,

" D

s
1 �

b2

a2
D

s
1C

2EL2

k2meZ2e4
D

s
1C

2En2'„
2

k2meZ2e4
;

and a and b are respectively its major and minor semiaxes. From these equations we obtain

1

r

dr
d'
D

" sin'
1C " cos'

H)

Z 2 

0

"2 sin2 '
.1C " cos'/2

d' D 2 
�

1
p
1 � "2

� 1

�
D 2 

nr

n'
;

and therefore

1 � "2 D
b2

a2
D

n2'

.nr C n'/2
H)

a

b
D 1C

nr

n'
; (1.36) baSWI

E D �
k2m2eZ

2e4

2n2'„
2

.1 � "2/ D �
k2m2eZ

2e4

2.n' C nr/2„2
: (1.37) ESWI
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We thus obtain the same equation for the allowed energies as with Bohr’s original approach, together
with the relation n D n' C nr between the quantum numbers n, n' and nr . In particular, n D n' only
for nr D 0, i.e., when the electron moves along a circular orbit. From the classical formula relating the
energy of an elliptical orbit with its major semiaxis,

E D �
kZe2

2a
;

we deduce the following quantization rules for the semiaxes a and b of an arbitrary elliptic orbit:

a D .n' C nr/
2 r1

Z
; b D n'.n' C nr/

r1

Z
;

where r1 denotes the Bohr radius (1.29). The ground state energy is obtained when nr D 0 and n' D 1,
i.e., when the electron moves along a circular orbit of radius r1=Z. This, of course, coincides with
the prediction obtained from Bohr’s original quantization procedure. Note also that from Eq. (1.37) it
follows that the n-th energy level is n times degenerate, since for a fixed natural number n the possible
values of the quantum number n' are 1; : : : ; n (and for each of these values nr D n � n'). �

exa.SWI Example 1.1. SWI quantization of one-dimensional systems.
The SWI quantization method is particularly simple to apply to one-dimensional systems. Indeed,

in Cartesian coordinates we have

H D
p2

2m
C V.x/; p D m Px;

where the last equation follows directly from Hamilton’s equation of motion of the coordinate x. For
a periodic orbit of energy E with turning points x1;2, we haveI

p dx D 2
Z x2

x1

p.x/ dx D 2
p
2m

Z x2

x1

p
E � V.x/ dx D nh; (1.38) SWI1d

where the last equality follows form the energy equation

p2

2m
C V.x/ D E:

Applying Green’s theorem to the trajectory H.x; p/ D E in phase space we obtain the alternative
formula Z

H.x;p/6E

dx dp D nh; (1.39) SWI1darea

where the double integral is extended to the interior of the curve H.x; p/ D E.
For example, for the harmonic oscillator we have

H D
p2

2m
C
1

2
m!2x2;

and the orbits H.x; p/ D E in phase space are ellipses with semiaxes

p
2mE;

r
2E

m!2
:

From Eq. (1.39) we therefore get the quantization condition

 
p
2mE

r
2E

m!2
D 2 

E

!
D nh () E D n„!; n D 0; 1; : : : : (1.40) HOspecSWI
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1.5 De Broglie’s matter waves

Incidentally, this formula for the allowed energies of a harmonic oscillator provides a theoretical jus-
tification of Planck’s derivation of the black body radiation formula (1.8) which originated quantum
mechanics. We shall see in the next chapters that Eq. (1.40) actually differs by a constant energy „!=2
from the correct formula for the energy levels of a quantum harmonic oscillator. In particular, the
ground state energy of a quantum harmonic oscillator is „!=2 instead of 0.

Likewise, for a particle in a box of length L we can formally take V.x/ D 0 for 0 < x < L and
V.x/ D1 for x 6 0 or x > L. Inside the box the Hamiltonian is simply

H D
p2

2m
;

and the energy equation reads

E D
p2

2m
:

Hence the SWI quantization condition is in this case

2

Z L

0

p dx D 2
p
2mE

Z L

0

dx D 2L
p
2mE D nh H) E D

n2h2

8mL2
; n D 0; 1; : : : :

We shall again see in the sequel that the above formula coincides with the result derived using modern
quantum mechanics, except that the value n D 0 must be excluded. In other words, the ground state
energy is h2=.8mL2/ instead of 0.

Bohr’s model of the atom, and the more general quantization scheme of Sommerfeld, Wilson and
Ishiwara, is the core of what is often referred to as the Old Quantum Theory. Although this theory was
undeniably successful in explaining the emission spectrum of simple systems like the hydrogen atom,
and was widely accepted by 1916, it was however plagued by several fundamental flaws. For instance:

� The theory is not able to predict correctly the degeneracy of the energy levels of atoms, which can be
experimentally verified by exposing them to external electric and magnetic fields causing the splitting
of the spectral lines.

� In fact, the SWI quantization rule only applies to a very restricted class of Hamiltonian systems admit-
ting action-angle variables with multi-periodic orbits, and is thus unable to deal even with relatively
simple systems like the helium atom. In particular, it cannot quantitatively explain the quantization of
atomic energy levels in the Franck–Hertz experiment.

� The theory is clearly inconsistent with the classical concept of a continuous trajectory, which only
applies when the electron moves along an allowed orbit but must be abandoned when it “jumps”
discontinuously from one allowed orbit to another.

� Much more importantly, the main hypotheses on which Bohr’s atomic model is based, namely that
electrons in atoms can only move along a discrete set of stable orbits, and that they do not radiate
electromagnetic energy while they move but only when they jump from one stable orbit to another,
were completely ad hoc assumptions for which no justification was provided.

1.5 De Broglie’s matter waves
sec.deBroglie

As explained in Section 1.2, although since the development of modern electromagnetic theory by
Maxwell light had long been thought to have a wave-like nature, experiments like the photoelectric
effects uncovered a dual particle-like behavior. In his 1923 Ph. D. thesis, de Broglie33 speculated that

33Louis de Broglie (1892–1987), French physicist and Nobel Prize winner in 1929.
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

matter could also exhibit this dual particle-wave nature. De Broglie noted that, since photons of fre-
quency � are massless particles with energy E D h�, from the relativistic relation E2 D p2c2 Cm2c4

the magnitude p � jpj of their three-momentum should be given by

p D
E

c
D
h�

c
D
h

�
;

where � D c=� is the wavelength. De Broglie then went on to postulate that a material particle with
three momentum p should have an associated wave of wavelength � given by the previous formula,
namely

� D
h

p
: (1.41) dBwavel

This wavelength is nowadays called the particle’s de Broglie wavelength. From equation (1.41) we
obtain the relation

k D
2 

�
D
p

„
;

where k � jkj is the magnitude of the wave vector. It is therefore natural to assume that the relation
between the particle’s (relativistic) three momentum p and the wave vector k is given by the formula

k D
p
„
: (1.42) bpbk

De Broglie further assumed that the relation between the energy and the frequency of a photon, given by
Einstein’s equation

E D h� D „!;

where ! D 2 � is the circular frequency, also holds for material particles. Since the energy of a free
particle with three-momentum p is given by

E D c

q
p2 Cm2c2 D mc2

s
1C

p2

m2c2
D mc2 C

p2

2m
CO

�
p4

m3c2

�
; (1.43) Erel

in the non-relativistic limit p � mc the particle’s energy (disregarding the zero point energymc2, which
plays no role in non-relativistic physics) should be related to the circular frequency ! of the associated
wave by the formula

! D
p2

2m„
: (1.44) dBom

Combining the previous formulas we obtain the following equation for the amplitude of the (complex)
matter wave associated to a free material particle of mass m and three-momentum p:

	.r; t / D A exp
�

i
„

�
p � r �E.p/t

��
; (1.45) dBwave

with A a complex constant and

E.p/ D
p2

2m
:

Note that the phase velocity (i.e., the velocity of propagation of the planes of constant phase) of the
plane wave (1.45) is simply

v' D
E.p/
p
D

p

2m
;
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1.5 De Broglie’s matter waves

i.e, half the particle’s velocity. On the other hand, if instead of a pure wave with well-defined frequency
we consider a wave packet34

	.r; t / D
Z

d3p A.p/ exp
�

i
„

�
p � r �E.p/t

��
; (1.46) wavepack

with A.p/ (assumed to be real, for simplicity) sharply peaked at a momentum p D p0, expanding E.p/
around p D p0 we obtain

p � r�E.p/t ' p � r�
�
E.p0/CrE.p0/ � .p� p0/

�
t D p �

�
r�rE.p0/t

�
C t

�
rE.p0/ � p0 �E.p0/

�
;

and therefore

	.r; t / ' exp
�

it
„

�
rE.p0/ � p0 �E.p0/

�� Z
d3p A.p/ exp

�
ip
„

�
r � rE.p0/t

��
H)

ˇ̌
	.r; t /

ˇ̌
'

ˇ̌̌̌Z
d3p A.p/ exp

�
ip
„

�
r � rE.p0/t

��ˇ̌̌̌
:

Since the intensity
ˇ̌
	.r; t /

ˇ̌2 of the wave packet (1.46) is (approximately) a function of r and t through
the linear combination

r � rE.p0/t;

if (for instance) the wave packet is concentrated at a point r0 at t D 0 it will be concentrated at the point

r.t/ D r0 CrE.p0/t (1.47) r0wp

at any other time t . Thus the peak of the wave packet, located at r.t/ at time t , moves with a velocity

vg D rE.p0/ D
p0
m

called the wave packet’s group velocity. Remarkably, this velocity coincides with the velocity of the
material particle associated to the wave packet. In fact, this is also true if we use the relativistic for-
mula (1.43) for the energy, since in this case

rE.p/ D
cpp

p2 Cm2c2
D
c2p
E
;

where the right-hand side is the well-known relativistic formula for the velocity in terms of the energy
and three-momentum.

The equality between the particle velocity v and the group velocity vg of the associated wave packet (1.46)
lends some support to de Broglie’s hypothesis of the existence of matter waves. Further theoretical con-
firmation of this hypothesis comes from the fact that Bohr’s quantization rule (1.22) for the angular
momentum an electron in a hydrogen-like atom moving along a circular orbit can be recast as follows:

Ln D pr D
rh

�
D
nh

2 
() n� D 2 r; (1.48) deBBohr

where r is the radius of the orbit and p is the electron’s momentum. We thus see that Bohr’s rule for
the quantization of angular momentum is equivalent to imposing that the circumference of an allowed
orbit contain an exact number of de Broglie wavelengths. Equation (1.48), which is strongly reminiscent
of the condition for standing waves in a vibrating string with both ends clamped, provides an elegant
theoretical explanation of the possible origin of Bohr’s quantization hypothesis.

34In what follows we shall often omit the integration range when it coincides with the whole domain of the integration
variable (in this case, R3).
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

According to a widespread anecdote, when de Broglie was asked during his Ph. D. thesis defense
how could the existence of matter waves be experimentally ascertained, he answered that it should be
possible under appropriate conditions to observe diffraction phenomena involving matter waves, just as
for ordinary (electromagnetic) waves. More precisely, de Broglie suggested to analyze the diffraction
of electron waves by crystals, analogous to the diffraction of X-rays well known at the time. Since the
typical distance between atoms in a crystal is of the order of 10�10 m D 1 Å, the electrons’ de Broglie
wavelength � should be of the same order of magnitude for diffraction phenomena to be observable. On
the other hand, according to de Broglie’s formula (1.41), the de Broglie wavelength of a non-relativistic
electron (i.e., an electron with kinetic energy E � mec

2) is given by

� D
h

p
D

h
p
2meE

D
hq

2me
E
1eV � 1eV

D
12:2643 Åp
E=1eV

: (1.49) elwavel

Thus, to obtain de Broglie wavelengths of the order of 1Å the electron’s energy should be of the order of
100 eV. (By comparison, X-rays have wavelengths between approximately 0:1Å and 100Å, or energies
between approximately 100 eV and 100 keV.) The experiment suggested by de Broglie was carried out
in 1927 by Davisson35 and Germer36, who indeed found that electrons scattered by a single crystal of
nickel gave rise to a diffraction pattern similar to that observed in X-ray diffraction. More precisely, for
any wave of wavelength � scattered by a crystal with interatomic distance d , reflection is enhanced when
the angle � between the direction of propagation of the incident and reflected waves takes certain values
�n (with n 2 N) determined by Bragg’s formula

n� D 2d cos.�n=2/; n D 1; 2; : : : :

Davisson and Germer used a beam of electrons of energy E D 54 eV, and found that the first angle for
which reflection was enhanced was �1 D 50°. Since d D 0:92 Å for nickel, using Bragg’s formula with
n D 1 we obtain the following value for the wavelength of the electron’s matter wave:

� D 2 � 0:92 � 0:906308 � � � Å ' 1:6676 Å;

in excellent agreement with the value

� D
12:2643 Å
p
54

' 1:66896 Å

computed from de Broglie’s formula (1.49). A similar experiment performed by G. P. Thomson37 in
1928 confirmed Davisson and Germer’s result, thus conclusively establishing the existence of the matter
waves postulated by de Broglie.

Remark. The relation between the de Broglie wavelength of an electron and the wavelength of a photon
of the same energy E is given by

�e

�
D
h=
p
2meE

hc=E
D

s
E

2mec2
:

Since 2mec2 � 1 MeV, for (non-relativistic) energies in the range 10 eV to 10 keV this quotient is at
most 10�1. This is the idea behind the electron microscope, able to achieve much greater resolutions
than an ordinary (optical) microscope using photons of the same energy. �

pref

35Clinton Davisson (1881–1958), American physicist and Nobel Prize winner in 1937.
36Lester Germer (1896–1971), American physicist and Nobel Prize winner in 1937.
37Sir George Paget Thomson (1892–1975), British physicist and Nobel Prize winner in 1937.
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1.5 De Broglie’s matter waves

exe.wp Exercise 1.3. Consider a one-dimensional wave packet of the form

	.x; t/ D

Z
dpA.p/e

i
„

�
px�E.p/t

�
;

where
ˇ̌
A.p/

ˇ̌
is slowly varying and concentrated on an interval of width �p centered at p D p0.

i) Find the coordinate xm of the maximum of
ˇ̌
	.x; t/

ˇ̌
(this point is usually called the center of the

wave packet).
ii) Show that 	.x; t/ is concentrated on an interval of width �x around xm, where �x satisfies
�x�p & 2 „.

iii) Generalize these results to a three-dimensional wave packet.

Solution.
i) Let us write

A.p/ D f .p/e
i
„
˛.p/;

where f .p/ D
ˇ̌
A.p/

ˇ̌
> 0 and ˛.p/=„ 2 R is the argument of A.p/. We thus have

	.x; t/ D

Z
dpf .p/e

i
„
'.x;p;t/; (1.50) intphase

with
'.x; p; t/ D px �E.p/t C ˛.p/:

Since by hypothesis f .p/ is slowly varying and negligible outside the interval Œp0��p=2; p0C�p=2�,
we can write

	.x; t/ ' f .p0/

Z p0C
�p
2

p0�
�p
2

dp e
i
„
'.x;p;t/

' f .p0/e
i
„
'.x;p0;t/

Z p0C
�p
2

p0�
�p
2

dp e
i
„

@'
@p
.x;p0;t/.p�p0/

D f .p0/e
i
„
'.x;p0;t/

Z �p
2

�
�p
2

dp e
i
„

@'
@p
.x;p0;t/p; (1.51) wpexpand

where for simplicity we have assumed that the terms of order .p � p0/2 and higher in the Taylor
expansion of '.p/ about p0 are negligiblea for jp � p0j 6 �p=2. Thus at points .x; t/ for which
'.x; p; t/ has nonzero partial derivative with respect to p at p0 the integrand in Eq. (1.50) is wildly
oscillatory (due to the smallness of „), and therefore the integral is very small in absolute value due to
cancellations. Hence the condition for a maximum of the absolute value of the integral is that

@

@p
'.x; p; t/

ˇ̌̌̌
pDp0

D 0:

This is the so called principle of stationary phase for integrals of the type (1.50). Computing the
partial derivative we obtain the condition

xm �E
0.p0/t C ˛

0.p0/ D 0 H) xm D �˛
0.p0/CE

0.p0/t:

In other words, the peak (center) of the wave packet is located at the point �˛0.p0/ for t D 0, and
moves with constant velocity vg D E 0.p0/ D p0=m.

ii) The variation of the phase '.x; p; t/=„ when p ranges from p0�
�p
2

to p0C
�p
2

is approximately
given by

�'

„
'

@

@p
'.x; p; t/

ˇ̌̌̌
pDp0

�p

„
D

�
x �E 0.p0/t C ˛

0.p0/
��p
„
D .x � xm/

�p

„
:
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

For the integral (1.50) not to be vanishingly small at x, j�'j=„ can be at most of the order of (say) half
a period (in modulus) of the complex exponential, or equivalently

jx � xmj
�p

„
�  :

For this condition to hold for all x in an interval of width �x centered at xm we must have

�x

2

�p

„
�   () �x�p � 2 „:

In other words, the intensity of the wave packet 	.x; t/ is concentrated on an interval centered at xm
of width �x at least 2 „=�p, i.e., such that

�x�p & 2 „: (1.52) Heiswp

iii) In the three-dimensional case we have

	.r; t / D
Z

d3pf .p/e
i
„
'.r;p;t/; (1.53) intphase3D

with f .p/ > 0 slowly varying and concentrated on a solid sphere of radius j�pj=2 centered at p0,
˛.p/ 2 R and

'.r;p; t / D p � r �E.p/t C ˛.p/:

The stationary phase condition becomes

rp'.r;p; t /
ˇ̌̌̌
pDp0

D r � .rpE/.p0/t C .rp˛/.p0/;

where

rp WD

�
@

@p1
;
@

@p2
;
@

@p3

�
:

Hence the center of the wave packet is the point

rm D �.rp˛/.p0/C .rpE/.p0/t:

Reasoning as before, we find that the wave packet is concentrated on a solid sphere centered at rm
whose radius j�rj=2 satisfies ˇ̌

�r
ˇ̌̌̌
�p
ˇ̌
& 2 „:

Note. In fact, the integral (1.51) can be easily evaluated, with the resultbZ �p
2

�
�p
2

dp e
i
„

@'
@p
.x;p0;t/p D

Z �p
2

�
�p
2

dp e
i
„
p.x�xm/

D
„

i.x � xm/

�
e

i�p
2„
.x�xm/ � e�

i�p
2„
.x�xm/

�
D

2„ sin
�
�p
2„
.x � xm/

�
x � xm

� �p
sin �
�
;

where we have set
� WD

�p

2„
.x � xm/:
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Thus the intensity of the wave packet can be approximated by

ˇ̌
	.x; t/

ˇ̌2
' f .p0/

2�p2
�

sin �
�

�2
� f .p0/

2�p2g.�/:

From the graph of the function g.�/ in Fig. 1.2 it is apparent that
ˇ̌
	.x; t/

ˇ̌2 will be significant only for
(say) j�j &  =2 (indeed, g. =2/ D 4= 2 ' 0:405285), i.e., for

�p

2„
jx � xmj &

 

2
:

For this to hold for all x in an interval of width �x=2 centered at xm we need that

�p

2„

�x

2
&
 

2
;

which is the same condition derived above.

π

2
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2
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2
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sin2(ξ)
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Figure 1.2. Graph of the function g.�/ D sin2 �=�2 for � > 0. The first secondary maximum of thisfig.wpplot
function is located at � D 4:49341, and is equal to 0:0471904.

aNote that, due to the term E.p/t in '.x; p; t/, this simplifying assumption can only be valid for sufficiently small jt j
even if it folds for t D 0.

bThe following calculation is only valid for x ¤ xm, but letting x tend to xm in the final result we obtain the correct
value of the integral also for x D xm.

1.6 Wave-particle duality. The wave function
sec.WPdual

By the mid and late 1920’s, experimental phenomena like the photoelectric effect or the diffraction of
electrons by crystals had convincingly shown that both light —or, in general, electromagnetic waves—
and material particles like electrons exhibited a dual, and seemingly contradictory, wave-particle nature.
More precisely, in certain experiments (for example, the photoelectric or Compton effects) light behaves
as a stream of individual particles (photons), while in diffraction experiments it behaves as a wave. The
situation is similar for material particles like the electron, which exhibit wavelike behavior when their
de Broglie wavelength is comparable to the characteristic length of their surroundings (for instance,
the interatomic distance of the crystal in diffraction experiments), and otherwise behaves as particles.
Moreover, while for photons the associated wave is clearly the electromagnetic field38, the physical
nature of de Broglie’s matter waves and their precise relation with the associated particle is not clear at
all.

38Classically, the intensity of light is proportional to the time average of E2 or of B2, where E and B are respectively the
electric and magnetic induction vector fields (both averages being proportional).
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O

P

x

S

S1

S2

Figure 1.3. Setup of the double slit experiment. A monochromatic and unpolarized beam of light orig-
inating from a point source at S strikes an opaque screen in which two narrow slits S1 and
S2 have been cut very close to each other and equidistant from S. The beam’s intensity on a
plane parallel to the screen is then measured by the photographic plate P .fig.DSexp

In order to better understand the interplay between the wave and particle aspects of matter and radia-
tion, let us analyze in some detail the so called double slit experiment (see Fig. 1.3). The results of this
experiment can be summarized as follows:

1) If we block the slit S2 (resp. S1) the intensity I1.x/ (resp. I2.x/) of the light reaching the photo-
graphic plate P exhibits a characteristic diffraction pattern (see Fig. 1.4 left).

2) On the other hand, when both slits are open the intensity I.x/ of the light reaching the photographic
plate is not simply the sum I1.x/C I2.x/, but rather the oscillating function shown in Fig. 1.4.

To interpret these observations note first that, since the light used in this experiment is not polarized,
we can ignore the vector character of the (time averaged) electric field and represent it by a complex39

scalar function E.x/, whose modulus squared
ˇ̌
E.x/

ˇ̌2 is proportional to the light intensity at the point
(with vertical coordinate) x on the plate P . The results of the double slit experiment are then easily
explained by the wave theory. Indeed, according to this theory the slits act as secondary light sources.
Consequently, when the slit Si is open and the other one is closed the intensity measured at P can be
taken (apart from an irrelevant constant factor) as

Ii .x/ D
ˇ̌
Ei .x/

ˇ̌2
;

where Ei .x/ is the electric field created by Si . It can be shown that this formula correctly accounts for
the diffraction pattern observed at P . On the other hand, when both slits are open the total electric field
E.x/ at a point x on the plate is the sum of the electric fields created by both slits, namely

E.x/ D E1.x/CE2.x/;

and consequently the intensity at this point is given by

I.x/ D
ˇ̌
E1.x/CE2.x/

ˇ̌2
D
ˇ̌
E1.x/

ˇ̌2
C
ˇ̌
E2.x/

ˇ̌2
C 2Re

�
E1.x/E

�
2 .x/

�
D I1.x/C I2.x/C 2Re

�
E1.x/E

�
2 .x/

�
; (1.54) IJ12

39More precisely, for an oscillating electric field of the form E.x; t/ D Re
�
E.x/e�i!t �, with E.x/ complex valued, the

time average of E.x; t/2 is 12
ˇ̌
E.x/

ˇ̌2. Moreover, if E1.x; t/ D Re.E1.x/e�i!t / and E2.x; t/ D Re.E2.x/e�i!t / are two such

fields with the same frequency !, the time average of
�
E1.x; t/C E2.x; t/

�2 is 12
ˇ̌
E1.x/CE2.x/

ˇ̌2. Since the respective light
intensities are proportional to these time averages, and thus to the squared modulus of E.x/ or E1.x/CE2.x/, it is customary
to represent the vector field E.x; t/ by its complex amplitude E.x/. See, e.g., M. Born and E. Wolf, Principles of Optics (5th
ed.), Pergamon Press, 1975.
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x
O

I1(x)+ I2(x)

I2(x) I1(x)

x
O

I(x)

Figure 1.4. Left: light intensities I1.x/ and I2.x/ (black lines) and their sum I1.x/CI2.x/ (dashed line)
in the double slit experiment. Right: light intensity I.x/ when both slits are unblocked.fig.I12I

which differs form I1.x/C I2.x/ by the interference term

J12.x/ D 2Re
�
E1.x/E

�
2 .x/

�
:

In other words, according to the wave theory the intensity pattern observed when both slits are open is
due to the interference between the waves originating at each slit.

From the point of view of the corpuscular theory of light, the intensity at a point x on the plate P is
proportional to the number N.x/ of photons hitting this point per unit time, i.e,

I.x/ D aN.x/

for some irrelevant constant a. Although the result of the first experiment (with one slit blocked) could
perhaps be explained by the interaction between the individual photons in the beam and the edges of the
slit, when both slits are open the number of photons per unit time hitting the point x is the sum of the
photons going through each slit, namely

I.x/ D aN.x/ D a .N1.x/CN2.x// D I1.x/C I2.x/:

This result is clearly inconsistent with the intensity pattern actually observed, described by Eq. (1.54).
The corpuscular theory of light is thus unable to account for the interference term J12.x/.

In point of fact, in the previous argument we assumed that the number of photons hitting a point on
the plate which pass through one of the slits Si is the same whether the other slit is blocked or not. This
assumption, however, may not be true if the photons passing through one slit interact with those passing
through the other one. In order to suppress this effect, the beam’s intensity can be diminished till ideally
the source emits only one photon at a time. The naive prediction of the corpuscular theory is that, since
in this limit there is no possible interaction between photons passing through different slits, the intensity
fringes disappear and I.x/ D I1.x/ C I2.x/. On the other hand, according to the wave theory if the
beam’s intensity diminishes the intensity of the interference fringes will just diminish accordingly, but
the fringes will not disappear. Remarkably, neither the wave nor the corpuscular theory predictions are
supported by experiment. More precisely, when the source S emits one photon at a time the following is
observed:

1) If the exposure time is so short that only a few photons hit the photographic plate, the individual
impacts of these photons on seemingly random points on the plate can be clearly observed. This
result is inconsistent with the wave theory, which predicts instead a very weak interference pattern.

2) On the other hand, if the exposure time is increased so as to ensure that a large number of photons
hit the plate, the locations of the random individual impacts of the photons on the plate accumulate,
and over time give rise to a visible pattern of interference fringes described by Eq. (1.54). This result
is incompatible with the corpuscular theory prediction of an absence of interference fringes for a
sufficiently low beam intensity. It is essential to realize, however, that the pattern of interference
fringes arises gradually, as the individual impacts of the photons at random locations on the plate
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build up. In other words, the intensity at a point x on the plate is proportional to the number of
photons hitting the plate at this point. We thus conclude that the emergence of the interference fringes
is ultimately a statistical phenomenon. Note, however, that this statistical phenomenon affects each
individual photon, since it manifests itself even when only one photon at a time is emitted.

The previous analysis of the double slit experiment thus clearly points at a statistical connection be-
tween the wavelike and the particle aspects of photons. More precisely:

� The square of the modulus of the electric field at a point x on the photographic plate,
ˇ̌
E.x/

ˇ̌2, is
proportional to the density of photon impacts at x. In other words, the probability that a photon
strikes the plate at a point in the interval Œx; x C dx� is proportional to

ˇ̌
E.x/

ˇ̌2 dx.

� Moreover, to explain the existence of the interference fringes when both slits are unblocked we must
accept that, contrary to classical thought and everyday experience, the probability that a photon
strikes the plate at a point inside the interval Œx; xCdx� is not the sum of the probabilities

ˇ̌
E1;2.x/

ˇ̌2
of the photon going through the slit S1;2 before hitting the interval, but is instead given by

ˇ̌
E1.x/C

E2.x/
ˇ̌2. In other words, it is the (in general complex) probability amplitudes Ei .x/ of each of the

independent events

Ei D photon strikes the plate inside the interval Œx; x C dx� after passing

through the slit Si .i D 1; 2/;

that are added up to obtain the probability amplitude E1.x/CE2.x/ of the event

E1 [ E2 D photon strikes the plate inside the interval Œx; x C dx�:

The probability of the latter event is then obtained by computing the square of the modulus of this
probability amplitude, thus giving rise to interference fringes described by Eq. (1.54).

It should be stressed that the addition of probability amplitudes instead of probabilities, although es-
sential in order to explain the genesis of the interference fringes in the double slit experiment, flatly
contradicts our intuition based on everyday experience. Indeed, we may intuitively think that when the
beam intensity is so low that there is no interaction between photons passing through different slits, the
fact that one slit is blocked or not cannot affect the number of photons passing through the other (open)
slit. If this were true the intensity at a point x on the plate would be simply the sum I1.x/C I2.x/ of the
intensities obtained when either slit is blocked, and no interference fringes would therefore be observed.
In fact:

� In order to avoid a contradiction with classical logic, according to which the probability of the union
of two independent events (i.e., a photon passing through either slit and striking a certain region of
the plate) is the sum of their individual probabilities, the belief that photons pass through either one
or the other slit must be abandoned.

� This in turn entails that it is impossible to assign a definite classical trajectory to photons in the
double slit experiment, since otherwise we would be forced to conclude that each photon must pass
through one and only one of the open slits.

Another fundamental consequence of the previous analysis is the following:

� Contrary to classical lines of thought, the explanation of the emergence of interference fringes in
the double slit experiment is ultimately of a probabilistic nature. In other words, the theory cannot
predict where on the plate will an individual photon strike, but only provides a probability for the
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photon hitting a point on the plate (proportional to the square of the modulus of the electric field at
that point). The interference fringes arise as the individual impacts of photons on the plate build
up following this probability distribution. Put differently, the interference fringes in the double slit
experiment are caused by a statistical property of a single photon, rather than by an interaction
between photons.

The previous analysis of the double slit experiment can be summarized as follows:

1) The particle and wave aspects of light are inseparable: light behaves simultaneously like a wave
and like a stream of particles (photons). The energy E and momentum p of the photon are related
to the frequency � and wave vector k of the associated wave by the Einstein–de Broglie relations

E D h� D „!; p D „k: (1.55) EdBnu

2) The wave and the particle aspects of light are connected as follows: the probability of finding a
photon at time t inside an infinitesimal volume d3r centered at a point r in space is proportional toˇ̌
E.r; t /

ˇ̌2, where E is the field vector of the associated electromagnetic wave.
3) Predictions about the behavior of a photon are thus necessarily of a probabilistic nature.

As a matter of fact, the double slit experiment can be performed with material particles (electrons,
neutrons, protons, etc.) instead of photons40, and the results are exactly the same as discussed above.
Namely, when the particle beam has a sufficiently high intensity a continuous interference fringe is ob-
served on a plate (actually, a detector of some kind) placed behind the slits, whereas for low intensities
the individual impacts of particles at seemingly random positions on the plate can be detected, the inter-
ference fringes eventually appearing as these impacts accumulate41. Just as in the case of photons, we
conclude that these interference fringes are not caused by an interaction between the particles, but are
rather a statistical property of a single particle. In other words, we cannot predict the precise point on the
plate each particle is going to strike, but only the probability of a particle hitting the plate at a particular
point. It is natural to assume that the role played by the electric field in determining this probability for
photons should now be played by de Broglie’s matter wave 	.r; t / associated to the particle. In other
words:

The probability of finding a material particle at a time t inside an infinitesimal volume d3r centered at
a point r in space is proportional to

ˇ̌
	.r; t /

ˇ̌2 d3r; where the complex valued smooth function 	.r; t /
is de Broglie’s matter wave for the particle in question.

In general, since the probability of finding the particle anywhere in space must equal 1, the actual
probability is given by

dP.r; t / D
ˇ̌
	.r; t /

ˇ̌2 d3rZ
d3r

ˇ̌
	.r; t /

ˇ̌2 ; (1.56) dPrt

where as usual the integral is extended over the whole space R3. In particular, the latter integral must be
finite: Z

d3r
ˇ̌
	.r; t /

ˇ̌2
<1: (1.57) psiinL2

40The double slit experiment has been performed with electrons, neutrons, atoms, and even some heavy molecules.
41See https://www.hitachi.com/rd/research/materials/quantum/doubleslit/index.html for a practical

demonstration of the double slit experiment with electrons.
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Remark. The linear space of (complex valued) scalar functions �.r/ whose modulus squared
ˇ̌
�.r/

ˇ̌2 is
integrable over R3 is called the Lebesgue space L2.R3/. Thus Eq. (1.57) states that 	.r; t / is in L2.R3/
for each fixed t 2 R. We shall see in the sequel that under certain conditions this requirement can be
relaxed. �

Equation (1.56) furnishes an interpretation of de Broglie’s matter wave 	.r; t / as proportional to the
probability amplitude for the particle being found inside an infinitesimal volume centered at a point
r at time t . In more modern terminology 	.r; t / is called the particle’s wave function, and completely
determines its state at a certain instant t through equation (1.56). Indeed, as mentioned above we can only
expect to know the probability of finding the particle inside a certain infinitesimal volume at any time t ,
given by the latter equation. Thus, whereas in classical mechanics the state of a particle is determined by
6 real variables (the particle’s coordinates and momentum), and is thus a point in the finite-dimensional
vector space R6, in quantum mechanics the particle’s state is an element of the infinite-dimensional linear
space L2.R3/. In other words, in quantum mechanics the number of degrees of freedom of a single
particle is infinite. To determine the state of a particle, we must compute its wave function 	.r; t / for all
times t . As we shall explain in the next chapter, in mathematical terms this amounts to solving a certain
(linear) partial differential equation (Schrödinger’s wave equation) with appropriate initial and boundary
conditions (usually, that the wave function vanish fast enough at spatial infinity so that Eq. (1.57) is
satisfied). Even for a single particle, this is in general an extremely difficult problem which can be
exactly solved only in a handful of simple yet physically important situations, that we shall study in
some detail in the following chapters.

Example 1.2. De Broglie wavelength of conduction electrons in copper.
Whether the particle or the wave aspect of material particles is relevant in a given physical situation
respectively depends on whether the particle’s de Broglie wavelength is very small compared to the
problem’s characteristic length or is comparable to it. In the former case we can treat the particle as a
point particle following the laws of classical mechanics, while in the latter we must use the quantum
wave function to properly describe the particle’s behavior.

Consider, for instance, conduction electrons in a copper wire carrying a 220 V current. The char-
acteristic length in this problem is copper’s interatomic distance d D 2:54 Å. The energy of the
conduction electrons is

E D 220 eV ' 3:52479 � 10�17 J;

and their momentum is therefore

p D
p
2meE ' 8:01357 � 10

�24 kg m s�1:

Note that the conduction electrons can be considered non-relativistic, since their potential energy is
very small compared to their rest mass energy mec2 � 0:5 � 106 eV. Thus the de Broglie wavelength
of a conduction electron is

� D
h

p
' 8:26856 � 10�11 m;

which is of the same order of magnitude as copper’s interatomic spacing d D 2:54 � 10�10 m. Hence
conduction electrons in copper wires at 220 V must be treated as quantum mechanical, i.e., must be
described by their quantum wave function and exhibit a wavelike behavior.

On the other hand, for a dust speck of diameter 1� and mass 10�15kg moving at a speed of 1mm s�1

we have

� D
h

mv
'

6:6 � 10�34 kg m2 s�1

10�15 kg � 10�3 m s�1
D 6:6 � 10�16 m D 6:6 � 10�10�:

Since the de Broglie’s wavelength of the speck of dust is ten orders of magnitude less than its diameter,
we conclude that a description of the speck as a point particle following the laws of classical mechanics
is appropriate.
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1.7 Heisenberg’s uncertainty principle
sec.HUP

As pointed out in the previous section, the results of the double slit experiment make it unavoidable
to abandon the classical notion of trajectory, and in particular the intuitive idea that the photon (or the
material particle used in the experiment) must pass through either slit before hitting the photographic
plate. From the quantum mechanical point of view, the fact that we cannot determine through which
slit the photon has passed does not contradict any fundamental physical principle. Indeed, physics deals
ultimately with experimentally measurable properties, and in the double slit experiment no attempt is
made to detect the passage of a photon or particle through the slits. A crude way of experimentally de-
tecting through which slit the photons pass is to place a photomultiplier behind both slits. It is found in
this way that approximately half the photons go through each slit. However, in the process of measuring
the passage of a photon through either slit we have fundamentally altered the original experiment, since
the photons are destroyed after being detected by the photomultiplier, and obviously the photographic
plate does not register any intensity. To remedy this problem, we could place a photomultiplier behind
only one of the slits, say S2. The result of this experiment is that the photomultiplier records approx-
imately the passage of half of the incoming photons through S2, so that we can assume that the other
half have passed through S1 on their way to the plate. However, since the slit S2 is effectively blocked
the photographic plate shows only the diffraction pattern of the other slit, and no interference pattern
is observed. Again, we find that the attempt to measure the number of photons going through S2 has
fundamentally affected the original experiment. Although several other more sophisticated experiments
can be performed to detect the passage of photons through the slits in the double slit experiment, in all
cases it has been found that it is impossible to achieve this objective without destroying the interference
pattern. This result underscores what has been acknowledged as one of the fundamental principles of
modern quantum mechanics, namely

Any measure performed on a system inevitably alters its physical state in a fundamental way.

A related, but more quantitative, fundamental principle of quantum mechanics was formulated by Heisen-
berg42 in 1927:

Heisenberg’s uncertainty principle: if two canonically conjugate dynamical variables q and p are
simultaneously measured, their respective uncertainties �q and �p must satisfy the approximate in-
equality

�q�p & „: (1.58) Heisuncp

We shall provide a formal proof of this relation in the next Chapter. In fact, we shall precisely define
the uncertainty of any dynamical variable, and show that with this definition we have the more precise
inequality

�q�p >
„

2
: (1.59) HeisURprec

An immediate consequence of the uncertainty principle is that it is impossible to measure simultane-
ously with arbitrary precision two canonically conjugate dynamical variables. This is prevented by the
laws of quantum mechanics as presently understood, and has nothing to do with any practical limitation
of our experimental setup. In fact, nothing prevents us in principle from measuring with arbitrary pre-
cision one of a pair of canonically conjugate dynamical variables, but in doing so the uncertainty of the
other variable will increase without bound due to Eq. (1.58).

Recall that in Lagrangian mechanics the canonical momentum associated to a generalized coordinate
qi is

pi D
@L

@ Pqi
; i D 1; : : : ; N; (1.60) piqi

42Werner Heisenbreg (1901–1976), German physicist and Nobel Prize winner in 1932.
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where L.t; q1; : : : ; qN ; Pq1; : : : ; PqN / is the system’s Lagrangian. The dynamical variables qi and pi are
said to be canonically conjugate. From the Lagrangian L we construct the system’s Hamiltonian

H.t; q1; : : : ; qN ; p1; : : : ; pN / D

NX
iD1

pi Pqi � L;

where it is understood that in the RHS the variables Pqk are expressed in terms of the canonical momenta
pj using Eq. (1.60). The equations of motion of two canonically conjugate variables .qi ; pi / are then
Hamilton’s canonical equations

Pqi D
@H

@pi
; Ppi D �

@H

@qi
:

In particular, for a single particle of mass m moving subject to a potential V.r/ the Lagrangian in Carte-
sian coordinates is simply

L.r; Pr/ D
1

2
mPr2 � V.r/:

The canonical coordinates are the particle’s three Cartesian coordinates .x1; x2; x3/, i.e., the components
of its position vector r. The canonical momentum pi conjugate to the coordinate xi is then

pi D
@L

@ Pxi
D m Pxi ;

i.e., the i -th component of the linear momentum. Therefore in this case Heisenberg’s uncertainty rela-
tion (1.58) reads

�xi �pi & „; 1 6 i 6 3: (1.61) DexiDepi

It follows that:

It is impossible to measure simultaneously with arbitrary precision one of the particle’s coordinates
and the corresponding component of its linear momentum.

(Of course, nothing prevents us from measuring simultaneously and with arbitrary precision a coordinate
xi and a different momentum component pj with j ¤ i ). An immediate consequence of this fact is that,
as we already knew from our analysis of the double slit experiment in the previous section, is that:

In quantum mechanics, it is impossible to determine (with arbitrary precision) the trajectory of a parti-
cle.

Indeed, this would require knowing simultaneously the particle’s position and velocity (and hence mo-
mentum) at all times. In practice, however, given the smallness of the constant „ compared to typical
actions of macroscopic particles, this restriction is only effective in the microscopic realm (see, e.g.,
Exercise 1.4).

Remark. Heisenberg’s uncertainty principle always applies to a pair of canonically conjugate variables.
For instance, in Cartesian coordinates the Lagrangian of a particle of charge e and massmmoving under
the influence of an external electromagnetic field is given by

L.t; r; Pr/ D
1

2
mPr2 C e

�
Pr � A.r; t / � �.r; t /

�
;

where �.r; t / and A.r; t / are the scalar and vector potentials generating the electromagnetic field through
the equations

E.r; t / D �r�.r; t / �
@A
@t
.r; t /; B.r; t / D r � A.r; t /;
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In this case the canonical momentum conjugate to the Cartesian coordinate xi is

pi D
@L

@ Pxi
D m Pxi C eAi .r; t /;

which in general differs from the i -th component of the particle’s linear momentum m Pxi . Of course,
even in this case it is impossible to measure simultaneously with arbitrary precision the coordinate xi
and the corresponding linear momentum component m Pxi , since by the previous formula this would
require determining with arbitrary precision both xi and its conjugate momentum pi . �

Example 1.3. As seen in Section 1.5, the wave function of a particle of mass m moving freely (i.e.,
subject to no external force) in one dimension can be taken as

	.x; t/ D A e
i
„
.p0x�E.p0/t/;

where A > 0, p0 is the particle’s momentum and E.p0/ D
p20
2m

its momentum. Note that 	 is not
in L2.R/, since

ˇ̌
	.x; t/

ˇ̌
D A is constant. In fact, in this case the probability density of finding the

particle at a point x is the constant A2. In other words, it is equally likely to find the particle anywhere
on the real line, and thus the position uncertainty�x is infinite. This is in agreement with Heisenberg’s
uncertainty principle, since p D p0 is exactly known and therefore �p D 0.

More realistically, if the particle’s momentum is only known with an uncertainty �p its wave func-
tion can be taken as the wave packet

	.x; t/ D

Z
dp A.p/e

i
„
.px�E.p/t/;

where jA.p/j is slowly varying, sharply peaked at p D p0 and vanishingly small outside an interval of
width �p centered at p0. As we saw in Exercise 1.3, at any time t the function

ˇ̌
	.x; t/

ˇ̌
(and hence

the particle’s probability density, which is proportional to
ˇ̌
	.x; t/

ˇ̌2) is concentrated on an interval
centered at the point

xm.t/ D
p0t

m
� ˛0.p0/;

where ˛.p/=„ is the argument of A.p/. Moreover, the width �x of this interval, i.e., the uncertainty
in the particle’s position, satisfies

�x�p & 2 „

(cf. Eq. (1.52)). This is again in full agreement with Heisenberg’s uncertainty principle.

exe.traj Exercise 1.4. Discuss whether it is possible to attribute a classical trajectory to the following parti-
cles: i) a dust speck of diameter 1� and mass 10�15 kg moving at a speed of 1mm s�1, and ii) an
electron in Bohr’s model of the atom.

Solution. For the classical trajectory of a particle to be well defined, both its position and momentum
uncertainties must be small enough so that the particle’s position and momentum can be simultaneously
measured with sufficient accuracy.

By Heisenberg’s uncertainty relation, to be able to measure both the position and the momentum of a
particle with a relative error " we must have

�x�p D "2xp & „ () " &

s
„

xp
:

Thus the maximum relative precision in a simultaneous measurement of position and momentum al-
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lowed by Heisenberg’s uncertainty relation is (of the order of)

"max �

s
„

xp
�

10�17p
xp .SI/

;

if x and p are measured in SI units. In order to be able to assign a classical trajectory to the particle,
"max should be much less than 1.

i) For the dust particle we can take

x D 1 � D 10�6 m; p D 10�15 kg � 10�3 m s�1 D 10�18 kg m s�1

H) xp ' 10�24 J s H) "max ' 10
�5:

Thus it would be reasonable to attribute a classical trajectory to the dust particle.

ii) On the other hand, for an electron in the n-th allowed circular orbit of a Bohr atom we have

rp D L D n„ H) "max �

s
„

rp
D

1
p
n
:

Thus it is not possible to assign a classical trajectory to an electron in Bohr’s model of the atom unless
the quantum number n is very large (of the order of 106 for a relative precision of only 10�3).
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2 The Schrödinger wave equation

chap.chap2

2.1 The wave function and Born’s rule
sec.Born

As we saw in the previous chapter, in quantum mechanics the state of a material particle at a certain time
t is represented by a (nonzero) wave function 	.r; t / satisfyingZ

d3r
ˇ̌
	.r; t /

ˇ̌2
<1:

More precisely, what this statement means is that when the particle is in the state 	.r; t / the probability
of finding the particle at any time t in a volume element d3r centered at a point r is given by

dP.r; t / D
ˇ̌
	.r; t /

ˇ̌2R ˇ̌
	.r; t /

ˇ̌2 d3r
d3r: (2.1) dPnonnorm

If we define the (L2) norm of 	.�; t / as1

	.t/ WD �Z d3r
ˇ̌
	.r; t /

ˇ̌2�1=2
> 0;

the function e	.r; t / D 	.r; t /	.t/
has unit norm, i.e., Z

d3r
ˇ̌e	.r; t /ˇ̌2 D 1; (2.2) norm1

and by Eq. (2.1) the probability dP.r; t / is simply

dP.r; t / D
ˇ̌e	.r; t /ˇ̌2 d3r: (2.3) Bornrule

From now on, unless otherwise stated we shall always assume that the wave function obeys the normal-
ization (2.2). With this proviso, we can state what is usually called Born’s rule2:

Born’s rule. The state of a material particle is represented by a (normalized) wave function 	.r; t /
satisfying Z

d3r
ˇ̌
	.r; t /

ˇ̌2
D 1;

in the sense that the probability of finding the particle at a time t in a volume element d3r centered at
a point r is given by

dP.r; t / D
ˇ̌
	.r; t /

ˇ̌2 d3r:

1The notation 	.�; t / stands for 	.r; t / considered as a function of r with t fixed.
2After Max Born (1882–1970), German physicist and Nobel prize winner in 1954.
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Remarks.

� We thus see that in quantum mechanics knowing the state of a particle at a certain time does not
determine (as in classical mechanics) the particle’s position, but only the probability of finding the
particle anywhere in space.

� The function
ˇ̌
	.r; t /

ˇ̌2 is the probability density of finding the particle at some time t in a volume
element d3r centered at r. The wave function 	.r; t / is thus the probability amplitude (per unit vol-
ume) of finding the particle inside this volume element. In particular, since

ˇ̌
	
ˇ̌2 d3r is dimensionless,

the wave function 	 has dimensions of L�3=2 (or, more generally, L�d=2 in d -dimensional space for
d D 1; 2).

� We shall show in the sequel that the wave function 	.r; t / is defined up to a global constant phase ei˛,
with ˛ 2 R independent of r and t . In other words, 	.r; t / and ei˛	.r; t / define the same quantum
state. In particular, the respective probability densities

ˇ̌
	.r; t /

ˇ̌2 and
ˇ̌
ei˛	.r; t /

ˇ̌2 obviously coincide.

� It should, however, be stressed that the quantum state is determined by the wave function 	.r; t /, not
just by the probability density

ˇ̌
	.r; t /

ˇ̌2. This is essential, since interference effects are of paramount
importance in quantum mechanics. In other words, although 	.r; t / and e	.r; t / D ei˛.r;t/	.r; t /
(with ˛.r; t / a non-constant real valued function) give rise to the same probability density

ˇ̌
	.r; t /

ˇ̌2
Dˇ̌e	.r; t /ˇ̌2, these wave functions represent different physical states. For example, we shall see below

that the probability density of finding the particle with a certain linear momentum p is not the same
for the state 	 than for the state e	 .

� Suppose that at a certain time t we measure the position of a particle, and find it to be at a point r0
(more precisely, inside a small volume element centered at r0). Where was the particle just before we
measured its position? The classical, or realist, answer to this question is that the particle was at r0.
If this answer were correct, quantum mechanics would provide an essentially incomplete description
of nature, since even knowing the state of the particle it is impossible to predict were it is at any
time t . The proponents of the realist answer, among others Einstein and de Broglie, counter that
the incompleteness of quantum mechanics stems from the fact that there are certain hidden variables
governing the particle’s motion whose values are unknown. This explanation, however, has been
conclusively disproved by experiment3. Another problem with the realist point of view is that if the
particle is at a certain point at every instant t (even if quantum mechanics is not able to predict where)
then it is following some continuous trajectory, a notion contradicted for example by the double slit
experiment. The “orthodox” answer to the question of where was the particle immediately before
we measured its position, defended by most (though not all!) modern day physicists, is that this
question actually does not make sense. Indeed, we can only find where a particle is at a certain instant
by measuring its position, so all we can experimentally know is where is the particle going to be
immediately after we measure its position, not before. In a way, it is as if the particle is nowhere in
particular before we measure its position, and it only manifests itself at some point in space when we
force it to do so by measuring its position. This is the so called Copenhagen school point of view,
named after Niels Bohr, one of the first physicists to advance it.

� Suppose, again, that we measure the position of a particle at a certain time t0, finding it inside a small
volume element centered at r0. What is the result of a position measurement performed immediately

3Indeed, in 1964 the British physicist John Bell (1928–1990) proved a now famous inequality relating the probabilities of
three events that must be satisfied in all (local) hidden variable theories. Several experiments carried out, among others, by the
2022 Nobel Prize winners Alain Aspect, John F. Clauser and Anton Zeilinger have conclusively shown that this inequality is
violated in exactly the way predicted by quantum mechanics. This invalidates all (local) hidden variable theories, and providing
a strong experimental confirmation of quantum mechanics. See [GS18, Section 12.2] for an elementary discussion of Bell’s
theorem.
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afterwards? It is intuitively clear (and can be experimentally verified) that we should find the parti-
cle at the same point if the interval between both measurements is sufficiently small, since otherwise
the position of a particle would become meaningless. In other words, even if the probability densityˇ̌
	.r; t0/

ˇ̌2 at the time of the first position measurement is spread out over the whole space, its proba-
bility density

ˇ̌
	.r; t /

ˇ̌2 at a time t D t0C�t with�t > 0 small enough must be sharply peaked at r0.
In other words, our measurement of the particle’s position forces its state to change discontinuously,
becoming located (for a sufficiently small time) inside a small volume element centered at the point r0
obtained as a result of the first position measurement. This is an instance of the general phenomenon
called collapse of the wave function, which as we shall see is characteristic of measurements of
observables in quantum mechanics. �

2.2 Schrödinger’s wave equation
sec.Schr

Our next objective is to derive a differential equation satisfied by the wave function 	.r; t / of a particle,
that will allows us to determine 	 imposing appropriate initial and boundary conditions. We shall start
by the simplest case of a particle of mass m moving freely (i.e., not acted upon by any forces) in space,
whose linear momentum p and energy E are classically related by the familiar equation4

E.p/ D
p2

2m
: (2.4) enmomrel

As we saw in Section (1.5), the particle’s wave function in this case is the plane wave with wave vector
k and frequency !.k/ satisfying the Einstein–de Broglie relations

k D
p
„
; ! D

E

„
(2.5) EdBom

(cf. Eq. (1.55)). In other words,

	.r; t / D A e
i
„

�
p�r�E.p/t

�
; (2.6) wffree

where A is a constant that we can take as real and positive without loss of generality (why?). If the wave
function is of the latter form we have

i„@t	 D E	; �i„r	 D p	; (2.7) Emomop

where

r � .@x1 ; @x2 ; @x3/ ; @xi �
@

@xi
; @t �

@

@t
:

In the latter equation

r
2
� r � r D

3X
iD1

@2xi

4In what follows we shall assume that the speeds of all particles involved are small compared to the speed of light, so
that by “classical mechanics” we shall usually mean non-relativistic classical mechanics. The corresponding quantum theory
that we shall develop in these notes is accordingly called “non-relativistic quantum mechanics”. As in non-relativistic classical
mechanics, in non-relativistic quantum mechanics particles cannot be created or destroyed. By contrast, relativity theory allows
for particle creation or annihilation, provided that the total energy of the system is conserved. The relativistic version of
quantum mechanics, which is able to accommodate particle creation and annihilation, is called “quantum field theory”. It is
essentially a field theory (like, e.g., electromagnetism) in which the value of a field at a point in spacetime is an operator instead
of a complex number.
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is the Laplacian operator in Cartesian coordinates. Moreover, from the non-relativistic energy-momentum
relation (2.4) and the previous equation it follows that

i„@t	 D
p2

2m
	 D

1

2m
.�i„r/2 	;

i.e.,

i„@t	 D �
„2

2m
r
2	: (2.8) Schreqfree

Since the latter equation does not contain explicitly the momentum p, it is satisfied by all wave func-
tions (2.6) regardless of the particle’s momentum. Equation (2.8) is Schrödinger’s5 wave equation for
a free particle of mass m.

It might be objected that the plane waves (2.6) are not acceptable as wave functions, since they are
obviously not normalizable; indeed, for these functionsZ

d3r
ˇ̌
	.r; t /

ˇ̌2
D jAj2

Z
d3r D1:

This is a valid objection, since the momentum of a particle cannot be experimentally determined with
infinite accuracy. More realistically, if the linear momentum of a free particle is only known to be p0
with a certain accuracy

ˇ̌
�p
ˇ̌

the particle’s wave function will be a wave packet of the form

	.r; t / D
Z

d3p A.p/ e
i
„

�
p�r�E.p/t

�
; (2.9) wavpack

where A.p/ is an (in general complex valued) function concentrated on a solid sphere of radius
ˇ̌
�p
ˇ̌

centered at p0 in momentum space. According to the theory of the Fourier transform, the squared norm
of the latter wave function is equal to	2.t/ D .2 „/3 Z d3p

ˇ̌
A.p/

ˇ̌2
;

and is thus finite (and independent of t ) for such a function A.p/. Moreover, since the Schrödinger
equation (2.8) is linear, and the wave packet (2.9) is a linear combination6 of the solutions (2.6), it
follows that (2.9) is also a solution. More explicitly, from Eq. (2.8) immediately obtain�

i„@t C
„2

2m
r
2

�
	 D

�
i„@t C

„2

2m
r
2

�Z
d3p A.p/ e

i
„

�
p�r�E.p/t

�
D

Z
d3p A.p/

�
i„@t C

„2

2m
r
2

�
e

i
„

�
p�r�E.p/t

�
D 0:

Remark. If instead of the classical energy-momentum relation we had used the relativistic one

E2 D c2p2 Cm2c4;

instead of Schrödinger’s equation (2.8) we would have obtained the Klein–Gordon equation7

@2t	 � c
2
r
2	 C

m2c4

„2
	 D 0:

This relativistically covariant equation was considered by Schrödinger as early as 1925, but it was soon
discarded by him because it lead to negative energy solutions, which are unacceptable in relativity theory
(and would imply the instability of all matter). It is, however, relevant in the context of quantum field
theory. �

5Erwin Schrödinger (1887–1961), German physicist and Nobel Prize winner in 1933
6Although in mathematics linear combinations involve only a finite number of terms, it is common in the physics literature

to use this terminology for infinite sums or even integrals.
7Named after the Swedish physicist Oskar Klein (1894–1977) and the German physicist Walter Gordon (1893–1939).
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2.2 Schrödinger’s wave equation

Our next aim is to write down the analogue of the free Schrödinger equation (2.8) when the particle
moves subject to a potential V.r/. To this end, note that in non-relativistic mechanics the energy of a
particle is defined up to an arbitrary constant. Thus for a free particle, instead of the usual relation (2.4)
we could have taken

E.p/ D
p2

2m
C V0;

where V0 is any real constant. Proceeding as before we obtain�
i„@t C

„2

2m
r
2

�
e

i
„

�
p�r�E.p/t

�
D

�
E.p/ �

p2

2m

�
e

i
„

�
p�r�E.p/t

�
D V0e

i
„

�
p�r�E.p/t

�
;

so that the plane waves (2.6) now satisfy the equation

i„@t	 D �
„2

2m
r
2	 C V0	 (2.10) SchrV0

instead of (2.8). The same is true, by linearity, of the more general wave packets (2.9). Equation (2.10)
strongly suggests that the appropriate generalization of the free particle Schrödinger equation when the
potential V.r/ is not constant is

i„@t	 D �
„2

2m
r
2	 C V.r/	 : (2.11) SchreqV

This is the celebrated time-dependent Schrödinger equation, proposed by Erwin Schrödinger in 19268.
Equation (2.11) is the fundamental equation of non-relativistic quantum mechanics, in many ways com-
parable to Newton’s second law F D ma for classical mechanics. The previous derivation of Schrödinger’s
equation is only a heuristic argument, not a formal or rigorous proof. Equation (2.11) can in fact be con-
sidered as one of the axioms of non-relativistic quantum mechanics. Its best “proof” is ultimately the
total agreement so far of its predictions with experiment.

The Schrödinger equation (2.11) is a linear partial differential equation of evolutionary type, since
does not contain terms with time derivatives of order greater than one. What this entails is that, under
appropriate smoothness conditions for the potential V.r/, there is a unique solution satisfying the initial
condition

	.r; 0/ D  .r/;

where  is any (sufficiently smooth, in general complex valued) function. Note, however, that if at a
certain time t0 > 0 the position of the particle is measured and found to be9 r0, the particle’s state
immediately after this measurement is performed jumps discontinuously from 	.r; t0/ to a wave function
sharply peaked at r0. This is the so called collapse of the wave function, which is one of the most
controversial and least understood aspects of quantum mechanics. The collapse of the wave function
is clearly a consequence of the inevitable and uncontrollable perturbation produced by measuring —
or, as is often said, observing— the particle’s position. In fact, as we shall see in more detail in the
next chapters, it takes place whenever a measurement of any dynamical variable (position, momentum,
energy, angular momentum, spin . . . ) is performed on the particle. Summarizing:

The knowledge of the particle’s state at the initial time t D 0 completely determines its state at any
other time t > t0 provided that no measurement is performed on the particle during the interval Œ0; t �.

In this sense, even if the information on the particle’s state provided by the wave function is of a proba-
bilistic or statistical nature, quantum mechanics is a deterministic theory. It should be stressed, however,

8Schrödinger’s derivation of Eq. (2.11) was based on the classical Hamilton–Jacobi equation in Hamiltonian mechanics.
9When no confusion is possible, we shall simply say that “the particle’s position is found to be r0,” instead of the more

correct statement “the particle’s position is found to lie inside a volume element d3r centered at r0.”
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that in quantum mechanics there are two different types of evolutions: the deterministic and continuous
evolution governed by Schrödinger’s time-dependent equation (when no intermediate measurement is
performed on the particle), and the discontinuous collapse of the wave function immediately after a mea-
surement is performed. The latter type of evolution is of course not deterministic in nature, since as we
shall see in the sequel (and have already remarked for position measurements) it is impossible in general
to predict the outcome of a measurement even when the state of the particle is known (the theory only
provides the probability of obtaining a certain value of the dynamical variable measured).

In our heuristic derivation of the Schrödinger equation, we noted that

�i„r D p

when both sides act on a momentum wave function (2.6). For this reason, we shall define the linear
momentum operator P as

P D �i„r; (2.12) lmomdef

with components
Pk D �i„@xk ; k D 1; 2; 3:

We thus have
P e�

i
„
.p�r�E.p/t/

D p e�
i
„
.p�r�E.p/t/;

for any constant vector p 2 R3. Another justification for the previous definition of the linear momentum
operator in quantum mechanics is that P is the generator of translations. (Recall that in classical mechan-
ics the linear momentum of a particle is the quantity that is conserved when the particle’s Lagrangian is
invariant under translations.) Indeed, if a 2 R3 is a constant vector and 	.�; t / is an analytic function,
by Taylor’s theorem in multivariable calculus we have

e
i
„

a�P	.r; t / D
1X
nD0

1

nŠ

�
i
„

a � P
�n
	.r; t / D

1X
nD0

1

nŠ
.a � r/n	.r; t / D 	.rC a; t /:

We shall also define the position operator R as the multiplication operator by the vector r. In other
words, if 	.r; t / is any wave function the (vector valued) function R	 is defined by

R	.r; t / WD r	.r; t /:

The components of the vector-valued operator R, denoted by Xk , are accordingly defined by

Xk	.r; t / D xk	.r; t /:

In general, if f .r/ is any smooth function of the vector variable r, we defined the corresponding multi-
plication operator f .R/ by

f .R/	.r; t / WD f .r/	.r; t /:

With these definitions, the time-dependent Schrödinger equation (2.11) can be written as

i„@t	 D H	;

where the quantum Hamiltonian H is the linear operator

H D
P2

2m
C V.R/:
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2.2 Schrödinger’s wave equation

In other words, the quantum Hamiltonian is formally obtained from the classical Hamiltonian of a particle
of mass m (in Cartesian coordinates)

Hcl D
p2

2m
C V.r/

by the replacement

p! P D �i„r; r! R :

The passage from the classical to the quantum Hamiltonian through the previous replacement is called
canonical quantization. In other words, in canonical quantization we replace the classical dynamical
variables r and p by their corresponding linear operators R and P (see p. 40 for further details).

The linear space L2.R3/ to which the wave functions of a quantum particle belong is endowed with a
natural scalar product, defined by10

. ; �/ WD

Z
d3r �.r/�.r/; 8 ; � 2 L2.R3/;

where the integral is extended as usual to the whole space R3. This product has the usual properties of a
complex scalar product, namely

i)
 2 WD . ;  / > 0, and

  D 0 if and only if11  D 0.
ii) .�;  / D . ; �/�.

iii) . ; �1�1 C �2�2/ D �1. ; �1/C �2. ; �2/, for all �1;2 2 C.

Note that properties ii) and iii) imply that

.�1 1 C �2 2; �/ D �
�
1. 1; �/C �

�
2. 2; �/:

The space L2.R3/, with the norm k�k defined by i), is complete, by which it is meant that every Cauchy
sequence12 of functions  n 2 L2.R3/ is convergent. Moreover, it can be shown that L2.R3/ is sepa-
rable, i.e., it contains a countable dense13 subset (actually, there is an infinite number of such subsets).
Thus L2.R3/ is an infinite dimensional Hilbert space.

As in the finite-dimensional case, given a linear operator A W L2.R3/! C, we define its adjoint A�
as the linear operator satisfying14

. ;A�/ D .A� ; �/; 8�; 2 L2.R3/:

10Using Hölder’s inequality, it can be shown that when  ; � 2 L2.R3/ the integral of  �� is absolutely convergent.
11In fact, the elements of L2.R3/ are equivalence classes of complex valued functions, with two functions considered to be

equivalent if they differ on a set of measure zero. In particular,  D 0 actually means that  vanishes except at most on a set
of measure zero. This statement is often abbreviated by saying that  vanishes almost everywhere, or a. e. for short.

12A sequence of functions f ng1nD1 � L2.R3/ is a Cauchy sequence if for every " > 0 there exists a natural number
N 2 N such that

 n �  m < " for all n;m > N . The sequence is convergent if there is an element  2 L2.R3/ such that �  n tends to zero as n tends to infinity.
13A set S in a topological space X is dense in X if the closure of S (i.e., the union of S and the set of its accumulation

points of S ) is the whole space X . Intuitively, S is dense in X if there is a point of S arbitrarily close to every point of X . For
instance, the set Q of rational numbers is dense in the set R of real numbers with its standard topology.

14More precisely, if the domain of A is only a dense proper subset D.A/ of L2.R3/ we say that  is in the domain of A�

if there exists an element  1 2 L2.R3/ such that

. ;A�/ D . 1; �/; 8� 2D.A/:

When this is the case, we define A� WD  1. It is immediate to show that the operator thus defined is linear.
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A linear operator A W L2.R3/ ! C is self-adjoint if A� D A, or equivalently if the following equality
holds15:

. ;A�/ D .A ; �/; 8�; 2 L2.R3/: (2.13) selfadj

As in the finite-dimensional case, a complex number � is an eigenvalue of a linear operatorA W L2.R3/!
C if there exists a nonzero element  2 L2.R3/ such that

A D � :

We then say that  is an eigenvector —or, more commonly in this context, eigenfunction— of A with
eigenvalue �. An important property of self-adjoint operators is that their eigenvalues must be real
numbers. Indeed, if � 2 C is an eigenvalue of A W L2.R3/ ! C and  2 L2.R3/ is an eigenfunction
of A with eigenvalue � we have

. ;A / D �. ; / � �
 2 D .A ; / D .� ; / D ��. ;  / D �� 2 H) � D ��;

since
  ¤ 0 by definition of eigenfunction. This property is essential in quantum mechanics since,

as we shall see in the next chapters, the eigenvalues of an operator representing a classical dynamical
variable are the possible values that can be obtained when we measure that variable, and thus must be
real numbers. For instance, it is straightforward to check that the position and momentum operators are
self-adjoint. Indeed, for the position operator it suffices to note that

. ;Xk�/ D

Z
d3r �.r/xk�.r/ D

Z
d3r

�
xk .r/

��
�.r/ D .xk ; �/:

Likewise, for the momentum operator we have

. ; Pk�/ D

Z
d3r �.r/.�i„@xk /�.r/ D i„

Z
d3r

�
@x 

�.r/
�
�.r/ D

Z
d3r

�
� i„@x .r/

��
�.r/

D .Pk ; �/;

where in the second equality we have integrated by parts taking into account that � and  vanish at
infinity (as they are both in L2.R3/)16. As a matter of fact, the previous calculation only shows that
the position and momentum operators are symmetric, not self-adjoint. It can be shown, however, that
they are self-adjoint in their natural domains. In what follows we shall avoid these technical issues, for
whose resolution a knowledge of functional analysis is indispensable, and use the terms “self-adjoint”
and “symmetric” (or “Hermitian”) almost interchangeably.page.canquant

The process of canonical quantization can in principle be performed with any dynamical variable
f .r;p/, with the following important proviso. While the classical coordinates xi and momenta pj are
commutative variables, i.e., xipj D pjxi for all i; j , the same is not true for the corresponding quantum
operators Xi and Pj unless i ¤ j . More precisely, we clearly have

XiXj D XjXi ; PiPj D PjPi

for all i; j , the latter equality expressing the commutativity of the partial derivatives:

@

@xi

@

@xj
 .r/ D

@

@xj

@

@xi
 .r/

15As a matter of fact, the previous definition assumes that the domain of the operator A is the whole Hilbert space L2.R3/,
which in practice (for instance, for the position and linear momentum operators) is often not the case. If A is only defined on a
dense subset D.A/ � L2.R3/ and (2.13) holds for all �; 2D.A/, the operator A is said to be symmetric (or Hermitian). A
symmetric operator A is self-adjoint if

. ;A�/ D . 1; �/

for all � 2D.A/ if and only if  2D.A/ and  1 D A . A is symmetric but not self-adjoint if and only if the adjoint operator
A� is a proper extension of A, i.e, it is defined on a domain D.A�/ © D.A/ and A� D A on D.A/. Whether a symmetric
operator is actually self-adjoint depends crucially on its domain, i.e., on the precise boundary conditions used to define it.

16As a matter of fact, there are (pathological) examples of square integrable functions not vanishing at infinity. It can be
shown, however, that none of these functions can belong to the domain of the momentum operator.
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for all functions  of class C 2. On the other hand,

XiPj .r/ D �i„xi
@ 

@xj
.r/; PjXi .r/ D �i„

@

@xj
.xi .r// D �i„xi

@ 

@xj
.r/ � i„ıij .r/

and therefore
ŒXi ; Pj � .r/ WD

�
XiPj � PjXi

�
 .r/ D i„ıij .r/:

Since the latter equality holds for any (sufficiently smooth) wave function, we have proved the operator
identity

ŒXi ; Pj � D i„ıij : (2.14) HeisCR

The latter identities are called the canonical commutation relations, and play a similar role in quantum
mechanics as the fundamental Poisson bracket identities

fxi ; pj g D ıij

in classical mechanics. We thus see that the canonical quantization prescription

f .r;p/! f .R;P/

is ambiguous in most cases. For example, classically

x2kpk D xkpkxk D pkx
2
k D

1

2
.x2kpk C pkx

2
k/;

while the corresponding quantum mechanical operators are not all equal:

XkPkXk D XkŒPk; Xk�CX
2
kPk D X

2
kPk � i„Xk; PkX

2
k D XkPkXk C ŒPk; Xk�Xk D X

2
kPK � 2i„Xk;

1

2
.X2kPk C PkX

2
k / D X

2
kPK � i„Xk D XkPkXk :

Since the linear operator associated to a classical dynamical variable must be self-adjoint, the operators
X2
k
Pk and PkX2k are clearly unsuitable, as�

X2kPk
��
D PxX

2
k D X

2
kPK�2i„Xk ¤ X

2
kPK ;

�
PkX

2
k

��
D X2kPk D PKX

2
kC2i„Xk ¤ PkX

2
k :

On the other hand, XkPkXk is obviously self-adjoint, and hence is the only quantum operator that
can represent the classical dynamical variable x2

k
pk . Thus in this case the self-adjointness requirement

removes the ambiguity in canonical quantization. Unfortunately, this is not true in general. For instance,
both self-adjoint operators

XkP
2
kXk;

1

2
.X2kP

2
k C P

2
kX

2
k /

reduce to the classical canonical variable x2
k
p2
k

under .Xk; Pk/! .xk; pk/, but they are different:

1

2
.X2kP

2
k C P

2
kX

2
k / D XkP

2
kXk C

1

2

�
Xk
�
Xk; P

2
k

�
C
�
P 2k ; Xk

�
Xk
�
D XkP

2
kXk C i„.XkPk � PkXk/

D XkP
2
kXk � „

2:

This shows that the self-adjointness requirement is in general not enough to remove the ambiguity in
canonical quantization. In practice, however, one seldom needs to quantize monomials of order greater
than 2 containing both coordinates xi and momenta pj . Of these monomials, the only one for which
canonical quantization is ambiguous is xkpk , but in this case the prescription

xkpk !
1

2
.XkPk C PkXk/
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is the only possible canonical quantization yielding a self-adjoint operator. Thus any observable of the
form

a.r/C b.p/C
3X

i;jD1

cijxipj ;

with cij D cj i 2 R constant, can be canonically quantized in a unique way as

a.R/C b.P/C
1

2

3X
i;jD1

cij .XiPj C PjXi /:

For instance, for the components of the angular momentum lk D xipj � xjpi , with .i; j; k/ a cyclic
permutation of .1; 2; 3/, the canonical quantization procedure yields the operator

Lk WD
1

2
.XiPj CPjXi �XjPi �PiXj / D XiPj �XjPi C

1

2

�
ŒPj ; Xi � � ŒPi ; Xj �

�
D XiPj �XjPi ;

where in the last equality we have used the canonical commutation relations (2.14).

Example 2.1. Schrödinger equation for a system of particles.
The classical Hamiltonian (in Cartesian coordinates) of a system of N particles subject to a potential
V.r1; : : : ; rN / is given by

Hcl D

NX
iD1

p2i
2mi
C V.r1; : : : ; rN /;

wheremi , ri and pi are respectively the mass, position vector and linear momentum of the i -th particle.
To canonically quantize this system, we replace the classical (vector) dynamical variables rk , pk by
the linear operators Rk , Pk , where Rk is the multiplication operator by rk ,

Pk D �i„rrk ;

and rrk is the gradient with respect to the coordinates rk D .xk1; xk2; xk3/ of the k-th particle. These
operators act on wave functions  .r1; : : : ; rN / 2 L2.R3N / satisfying the normalization conditionZ

d3r1 � � � d3rN
ˇ̌
 .r1; : : : ; rN /

ˇ̌2
D 1:

The system’s quantum Hamiltonian is then

H D

NX
iD1

P2i
2mi
C V.R1; : : : ;RN /I

note that in this case canonical quantization is not ambiguous, since clearly

ŒXik; Xjl � D ŒPik; Pjl � D 0; 8i; j; k; l:

Accordingly, the time-dependent Schrödinger equation for this system reads

i„@t	.r1; : : : ; rN ; t / D H	.r1; : : : ; rN ; t /;

or in expanded form

i„@t	 D �
NX
iD1

„2

2mi
r
2
ri	 C V.r1; : : : ; rN /	:
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Example 2.2. Non-covariance of canonical quantization.
Canonical quantization is not covariant, by which we mean that it must be performed in Cartesian
coordinates. In other words, suppose that q D .q1; q2; q3/ is any set of generalized coordinates,
and let p D .p1; p2; p3/ denote the corresponding canonical momenta (in general different from the
components of the particle’s linear momentum). If the classical Hamiltonian is a certain function
Hcl.q;p/ of the non-Cartesian canonical variables .q;p/, Schrödinger’s equation is not

i„@t	.q; t / D Hcl.q;�i„rq/	.q; t /:

The correct procedure for obtaining Schrödinger’s equation in the new coordinate system q is, of
course, to perform the change of variables q D q.r/ in Schrödinger’s equation in Cartesian coordi-
nates (2.11).

To illustrate this important point, let us write down Schrödinger’s time-dependent equation for a
particle of mass m in cylindrical coordinates q D .�; '; ´/, where

x1 D � cos'; x2 D � sin'; x3 D ´:

As is well known, the Laplacian r2 is expressed in cylindrical coordinates as follows:

r
2
D @2� C

1

�
@� C

1

�2
@2' C @

2
´:

Substituting into Eq. (2.11) we immediately obtain the equation

i„@t	 D �
„2

2m

�
@2	

@�2
C
1

�

@	

@�
C

1

�2
@2	

@'2
C
@2	

@´2

�
C V.�; '; ´/	;

with 	 regarded as a function of .�; '; ´; t/. On the other hand, the classical Hamiltonian of a particle
of mass m in cylindrical coordinates can be taken as

Hcl.�; '; ´; p�; p' ; p´/ D
1

2m

 
p2� C

p2'

�2
C p2´

!
C V.�; '; ´/:

The naive canonical quantization using the replacements

p� ! �i„@�; p' ! �i„@' ; p´ ! �i„@´

in Hcl.�; '; ´; p�; p' ; p´/ would have led to the wrong equation

i„@t	 D �
„2

2m

�
@2	

@�2
C

1

�2
@2	

@'2
C
@2	

@´2

�
C V.�; '; ´/	;

in which the term proportional to 1
�
@	
@�

is missing.

2.3 The continuity equation
sec.cont

The wave function 	.r; t / of a particle must satisfy the normalization condition (2.2) at all times t , since
the probability of finding the particle anywhere in space must obviously be 1. At the same time, 	
must satisfy Schrödinger’s equation (2.11), which determines 	.r; t / from the initial data 	.r; 0/ if no
measurement is performed on the particle in the time interval Œ0; t �. Indeed, the Schrödinger equation
can be written in operator form as

i„@t	 D H	; (2.15) TDSEop
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where the Hamiltonian H W L2.R3/! L2.R3/ is a linear operator independent of the time t (since we
are assuming that the potential V is time independent). Formally, the solution of the latter equation is

	.r; t / D e�
it
„
H	.r; 0/; (2.16) eiHt

where the exponential of an operator is defined as in the finite-dimensional case (i.e., when H is a
matrix):

e�
it
„
H
D

1X
nD0

1

nŠ

�
�

itH
„

�n
: (2.17) expitH

The operatorH is self-adjoint, since it can be expressed in terms of the self-adjoint operators R and P as

H D
P2

2m
C V.R/;

and

.P2/� D
�

P�
�2
D P2; V .R/� D V.R�/ D V.R/;

where in the penultimate equality we have taken into account that the potential V is real valued. By a
standard result in functional analysis, it follows that the RHS of Eq. (2.17) converges to a unitary operator
U.t/ D e�

it
„
H . Note that the unitarity of U.t/ can be formally proved as follows:

U.t/� D e.�
it
„
H/

�

D e
it
„
H�

D e
it
„
H
D U.t/�1:

Calling  .r/ D 	.r; 0/ we then have	2 D .	; 	/ D .U.t/ ; U.t/ / D . ; U �.t/U.t/ / D . ;  / D 1:
This establishes the following fundamental result:

If initially the wave function is normalized, and we let it evolve in time according to the time-dependent
Schrödinger equation (2.15), the wave function will remain normalized at all times.

In other words, probability is globally conserved.

Exercise 2.1. Show that probability is conserved by differentiating the squared norm of the wave func-
tion 	 and applying the Schrödinger equation.

Solution. We have

i„@t
	2 D i„@t .	; 	/ D i„ Œ.@t	;	/C .	; @t	/� D .�i„@t	;	/C .	; i„@t	/

D .�H	;	/C .	;H	/ D 0;

where in the third equality we have used Schrödinger’s equation and in the last one the self-adjointness
of H .

In fact, it can be shown that probability is also locally conserved, i.e., that it cannot disappear from
some region in space and appear in a different region, even if this would not violate global probability
conservation. Indeed, we have

i„@t
ˇ̌
	
ˇ̌2
� i„@t .	�	/ D .�i„@t	/� 	 C 	�i„@t	 D 	�.H	/ � .H	/�	

D
„2

2m

�
.r2	�/	 � 	�r2	

�
D
„2

2m
r �

�
.r	�/	 � 	�r	

�
;
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where in the fourth equality we have used Schrödinger’s equation taking into account that the potential
V.r/ is real valued. Defining the probability density �.r; t / and the probability current (density) j.r; t /
by

�.r; t / WD
ˇ̌
	.r; t /

ˇ̌2
; j.r; t / WD

i„
2m

�
.r	�/	 � 	�r	

�
; (2.18) rhoj

we have thus established the continuity equation

@t�.r; t /Cr � j.r; t / D 0: (2.19) conteq

Integrating the continuity equation over a fixed (time independent) volume ˝ and applying the diver-
gence theorem we immediately obtain the identity

@t

Z
˝

�.r; t / d3r D �
Z
@˝

j.r; t / � n dS;

where @˝ is the boundary of ˝, n denotes the outer normal to @˝ and dS its surface element. In other
words, the increase in the probability contained in the volume ˝ must equal the probability flowing into
˝ through its boundary17. Of course, if in the previous equation we take as ˝ a sphere of radius a then
in the limit a ! 1 the RHS vanishes (since the wave function, being square integrable, must vanish
together with its first partial derivatives at spatial infinity18), and we recover the law of global probability
conservation derived above.

Remark.

� The probability current for a plane wave

	.r; t / D Ae
i
„
.p�r�Et/

of momentum p and intensity proportional to
ˇ̌
A
ˇ̌2 is given by

j.r; t/ D
i„
2m

�
�2
ˇ̌
A
ˇ̌2 i p
„

�
D
ˇ̌
A
ˇ̌2 p
m
:

The vector j is therefore proportional to the product of the intensity of the wave and the particle’s
velocity p=m. Thus j � n is proportional to the particle flux (i.e., number of particles per unit time
and area) crossing an infinitesimal surface centered at r perpendicular to the unit vector n (and in the
direction of the latter vector) at a time t .

2.4 Position and momentum eigenfunctions
sec.posmomeigf

In a finite-dimensional Hilbert space (i.e., Cn with its standard complex scalar product) all self-adjoint
operators are diagonalizable, and in fact possess an orthonormal basis of eigenvectors. In infinite-
dimensional Hilbert spaces the situation is far more complex. In particular, a self-adjoint operator may
not have any eigenvalues.

An important example of the latter fact is provided by the position and momentum operators in the
Hilbert space L2.R3/. Indeed, if (for example)  .r/ is an eigenfunction of the momentum operator P
with eigenvalue19 p D .p1; p2; p3/ 2 R3 it must satisfy the differential equation

�i„r D p :
17Note that a negative value of the surface integral in Eq. (2.19) means that probability is entering the volume˝ through its

boundary @˝, since by definition the normal vector n points outside ˝.
18As pointed out above, there are square integrable functions that do not vanish at infinity. However, it is always assumed

that physical wave functions, together with their first partial derivatives, vanish sufficiently fast at spatial infinity.foot.L2
19Recall that the eigenvalues of a self-adjoint operator must be real.
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This vector equation is equivalent to the three scalar equations

�i„
@ 

@xk
D pk ; k D 1; 2; 3;

whose general solution is
 .r/ D Ae

i
„

p�r; (2.20) eipr

with A D  .0/ an arbitrary complex constant. Sinceˇ̌
 .r/

ˇ̌2
D
ˇ̌
A
ˇ̌2

is constant, the probability of finding the particle anywhere in space is uniform. (This is in agreement
with Heisenberg’s uncertainty principle, since when the particle’s momentum is perfectly known the
uncertainty in its position must be infinite so as not to violate the inequality (1.61).) However, the plane
wave (2.20) is not a true eigenfunction of P, since it is not normalizable (i.e., is not in L2.R3/):Z

d3r
ˇ̌
 .r/

ˇ̌2
D

Z
d3r

ˇ̌
A
ˇ̌2
D1:

Thus strictly speaking the momentum operator has no eigenvalues. On the other hand, a plane wave of
the form Ae

i
„

p0�r can be considered as a limiting case of a wave packet

 .r/ D
Z

d3pA.p/ e
i
„

p�r

with jAj narrowly concentrated near a certain momentum p0, which as we have remarked above is a
physical state as long as Z

d3p
ˇ̌
A.p/

ˇ̌
<1:

Such a wave packet is clearly an approximate eigenfunction of the linear momentum operator P, since

P .r/ D �i„r
Z

d3pA.p/ e
i
„

p�r
D �i„

Z
d3pA.p/re

i
„

p�r
D

Z
d3pA.p/p e

i
„

p�r

' p0
Z

d3pA.p/ e
i
„

p�r
D p0 .r/

if
ˇ̌
A.p/

ˇ̌
is narrowly concentrated around p0. From the mathematical point of view plane waves are

extremely useful, as we shall see below, and as a matter of fact we shall use them extensively in what
follows.

Definition 2.3. When a nonzero function  that is not normalizable is a solution of the equation

A D a ;

where A is a linear operator A and a a complex number, we shall say that  is a formal eigenfunction
of A with eigenvalue a. For instance, from the above discussion it follows that the plane wave (2.20)
is a formal eigenfunction of the linear momentum operator P with eigenvalue p.

The situation is similar for position eigenfunctions. Indeed, if  is an eigenfunction of the position
operator R with eigenvalue r0 D .x01; x02; x03/ 2 R3 then

r .r/ D r0 .r/:

This equation implies that  .r/ D 0 for all r ¤ r0, and henceZ
d3r

ˇ̌
 .r/

ˇ̌2
D 0
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2.4 Position and momentum eigenfunctions

however we define  .r0/, which is incompatible with the normalization condition (2.2). Thus the posi-
tion operator R does not possess any eigenfunctions.

Note, however, that any square integrable function  concentrated on a small region around the point
r0 is an approximate eigenfunction of the position operator r with approximate eigenvalue r0. For
example, we can take

 ".r/ D

8<:0; jr � r0j > "�
3

4 "3

�1=2
; jr � r0j 6 ";

which fails to satisfy the eigenvalue equation only inside the infinitesimal (as "! 0) region jr� r0j < "
and is normalized: Z

d3r
ˇ̌
 ".r/

ˇ̌2
D

Z
jr�r0j6"

d3r
3

4 "3
D 1:

A similar example is provided by the family of smooth functions

 ".r/ D . "2/�3=4e�
.r�r0/

2

2"2 ;

which is non-negligible only for jr � r0j . " and also satisfies the normalization condition:Z
d3r

ˇ̌
 ".r/

ˇ̌2
D . "2/�3=2

Z
d3r e�

.r�r0/
2

"2 D . "2/�3=2
Z

d3r e�
r2

"2 D . "2/�3=2"3 3=2 D 1:

Note that in both cases  ".r0/ is of the order of "�3=2, and thus tends to infinity as " ! 0. This is
reasonable, since as " ! 0 the wave function  " is concentrated inside a sphere centered at r0 with a
radius of the order of ", whose volume is proportional to "3,

ˇ̌
 
ˇ̌2 must be of the order of "�3 so that

the normalization condition (2.2) is fulfilled. Although the family of wave functions f ".r/ W " > 0g are
approximate eigenfunctions of the position operator R with increasing accuracy as "! 0C, their limit

lim
"!0C

 .r/ D

(
0; r ¤ r0
1; r D r0

vanishes for all r ¤ r0 but blows up at r D r0, and its squared norm vanishes. On the other hand, if
�.r/ is a smooth function vanishing (together with its partial derivatives of all orders) sufficiently fast at
infinity —usually called a test function— and " > 0 is small enough thenZ

d3r�.r/
ˇ̌
 ".r/

ˇ̌2
' �.r0/

Z
d3r

ˇ̌
 ".r/

ˇ̌2
D �.r0/;

or more rigorously

lim
"!0C

Z
d3r�.r/

ˇ̌
 ".r/

ˇ̌2
D �.r0/: (2.21) psieplim

We can thus write

lim
"!0C

Z
d3r�.r/

ˇ̌
 ".r/

ˇ̌2
D ır0.�/;

where ır0 is a linear functional acting on the linear space of test functions as follows:

ır0.�/ D �.r0/:

In mathematical terms, we say that as "! 0C the function
ˇ̌
 ".r/

ˇ̌2 converges in the sense of distribu-
tions to Dirac’s delta function ır0 . In practical terms, one uses the notation ı.r� r0/ instead of ır0 , and
proceeds formally as if

ır0.�/ D

Z
d3r�.r/ı.r � r0/
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for some ordinary function ır0 . In other words, the identity

Z
d3r �.r/ı.r � r0/ D �.r0/ (2.22) deltadef

for any test function �.r/ is regarded as the defining property of the symbol ı.r � r0/. In the same vein,
any identity of the form A.r/ D B.r/ involving Dirac’s delta function is taken to meanZ

d3r A.r/�.r/ D
Z

d3r B.r/�.r/

for all test functions �. For example,

f .r/ı.r � r0/ D f .r0/ı.r � r0/ (2.23) deeigf

for any function f , since by the defining property of ı.r � r0/ we haveZ
d3r f .r/�.r/ı.r � r0/ D f .r0/�.r0/ D

Z
d3r f .r0/�.r/ı.r � r0/

for all test functions �. In particular,

rı.r � r0/ D r0ı.r � r0/;

so that formally ı.r � r0/ is an eigenfunction of the position operator R with eigenvalue r0.

Exercise 2.2. Show that ı.ar/ D jaj�3ı.r/, where a ¤ 0 is a real number.

Solution. For any test function �.r/ we haveZ
d3r �.r/ı.ar/ D jaj�3

Z
d3r �.r=a/ı.r/ D

�.0/

jaj3
D

Z
d3r �.r/

ı.r/
jaj3

;

which by definition is equivalently to the identity we had to proof. Note that the same argument shows
that in one dimension we have ı.ax/ D jaj�1ı.x/.

2.5 Expectation values. Ehrenfest’s theorem
sec.Ehre

From the probabilistic interpretation of the wave function it follows that if at a certain time t a particle
is in the state described by the wave function 	.r; t / and we measure its position, the average value we
shall obtain for any (real) dynamical variable f .r/ depending only on the particle’s position is given by
the formula

av	
�
f .r/

�
D

Z
d3r f .r/

ˇ̌
	.r; t /

ˇ̌2
D .	; f .r/	/ D .	; f .R/	/: (2.24) avfr

Note that by “average value of f .r/ in the state 	” we mean the average

1

N

NX
iD1

f .ri /;

where r1; : : : ; rN are the values of the position obtained after performing a large number N of position
measurements on an ensemble of particles of the same type all of which are in the same state 	 . Al-
ternatively, ri can represent the value obtained measuring the position of the particle for the i -th time if
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2.5 Expectation values. Ehrenfest’s theorem

prior to each measurement we prepare the particle in the state 	 . In general, given an operator A acting
on the Hilbert space of states of a particle we define its expectation value in the state 	 by the formula

˝
A
˛
	
WD .	;A	/:

Note that the expectation value of a self-adjoint operator is automatically real, since

.	;A	/� D .A	;	/ D .	;A	/:

By Eq. (2.24), the average of f .r/ is the expectation value of the multiplication operator f .R/:

av	
�
f .r/

�
D
˝
f .R/

˛
	
I

in particular, the average value of the particle’s position when the particle is in a state 	 is
˝
R
˛
	

.
Let us next determine how the expectation value of an operator A not depending explicitly on time (for

example, one of the components of the particle’s position or momentum, or a function thereof) varies
with time. To this end, note that

i„@t
˝
A
˛
	
D i„@t

�
	;A	

�
D
�
� i„@t	;A	

�
C
�
	; i„@t .A	/

�
D
�
�H	;A	

�
C
�
	;A.i„@t	/

�
D
�
	;�H.A	/C AH	

�
D
�
	; ŒA;H�	

�
;

where we have applied the time-dependent Schrödinger equation in the third and fourth equalities and
the self-adjoint character of H in the fourth one. We thus have proved the relation

i„@t
˝
A
˛
	
D .	; ŒA;H�	/ �

˝
ŒA;H�

˛
	
: (2.25) pdtava

This formula should be compared with its classical analogue

Pa D fa;Hclg

for a dynamical variable a.q;p/, where f� ; �g is the classical Poisson bracket defined by

˚
a.q;p/; b.q;p/

	
WD

NX
iD1

�
@a

@qi

@b

@pi
�
@a

@pi

@b

@qi

�
:

In particular, applying Eq. (2.25) to a component of the position operator we have

i„@t
˝
Xk
˛
	
D .	; ŒXk;H �	/ :

The commutator is easily computed20:

ŒXk;H �	 D

�
Xk;�

„2

2m
r
2

�
	 D

„2

2m

�
r
2.xk	/ � xkr

2	
�
D
„2

2m

�
xkr

2	 C 2
@	

@xk
� xkr

2	

�
D
„2

m

@	

@xk
:

20Alternatively, taking into account that ŒXk ; V .R/� D 0 we have

2mŒXk ;H � D ŒXk ;P2� D ŒXk ; P 2k � D Pk ŒXk ; Pk �C ŒXk ; Pk �Pk D 2i„Pk ;

where we have used the canonical commutation relations and the operator identity

ŒA; BC � D BŒA;C �C ŒA; B�C:
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Substituting in the previous formula for i„@t
˝
Xk
˛
	

we obtain the identity

@t
˝
Xk
˛
	
D

�
	;�

i„
m

@	

@xk

�
D
1

m
.	;Pk	/ �

1

m

˝
Pk
˛
	
;

or in vector form

@t
˝
R
˛
	
D
1

m

˝
P
˛
	
: (2.26) dtavr

Since, as mentioned above, the average value of the position vector when the particle is in the state 	
coincides with the expectation value

˝
R
˛
	

, comparing this formula with the classical identity

Pr D
p
m

we are led to the conclusion that the RHS of Eq. (2.26) should coincide with the average value of the
particle’s momentum in the state 	 :

av	.p/ D
˝
P
˛
	
:

The above analysis strongly suggests the following general property:

The average value of any dynamical variable a.r;p/ when a particle is in a quantum state 	 is equal
to the expectation value ˝

A.R;P/
˛
	
�
�
	;A.R;P/	

�
(2.27) expApos

of the self-adjoint operator A.R;P/ representing a.r;p), obtained by canonical quantization (with a
suitable ordering of the operators involved, as explained in Section 2.2).

The previous property establishes a correspondence between classical dynamical variables and self-
adjoint operators A. For this reason, in quantum mechanics self-adjoint operators are usually called
observables. Note that the self-adjointness of the operator A representing an observable is essential to
guarantee that the expectation value ofA in any state, which is the average value of the corresponding dy-
namical variable, is real. In these notes we shall usually assume that we are dealing with scalar particles,
which have no internal degrees of freedom (like, for instance, spin). When this is the case the relevant
observables are obtained by canonical quantization (with a suitable ordering of the operators involved)
from classical dynamical variables (i.e., ordinary functions) a.r;p/. On the other hand, when there are
internal degrees of freedom there are quantum observables —for example, the spin components— not
obtained by canonical quantization from a corresponding classical dynamical variable a.r;p/. The most
important observables we shall deal with in these notes are the following:

Position: R (multiplication by r)

Linear momentum: P D �i„r

Angular momentum: R � P D �i„r � r

Kinetic energy:
P2

2m
D �

„2

2m
r
2

Potential energy: V.R/ (multiplication by V.r/)

Applying Eq. (2.25) to a component Pk D �i„@xk of the linear momentum we obtain the equation

i„@t
˝
Pk
˛
	
D .	; ŒPk;H �	/

for the rate of variation of the average value of pk in the state 	 . Taking into account that the momentum
components commute with one another we easily obtain�

Pk;H
�
D
�
Pk; V .R/

�
D �i„

�
@xk ; V .R/

�
D �i„

@V

@xk
.R/
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(for the last equality, just apply both sides to an arbitrary wave function �), or in vector form�
P;H

�
D �i„rV.R/:

From the general formula. (2.25) we conclude that

@t
˝
P
˛
	
D �

˝
rV.R/

˛
	
: (2.28) pdtP

Equations (2.26) and (2.28) are the content of Ehrenfest’s21 theorem. Although these equations are
similar to the classical equations of motion

Pr D
p
m
; Pp D �rV.r/;

they do not imply that the average position
˝
R
˛
	

moves as a classical particle of mass m subject to the
potential V

�˝
R
˛
	

�
, since in general ˝

rV
�
R/
˛
	
¤ rV

�˝
R
˛
	

�
:

The latter equality is approximately true at some instant t0 if the wave function is concentrated near a
point r0, since in that case˝

R
˛
	
' r0 H)

˝
rV.R/

˛
	
' rV.r0/ ' rV

�˝
R
˛
	

�
:

However, as the wave function 	.r; t / evolves in time according to the time-dependent Schrödinger
equation it will in general spread out, so that after a sufficiently long time it will no longer be concentrated
near any point in space, and the approximate equality of

˝
rV.R/

˛
	

and V
�˝

R
˛
	

�
will cease to hold. This

can be clearly seen in the following example:

exa.Gaussian Example 2.4. Consider a particle moving freely (i.e., subject to no forces) in space, and suppose that
for t D 0 the particle’s wave function is the Gaussian

 .r; 0/ D  .r/ D .a2 /�3=4e�
r2

2a2 ;

where a > 0 is a constant. It can be easily checked that  is normalized:

 2 D .a2 /�3=2 Z e�
r2

a2 d3r D .a2 /�3=2
�Z

e�
x2

a2 dx
�3
D 1:

Moreover,  is concentrated on a sphere of radius of the order of a centered at the origin. On the other
hand, integrating the time-dependent Schrödinger equation

i„@t	.r; t / D �
„2

2m
r
2	.r; t /

with the initial condition 	.r; 0/ D  .r/ it is found thata

	.r; t / D NA.t/�3=2e�
r2

2A.t/ ; with N WD

�
a2

 

�3=4
; A.t/ WD a2 C

i„t
m
;

21Paul Ehrenfest (1880–1933), Austrian physicist.
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whereb ´3=2 D j´j3=2e
3i
2

Arg´. This can be easily checked by differentiation:

i„@t .	=N/ D e�
r2

2A

�
�
3

2
A�5=2 C A�3=2

r2

2A2

��
�
„2

m

�
D �

„2

2m
A�7=2.r2 � 3A/e�

r2

2A ;

r.	=N/ D A�3=2e�
r2

2A

�
�

r
A

�
D �A�5=2e�

r2

2A r;

r
2.	=N/ D �A–5=2e�

r2

2A

�
3 �

r2

A

�
D A�7=2.r2 � 3A/e�

r2

2A :

Note that 	.r; t / is automatically normalized for all t , since it is a solution of the time-dependent
Schrödinger equation with 	.0; r/ D  .r/ of unit norm. This can also be checked directly:

ˇ̌
	
ˇ̌2
D

�
a2

 

�3=2ˇ̌
A
ˇ̌�3e�

r2

2 .
1
A
C 1
A�
/
D

�
a2

 

�3=2ˇ̌
A
ˇ̌�3e�

ReA�r2

jAj2 D

�
a2

 

�3=2ˇ̌
A
ˇ̌�3e�

a2r2

jAj2 (2.29) rhogauss

H)

Z
d3r

ˇ̌
	
ˇ̌2
D

�
a2

 

�3=2ˇ̌
A
ˇ̌�3  p  ˇ̌Aˇ̌

a

!3
D 1:

Note that the state 	.r; t / has zero average momentum, since

˝
P
˛
	
D .	;P	/ D .	;�i„r	/ D N 2

ˇ̌
A
ˇ̌�3 Z d3r e�

r2

2A� .�i„r/e�
r2

2A

D i„N 2
ˇ̌
A
ˇ̌�3
A�1

Z
d3r r

ˇ̌̌̌
e�

r2

2A

ˇ̌̌̌2
D 0

(the integrand is antisymmetric under r 7! �r). According to Ehrenfest’s equation (2.26), the average
position of the particle is therefore independent of time; in fact, it can be easily checked that

˝
R
˛
	
D 0

for all t . More importantly, from Eq. (2.29) it follows that at an arbitrary time t > 0 the probability
density

ˇ̌
	.r; t /

ˇ̌2 is concentrated on a sphere centered at the origin (i.e., at the average position
˝
R
˛
	

)
whose radius

�r.t/ D

ˇ̌
A
ˇ̌
a
D a

s
1C

„2t2

m2a4

increases without bound as t !1. Note also that the rate of increase of this radius, given by

d
dt
�r.t/ D

„2t=m2a2q
a2 C „2t2

m2a2

;

is approximately equal to „
ma

as a ! 0. In other words, the more concentrated the wave function is
initially the faster it spreads out.

aSee Example 2.6.
bIn these notes Arg ´ 2 .� ; � will always denote the principal argument of the complex number ´.

2.6 Eigenfunctions and eigenvalues of observables

Let us suppose that at a certain time t a particle is in a state  .r/ which is an eigenfunction of an
observable A with eigenvalue �, i.e.,

A D � :

Note that � is necessarily real, as A is self-adjoint. Since˝
An
˛
 
D . ;An / D . ; �n / D �n. ;  / D �n;
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the uncertainty (root mean square deviation) of the observable A in the state  , denoted by �	A, van-
ishes: �

� A
�2
�
˝
A2
˛
 
�
˝
A
˛2
 
D �2 � �2 D 0:

Thus A has a well-defined value, which must be equal to � since
˝
A
˛
 
D �. Hence:

If at a certain time the particle is in a state  which is an eigenfunction of an observable A with
eigenvalue �, a measurement of the observable A performed at this time will yield with certainty the
value �.

Conversely, suppose that when we measure the value of an observable A at a certain time t0 we
obtain the value �. If we measure again the observable A at a later time t0 C �t with �t ! 0C, by
consistency we should obtain the same value �. It follows that the state of the particle immediately after
the measurement of A is such that the uncertainty of A vanishes. Since

0 D
�
� A

�2
D

��
A �

˝
A
˛
 

�2�
 

D

�
 ; .A �

˝
A
˛
 
/2 

�
D
�A � ˝A˛

 

�
 
2

H) .A �
˝
A
˛
 
/ D 0;

we conclude that  is an eigenstate of A with eigenvalue � D
˝
A
˛
 

. In other words:

If an observable A is measured at a certain time and the value � is obtained, the state of the particle
immediately after the measurement is an eigenstate of A with eigenvalue �. In particular, the only
possible values that can be obtained when an observable is measured are its eigenvalues.

2.7 The momentum representation
sec.momrep

According to Born’s rule, the square of the modulus of the wave function 	.r; t / of a quantum particle
represents the probability density of finding the particle at the time t in an infinitesimal volume d3r
centered at the point r. We now ask ourselves how to obtain the probability density of finding the
particle’s momentum inside an infinitesimal volume d3p in momentum space about a given momentum
p. To this end, we shall start by recalling some fundamental facts about the Fourier transform. Given a
function  .r/ in L2.R3/, we define its Fourier transform O .p/ by the formula22

O .p/ D .2 „/�3=2
Z

d3r e�
i
„

p�r .r/: (2.30) Fourtr

It can be shown that O is in L2.R3/ if and only if  is, and that the Fourier transform is in fact a unitary
mapping from L2.R3/ into itself. In other words,

. ; �/ D . O ; O�/; 8 ; � 2 L2.R3/: (2.31) Fourunit

Moreover, the inverse  .r/ of the Fourier transform of a function O .p/ can be computed from the
formula

 .r/ D .2 „/�3=2
Z

d3p e
i
„

p�r O .p/: (2.32) Fourinv

22In point of fact, the integral in Eq. (2.30) is only guaranteed to converge if 2 L1.R3/ (i.e., if j j is integrable), and there
are functions inL2.R3/ that are not inL1.R3/ (for instance, .r4C1/�1=2). If is any such function, it can be shown that there
is a sequence of functions  j (j 2 N) with compact support (i.e., vanishing outside a compact set) such that

 �  j  ! 0

as j ! 1. It is also shown that the sequence O j (j 2 N) is a Cauchy sequence, and therefore (since L2.R3/ is complete) it
has a limit, denoted by O , which is shown to be independent of the sequence  j chosen to approximate  . It is this function
O D limj!1 O j that is then defined as the Fourier transform of the function  2 L2.R3/ n L1.R3/.
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Remark. In one dimension, the Fourier transform of a wave function  .x/ in L2.R/ is defined by the
analogous formula

O .p/ D .2 „/�1=2
Z

dx e�
i
„
px .x/:

With this normalization the Fourier transform is still unitary, i.e.,

. ; �/ D . O ; O�/; 8 ; � 2 L2.R/;

and the inverse Fourier transform is given by

 .x/ D .2 „/�1=2
Z

dp e
i
„
px O .p/: �

Suppose that at a certain time t the state of a particle is described by a wave function  .r/. We wish to
find the probability density O�.p/ in momentum space when the particle is in the state  . A well known
result in probability theory states that O�.p/ is uniquely determined by its moments

av 
�
pnk
�
D

Z
d3p pnk O�.p/; k D 1; 2; 3; n 2 N:

As we saw in the previous section, the average value of any function f .p/ of the particle’s momentum
can be computed by taking the expectation value of the corresponding quantum operator f .P/. Thus the
sought for probability density is the unique function O�.p/ satisfying˝

P nk
˛
 
� . ; P nk  / D

Z
d3p pnk O�.p/; k D 1; 2; 3; n 2 N: (2.33) hrhodet

On the other hand, from Eq. (2.32) we easily obtain

P nk  .r/ D .2 „/
�3=2

Z
d3p

�
�i„@xk

�n e
i
„

p�r O .p/ D .2 „/�3=2
Z

d3p e
i
„

p�rpnk
O .p/;

and therefore
pnk
O .p/ D

�
P nk  

�
O.p/:

From Eq. (2.31) it then follows that˝
P nk
˛
 
D
�
 ;P nk  

�
D

�
O ;
�
P nk  

�
O
�
D . O ;pnk

O /;

and thus ˝
P nk
˛
	
D

Z
d3p pnk

ˇ̌
O .p/

ˇ̌2
: (2.34) hrho

Comparing Eqs. (2.33) and (2.34) we conclude that

O�.p/ D
ˇ̌
O .p/

ˇ̌2
:

In other words,
ˇ̌
O .p/

ˇ̌2 is the probability density in momentum space. In the above discussion we have
kept the time t fixed, and have accordingly dropped it from Eqs. (2.30) and (2.32). Restoring it we obtain
the analogous equations

O	.p; t / D .2 „/�3=2
Z

d3r e�
i
„

p�r	.r; t /; 	.r; t / D .2 „/�3=2
Z

d3p e
i
„

p�r O	.p; t /; (2.35) Foutrinv

and similarly for the one-dimensional case. In summary:

© Artemio González López 54



2.7 The momentum representation

If a quantum particle is in a state 	.r; t /, the function
ˇ̌
O	.p; t /

ˇ̌2 represents the probability density of
finding the particle’s momentum in an infinitesimal volume d3p about p in momentum space at the
time t .

Exercise 2.3. Using the unitarity of the Fourier transform, prove the identityZ
d3k
.2 /3

eik�r
D ı.r/:

Solution. We have:

. ; �/ D

Z
d3r  �.r/�.r/ D .2 „/�3

Z
d3r d3p d3p0 O �.p/e�

i
„

p�r O�.p0/e
i
„

p0�r

D

Z
d3p d3p0 O �.p/ O�.p0/

Z
d3r .2 „/�3e

i
„
.p0�p/�r

D . O ; O�/ �

Z
d3p O �.p/ O�.p/

D

Z
d3p d3p0 O �.p/ O�.p0/ı.p0 � p/:

Thus Z
d3p d3p0 O �.p/ O�.p0/

Z
d3r .2 „/�3e

i
„
.p0�p/�r

D

Z
d3p d3p0 O �.p/ O�.p0/ı.p0 � p/;

and hence
ı.p0 � p/ D .2 „/�3

Z
d3r e

i
„
.p0�p/�r: (2.36) deppp

Setting „ D 1 and p0 � p D k we obtainZ
d3r
.2 /3

eik�r
D ı.k/;

which yields the sought for identity exchanging the roles of r and k. A similar argument shows that in
one dimension Z

dk
2 

eikx
D ı.x/: (2.37) eikxdel

Remark. Equation (2.37) can be directly established as follows. To begin with, we haveZ L

�L

dk
2 

eikx
D

sin.Lx/
 x

;

and thus we need to prove that

lim
L!1

sin.Lx/
 x

D ı.x/

in the sense of distributions. In other words, we must show that for any test function �.x/ the following
equality holds:

lim
L!1

Z 1
�1

dx
sin.Lx/
 x

�.x/ D �.0/:

And indeed,Z 1
�1

dx
sin.Lx/
 x

�.x/ D

Z 1
�1

ds
sin s
 s

�.s=L/ �!
L!1

�.0/

Z 1
�1

ds
sin s
 s
D �.0/;

where in the last step we have made use of the well-known integralZ 1
�1

ds
sin s
s
D  
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which can be computed using residue theory. �

If the Fourier transform O	.p; t / of a state 	.r; t / is known, we can compute the average (i.e., expectation
value) of any observable A.R;P/ in the state 	 . Indeed, we have already seen that the Fourier transform
of P	.r; t / is p O	.p; t /, or expressed symbolically

P	.r; t /
b
����! p O	.p; t /:

On the other hand, we have�
Xk	

�
O.p/ D .2 „/�3=2

Z
d3r xk	.r; t /e�

i
„

p�r
D .2 „/�3=2i„@pk

Z
d3r 	.r; t /e�

i
„

p�r

D i„@pk O	.p; t /;

and therefore

R	.r; t /
b
����! i„rp O	.p; t /:

It follows that, more generally,

A.R;P/	.r; t /
b
����! A.i„rp;p/ O	.p; t /;

whence ˝
A.R;P/

˛
	
D
�
	;A.R;P/	/ D

�
O	; ŒA.R;P/	�O

�
D

�
O	;A.i„rp;p/ O	

�
:

Thus the average of any observable A.R;P/ can be computed either as˝
A.R;P/

˛
	
D .	;A.r;�i„r/	/; (2.38) avpos

i.e., in the so called position representation, or equivalently from˝
A.R;P/

˛
	
D
�
O	;A.i„rp;p/ O	

�
; (2.39) avmom

i.e., in the momentum representation). We conclude that

The Fourier transform O	.p; t / represents the particle’s wave function (i.e., probability amplitude) in the
momentum representation. In particular, in this representation the operators R and P are respectively
given by

R D i„rp; P D p

(the latter regarded as a multiplication operator).

Example 2.5. Normalization of momentum “eigenfunctions”.
We saw in Section (2.4) that the plane waves

 p.r/ WD A e
i
„

p�r

are formal eigenfunctions of the momentum operator P with eigenvalue p. Although these functions
are not normalizable in the usual sense, i.e.,Z

d3r
ˇ̌
 p.r/

ˇ̌2
D jAj2

Z
d3r D1;
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it is of interest to find a prescription for choosing the value of the constant A in a convenient way. To
begin with, since a global (i.e., position independent) phase does not change the state, we can take A
as real and positive without loss of generality. Secondly, using Eq. (2.36) we obtain

. p;  p0/ D A
2

Z
d3r e

i
„
.p0�p/�r

D .2 „/3A2ı.p0 � p/:

It follows that the functions
 p.r/ WD .2 „/�3=2e

i
„

p�r (2.40) normmomeigf

obey the normalization condition
. p;  p0/ D ı.p � p0/: (2.41) Diracnorm

This condition, usually known as Dirac’s (or delta function) normalization, is the analogue for (for-
mal) eigenfunctions depending on a continuous parameter (in this case, the momentum p) of the usual
normalization for a discrete set f n W n 2 Ng of (genuine) eigenfunctions of a self-adjoint operator:

. n;  m/ D ınm:

With the above normalization, Eq. (2.32) can be written as

 .r/ D
Z

d3p O .p/ p.r/; (2.42) Fourierexp

which is again the continuous analogue of the expansion

 .r/ D
1X
nD1

cn n.r/

of a function  2 L2.R3/ in terms of an orthonormal basis f n W n 2 Ng of eigenfunctions of a
self-adjoint operator. We thus see that the value of the momentum wave function O .p/ at a point p can
be interpreted as the coefficient of the plane wave (2.40) with momentum p in the expansion (2.42) of
a normalized wave function.

Of course, similar statements can be made for the formal position eigenfunctions

'r0 WD ı.r � r0/;

which formally satisfy the eigenvalue equation

R'r0 D rı.r � r0/ D r0ı.r � r0/ D r0'r0.r/:

Indeed, by the defining equation (2.22) of the Dirac delta they also obey the Dirac normalization

.'r0 ; 'r1/ D

Z
d3r ı.r � r0/ı.r � r1/ D ı.r0 � r1/;

analogous to (2.41), as well as the identity

 .r/ D
Z

d3r 0  .r0/ı.r � r0/ �
Z

d3r 0  .r0/'r0.r/:

2.8 The free particle. Wave packets
sec.freep

The position and momentum representations are equivalent descriptions of the state of a quantum par-
ticle, each of which is useful in different situations. For example, since the momentum operator P is
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simply a multiplication operator in the momentum representation, i.e.,

P O	.p; t / D p O	.p; t /;

the momentum representation is especially suited to describe a free particle. Indeed, the time-dependent
Schrödinger equation for a free particle in the momentum representation,

i„@t O	.p; t / D
p2

2m
O	.p; t /;

is easily solved:

O	.p; t / D e�
i
„
E.p/t O	.p; 0/; with E.p/ D

p2

2m
:

From the Fourier transform relation (2.32) we then easily obtain the particle’s wave function in the
position representation:

	.r; t / D .2 „/�3=2
Z

d3p e�
i
„
E.p/t O	.p; 0/e

i
„

p�r
D .2 „/�3=2

Z
d3p O	.p; 0/e

i
„

�
p�r�E.p/t

�
: (2.43) psifree

We thus see that 	.r; t / is a wave packet made up of a (continuous) superposition of de Broglie matter
waves

 p.r; t / D .2 „/�3=2e
i
„

�
p�r�E.p/t

�
with well defined momentum p. Moreover, as we saw in the previous section the corresponding weight
O	.p; 0/ multiplying  p.r; t / in Eq. (2.43) represents the probability amplitude for the particle having a

momentum p at the initial time t D 0. On the other hand, Ehrenfest’s theorem with V D 0 implies that

@t
˝
R
˛
	
D

˝
P
˛
	

m
; @t

˝
P
˛
	
D 0I

in particular, the particle’s average momentum
˝
P
˛
	

is constant (like the classical momentum of a free
particle). We thus have ˝

R
˛
	
D
˝
R
˛
 
C

˝
P
˛
 

m
t; (2.44) wpmotion

where  .r/ D 	.r; 0/. In other words, the average position of the particle moves as a classical particle
with constant momentum

˝
P
˛
 

. If O is sharply peaked at p0 then
˝
P
˛
 
' p0, and from the Eq. (2.44) we

obtain ˝
R
˛
	
'
˝
R
˛
 
C
tp0
m
; with r0 D

˝
R
˛
 
:

This is in agreement with the analysis in Section 1.5, since
˝
R
˛
 

obviously coincides with the center of
the wave packet at t D 0 (denoted by r0 in Eq. (1.47)).

Equation (2.43) allows one to compute the wave function 	.r; t / in the position representation if the
momentum wave function O	 is known at the initial time t D 0. We can easily express 	.r; t / in terms of
the initial wave function 	.r; 0/ in the position representation using the definition (2.30) of the Fourier
transform, namely

	.r; t / D .2 „/�3
Z

d3p e
i
„

�
p�r�E.p/t

� Z
d3r 0 	.r0; 0/e�

i
„

p�r0

D .2 „/�3
Z

d3r 0 	.r0; 0/
Z

d3p e
i
„

�
p�.r�r0/� tp

2

2m

�
:

The Gaussian integral in momentum space is easily computed by completing the square:

p � .r � r0/ �
tp2

2m
D �

t

2m

�
p �

m.r � r0/
t

�2
C
m.r � r0/2

2t
; t ¤ 0;

© Artemio González López 58



2.8 The free particle. Wave packets

and using the general formula Z
d3p e�a.p�p0/2 D

� 
a

�3=2
;

where Re a > 0 (with a ¤ 0) and a3=2 D jaj3=2e
3i
2

Arga. We thus obtainZ
d3p e

i
„

�
p�.r�r0/� tp

2

2m

�
D

�
2m „

it

�3=2
e

im.r�r0/2
2„t ; t ¤ 0:

Inserting the value of this integral into the previous equation for 	.r; t / we finally arrive at the following
explicit formula for the general solution of the time-dependent Schrödinger equation for a free particle:

	.r; t / D
Z

d3r0G
�
jr � r0j; t

�
	.r0; 0/; t ¤ 0; (2.45) Green

where

G.s; t/ D
� m

2 i„t

�3=2
e

ims2
2„t :

The functionG.s; t/ is the so called Green function (or propagator) for the free time-dependent Schrödinger
equation

i„@t	.r; t / D �
„2

2m
r
2	.r; t /:

Note also that comparing Eq. (2.45) with the general equation (2.16) we obtain the following explicit
formula for the exponential of the operator �itP2=.2m„/ in the position representation:

e�
itP2
2m„ .r/ � e

i„t
2m
r2 .r/ D

Z
d3r 0G

�
jr � r0j; t

�
 .r0/:

Remark. If initially 	.r; 0/ D ı.r/, from Eq. (2.45) we obtain

	.r; t / D G .jrj; t / :

Thus G .jrj; t / is the wave function at a time t of a particle that at t D 0 was located precisely at the
origin. Note that, even if initially the uncertainty in the position vanishes, at any subsequent time t > 0

the particle’s wave function G.jrj; t / has modulus 1, and is thus uniformly spread out throughout the
whole space. In particular, the uncertainty in the position is infinite for t > 0. This is in fact an extreme
instance of the general phenomenon observed in Example 2.4, namely that the more concentrated is the
wave function at a certain time the faster it will start spreading out as time elapses. �

exa.Gausspack Example 2.6. Let us apply Eq. (2.45) to compute the wave function of a free particle if initially

	.r; 0/ D .a2 /�3=4e�
r2

2a2

(cf. Example 2.4). Note, first of all, that 	.r; 0/ is normalized. According to Eq. (2.45),

	.r; t / D
� m

2 i„t

�3=2
.a2 /�3=4

Z
d3r 0e

im.r�r0/2
2„t

� r
02

2a2 ; t ¤ 0:

To evaluate the Gaussian integral, we complete the square of the exponent. To this end, let

A D a2 C
i„t
m
;
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so that

im.r � r0/2

2„t
�
r 02

2a2
D
1

2

�
im
„t
�
1

a2

�
r 02 C

im
2„t

.r2 � 2r � r0/ D
im
2„ta2

�
Ar 02 � 2a2r � r0 C a2r2

�
D �

m

2i„ta2

"
A

�
r0 �

a2

A
r
�2
C

i„ta2

mA
r2

#
D �

mA

2i„ta2

�
r0 �

a2

A
r
�2
�
r2

2A
;

where we have made use of the elementary identities

im
„t
�
1

a2
D

im
„ta2

A; a2 �
a4

A
D
a2

A
.A � a2/ D

i„ta2

mA
:

We thus have

	.r; t / D
� m

2 i„t

�3=2
.a2 /�3=4e�

r2

2A

Z
d3r 0e�

mA

2i„ta2

�
r0�a

2

A
r
�2

D

� m

2 i„t

�3=2
.a2 /�3=4e�

r2

2A

�
2 i„ta2

mA

�3=2
D

�
a2

 

�3=4
A�3=2e�

r2

2A :

2.9 General uncertainty relation
sec.uncrel

In this section we shall state and prove a general and precise version of Heisenberg’s uncertainty principle
discussed informally in Section 1.7. To this end, we shall start by formulating a precise definition of the
uncertainty of a dynamical variable a.r;p/ represented by a self-adjoint operator A (usually obtained by
canonical quantization from a.r;p/). We have seen in the previous sections that when a particle is in a
state 	.r; t / the average value of a.r;p/ is given by the expectation value˝

A
˛
	
D .	;A	/:

The standard deviation (root mean square deviation)�	a of the dynamical variable a is therefore given
by

�	A WD

rD�
A � hAi	

�2E
	
D

q˝
A2
˛
	
�
˝
A
˛2
	
: (2.46) sdevA

We shall take the standard deviation �	A as a precise measure of the uncertainty in the value of the
dynamical variable represented by the self-adjoint operator A when the particle is in the state 	 .

Given two self-adjoint operators QA and QB , we shall next prove a general inequality satisfied by the
product23

˝
QA2
˛˝
QB2
˛
. To this end, note that˝

QA2
˛
D .	; QA2	/ D . QA	; QA	/ D

 QA	2;
and similarly for

˝
QB2
˛
. We then have˝

QA2
˛˝
QB2
˛
D
 QA	2 QB	2 > ˇ̌. QA	; QB	/ˇ̌2;

23For convenience, in this section we shall often drop the subscript 	 when no confusion can arise.
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where the last inequality follows from the Cauchy–Schwarz inequality for the inner product. On the
other hand,ˇ̌

. QA	; QB	/
ˇ̌2
D
ˇ̌
.	; QA QB	/

ˇ̌2 > �Im �
	; QA QB	

��2
D

�
1

2i

��
	; QA QB	

�
�
�
QA QB	;	

���2
D �

1

4

�
	; Œ QA; QB�	

�2
� �

1

4

˝
Œ QA; QB�

˛2
:

Combining this formula with the previous one we arrive at the inequality˝
QA2
˛˝
QB2
˛
> �

1

4

˝
Œ QA; QB�

˛2
:

Note that the RHS of this inequality is non-negative, since the expectation value of the commutator of
two self-adjoint operators is pure imaginary (exercise). We can therefore simplify the previous inequality
as follows: ˝

QA2
˛1=2˝ QB2˛1=2 > 1

2

ˇ̌˝
Œ QA; QB�

˛ˇ̌
: (2.47) Huppre

IfA andB are two observables the expectation values hAi and hBi are both real, and thus the operators
QA D A � hAi and QB D B � hBi are self-adjoint. Taking into account that

Œ QA; QB� � ŒA � hAi; B � hBi� D ŒA; B�

and applying Eq. (2.47) we deduce the following general inequality relating the uncertainties of the
observables A and B in any state 	 :

�	A�	B >
1

2

ˇ̌˝
ŒA; B�

˛
	

ˇ̌
: (2.48) Heisgen

Equation (2.48) is a general form of the uncertainty principle discussed in Section 1.7. Indeed, if we
apply it to the operators A D Xi and B D Pi and make use of the canonical commutation relation (2.14)
we immediately arrive at the inequality

�	Xi �	Pi >
„

2
: (2.49) Heisuncrelxp

Note that the passage from the general Eq. (2.48) to the previous equation relies only on the canonical
commutation relations (2.14). Therefore if P and Q are any observables satisfying

ŒQ; P � D i„ (2.50) CCR

then their uncertainties in any state 	 will also verify the inequality

�	P �	Q >
„

2
: (2.51) CCRHeis

We shall say in this case that Q and P are canonically conjugate, since Eq. (2.50) is usually obtained
as a result of canonically quantizing two classical canonically conjugate variables q and p (i.e., two
dynamical variables satisfying fq; pg D 1). From Eq. (2.51) it then follows that:

Two canonically conjugate observables cannot be simultaneously measured with infinite precision.

This is the import of Heisenberg’s uncertainty principle as originally formulated.
We shall say that two observables A and B are compatible if ŒA; B� D 0, and incompatible) if

ŒA; B� ¤ 0. An important consequence of the general uncertainty principle (2.48) is the following:
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Two incompatible observables A and B cannot be simultaneously measured with infinite precision
unless the system is in a state 	 such that

˝
ŒA; B�

˛
	
D 0.

Example 2.7. Minimum-uncertainty wave function.
The position-momentum uncertainty relation (2.49) is optimal, in the sense that there are states  .r/
for which

� Xi� Pi D
„

2
; 8i D 1; 2; 3: (2.52) minunc3D

To find such states, we start by looking for one-dimensional states  .x/ such that

� X � P D
„

2
: (2.53) minunc

From the proof of the general inequality (2.48) it follows that a necessary condition for (2.53) to hold
is that .X � ˝X ˛

 
/
 .P � ˝P ˛

 
/
 D ˇ̌̌�.X � ˝X ˛

 
/ ; .P �

˝
P
˛
 
/ 
�ˇ̌̌
;

or equivalently that the “vectors” .X �
˝
X
˛
 
/ and .P �

˝
P
˛
 
/ be parallel. Thus

.P � p0/ D i„a.x � x0/ () .i„@x C p0/ D �i„a.x � x0/ 

for some complex constant a WD a1C ia2, where we have set x0 D
˝
X
˛
 

, p0 D
˝
P
˛
 

. Integrating this
differential equation for  .x/ we find

 .x/ D N e�
a
2
.x�x0/

2

e
i
„
p0x; (2.54) psimin

where N can be taken as real and positive without loss of generality. Note that Re a D a1 must be
positive in order that  be square integrable. Imposing that  have unit norm we obtainZ

dx
ˇ̌
 .x/

ˇ̌2
D N 2

Z
dx e�

aCa�

2
.x�x0/

2

D N 2

Z
dx e�a1.x�x0/

2

D N 2

r
 

a1
D 1 H) N D

�a1
 

� 1
4
:

Let us now find under what conditions the wave function (2.54) does indeed verify Eq. (2.53). To this
end, we first compute the averages of the particle’s position and momentum in the state  :

˝
X
˛
 
D

Z
dx x

ˇ̌
 .x/

ˇ̌2
D N 2

Z
dx xe�a1.x�x0/

2

D x0 CN
2

Z
dx .x � x0/e�a1.x�x0/

2

D x0;˝
P
˛
 
D

Z
dx  �.x/.�i„@x/ .x/ D N 2

Z
dx e�

a�

2
.x�x0/

2

e�
i
„
p0x.�i„@x/

�
e�

a
2
.x�x0/

2

e
i
„
p0x

�
D N 2

Z
dx e�a1.x�x0/

2

.p0 C ia„.x � x0// D p0 C ia„N 2

Z
dx .x � x0/e�a1.x�x0/

2

D p0;

since the integrand in the last integrals is odd in x � x0. We next compute the uncertainties in X and
P . To begin with,

.� X/
2
D
.x � x0/ 2 D N 2

Z
dx .x � x0/2e�a1.x�x0/

2

D �N 2 @

@a1

Z
dx e�a1.x�x0/

2

D �

�a1
 

� 1
2 @

@a1

�
 

a1

� 1
2

D
1

2a1
:

Likewise,
.� P /

2
D
.P � p0/ 2;
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with

.P�p0/ D �.i„@xCp0/ D �N.i„@xCp0/
�

e�
a
2
.x�x0/

2

e
i
„
p0x

�
D ia„N.x�x0/e�

a
2
.x�x0/

2

e
i
„
p0x :

We thus obtain

.� P /
2
D jaj2„2N 2

Z
dx .x � x0/2e�a1.x�x0/

2

D jaj2„2.� X/
2
D
jaj2„2

2a1
;

and therefore

� X� P D
„

2

jaj

a1
:

Hence Eq. (2.53) will hold if and only if jaj D a1, i.e., if a is real and positive. This shows that in one
dimension the only wave function  .x/ verifying Eq. (2.53) is the Gaussian wave packet (2.54) with
a > 0. Using this result it is straightforward to show that in three dimensions the only wave function
verifying the minimum uncertainty relations (2.52) is the Gaussian wave packet

 .r/ D
� a
 

�3=4
e�

a
2
.r�r0/2e

i
„

p0�r; (2.55) psimin3D

with a > 0 and r0;p0 2 R3, for which

˝
R
˛
 
D r0;

˝
P
˛
 
D p0; .� Xi /

2
D

1

2a
; .� Pi /

2
D
a„2

2
:

Exercise 2.4. Study the time evolution of the uncertainty product � X � P for the Gaussian wave
packet (2.54) with x0 D p0 D 0 in the absence of external forces.

Solution. Proceeding as in Example 2.6, we find that

	.x; t/ D
� a
 

�1=4
f .t/�1=2e�

ax2

2f.t/ ; with f .t/ WD 1C
i„a
m
t (2.56) Gausswpt

and f .t/�1=2 � jf .t/j�1=2e�
i
2

Argf .t/. It is easy to see that (apart from a time-dependent overall
phase) 	.x; t/ is obtained from Eq. (2.54) (with complex a) by the replacement

a!
a

f
:

Indeed, under this replacement we have

N D
�a1
 

�1=4
�

�
Re a
 

�1=4
!

�
Re.a=f /

 

�1=4
D

�
a

 
Re
�
f �

jf j2

��1=4
D

� a
 

�1=4
jf j�1=2

D

� a
 

�1=4
f �1=2e

i
2

Argf :

Although the (time dependent) phase e
i
2

Argf is necessary in order that 	.x; t/ satisfy the time-
dependent Schrödinger equation, since it does not depend on the x coordinate it can be dropped when
computing expectation values. We thus conclude that

˝
X
˛
	

,
˝
P
˛
	

, �	X and �	P can be obtained
from the previous example (in the general case of complex a) replacing a by a=f , and hence a1 D Re a
by

Re
�
a

f

�
D

a

jf j2
:

63 © Artemio González López



THE SCHRÖDINGER WAVE EQUATION

We thus obtain˝
X
˛
	
D
˝
P
˛
	
D 0; .�	X/

2
D
jf j2

2a
; .�	P /

2
D
„2

2

a2

jf j2
jf j2

a
D
a„2

2
:

We thus see that, although the momentum uncertainty does not change with time, the position uncer-
tainty is time-dependent. In particular, the uncertainty product

�	X �	P D
„

2
jf j D

„

2

s
1C
„2a2

m2
t2

steadily increases with time for t > 0, and is equal to „=2 only for t D 0. In other words, the Gaussian
wave packet (2.56) minimizes the uncertainty product only at t D 0.

Remark. The fact that �	P is constant is a direct consequence of Ehrenfest’s general theorem. In-
deed, the momentum operator P commutes with the free Hamiltonian H D P 2=.2m/, so that by
Eq. (2.25) the expectation value of any power of P must be time-independent. On the other hand,
since

ŒX;H� D
1

2m
ŒX;P 2� D

1

2m
.P ŒX;P �C ŒX; P �P / D

i„
m
P;

ŒX2;H � D XŒX;H�C ŒX;H�X D
i„
m
.XP C PX/

we have

i„@t
˝
X2
˛
	
D

i„
m

˝
XP C PX

˛
	
H) m@t

˝
X2
˛
	
D
˝
XP C PX

˛
	
D .	;XP	/C .	; PX	/

D .X	;P	/C .P	;X	/ D 2Re.X	;P	/

and therefore

m

2
@t
˝
X2
˛
	
D

� a
 

�1=2
Re
Z

dx
ˇ̌
f
ˇ̌�1
x

�
e�

ax2

2f

���
� i„@xe�

ax2

2f

�
D a3=2 �1=2„jf j�1 Re

�
i
f

�Z
dx x2

ˇ̌̌̌
e�

ax2

2f

ˇ̌̌̌2
D a3=2 �1=2„jf j�1

Imf

jf j2

Z
dx x2e�

ax2

jf j2

D a5=2 �1=2„2jf j�3
t

m
�

p
 

2
jf j3a�3=2 D

a„2

2m
t:

Integrating the differential equation

@t
˝
X2
˛
	
D
a„2

m2
t

with the initial condition ˝
X2
˛
	

ˇ̌̌̌
tD0

D
1

2a

we obtain ˝
X2
˛
	
D

1

2a
C
a„2

2m2
t2 D

1

2a

�
1C

a2„2

m2
t2
�
D
jf j2

2a
;

as before.
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2.10 The time-energy uncertainty principle

The general Heisenberg uncertainty relation (2.48) can be used to derive an uncertainty relation involving
the particle’s energy E and the time t . This is natural from a relativistic point of view, since E=c and
ct are respectively the zero components of the particle’s four-momentum p and spacetime “position”
vector x. Note, however, that in non-relativistic quantum mechanics time is not an observable (i.e., a
self-adjoint operator), but rather a universal independent variable labeling the evolution of the system.

To formulate the energy-time uncertainty relation, we apply the general uncertainty principle (2.48) to
the Hamiltonian H and any other observable A:

�	E �	A >
1

2
jhŒH;A�i	 j ; (2.57) DeEA

where (as is customary) we have written �	E instead of �	H (indeed, recall that in a conservative
natural Hamiltonian system H D E). On the other hand, from Ehrenfest’s general theorem (2.25) we
have ˇ̌

hŒH;A�i	
ˇ̌
D „

ˇ̌
@t
˝
A
˛
	

ˇ̌
:

If @t
˝
A
˛
	

is slowly varying with time, the average value of the observable will change by one standard
deviation �	A in a time �	 tA given by

�	 tA D
�	Aˇ̌
@t
˝
A
˛
	

ˇ̌ :
Thus

jhŒH;A�i	 j D „
�	A

�	 tA
;

which combined with Eq. (2.57) yields the following time-energy uncertainty relation24:

�	E �	 tA >
„

2
: (2.58) uncETA

In spite of its obvious similarity with the position-momentum uncertainty relation (2.49), it should be
noted that �	 tA is not the uncertainty in time, but, roughly speaking, the time that must elapse for the
average value of the observable A to change appreciably (more precisely by one standard deviation). In
particular, this lapse depends on the observable A. In practice, however, this relation is written more
informally as

�	E �	 t >
„

2
; (2.59) uncET

where �	 t is loosely interpreted as a characteristic time lapse required for the system’s state to change
appreciably when it is in a given state 	 .

An important particular case of the time-energy uncertainty relation ensues when 	 is a stationary
state, i.e., an eigenstate of the Hamiltonian H . In this case

H	 D E	 H)
˝
Hn

˛
	
D .	;Hn	/ D .	;En	/ D En.	; 	/ D En;

and therefore ˝
H 2

˛
	
D E2 D

�˝
H
˛
	

�2
H) �H � �E D 0:

24This version of the time-energy uncertainty relation is due to the Russian physicists Leonid Mandelstam (1879–1944) and
Igor Tamm (1895–1971, Nobel prize winner in 1958).
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Thus in this case �E D 0, and therefore �t D 1. To understand what this means, note that if 	 is a
stationary state and A is any observable (not explicitly depending on time) we have˝

ŒA;H�
˛
	
D .	; .AH �HA/	/ D .	;AH	/ � .AH	;	/ D E.	;A	/ �E.A	;	/ D 0;

since A is by hypothesis self-adjoint25. From Eq. (2.25) it then follows that

@t
˝
A
˛
	
D 0:

In other words:

In a stationary state 	 the averages of all (time-independent) observables are time independent.

In particular, for any observable A the time �	 tA required for
˝
A
˛
	

to change by one standard deviation
is infinite (since

˝
A
˛
	

is not changing at all!). It is in this sense that in a stationary state the characteristic
time �t of the system is infinite.

2.11 Summary
sec.summ

Let us briefly summarize the main results obtained in this chapter:

i) The state of a particle is represented by a square integrable wave function (or probability ampli-
tude) 	.r; t / of unit norm. The probability density of finding the particle at a certain time t inside
an infinitesimal volume d3r around r is equal to

ˇ̌
	.r; t /

ˇ̌2.
ii) If the particle is subject to a potential V.r/ and we do not perform any measurements on it over

a certain time interval, the evolution of the wave function is governed by the time-dependent
Schrödinger equation

i„@t	 D H	;

where the Hamiltonian H is the differential operator

H D
P2

2m
C V.R/ D �

„2

2m
r
2
C V.r/

obtained from the classical Hamiltonian

Hcl.r;p/ D
p2

2m
C V.r/

by the replacement
r! R; p! P D �i„r (2.60) canquant

with R	.r; t / D r	.r; t /.
iii) In the momentum representation, the state of the particle is represented by the Fourier transform

O	.p; t / D .2 „/�3=2
Z

d3r e�
i
„

p�r	.r; t /

of the position space wave function 	.r; t /. The probability density of finding the particle at a
certain time t inside an infinitesimal volume d3p around a momentum p is equal to

ˇ̌
O	.p; t /

ˇ̌2.
The particle’s position and momentum operator in the momentum representation are given by

R D i„rp; P D p:

25Note that in the third equality we have used the fact that the eigenvalue E is real, since H is self-adjoint.
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iv) A classical dynamical variable a.r;p/ is represented by a self-adjoint operator A.R;P/ obtained
from a through the prescription (2.60) with a suitable ordering of the operators involved.

v) If a particle is in a quantum state 	 , the average value of a dynamical variable a represented by
a quantum observable A is given by the expectation value of A in the state  , namely˝

A
˛
	
D .	;A	/:

Note that
˝
A
˛
	

is necessarily real, since A is self-adjoint.
vi) If A does not depend explicitly on time, the time evolution of the average of A is given by

Ehrenfest’s general theorem
i„@t

˝
A
˛
	
D
˝
ŒA;H�

˛
	
:

item.vi vii) If at a certain time the particle is in a state  which is an eigenfunction of an observable A with
eigenvalue �, a measurement of the observable A performed at this time will yield with certainty
the value �.

item.vii viii) If an observable A is measured at a certain time and the value � is obtained, the state of the
particle immediately after the measurement is performed is an eigenstate of A with eigenvalue �.

item.viii ix) The only possible values that can be obtained when an observable A is measured are the eigen-
values of A.
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3 One-dimensional problems

chap.chap3

3.1 The time-independent Schrödinger equation
sec.TISE

From the mathematical point of view, the Schrödinger equation for a particle of massm subject to a time
independent potential V.r/,

i@t	.r; t / D �
„2

2m
r
2	.r; t /C V.r/	.r; t / � H	.r; t /; (3.1) Schreq

is a second-order linear partial differential equation whose general solution can be formally obtained by
the method of separation of variables. Indeed, since the potential V is time-independent, we look for
solutions of the latter equation of the form

	.r; t / D �.t/ .r/:

Substituting into Eq. (3.1) and dividing by 	 we arrive at the equation

i„
� 0.t/

�.t/
D
H .r/
 .r/

(3.2) sepeq

in the nonempty open set defined by the inequalities

�.t/ ¤ 0;  .r/ ¤ 0:

Since the LHS of Eq. (3.2) depends only on t and the RHS is a function of r, both sides of the latter
equation must be constant. Thus there exists a number E (the so-called separation constant) such that

i„� 0.t/ D E�.t/ ; H .r/ D E .r/:

The general solution of the first equation is

�.t/ D ce�
i
„
Et ;

where c D �.0/ is an arbitrary constant that can be absorbed in  .r/. We thus have shown that the
function

	.r; t / D e�
i
„
Et .r/ (3.3) Psipsi

is a solution of the time-dependent Schrödinger equation (3.1) provided that the function  .r/ is a solu-
tion of the second-order partial differential equation

H .r/ � �
„2

2m
r
2 .r/C V.r/ .r/ D E .r/: (3.4) TISchreq

Moreover, since ˇ̌
	.r; t /

ˇ̌
D
ˇ̌
 .r/

ˇ̌
;

we must have 	.t/ D   D 1I
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in other words, the function  .r/ must be in L2.R3/ and have unit norm. Thus equation (3.4), which is
known as the time-independent Schrödinger equation, simply states that the function  .r/ is an eigen-
function of the Hamiltonian operator H with eigenvalue E. This implies that the separation constant E
must be real, since it is an eigenvalue of the self-adjoint operator H . As to the physical significance of
this constant, note that for any time t the wave function 	.r; t / is also an eigenfunction ofH with eigen-
value E. In other words, 	.r; t / is a stationary state (cf. Section (2.9)). From item vii) in Section 2.11
it then follows that:

In a stationary state (3.3), where  is an eigenfunction of H with eigenvalue E, the particle has a
well-defined and constant energy E.

As we shall see in more detail below, for a generic value of the parameter E 2 R the time-independent
equation (3.4) has no normalizable solutions. Indeed, in general the set of energies E for which Eq. (3.4)
has normalizable solutions is a discrete1 set. This set is called the point spectrum2 of the Hamiltonian
H . By item ix) in Section 2.11, the elements of the point spectrum of H are the possible values of
the particle’s energy. Thus the set of allowed energies is necessarily a discrete set. This observation
provides a simple and clear explanation of the quantization of energy, which Bohr’s old quantum theory
was unable to account for:

In quantum mechanics the quantization of energy need not be imposed (as in Bohr’s old quantum the-
ory), but is an automatic consequence of the discrete character of the point spectrum of the Hamiltonian
operator H .

A fundamental property of the eigenfunctions of any self-adjoint operator that we shall often use in
the sequel is the following:

Two eigenfunctions  1;2 of a self-adjoint operator A with different eigenvalues �1 ¤ �2 are orthogo-
nal.

Proof. Indeed,

. 1; A 2/ D . 1; �2 2/ D �2. 1;  2/ D .A 1 2/ D .�1 1 2/ D �1. 1;  2/

H) .�2 � �1/. 1;  2/ D 0 H) . 1;  2/ D 0: �

In particular, two eigenfunctions of H with different energies must be orthogonal. Let us now assume
that, as is the case in many problems of physical interest, there is an orthonormal basis

f n W n 2 Ng (3.5) orthnbasis

of the Hilbert space L2.R3/ whose elements are eigenfunctions of the Hamiltonian operatorH . In other
words, the functions  n satisfy3

H n D En n; . n;  m/ D ınm;

and each function  .r/ in L2.R3/ admits an expansion

 .r/ D
1X
nD1

cn n.r/: (3.6) psipsin

1A subset S of the real line is discrete if all of its points are isolated, i.e., if for every point x in the set there is a
neighborhood U of x such that U \ S D fxg. Equivalently, S is discrete if it does not contain its accumulation points. It can
be shown that discrete subsets of R are either finite or countably infinite.

2The term discrete spectrum is used sometimes as a synonym, but we shall avoid it in these notes since some authors give
it a slightly different meaning.

3Note that we are not assuming that En ¤ Em for n ¤ m.
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The coefficients ck 2 C can be computed by taking the scalar product of the previous equation with the
eigenfunction  k:

ck D . k;  / �

Z
d3r  �k .r/ .r/; (3.7) ckexpeigf

and they must verify the condition (usually called Parseval’s relation)

k k2 D . ;  / D

 
1X
nD0

cn n;

1X
mD0

cm m

!
D

1X
n:mD0

c�ncm. n;  m/ D

1X
n:mD0

c�ncmınm

D

1X
nD1

ˇ̌
cn
ˇ̌2
D 1: (3.8) cnnorm

Remark. If the point spectrum of H is non-degenerate, i.e., if Em ¤ En for m ¤ n, we shall show in
the next chapter that the probability pk of obtaining the value Ek when measuring the particle’s energy
in the state  is given by

pk D
ˇ̌
ck
ˇ̌2
D
ˇ̌
. k;  /

ˇ̌2
: �

When there exists an orthonormal basis f n W n 2 Ng of L2.R3/ whose elements are eigenfunctions
of the Hamiltonian H , we can find the solution of the time dependent Schrödinger equation (3.1) with
an arbitrary initial condition

	.r; 0/ D  .r/ D
1X
nD1

cn n.r/ (3.9) inidat

as follows. As we have remarked above, each function

	n.r; t / D  n.r/e�
i
„
Ent (3.10) Psinpsin

is a solution of Eq. (3.1). By linearity, so is the infinite sum

	.r; t / D
1X
nD1

cn n.r/e�
i
„
Ent : (3.11) gensolSchr

Since 	.r; 0/ D  .r/ by Eq. (3.9), we conclude that (3.11) is the unique solution of the initial value
problem (3.1)-(3.9). In other words:

The function 	.r; t / in Eq. (3.11) with coefficients cn 2 C satisfying Eq. (3.8) is the general solution
of the Schrödinger equation (3.1).

Remark. The previous result can be also proved in a more abstract way as follows. As we saw in the
previous chapter, the solution of (3.1) with the initial condition (3.9) is given by Eq. (2.16). Using the
expansion (3.6) of  .r/ in terms of the eigenfunctions  n of H and the identity

e�
i
„
tH n D e�

i
„
tEn n

we easily obtain

	.r; t / D e�
i
„
tH
1X
nD1

cn n D

1X
nD1

cne�
i
„
tH n D

1X
nD1

cne�
i
„
Ent n;

71 © Artemio González López



ONE-DIMENSIONAL PROBLEMS

3.2 Stationary states. Bound and scattering states
sec.statstat

Recall that a stationary state is an eigenstate 	.r; t / of the HamiltonianH . From the eigenvalue equation

H	 D E	

and the time independent equation (3.1) we obtain

i„@t	 D E	 H) 	.r; t / D e�
i
„
Et .r/; with H D E and  .r/ � 	.r; 0/:

(3.12) statstat2

Thus the only stationary states are the separable solutions of the time-dependent Schrödinger equation
found in the previous section. Let us briefly summarize the main properties of the stationary states (3.3):

1. The stationary state (3.12) has a well-defined and constant energy E.
2. Two eigenfunctions  1;2 of H with different energies E1 ¤ E2 must necessarily be orthogonal.

3. The probability density
ˇ̌
	.r; t /

ˇ̌2 associated to a stationary state is time-independent:ˇ̌
	.r; t /

ˇ̌2
D
ˇ̌
 .r/

ˇ̌2
; 8t 2 R:

4. In fact, since for each fixed time t the factor e�
i
„
Et is a global (i.e., position independent) phase,

	.r; t1/ and 	.r; t2/ actually describe the same quantum state. In other words, in a stationary state
the state of the particle does not change in time. This is, in fact, the reason for the terminology
“stationary state”.

5. An immediate consequence of this fact is that in a stationary state the averages of all observables
not explicitly depending on time must be constant (i.e., time-independent). We had already proved
this property of stationary states in Section 2.9 using Ehrenfest’s general formula (2.25), but it can
also be established directly as follows:˝

A
˛
	
D

�
e�

i
„
Et ;A.e�

i
„
Et /

�
D e

i
„
Ete�

i
„
Et . ;A / D . ;A / �

˝
A
˛
 
:

6. As we saw in the previous section, when the Hilbert space L2.R3/ admits an orthonormal basis
of eigenstates  n of the Hamiltonian H the general solution of the time-dependent Schrödinger
equation (3.1) can be expanded in terms of the corresponding stationary states (3.10) as

	.r; t / D
1X
nD0

cn	n.r; t / �
1X
nD0

cne�
i
„
Ent n.r/; (3.13) eigfexp

for appropriate (in general complex) constants cn satisfying Eq. (3.8). Note that, although each state
	n is stationary and has a well-defined energy, it is clear that 	.r; t / will neither be a stationary
state nor have well-defined energy unless all the nonzero coefficients cn in the latter expansion
correspond to states 	n having the same energy. On the other hand, the probability pk.t/ of finding
the value Ek when measuring the particle’s energy at a time t ,

pk.t/ D
ˇ̌�
 k; 	.�; t //

ˇ̌2
D

ˇ̌̌̌
cne�

i
„
Ent

ˇ̌̌̌2
D jckj

2;

is time-independent.
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Example 3.1. Consider, for instance, a linear combination of two stationary states 	1;2 with different
energies E1 ¤ E2, i.e.,

	.r; t / D c1e�
i
„
E1t 1.r/C c2e�

i
„
E2t 2.r/;

with
H i D Ei i ; i D 1; 2:

Since E1 ¤ E2 implies . 1;  2/ D 0, if the states  1;2 are normalized then 	 will have unit norm
provided that

.	; 	/ D jc1j
2
C jc2j

2
D 1:

The probability density of the state 	 isˇ̌
	
ˇ̌2
D

�
c�1 e

i
„
E1t �1 C c

�
2 e

i
„
E2t 2

� �
c1e�

i
„
E1t 1 C c2e�

i
„
E2t 2

�
D jc1j

2
ˇ̌
 1
ˇ̌2
C jc2j

2
ˇ̌
 2
ˇ̌2
C c�1 c2e

i
„
.E1�E2/t �1 2 C c1c

�
2 e�

i
„
.E1�E2/t 1 

�
2

D jc1j
2
ˇ̌
 1
ˇ̌2
C jc2j

2
ˇ̌
 2
ˇ̌2
C 2Re

�
c�1 c2e

i
„
.E1�E2/t �1 2

�
:

The latter term is clearly oscillating in time with the Bohr frequency

!12 D
jE1 �E2j

„
I

indeed,

Re
�
c�1 c2e

i
„
.E1�E2/t �1 2

�
D Re

�
c�1 c2 

�
1 2

�
cos.!12t /C Im

�
c�1 c2 

�
1 2

�
sin.!12t /;

where we have assumed that E1 < E2. For instance, if the coefficients c1;2 and the wave functions
 1;2.r/ are real, the probability densityˇ̌

	.r; t /
ˇ̌2
D c21 1.r/

2
C c22 2.r/

2
C 2c1c2 1.r/ 2.r/ cos.!12t /

oscillates at a fixed point r between the two extreme values

�˙.r/ D
�
c1 1.r/˙ c2 2.r/

�2
with frequency !12. The same is true for the average value of any observable not explicitly depending
on time. For instance, the average value of the position r in the state 	 (assuming, again, that c12 and
 1;2 are real) is given by

˝
R
˛
	
D

Z
d3r r

ˇ̌
	.r; t /

ˇ̌2
D c21

˝
R
˛
 1
C c22

˝
R
˛
 2
C 2c1c2

�
 1; r 2

�
cos.!12t /:

The stationary states we have considered so far, which are genuine (i.e., square integrable) eigenfunc-
tions of the Hamiltonian, are called bound states. The reason is that, since

ˇ̌
	
ˇ̌2
D
ˇ̌
 
ˇ̌2 is integrable,ˇ̌

 
ˇ̌

must decay sufficiently fast at infinity4. Hence the probability of finding the particle at infinity (or,
more precisely, far away from a given finite point in space) is vanishingly small. Quantum bound states
thus roughly correspond to classical bounded orbits. It is also of practical interest, however, to consider
generalized stationary states (3.12) which are only formal eigenfunctions (i.e., bounded but not square
integrable) of the Hamiltonian. For example, if H D P2

2m
, then the plane waves (normalized according

4See footnote 18 on Chapter 2.
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to Eq. (2.40))

	p.r; t / WD  p.r/e�
i
„
E.p/t

D .2 „/�3=2e
i
„
.p�r�E.p/t/; with E.p/ D

p2

2m
; (3.14) Psirt

are generalized stationary states of H satisfying the equations

i„@t	p D H	p D E.p/	p:

Generalized stationary states of this type (i.e., bounded but not square integrable) are called scattering
states. The reason for this terminology is that, since scattering states are not normalizable, there is
a nonvanishing probability for the particle to be at infinity. Therefore these stationary states are the
quantum analogues of classical unbounded motion, in which a particle comes from infinity, is scattered
by the potential, and returns to infinity.

Although strictly speaking scattering states are not physical states (as they are not normalizable), one
can construct out of them wave packets that are square integrable and thus represent genuine physical
states. For example, the function

	.r; t / D
Z

d3p c.p/	p.r; t / (3.15) gensolfreeSE

is a solution of the free Schrödinger equation

i„@t	 D
P2

2m
	;

since it is a linear combination5 of solutions 	p.r; t / and the equation is obviously linear. As we saw
in Section 2.7, the norm of this wave packet is equal to that of the function c.p/, which represents the
particle’s probability amplitude in momentum space at t D 0. This can be easily verified noting that

.	p; 	p0/ D
�

e�
i
„
E.p0/t p; e�

i
„
E.p/t p0

�
D e

i
„
.E.p/�E.p0//t . p;  p0/ D e

i
„
.E.p/�E.p0//tı.p � p0/

D ı.p � p0/;

and therefore	2 D �Z d3p c.p/	p;

Z
d3p0 c.p0/	p0

�
D

Z
d3p d3p0 c�.p/c.p0/

�
	p; 	p0

�
D

Z
d3p d3p0 c�.p/c.p0/ı.p � p0/ D

Z
d3p

ˇ̌
c.p/

ˇ̌2
D
c2:

Equation (3.15) provides a representation of the general solution of the time-dependent Schrödinger
equation with zero potential akin to Eq. (3.13) when the Hamiltonian possesses an orthonormal basis of
eigenfunctions f n W n 2 Ng. Indeed, as remarked above in this case 	.r; t / in Eq. (3.15) is a solution
of the free Schrödinger equation, and verifies any given initial condition 	.r; 0/ D  .r/ provided that
c.p/ D O .p/:

	.r; 0/ D
Z

d3p c.p/ p.r/ D .2 „/�3=2
Z

d3p c.p/e
i
„

p�r
D .2 „/�3=2

Z
d3p O .p/e

i
„

p�r
D  .r/

(3.16) psiexpplwav

(cf. Eqs. (2.30)-(2.32)). Formally, the free particle Hamiltonian H D P2
2m

has a continuous spectrum of
nonnegative “eigenvalues” —the energies E.p/— with (3.14) as formal (bounded but not normalizable)
eigenfunctions. Note the similarities between the spatial part of the formal eigenfunctions, i.e., the func-
tions  p.r/, labeled by the continuous index p, and the eigenfunctions  n.r/ in Eqs. (3.6)-(3.7). Indeed,
the expansion (3.16) of an arbitrary square integrable wave function in terms of the eigenfunctions  p.r/
of the free Hamiltonian P2

2m
can be regarded as the continuous analogue of the series (3.13).

5Strictly speaking, in mathematics by a “linear combination” it is always understood a finite sum of certain functions (or
vectors, in a general vector space) multiplied by appropriate scalar coefficients (complex numbers, in our case). However, in
the physics terminology this requirement is usually relaxed, and infinite sums or even integrals —as in Eq. (3.15)— are allowed
in linear combinations.
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3.3 One-dimensional problems
sec.1D

In the rest of this chapter we shall focus on studying in some detail the time-independent Schrödinger
equation in one dimension, namely

H .x/ � �
„2

2m
 00.x/C V.x/ .x/ D E .x/; (3.17) Schr1D

or equivalently

 00.x/C
�
" � v.x/

�
 .x/ D 0; (3.18) Schr1Dred

with

v.x/ D
2m

„2
V.x/; " D

2mE

„2
: (3.19) vvep

Note that in one dimension the wave function  .x/ has dimensions of L�1=2 (indeed, j .x/j2 dx is a
probability, which is dimensionless), and v and " have dimensions of L�2 (why?). For the time being,
we shall suppose that the potential V.x/, and hence v.x/, is a piecewise continuous6 function. By the
standard uniqueness and existence theorems for linear homogeneous second-order ordinary differential
equations (ODEs), this guarantees that for every real E equation (3.19) has two linearly independent
(piecewise C 2) solutions  1;2.x/. These solutions can be taken as real, since E and v.x/ are both real.
The general solution of Eq. (3.19) is a linear combination of the two linearly independent solutions  1;2
with arbitrary complex coefficients:

 .x/ D c1 1.x/C c2 2.x/; c1;2 2 C:

Note that, although the coefficient function " � v.x/ in the Schrödinger equation (3.18) is real, it is
essential to allow  to be complex-valued so as not to destroy the interference effects characteristic of
quantum mechanics.

In order that a certain energy E belong to the point spectrum of the Hamiltonian H , equation (3.17)
must admit at least one linearly independent square integrable solution  .x/, which in particular must
satisfy the boundary conditions7 at˙1

lim
jxj!1

 .x/ D 0:

In most practical problems the latter condition does in fact imply the square integrability of  . Simi-
larly, for E to belong to the continuous spectrum of H equation (3.17) must admit at least one linearly
independent solution bounded at infinity but not square integrable, i.e., satisfyingZ ˇ̌

 .x/
ˇ̌2 dx D1;

ˇ̌
 .x/

ˇ̌
bounded as jxj ! 1:

In practice, the first of the latter two conditions can be replaced by either

lim
x!1

 .x/ ¤ 0

or
lim

x!�1
 .x/ ¤ 0

(or both).

6A function defined on the real line is called piecewise continuous if it has a finite number of jump discontinuities, and
piecewise C r if it is piecewise continuous and of class C r in any open interval not containing any discontinuities.

7See footnote 18 on Chapter 2.
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Definition 3.2. The spectrum �.H/ of a Hamiltonian H is the union of its point and its continuous
spectrum, respectively denoted by �p.H/ and �c.H/.

Thus the spectrum of H is made up of all real numbers E such that the time-independent Schrödinger
equation (3.17) has at least one linearly independent solution which is (at least) bounded at˙1.

Remark. Although it is not obvious from the definition, it can be shown that the point and the continuous
spectrum of a self-adjoint operator H are disjoint sets, i.e.,

�p.H/ \ �c.H/ D ;: �

Before dealing with specific examples, we shall briefly discuss the continuity requirements on the
wave function  .x/ (a solution of the time-independent Schrödinger equation) and its first derivative.
Clearly,  and  0 must be continuous in regions on which the potential V.x/ is continuous (indeed, in
these regions  is of class C 2 by the standard existence and uniqueness theorems for linear ODEs).

1) If the potential V is piecewise continuous, both the wave function and its derivative must be con-
tinuous at points of discontinuity of V .

Proof. Indeed, since the potential (and hence the function v.x/) is piecewise continuous, it has at most
a finite number of jump discontinuities. If v.x/ has a jump discontinuity at a point x0, clearly the wave
function  can have at most a jump discontinuity at this point (since to the right and to the left of x0 we
can apply the existence and uniqueness theorem for linear second-order ODEs). Restricting ourselves
to an open interval around x0 not containing any discontinuities of V.x/ other than x0 we can represent
 .x/ as

 .x/ D  C.x/�.x � x0/C  �.x/�.x0 � x/;

where

�.s/ D

(
0; s < 0

1; s > 0

is Heaviside’s step function8, and  ˙.x/ are smooth (C 2) functions equal to the restrictions of the wave
function to the regions x > x0 (in the case of  C) or x < x0 (for  �). Differentiating with respect to x
we obtain

 0.x/ D  C.x/
0�.x � x0/C  �.x/

0�.x0 � x/C  C.x/ı.x � x0/ �  �.x/ı.x0 � x/

D  C.x/
0�.x � x0/C  �.x/

0�.x0 � x/C
�
 C.x/ �  �.x/

�
ı.x � x0/

D  C.x/
0�.x � x0/C  �.x/

0�.x0 � x/C
�
 C.x0/ �  �.x0/

�
ı.x � x0/;

where we have used the identities ı.s/ D ı.�s/ and

� 0.s/ D ı.s/

(see next exercise). Differentiating again we obtain

 00.x/ D  C.x/
00�.x � x0/C  �.x/

00�.x0 � x/C
�
 0C.x0/ �  

0
�.x0/

�
ı.x � x0/

C

�
 C.x0/ �  �.x0/

�
ı0.x � x0/ D

�
" � v.x/

�
 .x/:

Since the RHS has at most a jump discontinuity at x0, the coefficients of the singular terms ı.x � x0/
and ı0.x � x0/ in the LHS must vanish, i.e.,

 C.x0/ �  �.x0/ D  
0
C.x0/ �  

0
�.x0/ D 0;

which establishes the continuity of  and  0 at x0. �
8Although the value of �.s/ at s D 0 is immaterial. it is usually defined as 1=2.
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Remark. An important consequence of the previous result is that if the potential is piecewise continuous,
both the probability density and the probability current are continuous.

Exercise 3.1. Show that � 0.s/ D ı.s/.

Proof. We must show that Z 1
�1

ds �.s/ı0.s/ D
Z 1
�1

ds �.s/ı.s/

for all test functions �.s/. The right-hand side evaluates to �.0/. As to the left-hand side, integrating
by parts we obtainZ 1
�1

ds �.s/� 0.s/ D �.s/�.s/
ˇ̌̌1
�1
�

Z 1
�1

ds �0.s/�.s/ D �
Z 1
0

ds �0.s/ D ��.1/C�.0/ D �.0/;

as was to be proved. �

2) If the potential V is infinite on the half line .�1; x0� or Œx0;1/, the wave function must vanish on
this half line.

Proof. Suppose, for instance, that V.x/ D C1 for x 6 x0. To investigate the behavior of the wave
function at x0, we shall instead take V.x/ D V0 for x 6 x0 and then let V0 tend to infinity. Since the
boundary condition at x0 is only going to be affected by the behavior of the potential in an arbitrarily
small neighborhood of x0, we can further assume that V.x/ is constant for x0 < x < x0C ı with ı > 0.
This constant can be taken equal to zero without loss of generality (it can be absorbed in V0 and ").
It is also clear that the value of x0 is immaterial for the result (indeed, if  .x/ solves the Schrödinger
equation for V.x/ then  .x � x0/ solves the Schrödinger equation for V.x � x0/), so we shall take
x0 D 0. We thus have to solve the differential equation

 00.x/ D

(
.v0 � "/ .x/; x 6 0
�" .x/; 0 6 x < ı;

(3.20) deinfV

where we have set v0 D 2mV0=„
2. Since v0 is eventually going to tend to infinity, we can assume that

v0 > ". Although this is not essential, we shall also take " > 0 (the cases " D 0 and " < 0 are dealt with
similarly). Calling

� D
p
v0 � ";

the solution  .x/ of the differential equation (3.20) is

 .x/ D

(
ae�x C be��x; x 6 0;
c sin.

p
" x/C d cos.

p
" x/; 0 6 x < ı;

where a; b; c; d are complex constants. Since the wave function (both for the point and the continuous
spectrum) must be bounded at x D �1, the constant b must vanish. Imposing the continuity of  and
 0 at x0 (which is necessary, since V is piecewise continuous) we obtain the equalities

a D d; �a D
p
" c:

We thus have

 .x/ D

8<:
c
p
"

�
e�x; x 6 0;

c
�

sin.
p
" x/C

p
"
�

cos.
p
" x/

�
; 0 < x < ı:
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Since �!1 as v0 !1 with " fixed, in this limit we obtain

 .x/ D

(
0; x 6 0;
c sin.

p
" x/; 0 6 x < ı:

which vanishes for x 6 0 as claimed. Note, however, that in this case  0 has a jump discontinuity at
x D 0, since

lim
x!0�

 0.x/ D 0; lim
x!0C

 0.x/ D c
p
" ¤ 0: �

The following two general results shall also be useful in the sequel:

3) The eigenfunctions (genuine or formal) of a one-dimensional Hamiltonian H can be taken as real
valued without loss of generality.

Proof. Indeed, if  is a solution of the one-dimensional Schrödinger equation (3.1) so is its complex
conjugate  �. By linearity, the linear combinations

Re D
1

2
. C  �/; Im D

1

2i
. �  �/

are both real solutions of the Schrödinger equation. Moreover,  is square integrable or bounded if and
only if Re and Im are square integrable or bounded. �

4) If  is an eigenfunction of H with eigenvalue E (belonging either to the point or the continuous
spectrum), then

E > minV.x/:

Moreover, if  is a genuine eigenfunction (i.e, if E belongs to the point spectrum), then

E > minV.x/:

page.EgeVmin

Proof. Indeed, suppose that  is a (genuine or formal) eigenfunction of H with eigenvalue E satisfying

E < minV.x/:

Then  is a solution of the Schrödinger equation

 00.x/ D
�
v.x/ � "

�
 .x/;

where by hypothesis
v.x/ � " > 0

for all x. By the third result at the end of the last section, we can assume without loss of generality that
 .x/ is real. Setting

�.x/ D j .x/j2 D  .x/2

we then have

�0.x/ D 2 .x/ 0.x/;

�00.x/ D 2
�
 .x/ 00.x/C  0.x/2

�
D 2

�
 0.x/2 C .v.x/ � "/ .x/2

�
> 0:

Moreover, since v.x/ � " > 0 by hypothesis, �00.x0/ D 0 if and only if  .x0/ D  0.x0/ D 0, which
implies that  .x/ is identically zero by the existence and uniqueness theorem for linear second-order
ODEs. Hence �00.x/ > 0 for all x, which integrated twice leads to

�.x/ > �.x0/C �
0.x0/.x � x0/ 8x: (3.21) rhopp
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We can choose x0 such that �0.x0/ ¤ 0, since otherwise �0.x/ D 0 for all x would imply that �00.x/ D 0
for all x, which as seen above is only possible if  vanishes identically. From Eq. (3.21) it then follows
that � D

ˇ̌
 
ˇ̌2 is unbounded at˙1, so that  cannot be a (genuine or formal) eigenfunction.

Suppose next that  is a genuine eigenfunction, and thus is square integrable. We then have

. ;H / D E. ; / D
1

2m
. ;P 2 /C . ; V .x/ / D

1

2m

P 2 C . ; V .x/ /
H)

1

2m

P 2 D Z dx
�
E � V.x//

ˇ̌
 .x/

ˇ̌2
:

Since P has no genuine eigenfunctions
P  ¤ 0, and thereforeZ

dx
�
E � V.x//

ˇ̌
 .x/

ˇ̌2
> 0:

This implies that E > minV.x/, since otherwise

E 6 minV.x/ H)

Z
dx
�
E � V.x//

ˇ̌
 .x/

ˇ̌2 6 0: �

Remark. The fact that E > minV.x/ for a bound state energy E is essentially a consequence of the
uncertainty principle. Indeed, if E D minV.x/ D V.x0/ then classically x D x0 is an equilibrium
solution, and therefore p D 0. Quantum mechanically, if the particle’s position has an uncertainty �x
then the uncertainty �p in the momentum must be at least „=.2�x/, and thus the particle’s energy is at
least

�p2

2m
C V.x0/ > V.x0/ � minV.x/:

3.4 Potential wells and barriers
sec.pot

3.4.1 The infinite well
subsec.IW

In this case the potential is

V.x/ D

(
1; x 2 .�1; 0� [ ŒL;1/

0; x 2 .0; L/:

Classically, this potential describes the motion inside the interval Œ0; L� of a particle subject to no forces,
the endpoints 0;L being two impenetrable barriers. Thus the particle’s energy is non-negative, and the
two endpoints 0;L are turning points for any energy E > 0. Moreover, since the energy of the particle is
equal to p2=.2m/ D mv2=2, the absolute value of the particle’s velocity must be constant. Hence when
the particle hits the endpoints of the interval Œ0; L� its velocity is instantly reversed.

Let us next analyze the corresponding quantum problem. By the second framed result in the previ-
ous section, the wave function must vanish on the intervals .�1; 0/ and .L;1/, and must satisfy the
Schrödinger equation

 00.x/C " .x/ D 0; 0 < x < L; (3.22) infwell

inside the interval .0; L/ with the boundary conditions

 .0/ D  .L/ D 0: (3.23) infwellbc

Equations (3.22)-(3.23) are a very simple instance of what in mathematics is known as a Sturm–Liouville
problem. The type of solutions of Eq. (3.22) depends on the sign of the eigenvalue

" �
2mE

„2
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(cf. Eq. (3.19)). Indeed, the general solution of this equation is

 .x/ D

8̂<̂
:
a cos.

p
" x/C b sin.

p
" x/; " > 0

aC bx; " D 0

a cosh.
p
�" x/C b sinh.

p
�" x/; " < 0:

As in the classical case, the energy (i.e., the eigenvalue ") cannot be negative. Indeed, imposing the
boundary conditions (3.23) to the solution with negative " we obtain

a D 0; b sinh.
p
�"L/ H) b D 0;

and thus  D 0. Although the energy can be zero classically, the same is not true in the quantum case.
Indeed, imposing again the boundary conditions to the solution for " D 0 we obtain

a D 0; bL D 0 H) b D 0 H)  D 0:

Thus in this case the eigenvalues of H are positive, in agreement with the framed statement 4) on p. 78.
Let us next turn to the positive energy solutions. Imposing the boundary conditions at x D 0;L we

now obtain
a D 0; b sin.

p
"L/ D 0 H) sin.

p
"L/ D 0

and thus9
p
"L D n ; n 2 N:

or

E D
„2"

2m
D
n2 2„2

2mL2
� En; n D 1; 2; : : : : (3.24) infwellen

Thus the energy is quantized, since it can only take the discrete set of values fE1; E2; : : : g. The corre-
sponding eigenfunctions inside the interval Œ0; L� are

 n.x/ D b sin.
p
"n x/ D b sin

�n x
L

�
; 0 6 x 6 L;

where the constant b (which can be taken as real and positive without loss of generality) is determined
by normalization:Z 1

�1

dx
ˇ̌
 n.x/

ˇ̌2
D b2

Z L

0

sin2
�n x
L

�
dx D

b2

2

Z L

0

�
1 � cos

�
2n x

L

��
dx D

Lb2

2
D 1

H) b D

r
2

L
:

Hence

 n.x/ D

r
2

L
sin
�n x
L

�
; 0 6 x 6 L: (3.25) infwelleigf

Remarks.

� Since the functions (3.25) are square integrable they are genuine eigenfunctions, and hence all the
quantized energies En belong to the point spectrum. In particular, in this case there is no continuous
spectrum. This is not surprising, since in the classical case the motion is bounded for any (nonnegative)
energy.

9Note that the integer n must be positive, since
p
" is positive.
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3.4 Potential wells and barriers

� All of the energy levels are non-degenerate. As we shall see in Section (3.5), this is actually a general
property of the bound-state energies of all one-dimensional potentials.

� The n-th eigenfunction  n has exactly n � 1 zeros in the interval .0; L/. Indeed:

 n.x/ D 0 () n
 x

L
D m  .m 2 Z/ H) x D

m

n
L with m D 1; : : : ; n � 1;

where the restriction on m comes from requiring that x 2 .0; L/. In particular, the ground state wave
function ha no zeros in the interval .0; L/. We shall see that this is a general property of all one-
dimensional potentials (replacing .0; L/ by the open interval in which the potential is finite). In other
words, if we label the energies in the point spectrum of a one-dimensional potential V.x/ in increasing
order as

E1 < E2 < � � � < En < � � � ;

then the eigenfunction  n with eigenvalue En has exactly n � 1 zeros.

� In this case the physical wave functions are functions of class C 1 on the interval Œ0; L� vanishing at
the endpoints x D 0;L. (Note that continuity on Œ0; L� automatically implies square integrability.) By
Dirichlet’s theorem, any such function  .x/ can be expanded in a Fourier sine series

 .x/ D

1X
kD1

ak sin
�
k x

L

�
;

with

ak D
2

L

Z L

0

sin
�
k x

L

�
 .x/ dx:

The latter equations are nothing but Eqs. (3.6)-(3.7), with  k given by Eq. (3.25) and ck D
p
L=2 ak .

In fact, it can be shown that the eigenfunctions  k in Eq. (3.25) make up an orthonormal basis of
L2.Œ0; L�/ (this is essentially a consequence of the Stone–Weierstrass theorem in functional analysis).
It can be proved (using the spectral theorem for self-adjoint operators in functional analysis) that this
is actually a general property of potentials having only point spectrum.

� When the quantum number n is very large the eigenfunction  n is wildly oscillatory, as is the corre-
sponding probability density �n.x/ D  n.x/2. In this case we can effectively replace �n.x/ at a point
x 2 .0; L/ by its average over an interval centered at x of length equal to one period L=n of �n:

�n.x/ �!
n

L

2

L

Z xC L
2n

x� L
2n

sin2
�n s
L

�
ds D

n

L2

Z xC L
2n

x� L
2n

�
1 � cos

�
2n s

L

��
ds D

1

L
:

In other words, as n!1 the probability density becomes approximately uniform, as in the classical
case. This is yet another example of Bohr’s correspondence principle.

3.4.2 The square well potential: bound states

Consider now the square well potential

V.x/ D

(
�V0; jxj < L=2

0; jxj > L=2;
(3.26) sqwell

where V0 > 0 is the “depth” of the well (cf. Fig. 3.1). Since the potential is an even function of x, if
 .x/ is an eigenfunction so are  .�x/ and (by linearity) the two linear combinations

 e.x/ D
1

2
. .x/C  .�x// ;  o.x/ D

1

2
. .x/ �  .�x// ;
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which are respectively even and odd functions of x. Thus without loss of generality we can look for
eigenfunctions of a definite parity (i.e., even or odd). This argument is obviously valid for any even
potential V.x/.

From the fourth result at the end of the last Section, we know that the spectrum of H is contained in
the set Œ�V0;1/, i.e., E > �V0. We shall focus our attention on energies in the range

�V0 6 E < 0;

which in classical mechanics corresponds to bounded motion (see Section 3.4.4 for the case E > 0). In
the interval ŒL=2;1/ we must have

 00.x/ D �" .x/ H)  .x/ D e��x; � WD
p
�" �

p
j"j > 0; (3.27) psiL2inf

where we have discarded the exponentially increasing solution e�x (since it blows up as x ! 1) and
without loss of generality have set the arbitrary constant multiplying the decreasing exponential equal
to one (indeed, we shall normalize the eigenfunctions later on). Since  .x/ is exponentially decreasing
as x ! 1 and is either even or odd, it is also exponentially decreasing as x ! �1, and hence is
normalizable. Thus E belongs to the point spectrum, and therefore (by the third result at the end of the
last section) E > minV.x/ D �V0, or equivalently

" > �
2mV0

„2
� �v0:

Likewise, in the interval Œ0; L=2� we have

 00.x/ D �.v0 C "/ .x/ H)  .x/ D a cos.kx/C b sin.kx/; (3.28) psi0L2

where a and b are complex constants and we have set

k D
p
v0 � j"j > 0:

Since the potential is piecewise continuous, we must impose the continuity of  and  0 at x D L=2,
obtaining the linear system

a cos.kL=2/C b sin.kL=2/ D e��L=2; k
�
� a sin.kL=2/C b cos.kL=2/

�
D ��e��L=2: (3.29) condeo

x

V(x)

−L/2 L/2

−V0

Figure 3.1. Square well potential of depth V0 and width L. The blue lines represent the five bound state
energies in the case V0L2 D 98„2=m, listed in Eq (3.38).fig.sqwell

© Artemio González López 82



3.4 Potential wells and barriers

If  is an even eigenfunction then  .x/ D  .�x/ for x < 0. Thus  is automatically continuous at the
origin, but the continuity of  0 at x D 0 implies that  0.0/ D 0, i.e.,

b D 0:

Thus for even eigenfunctions conditions (3.29) reduce to

a cos.kL=2/ D e��L=2; ka sin.kL=2/ D �e��L=2: (3.30) condeven

Eliminating a we get the eigenvalue equation

k tan.kL=2/ D � ()
p
v0 � j"j tan

�
L

2

p
v0 � j"j

�
D
p
j"j (even eigenfunctions) ;

(3.31) eigveven

which is a transcendental equation for the eigenvalue ". We shall see below that this equation has a finite
number (depending on L and V0) of solutions that we shall denote by10

"0 < "2 � � � < "2n < � � � :

The eigenfunction  2n corresponding to the eigenvalue "2n is the even extension of the function  .x/
in Eqs. (3.28)-(3.27), namely

 2n.x/ D N2n

(
e��2nL=2

cos.k2nL=2/
cos.k2nx/; jxj 6 L=2

e��2njxj; jxj > L=2;
(3.32) psiesqwell

where k2n and �2n are obtained from k and � replacing " by "2n, and N2n > 0 is a constant determined
imposing that

  D 1:

N�22n D

Z 1
�1

dx
ˇ̌
 2n.x/

ˇ̌2
D 2

Z 1
0

dx
ˇ̌
 2n.x/

ˇ̌2
D

2e��2nL

cos2.k2nL=2/

Z L=2

0

cos2.k2nx/ dx C 2
Z 1
L=2

e�2�2nx dx

D e��2nL
 
1C

�22n

k22n

!Z L=2

0

�
1C cos.2k2nx/

�
dx C

e��2nL

�2n

D e��2nL
v0

k22n

�
L

2
C

sin.k2nL/
2k2n

�
C

e��2nL

�2n
:

Noting that

sin.kL/ D 2 tan.kL=2/ cos2.kL=2/ D
2 tan.kL=2/

1C tan2.kL=2/
D

2�=k

1C �2

k2

D
2�k

k2 C �2
D
2�k

v0
;

we finally obtain

N�22n D e��2nL
 
Lv0

2k22n
C
�2n

k22n
C

1

�2n

!
D e��2nL

 
Lv0

2k22n
C
�22n C k

2
2n

�2nk
2
2n

!
D

e��2nLv0
�2nk

2
2n

�
1C

L�2n

2

�
;

and therefore

N2n D

r
�2n

v0
k2ne�2nL=2

�
1C

L�2n

2

��1=2
:

10In this problem it is convenient to number the eigenvalues and eigenfunctions of H starting with 0 instead of 1.
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Similarly, for odd eigenfunctions the appropriate condition ensuring that both and 0 are continuous
at the origin is that  .0/ D 0 (indeed, if  .�x/ D � .x/ and  is continuous at the origin then
automatically  0 is continuous at the origin). Imposing this requirement we obtain a D 0, and therefore
conditions (3.29) now reduces to

b sin.kL=2/ D e��L=2; kb cos.kL=2/ D ��e��L=2;

from which we obtain the eigenvalue equation

k cot.kL=2/ D �� ()
p
v0 � j"j cot

�
L

2

p
v0 � j"j

�
D �

p
j"j (odd eigenfunctions) :

(3.33) eigvodd

Again, we shall show that this equation has a finite number of solutions that we shall denote by

"1 < "3 � � � < "2nC1 < � � � :

The eigenfunction  2nC1 corresponding to the eigenvalue "2nC1 is the odd extension of the function
 .x/ in Eqs. (3.28)-(3.27), namely

 2nC1.x/ D N2nC1

8<: e��2nC1L=2

sin.k2nC1L=2/
sin.k2nC1x/; jxj 6 L=2

e��2nC1jxj sgn x; jxj > L=2;
(3.34) psiosqwell

where k2nC1 and �2nC1 are obtained from k and � replacing " by "2nC1, and N2nC1 > 0 is a constant
determined imposing that

  D 1. Proceeding as before we obtain

N2nC1 D

r
�2nC1

v0
k2nC1e�2nC1L=2

�
1C

L�2nC1

2

��1=2
:

The eigenvalue equations (3.31)-(3.33) can be somewhat simplified noting that

ˇ̌
cos.kL=2/

ˇ̌
D

�
1C tan2.kL=2/

��1=2
D

�
1C

�2

k2

��1=2
D

k

v
1=2
0

; (even eigenfunctions);

ˇ̌
sin.kL=2/

ˇ̌
D

�
1C cot2.kL=2/

��1=2
D

�
1C

�2

k2

��1=2
D

k

v
1=2
0

; (odd eigenfunctions)

Since tan.kL=2/ must be positive (resp. negative) if Eq. (3.31) (resp. (3.33)) is satisfied, Eqs. (3.31)-
(3.33) are equivalent to the following:

k

v
1=2
0

D

(ˇ̌
cos.kL=2/

ˇ̌
; tan.kL=2/ > 0 (even eigenfunctions)ˇ̌

sin.kL=2/
ˇ̌
; tan.kL=2/ < 0 (odd eigenfunctions):

(3.35) eigvssqwell

From the latter equations it immediately follows that the odd eigenvalues are intertwined with the even
ones, i.e., that

"0 < "1 < � � � < "2n < "2nC1 < � � � :

In order to get a better intuitive understanding the eigenvalue equation (3.35), it is convenient to
introduce the dimensionless quantities

� D
kL

2
; u0 D

Lv
1=2
0

2
;
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3.4 Potential wells and barriers

π

2
π

3 π

2
2 π

5 π

2

κ=kL/2

0.2

0.4

0.6

0.8

1.0

Figure 3.2. Eigenvalues of the square well potential (3.26) with u0 D 7 (i.e., V0L2 D 98„2=m). The
red (resp. blue) curve is the graph of the function y D cos � (resp. y D sin �) in the region
tan � > 0 (resp. tan � < 0), while the green line is the straight line y D �=u0 D �=7. The
abscissas of the red (resp. blue) points are the values of �2n with n D 0; 1; 2 (resp. �2nC1
with n D 0; 1).fig.sqweigvs

in terms of which Eq. (3.35) is simply

�

u0
D

(ˇ̌
cos �

ˇ̌
; tan � > 0 (even eigenfunctions)ˇ̌

sin �
ˇ̌
; tan � < 0 (odd eigenfunctions):

(3.36) eigvssqwellred

The physical energies En can be computed from the roots �n of the latter equation taking into account
that

En D �
„2

2m
j"nj D

„2

2m
.�v0 C k

2
n/ D �

2„2

mL2
.u20 � �

2
n/: (3.37) Ensqwell

Note that all of these energies verify the condition �V0 < En < 0, since from Eqs. (3.36) it follows that
0 < �n < u0.

The roots �n of the eigenvalue equation (3.35) are the abscissas of the intersection points of the
straight line y D �=u0 with the curves y D jcos �j (in the regions where tan � > 0, i.e., the inter-
vals

�
m ;  

2
Cm 

�
with m D 0; 1; : : : ) or y D jsin �j (in the regions where tan � < 0, i.e., the intervals�

 
2
Cm ; .mC 1/ 

�
with m D 0; 1; : : : ). For example, for u0 D 7, or equivalently

V0 D
„2v0

2m
D
2„2u20
mL2

D 98
„2

mL2
;

there are exactly five such points, three corresponding to even eigenfunctions and the rest to odd ones
(see Fig. 3.2). Their abscissas can be computed by numerically solving the eigenvalue Eq. (3.36), namely

�0 D 1:37333; �1 D 2:73949; �2 D 4:08863; �3 D 5:40172; �4 D 6:61597;

with corresponding energies (in units of „2=.mL2/)

E0 D �94:228; E1 D �82:9904; E2 D �64:5662; E3 D �39:6429; E4 D �10:458:

(3.38) sqwen7

The associated eigenfunctions, which can be readily computed using the above values of �n and Eqs. (3.32)-
(3.34), are plotted in Fig. 3.3.

In general, it is apparent from Fig. 3.2 that for any value of u0 > 0 there is a finite number of solutions
of the eigenvalue equation (3.36), and that (as stated above) the eigenvalues corresponding to even and
odd eigenfunction alternate. It is also clear from this figure that for u0 sufficiently small there is only
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ψ0

ψ2

ψ4
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2x/L

-1.0

-0.5

0.5

1.0
L /2ψ(x)

Figure 3.3. Even (left) and odd (right) eigenfunctions of the square well potential (3.26) with u0 D 7

(i.e., V0L2 D 98„2=m).fig.sqweigfs

one solution of the eigenvalue equation, until the line y D �=u0 intersects the vertical line � D  =2 at
height y D 1, i.e, for

1 D
 

2u0
() u0 D

 

2
:

Thus, for
0 < u0 6

 

2

the eigenvalue equation has exactly one solution. Likewise, for

 

2
< u0 6  

a second solution of the eigenvalue equation appears, and so on. In general, when

.n � 1/
 

2
< u0 6

n 

2

the eigenvalue equation has exactly n solutions. Thus the number of eigenvalues, i.e., of allowed bound
state energies, is equal to

�
2u0

 

�
�

&�
2m

 2„2

�1=2p
V0L2

'
;

where dxe is the smallest integer greater than or equal to x.

Remarks.

� All the bound state energies are non-degenerate. In other words, for each bound state energy there
is only one linearly independent eigenfunction. As mentioned above, this is a feature shared by all
one-dimensional potentials.

� Each eigenfunction  k has exactly k zeros. Again, according to a standard result in the theory of
Sturm–Liouville problems this happens to be true for all one-dimensional potentials.

Indeed, consider first an even eigenfunction  2n. The zeros of  2n inside the interval Œ0; L=2/ are the
numbers xm D .L=2/�m, with �m 2 Œ0; 1/ satisfying

cos.�2n�m/ D 0 H) �m D .2mC 1/
 

2�2n
; m D 0; 1; : : : ; mmax:
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From Fig. 3.2 it is apparent that11

�2n 2
�
n ; .2nC 1/

 

2

�
;

and thus

�m 2

�
2mC 1

2nC 1
;
2mC 1

2n

�
:

Since � must belong to the interval Œ0; 1/, the maximum value of m is mmax D n � 1. Thus  2n
has exactly n nonzero roots in the interval Œ0; L=2/, and (being an even function) 2n roots in the
interval .�L=2;L=2/. On the other hand,  2n cannot vanish for jxj > L=2, as it is proportional to an
exponential function on this region. It follows that the total number of roots of  2n is 2n, as claimed.

Similarly, if  2nC1 is an odd eigenfunction its zeros on the interval Œ0; L=2/ are the numbers xm D
.L=2/�m, with �m 2 Œ0; 1/ satisfying

sin.�2n�m/ D 0 H) �m D
m 

�2n
; m D 0; 1; : : : ; mmax:

Looking at Fig. (3.2) it is clear that now

�2nC1 2
�
.2nC 1/

 

2
; .nC 1/ 

�
;

and therefore

�m 2

�
m

nC 1
;
2m

2nC 1

�
;

whence it follows that mmax D n. Thus the number of roots of  2nC1 inside the interval Œ0; L=2/
is n C 1. Since  2nC1 is odd, it has exactly 2n C 1 roots in the interval .�L=2;L=2/, which again
proves our claim (since there are no roots in the half lines .�1;�L=2� [ ŒL=2;1/).

� Classically, a particle with energyE 2 Œ�V0; 0/ is not allowed to move outside the interval Œ�L=2;L=2�,
where its kinetic energy would become negative. Quantum mechanically, it is clear from Eqs. (3.32)-
(3.34) that there is a small but non-zero probability that the particle can be found outside the classically
allowed interval Œ�L=2;L=2�. In other words, in quantum mechanics there is a non-vanishing proba-
bility that a particle can penetrate (“tunnel”) into a classically forbidden region. As we shall see in
the sequel, this fact has far reaching consequences. �

Exercise 3.2. Compute the probability pn of finding the particle outside the classically allowed region
Œ�L=2;L=2� when it is in the bound state  n of the square well potential (3.26).

Solution. The probability pn is given by

pn D 2

Z 1
L=2

ˇ̌
 n.x/

ˇ̌2 dx D 2N 2
n

Z 1
L=2

e�2�nx dx D
N 2
n

�n
e��nL D

k2n
v0

�
1C

L�n

2

��1
:

This expression can be simplified by noting that

k2n
v0
D
�2n

u20
; �n D

p
j"nj D

q
v0 � k2n D

2

L

q
u20 � �

2
n;

and therefore

pn D
�2n=u

2
0

1C

q
u20 � �

2
n

: (3.39) probtun

11Note that � D l =2 with l an integer is not a solution of the eigenvalue equation (3.36), since tan.l =2/ is either zero or
˙1.
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This probability clearly increases with �n (i.e., with the particle’s energy), as expected. For example,
in the case u0 D 7 discussed above we have

p0 D 0:00489452; p1 D 0:0205813; p2 D 0:0510581; p3 D 0:10922; p4 D 0:271788:

We thus see that when the particle is in the bound state with highest energy the tunneling probability
is greater than 27% !

In fact, from Eq. (3.39) and Fig. 3.2 it is apparent that pn can be very close to one when u0 is
slightly greater than an integer multiple of  =2 and the quantum number n is the highest possible
(corresponding to the highest bound state energy), since in that case �n . u0. By Eq. (3.37), this is the
case when the highest excited state has an energy . 0. For instance, for

u0 D 2 C 10
�3
' 6:28419

there are 5 bound states, and p4 D 0:993773. In other words, in this case the probability of finding the
particle outside the classically allowed region when it is in the highest energy bound state is greater
than 99%. (The highest excited energy is in this case E4 ' 7:84895 � 10�5 in units of „2=.mL2/, or
less than 10�6 the depth of the potential well.) On the other hand, for

u0 D 2  � 10
�3
' 6:28219

there are 4 bound states and p3 D 0:160854.

3.4.3 Potential step. Reflection and transmission coefficients
sec.potstep

Consider next the potential

V.x/ D V0�.x/ �

(
0; x < 0

V0 x > 0
(3.40) potstep

with V0 > 0, plotted in Fig. 3.4. Classically, the motion is unbounded to the left for 0 < E < V0, and
unbounded in both directions for E > V0. For E D 0 (resp. E D V0) all the points on the negative
(resp. positive) x axis are equilibria. More precisely, for 0 < E < V0 the particle comes from �1 with
constant velocity and is reflected by the potential barrier when it reaches the origin, changing the sign of
its velocity and moving back towards �1. On the other hand, for E > V0 the particle comes from �1
(resp. C1) with constant velocity, which suddenly decreases (resp. increases) as it passes through the
origin, and keeps moving in the same direction.

Let us analyze next the quantum mechanical problem.

0
x

V(x)

V0

Figure 3.4. Potential step of height V0.fig.potstep
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I) E > V0

Consider first the case in which the energy of the particle is greater than V0. For x 6 0 the Schrödinger
equation reads

 00.x/C k21 .x/ D 0; k1 WD
p
" > 0 .x 6 0/;

and thus
 .x/ D a1eik1x C b1e�ik1x; x 6 0;

where a1 and b1 are two complex constants. Similarly, for x > 0 the Schrödinger equation reduces to

 00.x/C k22 .x/ D 0; k2 WD
p
" � v0 > 0 .x > 0/;

and thus
 .x/ D a2eik2x C b2e�ik2x; x > 0;

with a2; b2 2 C. Imposing the continuity of the wave function and its derivative at the origin we arrive
at the system

a1 C b1 D a2 C b2; k1.a1 � b1/ D k2.a2 � b2/:

This is a linear homogeneous system in the four unknowns a1; b1; a2; b2, whose coefficient matrix�
1 1 �1 �1

k1 �k1 �k2 k2

�
has obviously rank 2. Thus the space of solutions of the system is a linear space of dimension 2. In other
words, for each energy E > V0 there are two linearly independent eigenfunctions, which are bounded
but nor normalizable. This shows that the half line .V0;1/ belongs to the continuous spectrum, and that
each energy in this range is twice degenerate.

For each energy E > V0, the corresponding eigenfunctions are not normalizable and thus represent
scattering states. In fact, the two linearly independent solutions for each energy E > V0 can be chosen
to describe either the scattering of the particle coming from the right (C1) or from the left (�1). Let
us study in detail, for instance, the scattering of the particle coming from �1, i.e., moving from left to
right with positive momentum p D „k1. We must then choose the solutions with b2 D 0, so that the
particle moves with momentum p2 D „k2 after going through the origin. In other words, we have

 .x/ D

(
a1eik1x C b1e�ik1x; x 6 0

a2eik2x; x > 0;

where the coefficients a1; a2; b1 verify the linear system

a1 C b1 D a2; k1.a1 � b1/ D k2a2: (3.41) stepcoeff

Although classically the particle only reduces its velocity when it goes past the origin, quantum mechan-
ically there is a certain probability that the particle be reflected by the potential step. This is due to the
presence of the term b1e�ik1x in the wave function for x 6 0, which indeed is (when multiplied by the
time-dependent factor e�

i
„
Et ) a plane wave moving to the left with momentum �„k1. The probability

currents of the incident wave  i D a1eik1x , the transmitted wave  t D a2eik2x and the reflected wave
 r D b1e�ik1x are respectively given by

ji D ja1j
2„k1

m
; jt D ja2j

2„k2

m
; jr D �jb1j

2„k1

m
:

Physically, these currents are respectively proportional to the incoming, transmitted and reflected particle
fluxes, where the minus sign in the expression for jr simply takes into account that the reflected flux is
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moving to the left (negative x direction). Accordingly, the probability that the particle be transmitted or
reflected by the potential step is respectively given by

T D
jt

ji
D
k2

k1

ja2j
2

ja1j2
; R D �

jr

ji
D
jb1j

2

ja1j2
:

These are respectively called the transmission and reflection coefficients, and are easily computed from
equations (3.41). Indeed, we have

b1 D
k1 � k2

k1 C k2
a1; a2 D

2k1

k1 C k2
a1;

and therefore

T D
4k1k2

.k1 C k2/2
; R D

�
k1 � k2

k1 C k2

�2
:

In particular, note that RC T D 1, as it should.

II) 0 < E < V0

The only difference with the previous case is that in the half line x > 0 the solutions of the Schrödinger
equation are linear combinations of real exponentials e˙�x , with

� D
p
v0 � " > 0:

Only the negative exponential is physically acceptable in this region, and hence

 .x/ D .a1 C b1/e��x; x > 0;

where we have imposed the continuity of  at the origin to determine the coefficient in front of the
exponential. Thus in this case there is no transmitted wave. Imposing now the continuity of  0 at the
origin we obtain the relation

ik1.a1 � b1/ D ��.a1 C b1/ () b1 D
�C i k1
��C i k1

a1 D
k1 � i�
k1 C i�

a1:

Setting for simplicity, without loss of generality, a1 D 1 we thus have

 .x/ D

(
eik1x C

k1�i�
k1Ci� e�ik1x; x 6 0

2k1
k1Ci� e��x; x > 0:

(3.42) psixstep

Thus there is a single formal (bounded but not normalizable) eigenfunction for each energy E in the
interval .0; V0/. Hence the latter interval belongs to the continuous spectrum of H , and each of these
energies is non-degenerate. Furthermore, the reflection coefficient is now

R D jb1j
2
D 1:

In other words, in this case the incoming wave is totally reflected by the potential, as in the classical
problem.

Remark. In the region x 6 0 the wave function can be written as

 .x/ D eik1x C e�ik1x�2i'.k1/; x 6 0;
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with

'.k1/ D arg.k1 C i�/ D arctan
�
�

k1

�
D arctan

0B@
q
v0 � k

2
1

k1

1CA :
In other words, there is a phase shift 2'.k1/ between the reflected and the incident waves. This suggests
that before being reflected by the potential at x D 0 the particle spends some time inside the classically
forbidden region x > 0. It can be shown (cf. [CDL20, Complement JI]) that this is indeed the case by
studying the time evolution of a wave packet built out of eigenfunctions of the form (3.42), namely

	.x; t/ D �.�x/

Z pv0
0

dk g.k/
�

eikx
C e�i.kxC2'.k//

�
e�i!.k/t

C �.x/

Z pv0
0

dk
2kg.k/
p
v0

e�
p
v0�k2 x�i'.k/e�i!.k/t ; !.k/ WD

„k2

2m
; (3.43) wpstep

with jg.k/j sharply peaked at a wave vector k0 2 .0;
p
v0 /.

Exercise 3.3. Deduce Eq. (3.43).

Solution. We can more concisely write down Eq. (3.42) for the eigenfunction  .x/ of energy

E D
„2"

2m
D
„2k21
2m

� „!.k1/ < V0

as follows:

 .x/ D �.�x/
�

eik1x C e�i.k1xC2'.k1//
�
C �.x/

2k1g.k1/
p
v0

e�
q
v0�k

2
1 x�i'.k1/;

where we have taken into account that

k1 C i� D jk1 C i�jei'.k1/ D
�
k21 C �

2
�1=2ei'.k1/ D

p
v0 ei'.k1/:

Since  .x/ D 	.x; 0/ is a stationary state of energy E D „!.k1/, its time evolution is given by

	.x; t/ D  .x/e�
i
„
Et
D  .x/e�i!.k1/t

D �.�x/
�

eik1x C e�i.k1xC2'.k1//
�

e�i!.k1/t C �.x/
2k1g.k1/
p
v0

e�
q
v0�k

2
1 x�i'.k1/e�i!.k1/t :

To form a wave packet out of these functions, we multiply by an amplitude g.k1/ and integrate over
k1 from 0 (corresponding to E D 0) to

p
v0 (corresponding to " D v0, i.e., E D V0). In this way

(replacing the dummy integration variable k1 by k) Eq. (3.43) is obtained.

Exercise 3.4. Determine whether E D 0 and E D V0 belong to the spectrum of the Hamiltonian of
the step potential (3.40).

Solution. For E D 0, the Schrödinger equation reads

 00.x/ D

(
0; x < 0

v0; x > 0

The general solution of the Schrödinger equation for negative x is therefore

 .x/ D ax C b; x 6 0;
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with a and b complex constants. However, for  to be bounded as x ! �1 we must take b D 0.
Similarly, for x > 0 the general solution of the Schrödinger equation is

 .x/ D c e�
p
v0 x C d e

p
v0 x; x > 0;

although we must take d D 0 for  to be bounded as x !1 and c D a for  to be continuous at the
origin. In other words, we have

 .x/ D

(
a; x 6 0;
a e�

p
v0 x ; x > 0:

However, requesting that  0 be continuous at the origin we obtain

0 D �
p
v0 a H) a D 0 H)  .x/ D 0 8x 2 R:

Since there are no bounded nonzero solutions of the Schrödinger equation with E D 0, we conclude
that E D 0 does not belong to the spectrum of H .

Likewise, solving the Schrödinger equation with E D V0, i.e.,

 00.x/ D

(
�v0 .x/; x < 0

0; x > 0;

we obtain

 .x/ D

(
a cos.

p
v0 x/C b sin.

p
v0 x/; x 6 0;

cx C d; x > 0:

For  .x/ to be bounded as x ! 1 we must have c D 0, while the continuity of  and  0 at x D 0

leads to the equations
a D d; b

p
v0 D 0 () b D 0:

Thus the only bounded solutions of the Schrödinger equation with E D V0 are the functions

 .x/ D

(
a cos.

p
v0 x/; x 6 0;

a; x > 0

for arbitrary a 2 C. Since  .x/ is bounded but not square integrable, we conclude that E D V0
belongs to the continuous spectrum of H , and is in fact a non-degenerate formal eigenvalue (indeed,
all the solutions found above are proportional to the one with a D 1). Note that in this case we have

 .x/ D
a

2
.ei
p
v0 x C e�i

p
v0 x/;

and hence the reflection and transmission coefficient are

R D 1; T D 0:

However, even if there is no transmitted wave (since T D 0) there is a uniform probability density of
finding the particle to the right of the origin.

3.4.4 Potential barrier. Tunnel effect

Consider, finally, the potential barrier

V.x/ D

(
V0; 0 < x < L;

0; x < 0 or x > L
(3.44) potbar
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0
x

V(x)

V0

L

Figure 3.5. Potential barrier of height V0 and width L.fig.potbar

with V0 > 0, plotted in Fig. 3.5. Classically, the motion is unbounded to the left (x 6 0) or right (x > L)
for 0 < E < V0, and unbounded in both directions for E > V0. For E D 0 all the points in the intervals
.�1; 0� [ ŒL; x� are equilibria, while for E D V0 the segment Œ0; L� is made up of equilibria and the
motion is unbounded to the left (resp. right) if x.0/ < 0 (resp. x.0/ > L). Moreover, for 0 6 E < V0
the interval .0; L/ is classically forbidden.

I) E > V0: resonances
sec.res

Quantum mechanically, when E > V0 the general solution of the Schrödinger equation is given by

 .x/ D

8̂<̂
:
a1eik1x C b1e�ik1x; x 6 0
a2eik2x C b2e�ik2x; 0 6 x 6 L
a3eik1 C b3e�ik1x; x > L;

with
k1 D

p
" > 0; k2 D

p
" � v0 > 0:

There are 6 unknown coefficients ai ; bi (with i D 1; 2; 3) subject to 4 conditions (continuity of both  
and  0 at x D 0;L), so that it is to be expected that there are two linearly independent eigenfunctions for
each energy E > V0. This is indeed the case, since the matching conditions at x D 0;L can be written
as

A � .a1; b1; a2; b2; a3; b3/
T
D 0; (3.45) Apotb

with

A D

0BB@
1 1 �1 �1 0 0

k1 �k1 �k2 k2 0 0

0 0 eik2L e�ik2L �eik1L �e�ik1L

0 0 k2eik2L �k2e�ik2L �k1eik1L k1e�ik1L

1CCA (3.46) coeffspotb

clearly of rank 4. Moreover, for each energy E > V0 the two linearly independent eigenfunctions with
energy E are obviously formal (bounded but not normalizable), since they are oscillatory for x !˙1.
Thus the half line .V0;1/ belongs to the continuous spectrum of the potential (3.44).

As in the previous potential, the two linearly independent eigenfunctions of each energy E > V0 can
be chosen to describe the scattering of the particle by the potential, either from left to right or from right
to left. Let us study, for instance, the former problem, for which we must choose b3 D 0 as there is no
reflection at x D L. Solving Eqs. (3.45)-(3.46), after a straightforward calculation we readily find

a1 D
eik1La3

2k1k2

�
2k1k2 cos.k2L/ � i.k21 C k

2
2/ sin.k2L/

�
; b1 D

ieik1La3

2k1k2
.k22 �k

2
1/ sin.k2L/: (3.47) a1b1potb

(see next exercise). In this case the incident, reflected and transmitted waves have all wave number k1.
The corresponding probability currents are thus given by

ji D ja1j
2„k1

m
; jr D �jb1j

2„k1

m
; jt D ja3j

2„k1

m
;
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2 3 4 5
E/V0
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T

Figure 3.6. Transmission coefficient T as a function of r D E=V0 for a potential barrier with v0L2 D
50.fig.T.barrier

so that

R D �
jr

ji
D
jb1j

2

ja1j2
D

.k22 � k
2
1/
2 sin2.k2L/

4k21k
2
2 cos2.k2L/C .k21 C k

2
2/
2 sin2.k2L/

D
.k22 � k

2
1/
2 sin2.k2L/

4k21k
2
2 C .k

2
1 � k

2
2/
2 sin2.k2L/

T D
jt

ji
D
ja3j

2

ja1j2
D

4k21k
2
2

4k21k
2
2 cos2.k2L/C .k21 C k

2
2/
2 sin2.k2L/

D
4k21k

2
2

4k21k
2
2 C .k

2
1 � k

2
2/
2 sin2.k2L/

:

Using the explicit values of k1 and k2 we arrive at the expressions

R D
v20 sin2

�
L
p
" � v0

�
4"." � v0/C v

2
0 sin2

�
L
p
" � v0

� ;
T D

4"." � v0/

4"." � v0/C v
2
0 sin2

�
L
p
" � v0

� : (3.48) RTpotbar

In particular, as expected R C T D 1. It is also clear that R and T depend only on the relative energy
r WD "=v0 D E=V0 > 1 and the dimensionless parameter � WD v0L2 D 2mV0L2=„2. Indeed,

T D
4r.r � 1/

4r.r � 1/C sin2
�p
�.r � 1/

� ;
and similarly for R. For fixed values of v0 and L, we have

lim
"!v0C

T D

�
1C

v0L
2

4

��1
; lim

"!1
T D 1:

In fact, for fixed V0 and L the transmission coefficient T reaches its maximum value Tmax D 1 when

L
p
" � v0 D n  () " D v0 C

n2 2

L2
; n D 1; 2; : : : :

For these energies all the incident flux is transmitted, and hence there is no reflection. In other words, at
these resonant energies the potential barrier becomes perfectly transparent. This phenomenon, which is
called resonance, has important practical applications.

Remark. Nowhere in the previous calculation we have used the fact that V0 is positive. Hence the latter
analysis is valid for E > 0 in the square well potential (3.26) if we replace V0 by �V0. In other words,
the transmission and reflection coefficients of the latter potential for E > 0 are given by

T D
4"."C v0/

4"."C v0/C v
2
0 sin2

�
L
p
"C v0

� ; R D 1 � T: �
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Exercise 3.5. Prove Eqs. (3.47).

Solution. We first solve the last two Eqs. (3.45)-(3.46) with b3 D 0, namely

eik2La2 C e�ik2Lb2 D eik1La3; eik2La2 � e�ik2Lb2 D
k1

k2
eik1La3;

for a2 and b2, obtaining

a2 D
1

2
ei.k1�k2/L

�
1C

k1

k2

�
a3; b2 D

1

2
ei.k1Ck2/L

�
1 �

k1

k2

�
a3:

From the first two Eqs. (3.45)-(3.46) we have

a1 C b1 D a2 C b2; a1 � b1 D
k2

k1
.a2 � b2/

and hence

a1 D
1

2
.a2 C b2/C

k2

2k1
.a2 � b2/ D

1

2

�
1C

k2

k1

�
a2 C

1

2

�
1 �

k2

k1

�
b2

D
1

4
ei.k1�k2/L .k1 C k2/

2

k1k2
a3 �

1

4
ei.k1Ck2/L .k1 � k2/

2

k1k2
a3

D eik1La3

 
cos.k2L/ �

i.k21 C k
2
2/

2k1k2
sin.k2L/

!
;

b1 D
1

2
.a2 C b2/ �

k2

2k1
.a2 � b2/ D

1

2

�
1 �

k2

k1

�
a2 C

1

2

�
1C

k2

k1

�
b2

D
1

4
ei.k1�k2/L k

2
1 � k

2
2

k1k2
a3 �

1

4
ei.k1Ck2/L k

2
1 � k

2
2

k1k2
a3

D
ieik1La3

2k1k2
.k22 � k

2
1/ sin.k2L/:

II) E < V0: tunnel effect

The only difference with the previous case is that the wave function in the interval Œ0; L� is a linear
combination of real exponentials:

 .x/ D a2e��x C b2e�x; 0 6 x 6 L;

with
� D
p
v0 � " > 0:

Note that we cannot drop the “positive” exponential e�x , since the interval Œ0; L� is bounded. Hence we
can use the equations (3.47) with k2 D i�, namely

a1 D
eik1La3

2k1�

�
2k1� cosh.�L/ � i.k21 � �

2/ sinh.�L/
�
; b1 D �

ieik1La3

2k1�
.�2 C k21/ sinh.�L/:

The transmission and reflection coefficients are therefore given by

R D
jb1j

2

ja1j2
D

.�2 C k21/
2 sinh2.�L/

4k21�
2 cosh2.k2L/C .�2 � k21/2 sinh2.�L/

D
.�2 C k21/

2 sinh2.�L/

4k21�
2 C v20 sinh2.�L/

T D
ja3j

2

ja1j2
D

4k21�
2

4"�2 cosh2.k2L/C .�2 � k21/2 sinh2.�L/
D

4k21�
2

4k21�
2 C v20 sinh2.�L/

;
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or more explicitly

T D
4".v0 � "/

4".v0 � "/C v
2
0 sinh2

�
L
p
v0 � "

� ; R D 1 � T: (3.49) TRtuneff

As before, T depends on ", v0 and L through the dimensionless quantities

r D
"

v0
D
E

V0
< 1; � D v0L

2
D
2mV0L

2

„2
;

namely

T D
4r.1 � r/

4r.1 � r/C sinh2
�p
�.1 � r/

� :
The previous result is completely at odds with the classical behavior of a particle with energy in the

range 0 < E < V0. Indeed, in classical mechanics the particle is confined to the half line Œ0;1/ (if
x.0/ < 0) or ŒL;1/ (if x.0/ > L), since it cannot enter the interval .0; L/ where it would have negative
kinetic energy. Thus, classically the transmission coefficient vanishes. On the other hand, we have just
seen that in quantum mechanics the transmission coefficient, given by Eq. (3.49), is strictly positive. In
other words, there is a non-vanishing probability (equal to T ) that the particle coming from �1 will
tunnel through the classically forbidden interval .0; L/ and emerge in the region x > L. This is the
so called tunnel effect, which has wide ranging technological applications (inversion of the ammonia
molecule, tunnel diode, Josephson effect, ˛ decay of nuclei, etc.).

The tunneling probability depends essentially on �.1 � r/ � L2.v0 � "/. Indeed,

�.1 � r/� 1 H) T �1 ' 1C
�.1 � r/

4r.1 � r/
H) T '

�
1C

�

4r

��1
D

 
1C

v20L
2

4"

!�1
;

�.1 � r/� 1 H) T ' 16r.1 � r/e�2
p
�.1�r/

D
16".v0 � "/

v20
e�2L

p
v0�":

Thus T can be very large when � D v0L
2 is small and r . 1 (i.e., " . v0), and is exponentially small

when �.1� r/ is large (essentially, when v0L2 is large and " is not too close to v0). In general, it can be
shown that T increases with r for � fixed, from T D 0 for r ! 0C to its maximum value

lim
r!1�

T D

�
1C

�

4

��1
�

�
1C

v0L
2

4

��1
:

3.5 The spectrum of general one-dimensional potentials
sec.spec1D

In this section we shall briefly discuss the nature of the spectrum of a general (piecewise continuous)
potential V.x/. We shall assume (as is always the case in practice, with the only exception of periodic
potentials) that V.x/ is a monotonic function for both x ! �1 and x !1. Hence there exist the two
limits

V˙ WD lim
x!˙1

V.x/

(finite or possibly infinite). We shall accept without proof the following results (see [Mes99, pp. 101–
105]):

I) If
E > VC
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(which can only happen if VC is finite), the real solutions of the Schrödinger equation

 00.x/C
�
" � v.x/

�
 .x/ D 0

remain bounded as x !1 and oscillate between two opposite values. If, moreover,

lim
x!1

x
�
v.x/ � vC

�
D 0

(i.e., if v.x/ ! vC � 2mVC=„
2 faster than 1=x) then as x ! 1 the general solution of the

Schrödinger equation behaves as

 .x/ � aeikCx C be�ikCx; kC WD
p
" � vC:

with a and b complex constants.
II) If12

E < VC;

for a sufficiently large x0 2 R there is a positive constant � such that

v.x/ � " > �2 > 0; 8x > x0:

(Indeed, if V.x/ is decreasing for x > x0 we can take � D
p
vC � ", while when V.x/ is

increasing � can be any positive number strictly less than
p
vC � " ; in particular, � can be any

positive real number if VC D 1.) Then there exists a nonzero (real) solution  C.x/ of the
Schrödinger equation such that  C.x/! 0 as x !1 at least as fast as e��x . In other words,ˇ̌

 C.x/
ˇ̌
6 ae��x

for some constant a > 0 as x ! 1. All other real solutions �.x/ linearly independent from
 C.x/ tend to 1 as x ! 1 at least as fast as e�x . In other words, if � is any solution of
Schrödinger’s equation with energy E linearly independent from  C we haveˇ̌

�.x/
ˇ̌
> be�x

for some constant b > 0 as x !1.

Totally analogous results hold for the behavior of the solutions of the Schrödinger equation for x !
�1. �

With the help of the previous results, it is straightforward to describe the spectrum of any potential
satisfying the above assumptions. We shall further suppose that the potential is bounded from below, i.e.,
that there is a constant V0 2 R such that

V.x/ > V0; 8x 2 R:

Potentials that do not satisfy this condition are physically unacceptable, since (as we shall see below)
they admit arbitrarily low eigenvalues and are therefore unstable (there is no ground state of minimum
energy, and hence the particle can lose an arbitrarily large amount of energy by transitioning from one
eigenstate to any other of lower energy). We shall also assume for definiteness that, as depicted in
Fig. 3.7,

V� 6 VC
(the case VC 6 V� is similar). We then have:

12This case corresponds to the exponential type solutions in square well potentials.
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x

V(x)

V+

V−

minV

Figure 3.7. One dimensional potential with �1 < minV.x/ < V� < VC < 1. The red and green
vertical lines respectively indicate the twice degenerate and the non-degenerate continuous
spectrum. The point spectrum is contained in the dashed blue vertical segment.fig.spec1D

1) E > VC
This case is only possible if VC is finite. Since VC > V� by hypothesis, then also E > V�. Accord-
ing to result I) above, in this case all the solutions of the Schrödinger equation are oscillating, and
therefore bounded but not normalizable, both as x ! �1 and as x ! 1. Hence E belongs to the
continuous spectrum and is twice degenerate.

2) V� < E < VC
This case can only arise if VC > V�. By result II) above, the only linearly independent solution
of the Schrödinger equation bounded as x ! 1 is  C.x/. However, by result I) this solution (as
any other solution) is oscillatory as x ! �1, and therefore bounded but not normalizable. Hence
for this energy there is only one linearly independent bounded (but not normalizable) solution of the
Schrödinger equation. It follows that E belongs to the continuous spectrum and is non-degenerate.

3) E < V�
This case can occur only if minV.x/ < V�. As V� 6 VC, we also have E < VC. By result II)
above, there is again only one linearly independent solution of the Schrödinger equation  C.x/ ex-
ponentially decreasing as x !1. Let us denote by  �.x/ the analogous solution of the Schrödinger
equation (with the same energy E) exponentially decreasing as x ! �1, and by �.x/ a second real
solution linearly independent from  �. Again by result II) above, the solution �.x/ is exponentially
increasing as x ! �1. Moreover, since  � and � are two linearly independent solutions of the
Schrödinger equation we must have

 C.x/ D a.E/ �.x/C b.E/�.x/;

for some real coefficients a.E/; b.E/ 2 R (indeed,  ˙ and � are all real). Thus the necessary and
sufficient condition for  C to be bounded as x ! �1 is that

b.E/ D 0: (3.50) eigvgenV

This is the eigenvalue equation. Indeed, if E is a solution of the latter equation the eigenfunction
 C.x/ is proportional to  �.x/, and therefore is also exponentially decaying as x ! �1. It follows
that  C is normalizable, and thus E belongs to the point spectrum and is non-degenerate. �

Thus the point spectrum �p.H/ is the set of solutions of the eigenvalue equation (3.50). The point
spectrum is necessarily a finite or at most countable set, since eigenfunctions with different eigenvalues
are orthogonal, and in a (separable) Hilbert space a set of mutually orthogonal vectors can be at most
countable. It is also shown in courses in functional analysis that an accumulation point of the point
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spectrum belongs to the spectrum. In fact, for the potentials usually occurring in quantum mechanics, the
accumulation points of the point spectrum belong to the continuous spectrum. Since �p.H/\ �c.H/ D
;, it follows that for these potentials the point spectrum does not contain its accumulation points, and is
therefore a discrete set

�p.H/ D
˚
Ek W k D 1; 2; : : :

	
:

Furthermore, as shown in result 4) of Section (3.3), all of the eigenvalues Ek are strictly greater than
minV.x/ for all k. It can also be shown that �p.H/ has actually a minimum13, so that if we label the
eigenvalues in increasing order we have

minV.x/ < E1 < E2 < � � � < Ek < � � � < V�:

It can also be shown that if �p.H/ is infinite then

lim
n!1

En D V�:

In particular, if V� is finite then the eigenvalues Ek accumulate at V�, and hence V� is in the continuous
spectrum. Finally, as remarked above, from standard properties of Sturm–Liouville problems it follows
that the eigenfunction  k corresponding to the k-th eigenvalue Ek has exactly k� 1 real zeros (see, e.g.,
[Mes99, p. 109–110]).

Remarks.

� The limiting values E D VC or E D V� must be dealt with on a case by case basis (i.e., whether they
belong to the continuous or the point spectrum depends on the potential).

� From the previous discussion it follows that (under the assumptions on the potential stated above) the
square integrable solutions of the time-independent Schrödinger equation in one dimension are those
that tend to zero at˙1. It follows that a real number E is in the point spectrum if and only if there is
at least one linearly independent solution  .x/ of the Schrödinger equation with energy E such that

lim
x!˙1

 .x/ D 0:

In fact, from the previous analysis it also follows that there can be at most one such solution.

exa.evenpot Example 3.3. Spectrum of an even potential.
Let the potential V.x/ be an even function of x, i.e.,

V.�x/ D V.x/; 8x 2 R:

Hence
V� D VC;

and therefore there is no non-degenerate continuous spectrum (except, at most, the point VC D V�).
There are essentially three possibilities (since, as usual, we are assuming that the potential is bounded
from below):

1. V˙ D1
In this case there is only point spectrum. In this case the point spectrum is an infinite set un-
bounded above. Moreover, it can be shown that the eigenfunctions

˚
 n W n 2 N

	
make up an

orthonormal basis of L2.R/. An example of a potential of this kind is the harmonic oscillator
potential V.x/ D 1

2
m!2x2.

2. V.x/ > V˙; 8x 2 R.

13Indeed, if the set �p.H/ D fEk W k D 1; 2; : : : g did not have a minimum it would be an infinite set bounded below
by minV.x/, and hence would have an infimum E1 2 ŒminV.x/; V�/ not belonging to the set. Then E1 would be an
accumulation point of �p.H/, and therefore it would belong to the continuous spectrum of H . But this is impossible, since we
have just shown that the continuous spectrum in this case is contained in the interval ŒV�;1/.
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There is only continuous and twice degenerate spectrum, namely the half line .V˙;1/. A poten-
tial satisfying this condition is, for instance, V.x/ D V0 sech2 x with V0 > 0.

3. minV.x/ < V˙
In this case the point spectrum is contained in the segment .minV.x/; V˙/, while the half line
.V˙;1/ makes up the continuous (and twice degenerate) spectrum (the point V˙ could actually
be either in the point or the continuous spectrum, depending on the potential considered). An
important potential in this class is the Pöschl–Teller potential V.x/ D �V0 sech2 x, with V0 > 0.

Let  .x/ be a genuine (i.e, normalizable) eigenfunction of H D � „
2

2m
@2x C V.x/ with eigenvalue

E. Since V is even,  .�x/ is also an eigenfunction of H with the same eigenvalue. As the point
spectrum of a one-dimensional potential is non-degenerate),  .�x/ and  .x/ must be proportional,
namely

 .�x/ D � .x/ D �2 .�x/ H) � D ˙1:

Thus a genuine eigenfunction  .x/ of an even potential has a well defined parity (i.e., is either even or
odd). The above argument does not apply to generalized eigenfunctions whose formal eigenvalues lie
in the continuous spectrum, since as we remarked above the continuous spectrum of an even potential
(when it exists) is twice degenerate. All we can say in this case is that for every energy E in the
continuous spectrum we can choose a basis of the two-dimensional eigenspace of E whose elements
have well defined parity.
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4 The postulates of quantum mechanics

chap.chap4
In the previous chapters we have studied the formulation of quantum mechanics first developed by
Schrödinger in 1926, based on the wave function in position (or momentum) space and the Schrödinger
equation. In the present chapter we shall outline a more abstract and general formulation, essentially
due to Dirac.1 This elegant formulation, which includes Schrödinger’s as a particular (though important)
case, has led to a deeper understanding of the foundations of quantum mechanics and of its practical use.
We shall also develop a widely used notation, also due to Dirac, to represent quantum states and their
duals.

4.1 Quantum states

In classical physics, the state of a system is determined by the coordinates and momenta of all of its
particles. Thus a classical state is an element of a real vector space of dimension 6N , where N is the
number of particles in the system.

Axiom 1. The state of any physical system at a certain time t0 is represented by a vector in an
abstract Hilbert space H.

Recall that a Hilbert space is a complex vector space endowed with a (complex) scalar product, which
is complete (i.e., all Cauchy sequences in it have a limit) and separable (i.e., there exist numerable
sets which are dense in the whole space). For instance, a finite-dimensional complex vector space is
automatically a Hilbert space with its standard scalar product

.v; w/ D

nX
iD1

v�i wi ;

where n D dimH. As another example, in the case of a single (spinless) particle moving in three-
dimensional space the Hilbert space H can be taken as L2.R3/.

Following Dirac, we shall denote the elements of H by

j i; j�i; j�i; jai; : : : :

The symbol j�i is called a ket vector (or simply a ket), and is analogous to the arrow sometimes used
to denote vectors in Euclidean space R3. It is important to note that, although all physical states are
vectors in H, not every element of H can represent a physical state. For example, in the case of a single
particle in R3, the physical states must satisfy some minimal requirements (the state and a sufficiently
high number of its partial derivatives must be continuous, it must decay sufficiently fast at infinity, etc.).
We shall therefore denote by HP � H the space of physical states. We shall assume that HP is a
dense linear subspace of H. In other words, HP is a vector space itself, and there are physical states
“arbitrarily close” to any element of H.

The fact that HP (as well as H) is a linear space is the basis of the superposition principle, which
posits that a linear combination of physical states is a physical state. This principle is fundamental to
account for the interference effects which are an essential feature of quantum mechanics.

1Paul Adrien Maurice Dirac (1902–1984), British physicist and Nobel Prize winner in 1933.
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Remark. To be more precise, a quantum state must have unit norm since, as we shall see below, it shall
be used to construct a probability density. Moreover, we shall see in the sequel that the vectors j i and
ei' j i, where ' is any real number, actually represent the same physical state. For this reason, to be
absolutely precise a quantum state is a unit ray in H, i.e., a set˚

ei'
j i W ' 2 R; kj ik D 1

	
:

In other words, any element in this ray represents the same quantum state, and hence quantum states are
defined up to a constant phase. �

A continuous2 linear functional is a continuous linear map ˛ W H ! C. In other words, ˛j i is a
complex number for every ket j i 2H,

˛
�
�1j 1i C �2j 2i

�
D �1˛j 1i C �2˛j 1i; 8�1; �2 2 C; 8j 1i; j 2i 2H;

and the mapping j i 7! ˛.j i/ depends continuously3 on j i 2H. Let us denote by H� the set of all
continuous linear functionals ˛ W H 2 C. The space H� is called the dual of H, and it can be shown
that it is itself a Hilbert space4. Each vector j i 2 H gives rise to a linear functional, which following
Dirac we shall denote by h j, through the formula

h j.j�i/ WD . ; �/; 8j�i 2H:

Indeed,

h j.�1j�1i C �2j�2i/ D . ; �1j�1i C �2j�2i/ D �1. ; j�1i/C �2.j i; j�2i/

� �1h j.j�1i/C �2h j.j�2i/:

The continuity of h j is also easily established, since if f�ngn2N is a sequence such that limn!1 �n D 0
then ˇ̌

h j.j�in/
ˇ̌
D
ˇ̌
. ; �n/

ˇ̌
6
  �n �!

n!1
0:

The symbol h�j is called a bra vector (or, for short, a bra). At this point, it is very natural to introduce
the Dirac notation h j�i to denote the scalar product of the kets j i and j�i or, what is the same, the
image of j�i under the bra (linear functional) h j associated to the ket vector j i. In other words,

h j�i � .j i; j�i/ � h j.j�i/:

In fact, according to the Riesz–Frechet representation theorem in functional analysis, any continuous
linear functional ˛ WH! C is of this form. Moreover, the application

j i 2H! h j 2H�

is a canonical antilinear5 isomorphism (actually, an isometry) between H and its dual H�. In fact, it can
be proved that a Hilbert space and its dual are actually isomorphic.

2It is essential to bear in mind that in infinite dimension not all linear maps are continuous.
3It can be easily shown that a linear functional (or, in general, a linear map) is continuous everywhere if and only if it is

continuous at 0.
4The vector space operations in H� are the natural ones, namely

.�1˛1 C �2˛2/j i WD �1˛1.j i/C �2˛2.j i/; 8�1; �2 2 C; 8j i 2H:

5An mapping A W X ! Y between two complex vector spaces X and Y is antilinear if A.�uC �v/ D ��AuC ��Av

for all u; v 2 X .
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4.1 Quantum states

Remark. There are many discontinuous linear functionals that cannot be represented by a bra vector.
One such functional is the Dirac delta ır0 , defined by the formula

ır0. / D  .r0/

in the linear subspace C 0.R3/ \ L2.R3/ of continuous functions  2 L2.R3/. Indeed, if ır0 D h�j for
some function � 2 L2.R/ we would have

ır0. / D  .r0/ D .�;  / D
Z

d3r �.r/� .r/; 8 2 C 0.R3/ \ L2.R3/;

which as we know cannot be satisfied by any ordinary function �. This does not contradict the Riesz–
Frechet representation theorem, since it is easy to see that this functional is discontinuous6. However,
it is very convenient for calculations to represent ır0 as the bra hr0j of a fictitious (non-existent, in the
sense that it is not an element of H D L2.R3/, or even a function) ket vector (function) jr0i. This vector
would satisfy

hr0j i � ır0. / D  .r0/ �
Z

d3r ı.r � r0/ .r/ �
�
ı.r � r0/;  

�
; 8j i;

and hence
jr0i D ı.r � r0/:

In other words, the fictitious ket associated to the linear functional ır0 is not a function, but rather the
distribution (also called generalized function) ı.r � r0/.

A similar example of a (discontinuous) linear functional Fp0 which is not the bra of any ket vector is
given by

 7!Fp0. / WD O .p0/ � .2 „/
�3=2

Z
d3r e�

i
„

p0�r .r/

defined in L1.R3/ \ L2.R3/. Again, if Fp0 D h�p0 j for some ket vector �p0 2 L
2.R3/ we would have

h�p0 j i DFp0. / � .2 „/
�3=2

Z
d3r e�

i
„

p0�r .r/ D
Z

d3r ��p0.r/ .r/; 8j i

H) �p0.r/ D .2 „/
�3=2e

i
„

p0�r … L2.R3/:

We thus see that the fictitious ket associated to the linear functional Fp0 is in this case an ordinary
function, namely the (normalized) plane wave �p0.r/ D .2 „/�3=2e

i
„

p0�r, although it is not an element
of H D L2.R3/. �

Given a linear operator A WH!H and two ket vectors j i; j�i, we define

˝
 
ˇ̌
A
ˇ̌
�
˛
WD
�
 ;A�

�
;

where (as we shall often do in the sequel when no confusion can arise) we are using the abbreviated
notation . ;A�/ for

�
j i; Aj�i

�
. Note that˝

 
ˇ̌
A
ˇ̌
�
˛�
D
�
 ;A�/� D

�
A�; 

�
D
�
�;A� 

�
�
˝
�
ˇ̌
A�
ˇ̌
 
˛
:

6That ır0 is discontinuous can be proved as follows. For any n 2 N, let �n.r/ be a continuous function such that
�n.r0/ D 1, j�n.r/j 6 1 inside the ball of radius 1=n centered at r0 and �n.r/ D 0 for jr�r0j > 1=n. The sequence f�ngn2N
tends to 0 in L2.R3/, since �n2 6 4 

3n3
�!
n!1

0:

However,
ır0.�n/ D �n.r0/ D 1; 8n 2 N;

and thus ır0.�n/ does not converge to 0.
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Exercise 4.1. If A WH!H is a continuous linear operator and h j a bra vector, show that h jA is a
bra vector. What is the ket vector associated to it?

Solution. The product h jA is the composition of the continuous linear operators A W H ! H
and h j W H ! C), and thus is itself a continuous linear functional (the composition of continuous
mappings is continuous), i.e., a bra vector. Moreover, since�

h jA
�
j�i D h j.Aj�i/ �

�
j i; Aj�i

�
�
�
A�j i; �

�
; 8� 2H;

we have
h jA D

˝
A�j i

ˇ̌
;

which we shall usually abbreviate as
˝
A� 

ˇ̌
.

Example 4.1. Given two ket vectors j i and j�i, the product j ih�j can be naturally interpreted as
the linear operator from H to H defined by�

j ih�j
�
j�i D h�j�ij i; 8j�i 2H:

Indeed, the RHS is clearly linear in j�i, by the linearity of the second argument of the complex scalar
product. It is also straightforward to prove that j ih�j is continuous (exercise). Clearly the range of
j ih�j is the one-dimensional subspace generated by the vector j i, while its kernel is the orthogonal
complement of the subspace spanned by the vector j�i. It is easy to check that�

j ih�j
��
D j�ih jI

in particular, j ih j is self-adjoint. Indeed, for all j˛i; jˇi 2H we have�
j˛i;

�
j ih�j

�
jˇi
�
D
�
j˛i; h�jˇij i

�
D h˛j ih�jˇi D h j˛i�h�jˇi D

�
h j˛ij�i; jˇi

�
D

��
j�ih j

�
j˛i; jˇi

�
:

An orthogonal projector is a self-adjoint operatorP WH!H that is also idempotent, i.e., P 2 D P .
The reason for this terminology is that if P is an orthogonal projector and j i 2 H then P j i is the
orthogonal projection of j i onto the range of P . Indeed, P j i obviously belongs to the range of P ,
and j i � P j i is orthogonal to the range of P , since�

P j�i; j i � P j i
�
D
�
j�i; P j i � P 2j i

�
D 0:

If j i is a unit vector (and, thus, a quantum state) then j ih j is self-adjoint and idempotent: indeed,

.j ih j/2 D .j ih j/.j ih j/ D h j ij ih j D
 2j ih j D j ih j;

where we are again using the abbreviated notation
  instead of

j i. Thus j ih j is the orthogonal
projector onto the one-dimensional subspace spanned by j i.

4.2 Observables
sec.obs

In classical (Hamiltonian) mechanics, a dynamical variable is any function f .q;p/ defined in phase
space (a 6N -dimensional Euclidean space, where N is the number of particles in the system).

Axiom 2. A dynamical variable or observable of a quantum system is a self-adjoint linear operator
A W D.A/ �H!H, where H is the system’s Hilbert space of states and the domain D.A/ of A is
a dense subspace of H.
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Remark. The precise domain of a linear operator A in an infinite-dimensional linear space is a non-
trivial and crucial matter. Indeed, by the Hellinger–Toeplitz theorem in functional analysis, a self-adjoint
operator whose domain is the whole Hilbert space is automatically continuous, which for linear operators
is the same as bounded7. On the other hand, many important operators in quantum mechanics like
position, momentum, angular momentum or energy are defined only in proper (dense) subspaces of the
system’s Hilbert space H, and are unbounded. To simplify matters, we shall write A W H ! H even
if D.A/ may be a proper subspace of H, and unless otherwise stated shall tacitly assume in the sequel
that all operators involved are bounded. �

In the case of a single particle, we saw in Section 2.11 that if the state of the system at a certain instant
is described by the ket vector j i, and we measure an observable A, the average value obtained is the
expectation value

av .A/ D
˝
A
˛
 
�
�
 ;A 

�
�
˝
 
ˇ̌
A
ˇ̌
 
˛
:

We also proved that the only possible outcome in a measurement of an observableA is one of its eigenval-
ues. We shall accept that this is also the case for an arbitrary quantum system. Note that the self-adjoint
character of observables guarantees that both its expectation value and any of its eigenvalues are real. We
now ask ourselves what is the probability of obtaining a certain value a when measuring an observable
A, where a is one of the eigenvalues of A, if the system is in a state j i. To answer this question, we
shall suppose for simplicity (as is the case in many practical problems) that A has only point spectrum8

�p.A/ D
˚
an W n D 1; 2; : : :

	
;

and, moreover, that all of its eigenvalues are simple (i.e., non-degenerate). In other words, the eigenspace

ker.A � an/ � ker.A � an1/

of each eigenvalue an is one-dimensional. Let us choose an arbitrary unit vector jni in each eigenspace
ker.A � an/ (which is obviously defined up to a phase). It is easy to show that the set˚

jni W n D 1; 2; : : :
	

(4.1) orthbasis

is an orthonormal set. Indeed, all its elements are by construction unit vectors, and if n ¤ m the eigenkets
jni and jmi are automatically orthogonal:

hnjAjmi D
�
jni; Ajmi

�
D amhnjmi D

�
Ajni; jmi

�
D anhnjmi

H) .an � am/hnjmi D 0 H) hnjmi D 0:

Moreover, it can be shown (using the spectral theorem for self-adjoint operators in functional analysis)
that in this case the set (4.1) is an orthonormal basis of H. Suppose that the system is in the state j i
at a certain time t0. Expanding j i in terms of the previous basis of eigenstates of the observable A we
have9

j i D
X
n

cnjni;

where the coefficients cn can be obtained by taking the scalar product of the latter expansion with any
eigenfunction jki:

cn D hnj i:

7A linear operator A is bounded if there exists a constant c 2 R such that
A  6 c  for all j i 2D.A/.

8It can be shown that the spectrum of a self-adjoint operator in a separable Hilbert space is at most countable. Indeed, if
it were not so we would be able to construct an uncountable set of mutually orthogonal vectors (choosing one eigenvector for
each eigenvalue), which is not possible in a separable Hilbert space.

9In what follows the all sums range from 1 to dimH, which can be either finite or infinite.
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Thus we can write

j i D
X
n

jnihnj i D

 X
n

jnihnj

!
j iI

since j i is an arbitrary (unit) vector, it follows thatX
n

jnihnj D 1: (4.2) comprel

Equation (4.2) is the so called completeness (or closure) relation satisfied by the orthonormal ba-
sis (4.1). Multiplying this relation on the right by the ket j i an on the left by a bra h�j we obtainX

n

h�jnihnj i D h�j iI

in particular,

k k2 D h j i D
X
n

ˇ̌
hnj i

ˇ̌2
:

It follows that the numbers n
jcnj

2
�
ˇ̌
hnj i

ˇ̌2
W n D 1; 2; : : :

o
(4.3) probdist

define a probability distribution, since they are nonnegative and verifyX
n

ˇ̌
cn
ˇ̌2
D h j i D 1:

Since a probability distribution is determined by its moments (i.e., the averages of the powers of the
random variable), the probability distribution fp .an/ W n D 1; 2; : : : g of the eigenvalues fan W n D
1; 2; : : : g of A in the state j i is uniquely determined by the equalities

av .Ak/ D
X
n

p .an/a
k
n; k 2 N: (4.4) ppsidet

On the other hand, if we assume that (as in the case of a single particle studied in Section 2.5), the average
of an observable in a state j i is the expectation value of the observable in that state, we have

av .Ak/ D
˝
Ak
˛
 
D
˝
 
ˇ̌
Ak
ˇ̌
 
˛
D

 X
n

cnjni;
X
m

cma
k
mjmi

!
D

X
n;m

c�ncma
k
mhnjmi D

X
n

jcnj
2akn

for all k 2 N. Comparing with Eq. (4.4) we conclude that the probability p .an/ of finding the value
an when measuring the observable A if the system is in the state j i is given by

p .an/ D jcnj
2
D jhnj ij2:

Note that
p .an/ D jhnj ij

2
D
jnihnj i2 � .jnihnj/j i2

is the square of the norm of the projection of the vector j i onto the eigenspace ker.A � an/. In fact,
a calculation totally analogous to the previous one shows that when the eigenvalues of A are degenerate
the probability of finding an eigenvalue an is still given by the formula

p .an/ D
Pan j i2; (4.5) Ppsigen

where Pan denotes the orthogonal projector onto the eigenspace ker.A � an/ of the eigenvalue an (no
longer one-dimensional). This motivates the following axiom:
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Axiom 3. If the observable A has only point spectrum, a measurement of A when the system is in a
state j i can only yield as result an eigenvalue an of A with probability

Pan j i2.

Remarks.

� From Axiom 3 it immediately follows that the average value of the observable A is its expectation
value h jAj i. Indeed (assuming again, for the sake of simplicity, that the eigenvalues of A are
non-degenerate, and denoting by jni a normalized eigenvector of A with eigenvalue an) we have

˝
 
ˇ̌
A
ˇ̌
 
˛
D . ;A / �

 X
n

cnjni;
X
m

cmAjmi

!
D

X
m;n

c�ncmamhnjmi D
X
n

jcnj
2an

D

X
n

p .an/an;

which by definition is the average of the an’s with respect to the probability distribution
˚
p .an/

	
.

� Another immediate consequence of Axiom 3 is that if an observable A is measured when the system
is in an eigenstate j i of A with eigenvalue a then the result obtained will be a. Indeed,

Aj i D aj i H) Paj i D j i;

since j i belongs to the eigenspace ker.A � a/ onto which Pa projects, and hence

p .a/ D
Paj i2 D  2 D 1:

(This result could also have been proved by showing that � A D 0, as in Section 2.5.)

exe.Ppsian Exercise 4.2. Suppose that an eigenvalue an of an observable A is dn times degenerate (where dn
could be finite or infinite). Show that the projector Pan is given by

Pan D
dnX
kD1

jukihukj;

where fjuki W k D 1; : : : ; dng is any orthonormal basis of the eigenspace ker.A � an/. (In particular,
the RHS of the previous formula is independent of the basis chosen.)

Solution. All we have to show is that the operator Pan defined by the above formula is a projector, and
that its range is ker.A � an/. That Pan is a projector is straightforward to prove, since it is obviously
self-adjoint (each operator jukihukj is self-adjoint), and

P2
an
D

dnX
j;kD1

juj ihuj j � jukihukj D

dnX
j;kD1

huj juki � juj ihukj D

dnX
j;kD1

ıjkjuj ihukj

D

dnX
kD1

jukihukj � Pan :

It is also clear that the range of Pan is contained in ker.A � an/, since

Pan j i D
dnX
nD1

hukj ijuki 2 lin
˚
juki W k D 1; : : : ; dn

	
D ker.A � an/:
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Finally, if j i 2 ker.A � an/ then

j i D

dnX
kD1

ckjuki H) Pan j i D
dnX

j;kD1

ckjuj ihuj j � juki D

dnX
j;kD1

ckhuj juki juj i

D

dnX
j;kD1

ckıjkjuj i D

dnX
kD1

ckjuki D j i;

so that j i D Pan j i is in the range of Pan . Thus ker.An � a/ is also contained in the range of Pan ,
which completes the proof.

What happens if the observable A does not possess an orthonormal basis of (genuine) eigenvectors?
This is the case, for instance, with important observables like the position and momentum of a particle,
and in general with observables part of whose spectrum is continuous. To answer this question, we must
introduce the concept of generalized orthonormal set. By definition, this is a set fj˛i W ˛ 2 I g, where
I is an index set (usually an interval Œ˛1; ˛2�, or more generally a (connected open) subset of Rk for an
appropriate k) and j˛i is a generalized ket (a distribution like ı.x � ˛/, or a non-normalizable ordinary
function like ei˛x), satisfying the Dirac normalization condition

h˛jˇi D ı.˛ � ˇ/; 8˛; ˇ 2 I:

Although j˛i is not an ordinary vector, we shall suppose that the formal scalar product h˛j i is defined
for all ˛ 2 I and any ordinary ket j i in the space of physical states HP . For instance,

�
ı.x � ˛/;  

�
D

Z
dx ı.x � ˛/ .x/ D  .˛/;

�
ei˛x;  

�
D

Z
dx e�i˛x .x/:

This implies that the operator j˛ih˛j—i.e., the formal projector onto the one-dimensional space gener-
ated by j˛i— is well defined (as a generalized ket), since

.j˛ih˛j/j i D h˛j ij˛i:

A generalized orthonormal basis of H is the union of an orthonormal set fjuni W n D 1; 2; : : : g � H
and a generalized orthonormal set fj˛i W ˛ 2 I g such that

h˛juni D 0; 8˛ 2 I; 8n D 1; 2; : : : ;

and the following generalized completeness relation is verified:

X
n

junihunj C

Z
I

d˛ j˛ih˛j D 1 (4.6) gencomprel

(the identity in H). Applying both sides of this relation to an ordinary ket j i we deduce that any such
ket can be represented as

j i D
X
n

cnjuni C

Z
I

d˛ c.˛/j˛i; with cn D hnj i; c.˛/ D h˛j i:
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Example 4.2. Position and momentum bases.

The set ˚
jxi � ı.r � x/ W x 2 R3

	
(4.7) posbasis

is a generalized orthonormal basis of H D L2.R3/ (here the vector x plays the role of the parameter
˛, and the index set I is R3). Indeed, to begin with

hxjx0i D
Z

d3r ı.r � x/ı.r � x0/ D ı.x � x0/;

by the defining property of Dirac’s delta (cf. Eq. (2.22)). Secondly, if  .r/ is an ordinary (continuous)
function we have ˝

x
ˇ̌
 
˛
D

Z
d3r ı.r � x/ .r/ D  .x/; (4.8) psiposrep

and therefore

 .r/ D
Z

d3x ı.r � x/ .x/ �
Z

d3x jxihxj i D
�Z

d3x jxihxj
�
j i H)

Z
d3x jxihxj D 1:

Note that jxi is a formal eigenfunction of the position operator R with eigenvalue x. For this reason,
the basis (4.7) is called the position basis.

Likewise, the set n
j�pi � .2 „/

�3=2e
i
„

p�r
W p 2 R3

o
(4.9) mombasis

is another generalized orthonormal basis of H D L2.R3/. This follows immediately from the equali-
ties ˝

�p
ˇ̌
�p0
˛
D .2 „/�3

Z
d3r e

i
„
.p0�p/�r

D ı.p � p0/

and
h�pj i D .2 „/

�3=2

Z
d3r e�

i
„

p�r .r/ D O .p/; (4.10) psimomrep

since

 .r/ D .2 „/�3=2
Z

d3p e
i
„

p�r O .p/ �
Z

d3p j�pi
˝
�p
ˇ̌
 
˛
D

�Z
d3x j�pih�pj

�
j i

H)

Z
d3p j�pih�pj D 1;

where we have used the Fourier transform identities (2.30) and (2.32). The basis (4.9) is called the
momentum basis, since each j�pi is a formal eigenfunction of the momentum operator P with eigen-
value p. Note, finally, that from Eqs. (4.8) and (4.10) it follows that the position and momentum wave
functions  .r/ and O .p/ are related to the abstract state vector j i by the formulas

 .r/ D
˝
r
ˇ̌
 
˛
; O .p/ D

˝
�p
ˇ̌
 
˛
:

The following fundamental result is proved in advanced courses in functional analysis10:

Any observable A possesses a generalized orthonormal basis of (genuine and/or formal) eigenfunc-
tions.

Assuming, for the sake of simplicity, that both the point spectrum

�p D
˚
an W n D 1; 2; : : :

	
10See, e.g., I. M. Gel’fand and N. Ya. Vilenkin, Generalized Functions, vol. 4. Applications of Harmonic Analysis, Academic

Press, New York (1964).
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and the continuous spectrum
�c D

˚
˛ W ˛ 2 I

	
of the observable A are non-empty and non-degenerate, we can write

X
n

janihanj C

Z
I

d˛ j˛ih˛j D 1; (4.11) Agenbas

where jani 2H is a genuine eigenfunction of A with eigenvalue an, j˛i is a formal eigenfunction of the
latter operator with eigenvalue ˛, and

hanjami D ınm; h˛j˛
0
i D ı.˛ � ˛0/; hanj˛i D 0: (4.12) Aorth

Applying the operator A to the completeness relation (4.6) and taking into account that by construction

Ajani D anjani; Aj˛i D ˛j˛i

we immediately obtain the spectral decomposition of the self-adjoint operator A:

A D
X
n

anjanihanj C

Z
I

d˛ ˛j˛ih˛j

It also follows from Eq. (4.11) that any ordinary ket j i admits the expansion

j i D
X
n

cnjani C

Z
I

d˛ c.˛/j˛i; with cn D hanj i; c.˛/ D h˛j i: (4.13) Acomprel

Note that using the completeness relations it is straightforward to show that

 2 D 1 DX
n

jcnj
2
C

Z
I

d˛ jc.˛/j2 �
X
n

ˇ̌
hanj i

ˇ̌2
C

Z
I

d˛
ˇ̌
h˛j i/

ˇ̌2
:

Thus (under the assumption that both the point and the continuous spectrum are non-degenerate) the
numbers jcnj2 �

ˇ̌
hanj i

ˇ̌2 (n D 1; 2; : : : ) and jc.˛/j2 �
ˇ̌
h˛j i/

ˇ̌2 (˛ 2 I ) define a probability
distribution (in part discrete and in part continuous). We then have the following generalization of
Axiom 3:

Axiom 3’. Suppose that an observableA possesses a generalized orthonormal basis of eigenfunctions
as in Eqs. (4.11)-(4.13). If we measure the observable A when the system is in a state j i, then we can
obtain as a result of the measurement either an eigenvalue an with probability

ˇ̌
hanj i

ˇ̌2 or a number
in the range Œ˛; ˛ C d˛� with probability jh˛j ij2 d˛, where ˛ 2 I is a generalized eigenvalue.

Remarks.

� In particular, when an observable A has only point spectrum (i.e., when �c D ;), the possible results
of a measurement of A are quantized11.
11Recall that the point spectrum of a self-adjoint operator A in a (separable) Hilbert space is a finite or at most countable

set. Moreover, for the self-adjoint operators normally occurring in quantum mechanics the accumulation points of the point
spectrum belong to the continuous spectrum. Under this assumption (which we shall implicitly make in what follows), if
�c.A/ D ; the point spectrum is a finite or at most countable set without accumulation points. Furthermore, when there is only
point spectrum the set of eigenvectors of a self-adjoint operators is complete, i.e., its closure is the whole Hilbert space (or,
equivalently, there is an orthonormal basis of eigenvectors of A). Hence when �c.A/ D ; and dimH D1 the point spectrum
is an infinite set without accumulation points. By the Bolzano–Weierstrass theorem, in this case �p.A/ must be unbounded
(from above, from below or from both ends).
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� From Axiom 3’ applied to the position or momentum bases (4.7)-(4.9) it follows that (as we had seen
in Chapter 2)

ˇ̌
 .r/

ˇ̌2 d3r and
ˇ̌
O .p/

ˇ̌2 d3p are respectively the probabilities of finding the particle in
an infinitesimal volume d3r about r or with momentum lying in an infinitesimal volume d3p about p.

� Axiom 3’ is easily generalized to more complex situations in which either the point or the continuous
spectrum (or both) are degenerate. For example, if the point spectrum is degenerate the probability to
obtain the eigenvalue an when measuring A in the state j i is given by Eq. (4.5). �

An important consequence of Axiom 3 (or 3’), already anticipated above, is that the kets j i and
j 0i D ei˛j i, where ˛ is an arbitrary real constant, determine the same physical state. Indeed, the
probability distributions of any observables are the same for j i as for j i0, since for any (genuine or
generalized) ket j�i we have ˇ̌

h�j 0i
ˇ̌2
D
ˇ̌
ei˛
h�j i

ˇ̌2
D
ˇ̌
h�j i

ˇ̌2
:

Thus we can multiply a given ket by an overall constant phase without changing the quantum state. It is
important to note, however, that when we take linear combinations of two or more states relative phases
are relevant, and are in fact essential to explain interference phenomena. This fact is illustrated in the
following simple example:

Example 4.3. Given two states j 1i and j 2i, consider the linear combination

j i WD
1

N

�
ei˛1 j 1i C ei˛2 j 2i

�
;

where

N D
ei˛1 j 1i C ei˛2 j 2i

 D p2 �1C Re
�

ei.˛2�˛1/h 1j 2i
��1=2

(exercise). Since we can write

j i D
ei˛1

N

�
j 1i C ei.˛2�˛1/j 2i

�
;

j i describes the same physical state as

j 0i D
1

N

�
j 1i C ei.˛2�˛1/j 2i

�
:

However, the relative phase ei.˛2�˛1/ is obviously essential and hence cannot be dropped. For instance,
let us suppose for the sake of simplicity that j 1i and j 2i are orthogonal, so that

j 0i D
1
p
2

�
j 1i C ei.˛2�˛1/j 2i

�
:

If jai is a (normalized) eigenvector of an observable A with non-degenerate eigenvalue a, the prob-
ability of obtaining a as the result of a measurement of A when the system is in the state j i —or,
equivalently, j 0i— is

p .a/ D
ˇ̌
haj 0i

ˇ̌2
D
1

2

ˇ̌̌
haj 1i C ei.˛2�˛1/haj 2i

ˇ̌̌2
D
1

2

�ˇ̌
haj 1i

ˇ̌2
C
ˇ̌
haj 2i

ˇ̌2�
C Re

�
ei.˛2�˛1/h 1jaihaj 2i

�
:
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This probability is clearly an oscillating function of the relative phase difference ˛2�˛1. For instance,
if both haj 1i and haj 2i are real we have

p .a/ D
1

2

�
haj 1i

2
C haj 2i

2
�
C haj 1ihaj 2i cos.˛2 � ˛1/;

which oscillates between the values

1

2

�
haj 1i C haj 2i

�2
for ˛2 � ˛1 D 2k  (with k 2 Z) and

1

2

�
haj 1i � haj 2i

�2
for ˛2 � ˛1 D .2k C 1/  (with k 2 Z). If haj 1i and haj 2i have the same sign the probability is
maximum when ˛2 � ˛1 D 2k  and minimum when ˛2 � ˛1 D .2k C 1/  (with k 2 Z), whereas
if they have opposite signs the probability is maximum when ˛2 � ˛1 D .2k C 1/  and minimum
when ˛2 � ˛1 D 2k . In either case, the probability varies between

�ˇ̌
haj 1i

ˇ̌2
�
ˇ̌
haj 2i

ˇ̌�2
=2 and�ˇ̌

haj 1i
ˇ̌2
C
ˇ̌
haj 2i

ˇ̌�2
=2.

4.3 Measurements
sec.meas

For the case of a single particle, we have already proved in Section 2.11 (cf. result viii)) that the state
of the particle immediately after the measurement of an observable A has produced a definite result a
(where a is one of the eigenvalues of A) must be an eigenfunction of A with eigenvalue a. We shall
admit that this will also be the case for a general quantum system. If (as is the case in many practical
problems, especially in one dimension) A has only point spectrum and the eigenvalues of A are non-
degenerate, the state of the system after a measurement of A yields as a result an eigenvalue a 2 �p.A/
is the corresponding eigenstate jai, which is determined up to an irrelevant phase (since by hypothesis
ker.A� a/ is one-dimensional). If, on the other hand, the point spectrum of the observable A contains a
degenerate eigenvalue a, stating that the state j i of the system is an eigenstate of A with eigenvalue a
does not determine j i unambiguously (up to a phase). Since by Axiom 3 the probability of obtaining
the value a when measuring the observable A is determined by the orthogonal projection Paj i of j i
onto the eigenspace ker.A�a/, we shall postulate that if a measurement of A has yielded the value a the
(normalized) state of the system immediately after this measurement is Paj iPaj i . In other words:

Axiom 4. The state of the system immediately after a measurement of an observable A has yielded
the value a 2 �p.A/ is

Paj iPaj i � Paj ip
p .a/

: (4.14) cPapsi

Note that the state (4.14) is always an eigenket of A with eigenvalue a, since by construction Pa projects
onto the eigenspace ker.A � a/ of this eigenvalue.

Similar considerations apply if part of the spectrum of an observable A is continuous. For instance,
the state of the system immediately after a measurement of the observable A has yielded a value in the
interval Œ˛; ˛ C d˛�, where ˛ 2 �c.A/ is a formal non-degenerate eigenvalue of A, is the generalized
state j˛i. Since j˛i is not a physical state if ˛ 2 �c.A/, what the latter statement actually means is that
the state of the system immediately after the measurement of A is a wave packet

j i D

Z ˛Cd˛

˛

d˛ g.ˇ/jˇi;
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with g.ˇ/ narrowly concentrated about ˛ andZ ˛Cd˛

˛

dˇ
ˇ̌
g.ˇ/

ˇ̌2
D 1:

(Note that

 2 D h j i D Z ˛Cd˛

˛

dˇ
Z ˛Cd˛

˛

dˇ0 g.ˇ/g�.ˇ0/jˇihˇ0j

D

Z ˛Cd˛

˛

dˇ
Z ˛Cd˛

˛

dˇ0 g.ˇ/g�.ˇ0/ı.ˇ � ˇ0/ D
Z ˛Cd˛

˛

dˇ
ˇ̌
g.ˇ/

ˇ̌2
D 1;

so that the state j i is normalized.)

Remark. Axiom 4 implies that when a measurement is performed on a quantum system the state of
the system stops evolving continuously (through the time-dependent Schrödinger equation, as we shall
see below) and abruptly “jumps” to an eigenstate of the observable that is being measured. This phe-
nomenon, usually called the collapse of the wave function12, is one of the most controversial and least
understood features of quantum mechanics. Of course, immediately after this sudden jump caused by the
measurement process the quantum state starts evolving continuously again until another measurement is
performed, and so on.

Example 4.4. Consider a quantum system whose Hilbert space is the finite-dimensional space H D
C3. In this case ket vectors can be represented by column vectors

jvi D

0@v1v2
v3

1A ; vi 2 C;

which can also be written as

jvi D

3X
iD1

vi jei i

in terms of the canonical basis of C3

je1i D

0@10
0

1A ; je2i D
0@01
0

1A ; je3i D
0@00
1

1A :
The bra hvj corresponding to the ket jvi is then represented by the row matrix0@v1v2

v3

1A� D .v�1 v�2 v�3 / � v
�
1 he1j C v

�
2 he2j C v

�
3 he3j;

where
he1j D .1 0 0/; he2j D .0 1 0/; he3j D .0 0 1/

12The reason for this terminology is that in the case of a single particle whose position is being measured the wave function,
which is usually a wave packet with a certain spread, collapses to a delta function or, more precisely, a “spike” of unit norm
peaked at the point obtained as a result of the position measurement.
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is the canonical basis of the dual space of C3. The reason for this is that, if jui D u1je1i C u2je2i C
u3je3i is an arbitrary ket vector, then hvj is defined by

hvj
�
jui
�
D hvjui D

3X
iD1

v�i ui D .v
�
1 v�2 v�3 /

0@u1u2
u3

1A � .v�1 v�2 v�3 / � jui;

where the last dot denotes matrix multiplication.
Let A W C3 ! C3 be the operator represented by the matrix (in the canonical basis of C3 and in

appropriate units)

A D

0@ 3 i 0

�i 3 0

0 0 2

1A ;
which, with a slight abuse of notation, we shall also denote by A. Since the matrix elements aij of a
matrix A are given by

aij D .ei ; Aej / � hei jAjej i;

we have

A D

3X
i;jD1

aij jei ihej j;

or in this case,

A D 3
�
je1ihe1j C je2ihe2j

�
C i
�
je1ihe2j � je2ihe1j

�
C 2je3ihe3j:

Since A is clearly self-adjoint (i.e., A� �
�
AT/� D A), it can be one of the system’s observables. The

characteristic polynomial of A is

det.A��/ D .2��/
ˇ̌̌̌
3 � � i
�i 3 � �

ˇ̌̌̌
D .2��/

�
.3��/2�1

�
D .2��/.4��/.2��/ D .2��/2.4��/:

Thus the eigenvalues of A are a1 D 2 (twice degenerate) and a2 D 4 (non-degenerate). In particular,
if we measure the observable A the only possible outcomes are 2 and 4. Suppose that at a certain time
t the system is in the state

j i D
1

3

�
je1i C 2ije2i C 2je3i

�
D
1

3

0@12i
2

1A I
note that

h j i D
1

9
.1C 4C 4/ D 1;

so that j i is properly normalized. To find the probability of obtaining the values 2 and 4 when the
observableA is measured at the time t , we note that the eigenspace ker.A�4/ is one-dimensional (since
this eigenvalue is simple). Thus the probability of obtaining the value 4 as a result of a measurement
of the observable A is simply

p .4/ D
ˇ̌
h4j i

ˇ̌2
;
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where j4i is a normalized eigenvector of A with eigenvalue 4. To find this eigenvector we must solve
the eigenvalue equation .A � 4/jvi D 0, i.e.,0@�1 i 0

�i �1 0

0 0 �2

1A0@v1v2
v3

1A D 0:
Solving this system and normalizing the solution we obtain

j4i D
1
p
2
.1 � i 0/T �

1
p
2
.je1i � ije2i/;

up to an inessential phase. Thus the probability of finding the value 4 when we measure A and the
system is in the state j i is

p .4/ D

ˇ̌̌̌
1
p
2
.1;�i; 0/ �

1

3
.1; 2i; 2/

ˇ̌̌̌2
D
1

2

1

9

ˇ̌
.1;�i; 0/ � .1; 2i; 2/

ˇ̌2
D

1

18
' 0:0555556:

Consequently, the probability of obtaining the value 2 is

p .2/ D 1 �
1

18
D
17

18
' 0:944444:

It is also instructive to derive the latter result using equation (4.5). To this end, we must first construct
the projector P2 onto the two-dimensional eigenspace ker.A � 2/. This can be done, for instance, by
finding two orthogonal normalized eigenvectors ju1i and ju2i with eigenvalue 2 and using the formula
of Exercise 4.2, namely

P2 D ju1ihu1j C ju2ihu2j:

The eigenvalue equation .A � 2/jvi D 0 is0@ 1 i 0

�i 1 0

0 0 0

1A0@v1v2
v3

1A D 0 () v1 C i v2 D 0;

and hence
.v1; v2; v3/ D .a; i a; b/ H) jvi D a

�
je1i C i je2i

�
C bje3i;

with a; b arbitrary complex constants. In this case it is straightforward to find an orthonormal basis of
ker.A � 2/ by inspection, namely

ju1i D
1
p
2
.je1i C i je2i/ �

1
p
2
.1 i 0/T; ju2i D je3i D .0 0 1/

T

(in more general situations, one can always use the standard Gram–Schmidt orthonormalization proce-
dure taught in linear algebra courses). We thus find

P2 D
1

2

0@1i
0

1A .1 � i 0/C

0@00
1

1A .0 0 1/ D 1

2

0@1 �i 0

i 1 0

0 0 0

1AC
0@0 0 0

0 0 0

0 0 1

1A D
0@12 �

i
2

0
i
2

1
2

0

0 0 1

1A ;
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and therefore

P2j i D
1

3

0B@
1
2
�

i
2

0
i
2

1
2

0

0 0 1

1CA
0B@12i
2

1CA D
0B@
1
2
i
2
2
3

1CA H) p .2/ D
P2j i2 D 1

4
C
1

4
C
4

9
D
17

18
:

Since the eigenvalue 4 is simple, if we measure A and obtain 4 as a result the state of the system
immediately after this measurement will be simply the eigenket j4i above (up to an inessential phase).
If, on the other hand, the result is 2, immediately after the measurement is performed the system will
jump to the state

P2j iP2j i � P2j ip
p .2/

D

r
18

17

�
1

2
je1i C

i
2
je2i C

2

3
je3i

�
D

1
p
34
.3je1i C 3ije2i C 4je3i/

(again up to a trivial phase).

4.4 Time evolution. Conserved quantities
sec.timeev

We saw in Chapter 2 that the continuous (i.e., in-between two measurements) time evolution of the wave
function of a single particle 	.r; t / is governed by the time-dependent Schrödinger equation (3.1). For
a general quantum system, we shall accept that the time evolution of the system’s state, which we shall
denote by

ˇ̌
 .t/

˛
to stress its time dependence, is a linear process. In other words, the time evolution

must be compatible with the linear superposition of states. If, for example, initially
ˇ̌
 .0/

˛
is the sum of

two kets j 1.0/i and j 2.0/i, then the time-evolved state
ˇ̌
 .t/

˛
must be the sum of the corresponding

time-evolved states j 1.t/i and j 2.t/i for all subsequent (or previous) times t . This entails that the
mapping

ˇ̌
 .0/

˛
7!
ˇ̌
 .t/

˛
must be linear. In other words, we must have

ˇ̌
 .t/

˛
D U.t/

ˇ̌
 .0/

˛
; (4.15) Utpsi

where13 U.t/ W H ! H is a linear operator called the system’s time evolution operator. Since the
state’s norm must be preserved by the time evolution, if initially

˝
 .0/

ˇ̌
 .0/

˛
D 1 we must have˝

 .t/
ˇ̌
 .t/

˛
D
˝
U.t/ .0/

ˇ̌
U.t/ .0/

˛
D
˝
 .0/

ˇ̌
U �.t/U.t/

ˇ̌
 .0/

˛
D 1 D

˝
 .0/

ˇ̌
 .0/

˛
:

Since
ˇ̌
 .0

˛
/ is an arbitrary state this implies that˝

�
ˇ̌
U �.t/U.t/

ˇ̌
�
˛
D
˝
�
ˇ̌
�
˛

for all states j�i 2H of unit norm, and hence for all states in H (just multiply both sides by j�j2, where
� is any complex number). From the previous equality it easily follows that˝

�1
ˇ̌
U �.t/U.t/�2

˛
D
˝
�1
ˇ̌
�2
˛
D 0; 8j�1i; j�2i 2H

(exercise), and hence that

U �.t/U.t/ D 1

In other words, the time evolution operator U.t/ must be a unitary operator. Moreover, if (as we shall
usually assume to be the case) the system is invariant under time translations the time evolution operator
must satisfy the identity ˇ̌

 .t C s/
˛
D U.t/

ˇ̌
 .s/

˛
13In what follows we shall usually simplify matters by assuming that the domains of all operators involved is all of H even

if, as we know, this need not always be the case.
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for all s 2 R, and therefore
U.t C s/

ˇ̌
 .0/

˛
D U.t/U.s/

ˇ̌
 .0/

˛
for all kets

ˇ̌
 .0/

˛
of unit norm, and hence for all kets in H. This shows that

U.t C s/ D U.t/U.s/;

i.e., that
˚
U.t/ W t 2 R

	
is a one-parameter group of unitary transformations; in particular,

U.0/ D 1; U.t/�1 D U.�t /:

By Stone’s theorem in functional analysis, there is a self-adjoint time-independent linear operator H W
H!H satisfying

U.t/ D e�
i
„
tH ; (4.16) UtH

where the sign is conventional and the factor „ is introduced so that H has dimensions of energy. By
analogy with the case of a single particle studied in Chapter 2, the operator H is called the system’s
Hamiltonian. We thus have ˇ̌

 .t/
˛
D e�

i
„
tH
ˇ̌
 .0/

˛
; (4.17) psiteitH

and differentiating both sides of the previous equation we easily obtain the time-dependent Schrödinger
equation

i„@t
ˇ̌
 .t/

˛
D H

ˇ̌
 .t/

˛
: (4.18) Schrgen

Note that Eqs. (4.16) and (4.18) are actually equivalent, since integrating Eq. (4.18) we get (4.15) with
U.t/ given by Eq. (4.16). Observe also that from (4.17) we easily obtain the more general equationˇ̌

 .t/
˛
D e�

i
„
tH
ˇ̌
 .0/

˛
D e�

i
„
tH e

i
„
t0H

ˇ̌
 .t0/

˛
D e�

i
„
.t�t0/H

ˇ̌
 .t0/

˛
:

The above considerations motivate the following axiom:

Axiom 5. In the time interval between two measurements, the time evolution of the state
ˇ̌
 .t/

˛
of a

quantum system invariant under time translations is governed by the Schrödinger equation

i„@t
ˇ̌
 .t/

˛
D H

ˇ̌
 .t/

˛
;

where the Hamiltonian H is a self-adjoint and time-independent operator.

Remark. If the system is not invariant under time translations, the evolution of the state vector is still
governed by Schrödinger’s equation

i„@t
ˇ̌
 .t/

˛
D H.t/

ˇ̌
 .t/

˛
;

where the Hamiltonian H can now depend explicitly on time. �

If H has onlypoint spectrum, we know that there is an orthonormal basis of the Hilbert space H,
which we shall denote by ˚

jni W n D 1; 2; : : :
	
; (4.19) enbas

whose elements are eigenkets of H . We thus can write

H jni D Enjni;
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where En 2 R is the eigenvalue (i.e., energy) of the state jni. Note that En is real, as H is self-adjoint,
and that we are not assuming that the spectrum is non-degenerate, so that En might be equal to Em for
m ¤ n. Expanding the initial state

ˇ̌
 .0/

˛
in the energy basis (4.19) we obtain

ˇ̌
 .0/

˛
D

X
n

cnjni; with cn D hnj i:

By Eq. (4.17), if no measurement is performed on the system in the interval Œ0; t � the state
ˇ̌
 .t/

˛
at a

later time t will be given by

ˇ̌
 .t/

˛
D

X
n

cne�
i
„
tH
jni D

X
n

cne�
i
„
Ent jni:

This solution of the Schrödinger equation can be generalized to the case in which the continuous spec-
trum of H is non-empty. In this case H possesses a generalized orthonormal basis of eigenvectors˚

jni W n D 1; 2; : : :
	
[
˚
j˛i W ˛ 2 I

	
;

with I a suitable index set and

H jni D Enjni; H j˛i D E.˛/j˛i

(again, we are not assuming that E.˛/ ¤ E.ˇ/ for ˛ ¤ ˇ to allow for a degenerate continuous spec-
trum). Multiplying the generalized completeness relationX

n

jnihnj C

Z
I

d˛ j˛ij˛ih˛j D 1

from the right by
ˇ̌
 .0/

˛
we then obtain the expansion

ˇ̌
 .0/

˛
D

X
n

cnjni C

Z
I

d˛ c.˛/j˛i;

with
cn D hnj .0/i; c.˛/ D h˛j .0/i;

from which it follows (if no measurements are performed on the system in the interval Œ0; t �) that

ˇ̌
 .t/

˛
D

X
n

cne�
i
„
Ent jni C

Z
I

d˛ c.˛/e�
i
„
E.˛/t

j˛i:

Ehrenfest’s general formula (2.25) for the time derivative of the expectation value (average) of an
observable is valid in this more general setting, with the same proof as in Section (2.5). In particular, if
an observable A commutes with H its expectation value is time-independent.

Definition 4.5. A (time-independent) observable A is a constant of motion (or conserved quantity)
if it commutes with the Hamiltonian H .

Thus the expectation value of a constant of motion is time-independent. This is the quantum analogue
of the classical result according to which a dynamical variable whose Poisson bracket with the system’s
Hamiltonian vanishes is conserved, i.e., does not change with time along a trajectory.
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Remark. If an observable A is a constant of motion, the operator e�i"A is unitary for all real ", and it
commutes with H (since it is a function of A). The unitary mapping

j i 2H 7! j "i WD e�i"A
j i

is then a symmetry transformation whose generator is the observable A, in the sense that

A D i
d

d"

ˇ̌̌̌
"D0

e�i"A:

For instance, if j i is an eigenket of H with energy E so is j "i for all " 2 R, since

H j "i D He�i"A
j i D e�i"AH j i D Ee�i"A

j i � Ej "i:

Conversely, if R."/ (with " 2 R) is a one-parameter group of symmetry transformations, i.e., of unitary
operators commuting with the system’s Hamiltonian H satisfying

R."1/R."2/ D R."1 C "2/;

by Stone’s theorem
R."/ D e�i"A

with A self-adjoint. The operator A is obviously the generator of the symmetry group fR."/ W " 2 Rg,
and it commutes with H , since differentiating the equality

R."/H D HR."/

with respect to " and setting " D 0 we obtain

AH D HA:

Thus the generator of a one-parameter group of symmetry transformations is a constant of the motion.
This result can be considered as the quantum-mechanical analogue of Noether’s theorem in classical
Hamiltonian mechanics.

Consider, for instance, the space translations

 .x/ 7!  ".x/ D  .x � "/; " 2 R;

in the Hilbert space H D L2.R/ of a (spinless) particle moving in one-dimension. In other words,  ".x/
is the particle’s wave function for an observer whose origin is displaced by " with respect to the original
observer. If the motion is free, i.e., if

H D
P 2

2m
� �

„2

2m
@2x;

this one-parameter group of transformations is a symmetry, since clearly

@2x
�
 .x � "/

�
D .@2x /.x � "/; 8" 2 R:

The generator of this one-parameter of transformations is the operator A defined by

.A /.x/ D i@"
ˇ̌̌
"D0

 ".x/ D i@"
ˇ̌̌
"D0

 .x � "/ D �i 0.x/ H) A D �i@x D
P

„
: �

exe.centpot Exercise 4.3. If

H D
P2

2m
C V.R/; R WD

q
X21 CX

2
2 CX

2
3 ;

show that the angular momentum L D R � P is conserved.
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Solution. Using the canonical commutation relations and the properties of the commutator we have

ŒLk;P2� D
3X
lD1

ŒXiPj �XjPi ; P
2
l � D

3X
lD1

�
ŒXi ; P

2
l �Pj � ŒXj ; P

2
l �Pi

�
D

3X
lD1

�
2ıilPlPj � 2ıjlPlPi

�
D 2.PiPj � PjPi / D 0;

where .i; j; k/ is a cyclic permutation of .1; 2; 3/. In the same way one shows that

ŒLk; R
2� D 0;

and since V.R/ is a function of R2 this implies that ŒLk; V .R/� D 0.

Alternatively, using the explicit representation of the angular momentum components we have

ŒLk; V .R/� D �i„Œxi@xj � xj @xi ; V .r/� D �i„
�
xi
@V.r/

@xj
� xj

@V.r/

@xi

�
D �i„V 0.r/

�
xi
xj

r
� xj

xi

r

�
D 0:

4.5 Canonical quantization
sec.canquant

The final postulate of quantum mechanics deals with the passage from classical dynamical variables (in
particular, the system’s Hamiltonian) to quantum observables, and is basically a generalization of the
canonical quantization procedure outlined in Section 2.2:

Axiom 6. For a physical system with Cartesian coordinates q D .q1; : : : ; qN / and corresponding
canonically conjugate momenta p D .p1; : : : ; pN /, the quantum observables Qj and Pj representing
respectively the coordinate qj and its conjugate momentum pj must satisfy the canonical commutation
relations

ŒQj ;Qk� D ŒPj ; Pk� D 0; ŒQj ; Pk� D i„ıjk; j; k D 1; : : : ; N: (4.20) CCRrep

Moreover, the quantum observable representing a classical dynamical variable f .q;p/ is obtained from
f .q;p/ through the replacement

qi ! Qi ; pi ! Pi ;

with an appropriate ordering of the products of position and momentum operators involved.

Remark. The standard representation of the canonical commutation relations (CCR) (4.20) is the posi-
tion space representation

Qj D qj ; Pj D �i„
@

@qj
; j D 1; : : : ; N:

This representation is certainly not unique. For instance, an alternative representation of the CCR is the
momentum space representation

Qj D i„@pj ; Pj D pj ; j D 1; : : : ; N: �

Example 4.6. Hamiltonian of a charged spinless particle in an external electromagnetic field.
In the classical case, the Hamiltonian (in Cartesian coordinates) of a particle of charge e and mass

m moving in an external electromagnetic field with potentials �.r; t / and A.r; t / is given by

H D
1

2m

�
p � eA.r; t /

�2
C e�.r; t /:
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4.5 Canonical quantization

Hamilton’s equation of motion for the Cartesian position vector r is

Pr D �
@H

@p
D
1

m

�
p � eA.r; t /

�
;

so that the canonical momentum
p D mPrC eA.r; t /

in this case does not coincide with the particle’s linear momentum mPr. The canonical quantization
procedure applied to the classical Hamiltonian yields the quantum operator

H D
1

2m

�
P � eA.R; t /

�2
C e�.R; t /;

with R D .X1; X2; X3/. Note that in this case no ambiguities arise from the ordering of the operators,
since � depends only on position operators (which commute with one another) and Pi � eAi .R; t /
commutes with itself. It is also clear that H is self-adjoint if R and P are themselves self-adjoint and
the potentials � and A are real-valued, since

�.R; t /� D ��.R�; t /; A.R; t /� D A�.R�; t /

(exercise). Choosing the standard representation of the canonical commutation relations

R .r; t / D r .r; t /; P .r; t / D �i„r .r; t /;

we obtain the more explicit formula

H D
1

2m

�
i„r C eA.r; t /

�2
C e�.r; t /:

Expanding the square in the first term and using the canonical commutation relations we obtaina

�
i„r C eA

�2
�
�
i„r C eA

�
�
�
i„r C eA

�
D �„

2
r
2
C e2A2 C .i„er/ � AC i„eA � r

D �„
2
r
2
C e2A2 C 2i„eA � r C i„e.r � A/:

For example, in a constant magnetic field B we can take

A D
1

2
B � r;

and the electric potential � must be time independent by Maxwell’s field eeuation for r � B. Setting
.x; y; ´/ D .x1; x2; x3/ we then have

2r � A D @x.B2´ � B3y/C @y.B3x � B1´/C @´.B1y � B2x/ D 0;
2A � r D .B2´ � B3y/@x C .B3x � B1´/@y C .B1y � B2x/@´

D B1.y@´ � ´@y/C B2.´@x � x@´/C B3.x@y � y@x/ � B � .r � r/;

and therefore

H D �
„2

2m
r
2
� B �

eL
2m
C
e2

8m

�
B2r2 � .B � r/2

�
C e�.r/:

where
L D R � P D �i„r � r

121 © Artemio González López



THE POSTULATES OF QUANTUM MECHANICS

is the particle’s angular momentum. Note that

B2r2 � .B � r/2 D B2r2 sin2 � D B2r2?;

where � and r? respectively denote the angle between the vectors r and B and the component of r
along the plane perpendicular to B. In the case of a weak magnetic field we can drop the term quadratic
in B, thus arriving at the simpler expression

H D �
„2

2m
r
2
� B �

eL
2m
C e�.r/:

From this formula it follows that in quantum mechanics a spinless charged particle must have a mag-
netic moment

� D
eL
2m

due to its orbital motion. We stress that the above formula is only valid for a spinless particle, since
it does not take into account the contribution of the particle’s spin angular momentum to the magnetic
moment.

aIn the following formula .i„er/ � A denotes the composition of the multiplication operator by A with the operator
i„er, whereas i„e.r �A/ denotes the multiplication operator by i„er �A (where r �A is the divergence of the function A).
In other words, given a wave function  .r; t / we have

Œ.i„er/ � A�  D i„er � .A /; Œi„e.r � A/�  D i„e.r � A/ :

4.6 Compatible observables. Complete sets of commuting

observables
sec.compatobs

As mentioned in Section 2.9, two observables A and B are compatible if their commutator ŒA; B� van-
ishes identically. In fact, the discussion on Section (2.9) is valid without changes in the present, more
general, setting. In particular, the general uncertainty relation (2.48) and the time-energy uncertainty
relation (2.58)-(2.59), still hold, since they were established using operator methods. In particular, the
uncertainty relation (2.48) implies that in general two incompatible observables cannot be measured si-
multaneously with unlimited precision. In this section we shall examine in more detail the properties of
compatible observables, and explain how they can be used to label the (basis) states of a quantum system
in a convenient way.

In the finite-dimensional case, a self-adjoint operator is always diagonalizable through a real orthog-
onal transformation. Moreover, if two self-adjoint operators commute it is always possible to find an
orthonormal basis of eigenvectors common to both operators. Neither of these two results is true in gen-
eral in infinite dimension unless we impose some additional requirements. For example, a self-adjoint
operator is not diagonalizable unless it has no continuous spectrum. For this reason, in this section we
shall implicitly assume (unless otherwise stated) that the (self-adjoint) operators involved have only point
spectrum.

To begin with, let us suppose that two self-adjoint operators A and B commute. It is then easy to show
that the eigenspaces of A are invariant under B (and vice versa). Indeed, suppose that j i 2 ker.A�a/,
i.e.,

Aj i D aj i:

Applying the operator B to both sides of this equality and taking into account that AB D BA we obtain

aB
ˇ̌
 
˛
D B

�
A
ˇ̌
 
˛�
D A

�
B
ˇ̌
 
˛�
H) B

ˇ̌
 
˛
2 ker.A � a/;

as claimed.
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Suppose next that two commuting self-adjoint operators A and B have only point spectrum, and let

�p.A/ D
˚
an W n D 1; 2; : : :

	
:

As we have just shown, each eigenspace ker.A � an/ of A is invariant under B . The restriction of B to
ker.A � an/ is then a self-adjoint operator from ker.A � an/ into itself with only point spectrum. Thus
there exists an orthonormal basis nˇ̌

umn
˛
W m D 1; 2; : : : ; dn

o
of ker.A � an/ (where dn D dim ker.A � an/ can be finite or infinite) whose elements are eigenkets of
B , i.e.,

B
ˇ̌
umn
˛
D bmn

ˇ̌
umn
˛
; m D 1; 2; : : : ; dn: (4.21) Bbasis

Note that we also have
A
ˇ̌
umn
˛
D an

ˇ̌
umn
˛
; m D 1; 2; : : : ; dn; (4.22) Abasis

since by construction
ˇ̌
umn
˛
2 ker.A � an/ for all m. The setnˇ̌

umn
˛
W m D 1; 2; : : : ; dn; n D 1; 2; : : :

o
(4.23) ABbasis

is then an orthonormal basis of H. Indeed, this set is complete (since A has only point spectrum).
Moreover, two of its elements

ˇ̌
umn
˛

and
ˇ̌
u
q
p

˛
with p ¤ n are automatically orthogonal (since they are

eigenvectors of A with different eigenvalues an ¤ ap), while if p D n we have˝
umn
ˇ̌
uqn
˛
D ımq;

as
ˇ̌
umn
˛

and
ˇ̌
u
q
n

˛
belong by construction to an orthonormal basis of ker.A � an/. By Eqs. (4.21) and

(4.22), each basis vector
ˇ̌
umn
˛

is a simultaneous eigenket of both A and B with eigenvalues an and bmn ,
respectively. Thus the set (4.23) is an orthonormal basis of H whose elements are common eigenvectors
of the commuting operators A and B . We have thus proved the following important result:

If A and B are two compatible observables having only point spectrum, there is an orthonormal basis
of H whose elements are common eigenvectors of A and B .

Note that we can relabel the elements of the basis (4.23) asˇ̌
abI�

˛
(4.24) anbmk

where a 2 �p.A/, b 2 �p.B/,
ker.A � a/ \ ker.B � b/ ¤ f0g

(i.e., there are common eigenkets of A and B with respective eigenvalues a and b) and the additional
quantum number � ranges from 1 to the number of linearly independent simultaneous eigenvectors of A
and B with respective eigenvalues a and b.

The above result is easily generalized by induction to any finite number of compatible observables
A1; : : : ; AN (i.e., such that ŒAi ; Aj � D 0 for i D 1; j D 1; : : : ; N ) having only point spectrum. In other
words:

IfA1; : : : ; AN areN compatible observables having only point spectrum, there is an orthonormal basis
of H whose elements are common eigenvectors of the latter operators.

As in the case of two commuting operators, the elements of the orthonormal basis of common eigen-
vectors of the compatible observables fA1; : : : ; AN g can be labeled as

ja1 � � � aN I�i;
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where
Ai ja1 : : : aN I�i D ai ja1 : : : aN I�i; i D 1; : : : ; N

and the quantum number � runs from 1 to the dimension of the common eigenspace

ker.A1 � a1/ \ ker.A2 � a2/ \ � � � \ ker.AN � an/ �
N\
iD1

ker.Ai � ai /:

The previous considerations motivate the following definition:

defi.CSCO Definition 4.7. A complete set of commuting observables (or CSCO for short) is a set of N compat-
ible (i.e., mutually commuting) observables having only point spectrum whose common eigenspaces
are all one-dimensional.

Remark. It is usually understood that a CSCO is actually a minimal set fA;B; : : : g of compatible ob-
servables satisfying the previous definition, in the sense that if we remove one operator from the set the
resulting set is no longer a CSCO. �

If fA1; : : : ; AN g is a CSCO, there is a basis of the Hilbert space H whose elements are uniquely deter-
mined (up to a trivial phase factor) by the common eigenvalues a1; : : : ; aN of the observables Ai in the
set. In other words, the basis elements (4.25) can be labeled simply as

ja1 � � � aN i; (4.25) CSCOel

where no degeneracy label � is needed since the common eigenspaces of the operators A1; : : : ; AN
in the CSCO are by hypothesis one-dimensional. It is also clear that the converse of this statement is
also true (if the given set of compatible observables is also minimal). Recall that the spectrum of a
self-adjoint operator is finite or countable, and hence the common eigenvalues a1; : : : ; aN labeling the
basis states (4.25), usually called quantum numbers,, also make up a countable (usually discrete) set.
Moreover, by the very definition of a CSCO, these quantum numbers uniquely determine the basis state.
In other words, if fA1; : : : ; AN g is a CSCO then there is a unique basis (up to trivial phase factors) of
common eigenvectors of the latter operators.

Example 4.8. Consider a (spinless) particle moving in one dimension subject to a (smooth) potential
V.x/ such that

lim
x!˙1

V.x/ D C1;

whose Hilbert space is H D L2.R/. In this case the Hamiltonian

H D �
„2

2m
@2x C V.x/

is a self-adjoint operator having no continuous spectrum (see the discussion in Section 3.5). Hence
there exists an orthonormal basis of eigenvectors of H , i.e., of energy eigenstates. Since H is infinite-
dimensional, the spectrum of H is an infinite (countable) set. The spectrum is bounded below by
minV.x/, and it has no accumulation points (since any such point would belong to the continuous spec-
trum, which we know to be empty). By the Bolzano–Weierstrass theorem, �.H/ cannot be bounded
above (since otherwise it would have an accumulation point). Thus �.H/ is an infinite increasing
succession of energies

E1 < E2 < � � � < En < � � � ;

with E1 > minV.x/ and
lim
n!1

En D C1:
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Moreover, since the eigenvalues of a one-dimensional Hamiltonian are non-degenerate, for each energy
En there is only one eigenstate jEni satisfying

H jEni D EnjEni; hEnjEni D 1;

up to an irrelevant phase factor. Hence the set˚
jEni W n D 0; 1; : : :

	
is an orthonormal basis of H, and thus fH g is in this case a CSCO. Note that if either limit

lim
x!˙1

V.x/

(or both) is finite the continuous spectrum ofH is non-empty, and therefore fH g is no longer a CSCO.
In fact, in this case even if the point spectrum is also non-empty the set of genuine eigenfunctions ofH
is not complete in H, and thus there is no orthonormal basis of H all of whose elements are genuine
eigenfunctions of H .

Remark. It is sometimes convenient to relax the definition of CSCO, allowing for the commuting op-
erators involved to have a non-empty continuous spectrum. In this case, however, it is necessary to
use generalized orthonormal bases. For instance, with this more general definition the set fPx; Py ; P´g
is a CSCO for a particle moving in three-dimensional space, since the operators Px; Py ; P´ commute
with one another, and there is a generalized orthonormal basis labeled unambiguously by the common
eigenvalues px; py ; p´ of these operators, namely the momentum basisnˇ̌

pxpyp´
˛
WD .2 „/�3=2e

i
„

p�r
W p � .px; py ; p´/ 2 R3

o
: �

Exercise 4.4. If H D P2=.2m/, is the set fH;Px; Pyg a (generalized) CSCO for a particle moving in
three-dimensional space?

Solution. To begin with, the three operators H;Px; Py commute with one another. Secondly, a stateˇ̌
 
˛

is a common (generalized) eigenvector of H , Px , Py with eigenvalues E, px , and py provided
that

H
ˇ̌
 
˛
D E

ˇ̌
 
˛
; Px

ˇ̌
 
˛
D px

ˇ̌
 
˛
; Py

ˇ̌
 
˛
D py

ˇ̌
 
˛
:

Solving the last two equations we easily obtainˇ̌
 
˛
D f .´/ e

i
„
.xpxCypy/;

with f .´/ an arbitrary (smooth) function of the ´ variable only. Imposing that
ˇ̌
 
˛

be an eigenfunction
of H with eigenvalue E we obtain

H
ˇ̌
 
˛
D

1

2m
e

i
„
.xpxCypy/

�
.p2x C p

2
y/f .´/ � „

2f 00.´/
�
D Ef .´/e

i
„
.xpxCypy/;

or equivalently

f 00.´/C
1

„2

�
2mE � p2x � p

2
y

�
f .´/ D 0:

For this equation to have a bounded solution the factor multiplying f .´/ must be a non-negative num-
ber p2´=„

2, with

p´ D
q
2mE � p2x � p

2
y ;

in which case
f .´/ D ae

i
„
´p´ C be�

i
„
´p´ :
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Thus
ˇ̌
 
˛

is a linear combination of the two linearly independent functions

e
i
„
.xpxCypy˙´p´/:

Since the common eigenspaces of H , Px , and Py are two-dimensional, the set fH;Px; Pyg is not a
(generalized) CSCO.

Exercise 4.5. Let A be a constant of motion, and suppose that
ˇ̌
 .0/

˛
is an eigenstate of A. Examine

under what conditions j .t/i D j .0/i for all t (up to a trivial phase).

Solution. Since by hypothesis A commutes with the Hamiltonian H , H leaves invariant ker.A � a/,
where A

ˇ̌
 .0/

˛
D a

ˇ̌
 .0/

˛
. We can therefore construct an orthonormal basis of ker.A � a/ with

elements ˇ̌
EnI k

˛
;

where En ¤ Em if n ¤ m,
H
ˇ̌
EnI k

˛
D En

ˇ̌
EnI k

˛
and the index k ranges from 1 to the dimension of the common eigenspace ofH and A with respective
eigenvalues En and a. Since, by hypothesis,ˇ̌

 .0/
˛
D

X
n;k

cnk
ˇ̌
EnI k

˛
;

applying the time evolution operator e�
i
„
tH to

ˇ̌
 .0/

˛
we obtainˇ̌

 .t/
˛
D

X
n;k

cnke�
i
„
tEn
ˇ̌
EnI k

˛
D

X
n

e�
i
„
tEn

X
k

cnk
ˇ̌
EnI k

˛
:

Since by construction En ¤ Em for n ¤ m, the state
ˇ̌
 .t/

˛
will be time dependent unless the above

sum contains only a single energy, say Em, i.e., if H D Em on ker.A � a/. Indeed, if this is the caseˇ̌
 .0/

˛
D

X
k

ck
ˇ̌
EmI k

˛
H)

ˇ̌
 .t/

˛
D e�

i
„
tEm

X
k

ck
ˇ̌
EmI k

˛
D e�

i
„
tEm

ˇ̌
 .0/

˛
;

which as we know represents the same quantum state as
ˇ̌
 .0/

˛
. In particular, this will trivially occur

if the eigenvalue a of A is non-degenerate, since in this case ker.A � a/ is one-dimensional.

Remark. Another useful relaxation of the requirements for a set fA1; : : : ; AN g of mutually commuting
observables to be a CSCO arises if we drop the condition that there be an orthonormal basis of the
system’s Hilbert space H of joint eigenvectors of the operators Ai , demanding only that the common
eigenspaces to all of these operators be one-dimensional. In this way we can still label unambiguously
the common eigenvectors of the operators in the set using their eigenvalues (and no additional quantum
numbers), as in Eq. (4.25). Moreover, the set of common eigenvectors of the operators A1; : : : ; AN is an
orthonormal set. Indeed, two elements ja1 � � � aN i and ja01 � � � a

0
N i of this set differ at least in one of the

quantum numbers, say ai ¤ a0i , which implies that

ha1 � � � aN ja
0
1 � � � a

0
N i D 0;

as ja1 � � � aN i and ja01 � � � a
0
N i are eigenvectors of the self-adjoint operator Ai with different eigenvalues.

Thus the set of common eigenvectors ja1 � � � aN i of the compatible observables fA1; : : : ; AN g is an
orthonormal basis of the (closure of) the linear subspace H0 spanned by the common eigenvectors of the
latter operators. Since the elements of this basis are uniquely labeled by the eigenvalues of the operators
in the set fA1; : : : ; AN g, this set is a CSCO for the Hilbert space H0. �

© Artemio González López 126



4.6 Compatible observables. Complete sets of commuting observables

exa.Lcomrel Example 4.9. Consider the Hamiltonian of the hydrogen atom

H D
P2

2m
C

q2

4 "0R
;

where q > 0 is the proton’s charge and m is the electron’s mass. As we saw in Exercise 4.3, H
commutes with the three components Li of the angular momentum L. These components, however,
do not commute with each other. For instance,

ŒL1; L2� D ŒX2P3 �X3P2; X3P1 �X1P3� D ŒX2P3; X3P1�C ŒX3P2; X1P3�

D X2ŒP3; X3�P1 CX1ŒX3; P3�P2 D i„.X1P2 �X2P1/ D i„L3;

and in general

ŒLj ; Lk� D i„
3X
nD1

"jknLn; (4.26) Lcomm

where "jkn is the Levi–Civita antisymmetric symbol defined by

"ijk D

8̂<̂
:

1; .i; j; k/ even (cyclic) permutation of .1; 2; 3/
�1; .i; j; k/ odd permutation of .1; 2; 3/
0; otherwise.

On the other hand, each component Li of L commutes with L2 � L21 C L
2
2 C L

2
3. For instance,

ŒL1;L2� D ŒL1; L22 C L
2
3� D L2ŒL1; L2�C ŒL1; L2�L2 C L3ŒL1; L3�C ŒL1; L3�L3

D i„ .L2L3 C L3L2 � L3L2 � L2L3/ D 0:

Thus H , L2, and any component Li of L are a set of mutually commuting observables. We shall
show in Section 6.8 that the joint eigenspaces of these operators are one-dimensional. However, the set
fH;L2; Lig is not a CSCO, since the (closure of the) span of the common eigenvectors of the operators
H , L2 and Li is a proper subspace of the whole Hilbert space H. In fact, this subspace is the (closure
of the) subspace spanned by the bound states of the Hamiltonian H . It is properly contained in H,
since the spectrum of the hydrogen atom has also a continuous part Œ0;1/.
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5 The harmonic oscillator
chap.chap5

5.1 Power series solution
sec.anal

Consider a particle of massmmoving in one dimension subject to the potential V.x/, and suppose that x0
is a stable equilibrium with V 00.x0/ ¤ 0. Since the equilibrium x0 is stable it must be a local minimum
of the potential, and thus V 00.x0/ > 0. Assuming, w.l.o.g., that x0 D 0 and V.0/ D 0, we can the write1

V.x/ D
1

2
kx2 C o.x2/; k WD V 00.0/ > 0:

Thus in a sufficiently small neighborhood of the origin the classical Hamiltonian (in Cartesian coordi-
nates) is

H D
p2

2m
C
1

2
kx2; (5.1) harclass

and Hamilton’s canonical equations read

Px D
@H

@p
D
p

m
; Pp D �

@H

@x
D �kx;

which yield the following linear homogeneous second-order differential equation for the coordinate x:

m Rx C kx D 0:

As is well known, the general solution of this equation is

x D a cos.!x/C b sin.!x/;

with a; b arbitrary constants and

! WD

r
k

m
: (5.2) omclass

The motion is thus oscillatory, with circular frequency ! given by the previous equation.
Let us now study the quantum version of the previous problem, i.e., let us determine the energy spec-

trum of the one-dimensional quantum harmonic oscillator Hamiltonian

H D
P 2

2m
C
1

2
kX2 �

P 2

2m
C
1

2
m!2X2: (5.3) HOcq

Note that, by the previous discussion, this Hamiltonian will approximately describe the qualitative be-
havior of a particle subject to a potential with a stable equilibrium position if the particle’s energy is close
to the value of the potential at the equilibrium.

Since, in the notation of Section 3.5, the harmonic oscillator potential

V.x/ D
1

2
m!2x2 (5.4) VHOc

1By o.s/ we mean any function of the variable s such that o.s/=s tends to 0 as s ! 0. Intuitively, jo.s/j is “much smaller”
than jsj when s tends to zero.
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has limits V˙ D 1 at ˙1, from Example 3.3 we know that there is only point spectrum. Moreover,
�p.H/ is a countably infinite, discrete set strictly bounded below by minV.x/ D 0. In other words, we
can write

�p.H/ D fEn W n D 0; 1; : : : g;

with
0 < E0 < E1 < � � � < En < � � � ; with lim

n!1
En D1:

The allowed energies En can be determined from the Schrödinger equation

�
„2

2m
 00.x/C

1

2
m!2x2 .x/ D E .x/; (5.5) HOSch

which we can also write as

� 00.x/C
x2

`4
 .x/ D " .x/; " WD

2mE

„2
; (5.6) HOSchep2

with

` WD

r
„

m!

a constant with length dimensions. In order to further simplify Eq. (5.6), it is convenient to introduce the
dimensionless variable

s WD
x

`

and, with a slight abuse of notation, regard  as a function of s. Since

@x D
1

`
@s;

the function  .s/ satisfies the differential equation

 00.s/C .� � s2/ .s/ D 0; (5.7) HOSchep

where the prime now denotes differentiation with respect to s and

� WD `2" D
„

m!

2m

„2
E D

2E

„!
> 0 (5.8) laeqHO

a dimensionless parameter. For E to be in the spectrum of H , we need  .s/ to be square integrable on
the real line R (with respect to s, since x and s are proportional); in particular, we must have

lim
s!˙1

 .s/ D 0: (5.9) bcHO

To determine the behavior of the solutions of Eq. (5.7) at s D ˙1, we note that for jsj ! 1 the term
� is negligible compared to s2 . Hence for jsj ! 1 we must have

 00.s/ ' s2 .s/; (5.10) appSchosc

which suggests that (up to an irrelevant multiplicative constant)

 .s/ �
jsj!1

e�as
2
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5.1 Power series solution

for suitable a 2 R. Since

@se�as
2

D �2ase�as
2

; @2s e�as
2

D .4a2s2 � 2a/e�as
2

' 4a2s2e�as
2

;

substituting e�as
2

into Eq. (5.10) we obtain

4a2s2e�as
2

' s2e�as
2

H) a D ˙
1

2
:

This suggests that for jsj ! 1 the solutions of Eq. (5.7) behave as

j .s/j � e˙
s2

2 ;

or, more generally, as

j .s/j � jsjke˙
s2

2

with k a nonnegative integer, since ske˙
s2

2 is also an approximate solution of Eq. (5.10):

@2s

�
ske˙

s2

2

�
D
�
s2 C o.s2/

�
ske˙

s2

2

as jsj ! 1. From the boundary condition (5.9) we deduce that for  .s/ to be an eigenstate of the

harmonic oscillator Hamiltonian it must behave as ske�
s2

2 for some nonnegative integer k. This suggests
performing the change of variable

 .s/ D e�
s2

2 u.s/; (5.11) cvHO

under which Eq. (5.7) transforms into

u00.s/ � 2su0.s/C .� � 1/u.s/ D 0: (5.12) ueqHO

Since the coefficients of this linear differential equation are polynomials, from the theory of such equa-
tions it follows that its solutions are analytic functions on the whole real line, i.e., that u.s/ admits a
power series expansion

u.s/ D

1X
kD0

aks
k (5.13) useriesHO

with an infinite radius of convergence. The coefficients an can be computed (up to an overall irrelevant
multiplicative constant) by differentiating term by term the previous expansion and substituting into
Eq. (5.12). Proceeding in this way we obtain

1X
kD2

k.k � 1/aks
k�2
C

1X
kD0

.� � 1 � 2k/aks
k
D

1X
kD0

Œ.k C 1/.k C 2/akC2 C .� � 1 � 2k/ak� s
k
D 0;

which yields the following recursion relation for the coefficients ak:

akC2 D
2k C 1 � �

.k C 1/.k C 2/
ak; k D 0; 1; : : : : (5.14) rrHO

Since the latter equation relates akC2 with ak , the series of the even and odd coefficients

u0.s/ D

1X
kD0

a2ks
2k; u1.s/ D

1X
kD0

a2kC1s
2kC1 (5.15) ueuoHO

are each of them a solution of the differential equation (5.12), respectively even and odd in s. This is as
expected, since the harmonic oscillator potential is an even function of its variable, and thus it has a basis
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of solutions with well-defined parity (see Example 3.3). The recursion relations satisfied by the even and
odd coefficients can be easily obtained from Eq. (5.14). Indeed, calling

bik D a2kCi ; with i D 0; 1;

we have

ui .s/ D

1X
kD0

bij s
2jCi

and

bikC1 D a2kCiC2 D
4k C 2i C 1 � �

.2k C i C 1/.2k C i C 2/
a2kCi D

4k C 2i C 1 � �

2.k C 1/.2k C 2i C 1/
bik : (5.16) ueorr

From Eq. (5.14) (or the previous equation) it also follows that if � is not an odd positive integer neither
series (5.15) terminates. In this case we have

bi
kC1

bi
k

D
4k C 2i C 1 � �

2.k C 1/.2k C 2i C 1/
'

k!1

1

k
: (5.17) bikp1k

On the other hand, if

es
2

D

1X
kD0

s2k

kŠ
�

1X
kD0

cks
2k

then
ckC1

ck
D

1

k C 1
'

k!1

1

k
:

It is thus to be expected that when � is not an odd positive integer the solutions of Eq. (5.12) behave as

jui .s/j �
jsj!1

es
2

;

and therefore
j .i/.s/j �

jsj!1
e
s2

2 ;

where
 .i/.s/ D ui .s/e�

s2

2

is the solution of the Schrödinger equation (5.7) with parity .�1/i . More rigorously, it can be shown that
in this case for sufficiently large jsj we have

j .i/.s/j > C jsjie
s2

4 ; i D 0; 1I (5.18) HOest

see Exercise 5.1 for details. Hence when � is not an odd positive integer neither  .0/ nor  .1/ are
normalizable. We thus conclude that when � is not an odd positive integer Eq. (5.5) has no square
integrable solutions.

Suppose, on the other hand, that

� D 2nC 1; with n D 0; 1; : : : ;

is a positive odd integer. If n D 2m (with m D 0; 1; : : : ) is even, then � D 4mC 1, and the recursion
relation (5.16) reads

bikC1 D
2.k �m/C i

.k C 1/.2k C 2i C 1/
bik; i D 0; 1:
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Thus in this case the series for the odd solution u1 does not terminate, whence it follows (reasoning
as above) that this solution is not normalizable. On the other hand, the even solution u0 reduces to a
polynomial of degree 2m, since from the recursion relation with k D m we obtain

b0mC1 D 0;

which in turn implies that b0
k
D 0 for all k > mC 1. In this case

b0kC1 D �
2.m � k/

.2k C 1/.k C 1/
b0k;

and therefore (taking b00 D 1)

b0j D
mŠ

.m � j /Š

.�1/j 2j

.2j � 1/ŠŠj Š
D

mŠ

.m � j /Š

.�1/j 22j

.2j /Š
; 0 6 j 6 m;

whence

u0.s/ D

mX
jD0

.�1/j
mŠ

.m � j /Š

.2s/2j

.2j /Š
� P2m.s/: (5.19) uosol

Hence the corresponding solution

 .0/.s/ D u0.s/e�s
2=2
D P2m.s/e�s

2=2

of the Schrödinger equation (5.7) is normalizable, and � D 4m C 1 is therefore an eigenvalue of the
latter equation. From Eq. (5.8) we then conclude that the numbers

E2m D

�
2mC

1

2

�
„!; m D 0; 1; : : : ;

are eigenvalues of the original Schrödinger equation (5.5), with corresponding (unnormalized) eigen-
functions

'2m.x/ D P2m.s/e�s
2=2; s D

x

`
D

r
m!

„
x:

Likewise, when � D 2nC 1 and n D 2mC 1 withm D 0; 1; : : : is odd, we have � D 4mC 3 and the
recursion relation (5.16) becomes

bikC1 D �
2.m � k/C 1 � i

.k C 1/.2k C 2i C 1/
bik; i D 0; 1:

In this case the even solution u0 is an infinite series, and therefore is not normalizable, while the odd one
u1 reduces to a polynomial of degree 2mC 1. Indeed, since

b1kC1 D �
2.m � k/

.k C 1/.2k C 3/
bik;

we have bij D 0 for j > m, and (taking b10 D 1)

b1j D
mŠ

.m � j /Š

.�1/j 2j

.2j C 1/ŠŠj Š
D

mŠ

.m � j /Š

.�1/j 22j

.2j C 1/Š
; 0 6 j 6 m:

Hence

u1.s/ D

mX
jD0

.�1/j
mŠ

.m � j /Š

.2s/2jC1

.2j C 1/Š
� P2mC1.s/; (5.20) uesol

so that
 .1/.s/ D u1.s/e�s

2=2
D P2mC1.s/e�s

2=2

133 © Artemio González López



THE HARMONIC OSCILLATOR

is a normalizable solution of the Schrödinger equation (5.7) with eigenvalue � D 4mC 3. By Eq. (5.8),
the numbers

E2mC1 D

�
2mC

3

2

�
„!; m D 0; 1; : : : ;

are eigenvalues of the original Schrödinger equation (5.5), with corresponding (unnormalized) eigen-
functions

'2mC1.x/ D P2mC1.s/e�s
2=2; s D

r
m!

„
x:

We have thus established the following important result:

The eigenvalues of the Schrödinger equation (5.5) are the numbers

En D

�
nC

1

2

�
„!; n D 0; 1; : : : ; (5.21) EnHO

with corresponding (unnormalized) eigenfunctions

'n.x/ D Pn.s/e�s
2=2; s D

r
m!

„
x;

where Pn.s/ is the n-th degree polynomial defined by Eqs. (5.19)-(5.20).

exe.HOest Exercise 5.1. Prove Eq. (5.18).

Solution. Indeed, suppose that � is not an odd positive integer, so neither solution ui .x/ (with i D 0; 1)
reduces to a polynomial. From Eq. (5.17) we then deduce that

bi
kC1

bi
k

D
ckC1

ck

4k C 2i C 1 � �

2.2k C 2i C 1/
¤ 0 ; 8k D 0; 1; : : : : (5.22) 3bs

Since

lim
k!1

4k C 2i C 1 � �

2.2k C 2i C 1/
D 1;

if ˛ 2 .0; 1/ there exists an integer N > 0 such that

4k C 2i C 1 � �

2.2k C 2i C 1/
> ˛; 8k > N:

It follows that
bi
kC1

bi
k

> ˛
ckC1

ck
> 0; 8k > N;

and since bi
kC1

=bi
k

is positive for sufficiently large k we can assume that

bij

biN
D

bij

bij�1
� � �
biNC1

biN
>
˛cj

cj�1
� � �
˛cNC1

cN
D ˛j�N

cj

cN
; 8j > N:

This implies that

1

biN

1X
jDNC1

bij s
2j
D

1

biN

�
s�iui .s/ � pi .s/

�
>
˛�N

cN

1X
jDNC1

cj .˛s
2/j D

˛�N

cN

�
e˛s

2

� q.s/
�
;
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5.2 Hermite polynomials

with pi .s/ and q.s/ polynomials of degree up to 2N in s. We can rewrite the previous relation as

1

biN
s�iui .s/ >

˛�N

cN

�
e˛s

2

� hi .s/
�
;

where again hi is a polynomial of degree up to 2N in s. On the other hand, since ˛ > 0 for sufficiently
large jsj we have

jhi .s/j <
1

2
e˛s

2

; jsj � 1;

and therefore
1

biN
s�iui .s/ >

˛�N

2cN
e˛s

2

; jsj � 1;

which is easily seen to imply (since the RHS is positive) that

ˇ̌
ui .s/

ˇ̌
>
jbiN j

2˛N cN
jsjie˛s

2

� C˛jsj
ie˛s

2

;

with

C˛ D
jbiN j

2˛N cN
> 0:

It follows that ˇ̌
 .i/.s/

ˇ̌
D jui .s/je�

s2

2 > C˛jsj
ie.˛�

1
2
/s2 ;

from which Eq. (5.18) follows taking ˛ D 3=4.

5.2 Hermite polynomials
sec.Hermite

The polynomials Pn.s/ defined by Eqs. (5.19)-(5.20) are proportional to the classical Hermite polyno-
mials2 Hn.s/, defined by

Hn.s/ D

bn=2cX
kD0

.�1/knŠ

kŠ.n � 2k/Š
.2s/n�2k; (5.23) Hndef

where bxc denotes the integer part of the real number x (i.e., the largest integer less than or equal to x).
Indeed, if n D 2mC i with i D 0; 1 we have

Pn.s/ D

mX
jD0

.�1/j
mŠ

.m � j /Š

.2s/2jCi

.2j C i/Š
D 2�i

mX
kD0

.�1/m�k
mŠ

kŠ.2mC i � 2k/Š
.2s/2mCi�2k

D 2�i .�1/m
mX
kD0

.�1/k
mŠ

kŠ.n � 2k/Š
.2s/n�2k D 2�i .�1/m

mŠ

nŠ
Hn.s/:

Hence for all n D 0; 1; : : : the unnormalized eigenfunction of the harmonic oscillator Hamiltonian (5.3)
with eigenvalue

�
nC 1

2

�
„! can be taken as

'n.x/ D Hn.s/e�s
2=2; s D

r
m!

„
x:

The functions 'n.x/ with n D 0; 1; : : : are orthogonal to each other (since they are eigenfunctions with
different eigenvalues of the self-adjoint operatorH ), but they are not normalized. In fact, from Eq. (5.25)

2See exercises 5.2-5.4 for the main properties of the Hermite polynomials.
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in Exercise 5.25 we easily obtainZ 1
�1

dx
ˇ̌
'n.x/

ˇ̌2
D

Z 1
�1

dx e�s
2

H 2
n .s/ D `

Z 1
�1

ds e�s
2

H 2
n .s/ D 2

nnŠ
p
 `:

It follows that the functions

 n.x/ D
�m!
 „

�1=4
.2nnŠ/�1=2Hn.s/e�s

2=2; s D

r
m!

„
x: (5.24) psinHOnorm

make up an orthonormal set of eigenfunctions of H , with

H n D

�
nC

1

2

�
„! n:

From the general discussion in Section 3.5 it then follows that the eigenfunctions (5.24) are an orthonor-
mal basis of the Hilbert space L2.R/.

The generating function of the Hermite polynomials is defined by

F.x; t/ WD

1X
nD0

Hn.x/
tn

nŠ
:

This function can be easily evaluated using the definition (5.23) of the Hermite polynomials. Indeed,

F.x; t/ D

1X
nD0

bn=2cX
kD0

.�1/k

kŠ.n � 2k/Š
.2x/n�2k tn D

1X
mD0

.2tx/m

mŠ

1X
kD0

.�t2/k

kŠ
D e2txe�t

2

;

where in the second equality we have changed the summation indices .n; k/ to .m; k/ with m D n� 2k.
We thus have

F.x; t/ D e2tx�t
2

:

The main properties of Hermite polynomials can be readily established with the help of the generating
function, as we shall show in the following exercises.

exe.normHn Exercise 5.2. Show that Z 1
�1

dx e�x
2

Hn.x/Hm.x/ D 2
nnŠ
p
  ınm: (5.25) normHn

Solution. Let us compute the integral

I.s; t/ WD

Z 1
�1

dx e�x
2

F.x; s/F.x; t/ D

1X
m;nD0

sn

nŠ

tm

mŠ

Z 1
�1

dx e�x
2

Hn.x/Hm.x/

using the previous explicit formula for the generating function:

I.s; t/ D

Z 1
�1

dx e�x
2

e2sx�s
2

e2tx�t
2

D e�.s
2Ct2/

Z 1
�1

dx e�x
2C2.sCt/x

D e�.s
2Ct2/

Z 1
�1

dx e�.x�s�t/
2

e.sCt/
2

D e2st
Z 1
�1

dx e�.x�s�t/
2

D
p
  e2st D

p
 

1X
nD0

.2st/n

nŠ
�

1X
m;nD0

2n
p
 

nŠ
ınms

ntm:

Equating the coefficient of sntm in both expressions for I.s; t/ we immediately obtain Eq. (5.25).
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exe.HP2 Exercise 5.3. Prove Rodrigues’ formula

Hn.x/ D .�1/
nex

2

@nx.e
�x2/: (5.26) RodHn

Solution. From the definition of the generating function it follows that

Hn.x/ D @
n
t F.x; t/

ˇ̌̌
tD0
D @nt e2tx�t

2
ˇ̌̌
tD0
D @nt

�
ex
2

e�.x�t/
2
� ˇ̌̌
tD0
D ex

2

@nt e�.x�t/
2
ˇ̌̌
tD0

D .�1/nex
2

@n� e��
2
ˇ̌̌
�Dx
D .�1/nex

2

@nx.e
�x2/:

exe.HP3 Exercise 5.4. By differentiating the generating function with respect to x and t , prove the identities

H 0n.x/ D 2nHn�1; HnC1.x/ D 2xHn.x/ � 2nHn�1.x/ .n D 0; 1; : : : /: (5.27) rrHerm

Combine these identities to deduce the second-order differential equation satisfied by Hn.x/.

Solution. Differentiating the explicit formula for the generating function with respect to x we obtain

@xF.x; t/ D @xe2xt�t
2

D 2tF.x; t/ D 2

1X
nD0

Hn.x/

nŠ
tnC1 D 2

1X
nD1

Hn�1.x/

.n � 1/Š
tn:

On the other hand,

@xF.x; t/ D

1X
nD0

H 0n.x/

nŠ
tn;

where the prime denotes differentiation with respect to x. Equating the coefficient of tn in both ex-
pressions for @xF.x; t/ we easily obtain the first recursion relation (5.27).

Likewise, differentiating now with respect to t we obtain

@tF.x; t/ D @te2xt�t
2

D 2.x � t /F .x; t/ D 2x

1X
nD0

Hn.x/

nŠ
tn � 2

1X
nD0

Hn.x/

nŠ
tnC1

D

1X
nD0

2

nŠ

�
xHn.x/ � nHn�1.x/

�
tn

and

@tF.x; t/ D

1X
nD1

Hn.x/

.n � 1/Š
tn�1 D

1X
nD0

HnC1.x/

nŠ
tn:

The second recursion relation in Eq. (5.27) follows immediately imposing the equality of the coefficient
of tn in both expressions for @tF.x; t/.

Using the second relation (5.27) to express Hn�1 in terms of Hn and HnC1 we obtain

H 0n.x/ D 2xHn.x/ �HnC1.x/

H) H 00n .x/ D 2xH
0
n.x/C 2Hn.x/ �H

0
nC1.x/ D 2xH

0
n.x/C 2Hn.x/ � 2.nC 1/Hn.x/

D 2xH 0n.x/ � 2nHn.x/;
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where in the penultimate equality we have used the first relation (5.27) with nC 1 instead of n. Thus
the sought-for differential equation is

H 00n .x/ � 2xH
0
n.x/C 2nHn.x/ D 0:

As expected, this is just Eq. (5.12) with � D 2nC 1.

5.3 Creation and annihilation operators. Algebraic solution
sec.algsol

In this section we shall rederive the spectrum of the harmonic oscillator Hamiltonian (5.3) using an
abstract, algebraic method that is in fact of interest in itself as it is applicable in many other important
physical problems. To begin with, let us use the dimensionless observables

OX D
X

`
D

r
m!

„
X; OP D

`P

„
D

P
p
„m!

; (5.28) hXPdef

in terms of which the Hamiltonian reads

H D
1

2
„!

�
OX2 C OP 2

�
� „! OH:

The commutator of the operators OX and OP follows easily from the canonical commutation relation for
X and P :

Œ OX; OP � D
1

„
ŒX; P � D i: (5.29) commxp

With a view of factoring the dimensionless Hamiltonian OH , we next define the operators

a D
1
p
2
. OX C i OP /; a� D

1
p
2
. OX � i OP /; (5.30) Adef

which obey the commutation relation

Œa; a�� D
1

2
Œ OX C i OP ; OX � i OP � D

i
2

�
�Œ OX; OP �C Œ OP ; OX�

�
D �iŒ OX; OP � D 1: (5.31) commAAdag

The operators a and a� are respectively called the harmonic oscillator’s annihilation and creation oper-
ators. The dimensionless Hamiltonian OH is easily expressed in terms of the latter operators. Indeed,

a�a D
1

2
. OX � i OP /. OX C i OP / D

1

2

�
OX2 C OP 2 C iŒ OX; OP �

�
D
1

2

�
OX2 C OP 2 � 1

�
;

and similarly

aa� D a�aC Œa; a�� D a�aC 1 D
1

2

�
OX2 C OP 2 C 1

�
;

whence

OH D a�aC
1

2
D aa� �

1

2
: (5.32) Haadag
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In particular, since the operator a�a is positive semidefinite, from the last equation it follows3 that the
spectrum of OH is contained in the half line Œ1=2;1/.

The determination of �.H/ is based on the commutation relations of this operator —or, equivalently,
its dimensionless counterpart OH— with the operators a and a�, namely

Œa; OH� D Œa; a�a� D Œa; a��a D a; Œa�; OH� D �Œa; OH�� D �a�: (5.33) AHcomm

Let us further assume that OH has at least an eigenvalue, since in the present context (i.e., when the
operators X and P are defined in the usual way as multiplication by x and �i„@x) we know this is
indeed the case. Denoting by � this eigenvalue and by j i any of its corresponding (not necessarily
normalized) eigenvectors, from the first commutation relation in Eq. (5.33) we have

Œa; OH�j i D a
�
OH j i

�
� OH

�
aj i

�
D .� � OH/aj i D aj i H) OH

�
aj i

�
D .� � 1/.aj i/:

Hence either aj i D 0, or aj i is an eigenvector of OH with eigenvalue � � 1. In other words:

Acting with a on an eigenvector of OH either lowers the eigenvalue by 1 or produces the zero vector.

Note also that aj i2 D ˝a ˇ̌a ˛ D ˝ ˇ̌a�aˇ̌ ˛ D � ˇ̌̌̌ OH � 1
2

ˇ̌̌̌
 

�
D

�
� �

1

2

� 2;
so that

aj i D 0 () � D
1

2
: (5.34) Apsi0

Thus if � is not a half integer (i.e., one half of an odd integer) then the vectors

anj i; n D 0; 1; : : : ;

are all eigenvectors of OH with arbitrarily low eigenvalues � � n. Since, as we saw above, the spectrum
of OH is bounded below by 1=2, this is impossible. We conclude that � D nC 1

2
for some nonnegative

integer n, and that the vector
j 0i WD a

n
j i

is an eigenvector of OH with eigenvalue 1=2. In particular, the the only possible eigenvalues of OH are the
positive half integers nC 1

2
with n D 0; 1; : : : :

Let us next prove that all positive half integers are eigenvalues of OH . To this end, consider the action
of the operator a� on an eigenvector j i of OH with eigenvalue �. Using now the second equation (5.33)
we obtain

Œa�; OH�j i D a�
�
OH j i

�
� OH

�
a�j i

�
D .�� OH/a�j i D �a�j i H) OH

�
a�j i

�
D .�C1/.a�j i/:

On the other hand,a�j i2 D ˝a� ˇ̌a� ˛ D ˝ ˇ̌aa�ˇ̌ ˛ D � ˇ̌̌̌ OH C 1

2

ˇ̌̌̌
 

�
D �C

1

2
> 1;

3Indeed, if j i is any state then˝
a�a

˛
 
D
aj i2 > 0 H)

˝
OH
˛
 
D
˝
a�a

˛
 
C
1

2
>
1

2
:

Applying this inequality to an eigenstate j i of OH with eigenvalue � we immediately obtain the inequality � > 1=2.
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since the spectrum of OH is bounded below by 1=2. We conclude that the vector a�j i is an eigenvector
of OH with eigenvalue �C 1. In other words,

Acting with a� on an eigenvector of OH raises the eigenvalue by 1.

It immediately follows from this statement (applied to the eigenvector j 0i) that the vectors

j ni WD
�
a�
�n
j 0i; n D 0; 1; : : : : (5.35) psinunn

are eigenvectors of OH with corresponding eigenvalues

�n D nC
1

2
; n D 0; 1; : : : :

Hence the point spectrum of OH is the infinite discrete set�
nC

1

2
W n D 0; 1; : : :

�
: (5.36) specHOA

Summarizing:

Theorem 5.1. If the point spectrum �p. OH/ of OH is nonempty, then

�p. OH/ D

�
nC

1

2
W n D 0; 1; : : :

�
:

Moreover, if j 0i is a (not necessarily normalized) eigenvector of OH with eigenvalue �0 D 1=2, then

j ni D
�
a�
�n
j 0i; n D 0; 1; : : : ;

is an eigenvector with eigenvalue �n D nC 1
2

.

In particular, since the harmonic oscillator Hamiltonian H is equal to „! OH , from the latter theorem it
immediately follows that the spectrum of H is given by Eq. (5.21).

Remark. In view of the above, it is natural to interpret the spectrum of the harmonic oscillator in the
following intuitive way. The eigenstate jni contains n quanta of energy „!, so that the ground state j0i
is regarded as the vacuum (i.e., it does not contain any energy quanta, although it has a nonzero vacuum
energy „!=2). The annihilation operator then destroys (i.e., “annihilates”) one of these energy quanta,
thus lowering the system’s energy by „!. On the other hand, the creation operator adds an energy
quantum to the system, i.e., it “creates” a quantum of energy „!. In fact, this interpretation of the
spectrum of the harmonic oscillator operator is largely adopted in quantum field theory, where the energy
quanta are regarded as particles (that, according to the principles of special relativity, can be created or
destroyed). �

The sequence of eigenvectors (5.35) generated by an eigenket j 0i of OH with eigenvalue 1=2 —i.e.,
by one of the ground states of OH— is not normalized, even if j 0i is. It can be easily normalized by
taking into account that if j i is a normalized eigenvector of OH with eigenvalue �n�1 D n � 1

2
(with

n D 1; 2; : : : ) then

˝
a� 

ˇ̌
a� 

˛
D
˝
 
ˇ̌
aa�

ˇ̌
 
˛
D

�
 

ˇ̌̌̌
OH C

1

2

ˇ̌̌̌
 

�
D

�
�n�1 C

1

2

�
h j i D nh j i D n;
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and thus
1
p
n
a�j i

is a normalized eigenvector with eigenvalue �n D nC 1
2

. Therefore if j 0i � j0i is normalized so are

j1i WD a�j0i; j2i D
1
p
2
a�j1i D

1
p
2
.a�/2j0i; j3i D

1
p
3
a�j2i D

1
p
3Š
.a�/3j0i; : : : ;

with respective eigenvalues
3

2
;

5

2
;

7

2
; : : : :

It follows that the vectors

jni WD
1
p
nŠ
.a�/nj0i; n D 0; 1; : : : ; (5.37) ketndef

where j0i is a normalized eigenvector of OH with eigenvalue 1=2, are normalized and satisfy

OH jni D

�
nC

1

2

�
jni:

Although it is not possible to determine the degeneracy of the eigenvalues of OH from the commutation
relation (5.31) alone, it is straightforward to prove the following general result:

The degeneracy (finite or infinite) of all the eigenvalues (5.36) of OH is the same. In other words,

dim ker. OH � �n/ D dim ker. OH � �m/; 8n;m D 0; 1; : : : :

Proof. Obviously, it suffices to show that

dim ker. OH � �n/ D dim ker. OH � �0/; 8n 2 N:

To this end, note that the operator .a�/n maps ker.A � �0/ injectively into ker.A � �n/, since applying
a� to an eigenvector j i of OH with eigenvalue � produces an eigenvector with eigenvalue � C 1 (in
particular, a non-zero vector). This shows that

dim ker. OH � �n/ 6 dim ker. OH � �n/:

Likewise, an maps ker.A � �n/ injectively into ker.A � �0/, since applying a to an eigenvector j i of
OH with eigenvalue � > 1=2 produces an eigenvector with eigenvalue � � 1. (Recall that if j i is an

eigenvector of OH with eigenvalue � then aj i cannot vanish unless � D 1=2.) Thus

dim ker. OH � �n/ 6 dim ker. OH � �0/;

which together with the previous inequality completes the proof. �

The action of the creation and annihilation operators on the normalized eigenvectors jni is also
straightforward to determine. To begin with, we have

a�jni D
1
p
nŠ
.a�/nC1j0i D

p
nC 1 jnC 1i; n D 0; 1; : : : :
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To compute ajni, note that applying a to the previous equality we obtain

aa�jni D

�
OH C

1

2

�
jni D .nC 1/jni D

p
nC 1 ajnC 1i; n D 0; 1; : : : ;

whence
ajnC 1i D

p
nC 1 jni; n D 0; 1; : : : ;

or equivalently
ajni D

p
n jn � 1i; n D 1; 2; : : : :

We have thus shown that

a�jni D
p
nC 1 jnC 1i; ajni D

p
n jn � 1i; n D 0; 1; : : : : (5.38) aadagn

(Note that, although j�1i is not defined, the term
p
n=2 jn�1i in the previous equations vanishes when

n D 0 due to the factor
p
n=2.) From these equations and the definition (5.30) of the operators a and a�

it is immediate to deduce the action of OX and OP on the eigenvector jni:XPketn

OX jni D
1
p
2

�
aC a�

�
jni D

q
n
2
jn � 1i C

q
nC1
2
jnC 1i; (5.39a) Xketn

OP jni D
i
p
2

�
a� � a

�
jni D i

�q
nC1
2
jnC 1i �

q
n
2
jn � 1i

�
: (5.39b) Pketn

Hence the matrix elements of the position and momentum representation with respect to the orthonormal
basis (5.37) are given by

Xjn �
˝
j
ˇ̌
X
ˇ̌
n
˛
D

r
„

m!

˝
j
ˇ̌
OX
ˇ̌
n
˛
D

r
„

m!

 r
n

2
ıj;n�1 C

r
nC 1

2
ıj;nC1

!
;

Pjn �
˝
j
ˇ̌
P
ˇ̌
n
˛
D
p
„m!

˝
j
ˇ̌
OP
ˇ̌
n
˛
D i
p
„m!

 
�

r
n

2
ıj;n�1 C

r
nC 1

2
ıj;nC1

!
:

The previous formulas were at the basis of Heisenberg’s early formulation of quantum mechanics known
as matrix mechanics.

Exercise 5.5. Compute the average value and the uncertainty of the position and momentum of a
harmonic oscillator in the energy eigenstate jni.

Solution. To begin with, from Eqs. (5.39) it immediately follows that the average values of OX and OP
vanish in the state jni: ˝

OX
˛
D
˝
n
ˇ̌
OX
ˇ̌
n
˛
D 0;

˝
OP
˛
D
˝
n
ˇ̌
OP
ˇ̌
n
˛
D 0:

Since X and P are respectively proportional to OX and OP , we also have˝
X
˛
D
˝
P
˛
D 0:

It follows that
.� OX/2 D

˝
OX2
˛
D
 OX jni2 D n

2
C
nC 1

2
D nC

1

2
;

since the states jn � 1i and jnC 1i are orthogonal and of unit norm. Similarly,

.� OP /2 D
˝
OP 2
˛
D
 OP jni2 D n

2
C
nC 1

2
D nC

1

2
:
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From Eq. (5.28) we then obtain

�X D `� OX D

r
nC

1

2
`; �P D

„

`
� OP D

r
nC

1

2

„

`
:

In particular, the uncertainty product �X �P in the eigenstate jni is given by

�X �P D

�
nC

1

2

�
„;

in agreement with Heisenberg’s uncertainty principle. Note also that for n D 0 the uncertainty product
is exactly „=2, and thus the lowest energy eigenstate j0i is a minimum uncertainty wave function.

All the results proved so far in this section did not rely on any particular realization of the annihilation
and creation operators, but only on the commutation relation (5.31) and Eq. (5.32) for the Hamiltonian.
The results that we shall derive next combine the general algebraic approach outlined above with the
standard realization of the operators OX and OP , namely

OX D
X 

`
D
x

`
 D s ; OP D

`

„
P D �i`@x D �i@s ;

where s is again the dimensionless variable x=` and  .s/ is an arbitrary wave function. In other words,
we are dealing with the specific realization

OX D s; OP D �i @s: (5.40) hXPreal

To begin with, let us find all ground states of the system, namely all solutions  0.s/ of the eigenvalue
equation

OH 0.s/ D
1

2
 0.s/:

From the previous discussion (cf., in particular, Eq. (5.34)), we know that  0.s/ must be annihilated by
the operator a, i.e., must satisfy the equation

a 0.s/ D 0:

By Eqs. (5.30) and (5.40), this is equivalent to the first-order linear differential equation

 00.s/C s 0.s/ D 0;

whose general solution is

 0.s/ D N e�
s2

2 ;

where N is a nonzero complex constant. Imposing that  0 be normalized we obtainZ 1
�1

dx
ˇ̌
 0.s/

ˇ̌2
D `

Z 1
�1

ds
ˇ̌
 0.s/

ˇ̌2
D jN j2`

p
  D 1 H) N D `�1=2 �1=4 D

�m!
 „

�1=4
;

up to a trivial global phase. We conclude that the ground state

 0.s/ D
�m!
 „

�1=4
e�

s2

2 ;

is non-degenerate, from which it follows by the previous framed result that all energy levels are non-
degenerate. This is of course consistent with the result we obtained in Section 3.5 for a general one-
dimensional potential with V˙ D1.
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Once the ground state  0 D j0i is known, the n-th excited state  n D jni can be computed from
Eq. (5.37), which in the representation (5.40) for the position and momentum operators reads:

 n.s/ D .2
nnŠ/�1=2.s � @s/

n 0.s/ D N.2
nnŠ/�1=2.s � @s/

ne�
s2

2

Taking into account that

e
s2

2 @s e
�s2

2 D @s � s;

and hence
.@s � s/

n
D e

s2

2 @ns e
�s2

2 ;

we obtain

 n.s/ D N.�1/
n.2nnŠ/�1=2e

s2

2 @ns

�
e�s

2
�
D

�m!
 „

�1=4
.2nnŠ/�1=2Hn.s/e�

s2

2 ;

where we have used Rodrigues’ formula (5.26) for the n-th Hermite polynomial Hn.s/. This is exactly
Eq. (5.24) for the n-th normalized eigenstate obtained in the previous section through the power series
method.

In fact, one can easily establish most of the identities satisfied by the classical Hermite polynomi-
als proved in the previous section using the operator techniques developed above. For instance, from
Eq. (5.38) it easily follows that

a n D
N
p
2
.2nnŠ/�1=2.s C @s/

�
Hne�s

2=2/ D
N
p
2
.2nnŠ/�1=2H 0ne�s

2=2

D
p
n n�1 D

N
p
2

�
2.n�1/.n � 1/Š

��1=2
Hn�1e�s

2=2
H) H 0n D 2nHn�1:

Likewise,

a� n D
N
p
2
.2nnŠ/�1=2.s � @s/

�
Hne�s

2=2/ D
N
p
2
.2nnŠ/�1=2

�
2sHn �H

0
n/e
�s2=2

D
p
nC 1 nC1 D

N
p
2

�
2.nC1/.nC 1/Š

��1=2
HnC1e�s

2

H) �H 0n C 2sHn D HnC1:

Combining both equations we obtain

H 0nC1 D 2.nC 1/Hn D �H
00
n C 2sH

0
n C 2Hn H) H 00n � 2sH

0
n C 2nHn D 0;

which is the differential equation satisfied by the Hermite polynomials (cf. Exercise 5.4).
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6 Three-dimensional problems

chap.chap6
The Hamiltonian of a particle of mass m moving in ordinary three-dimensional space R3 is

H D
P2

2m
C V.R/; (6.1) H3D

where V.r/ is the classical potential. In the position representation the position and momentum operators
are explicitly given by

R D r; P D �i„r;

and the time-independent Schrödinger equation therefore reads

�
„2

2m
r
2 .r/C V.r/ .r/ D E .r/; (6.2) Schr3D

where E 2 R is the particle’s energy and  .r/ is its wave function. We seek solutions of the latter
equation which are either square integrable over R3 (for bound states) or bounded but not square in-
tegrable (for scattering states). The Schrödinger equation (6.2) is a second-order linear homogeneous
partial differential equation which can be solved by the standard mathematical technique of separation
of variables in several coordinate systems, depending on the structure of the potential V.r/. In this chap-
ter we shall examine some of the simplest examples of this method, in which the Schrödinger equation
separates either in Cartesian or in spherical coordinates.

6.1 Separation of variables in Cartesian coordinates
sec.Cart

Suppose, to begin with, that the potential V.r/ is the sum of three functions each of which depends on
only one of the Cartesian coordinates, i.e.,

V.r/ D V1.x1/C V2.x2/C V3.x3/: (6.3) VVxi

The HamiltonianH is then itself the sum of three one-dimensional HamiltoniansHi (i D 1; 2; 3), where
each Hi depends only on the xi coordinate:

H D H1 CH2 CH3; Hi WD �
„2

2m
@2xi C Vi .xi /: (6.4) HHi

Since obviously
ŒHi ;Hj � D 0; 8i; j D 1; 2; 3;

it follows that there is a (generalized) orthonormal basis made up of common eigenvectors of each Hamil-
tonian Hi . To see how this works in practice, let us follow the method of separation of variables and
seek eigenfunctions ofH which factorize as the product of three functions i .xi /, each of which depends
only on the corresponding coordinate xi :

 .r/ D  1.x1/ 2.x2/ 3.x3/: (6.5) psiprod
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THREE-DIMENSIONAL PROBLEMS

Substituting into the Schrödinger equation and dividing by  .r/ (at points r where  i .xi / ¤ 0 for all i )
we obtain the equation

3X
kD1

Hk k.xk/

 k.xk/
D E:

Taking the partial derivative of both sides of the previous equation with respect to a coordinate xi we
obtain

@

@xi

Hi i .xi /

 i .xi /
D 0; i D 1; 2; 3;

whence
Hi i .xi /

 i .xi /
D Ei ; i D 1; 2; 3;

or equivalently

Hi i .xi / D Ei i .xi /; i D 1; 2; 3; (6.6) SchrHi

where Ei is a constant and

E1 CE2 CE3 D E: (6.7) EEi

In other words:

The function (6.5) is a solution of the Schrödinger equation (6.2) with an energy E if and only if each
 i is a solution of the one-dimensional Schrödinger equation (6.6), with E equal to the sum of the
three energies Ei .

The energies Ei are called in the mathematics literature separation constants. Note also that the bound-
ary conditions for the one-dimensional eigenvalue problems (6.6) (an example of what in mathematics
is called a Sturm–Liouville problem) are similar to the boundary conditions for the three-dimensional
problem (6.2), i.e., each  i must be square integrable for  to be square integrable, or all the  i must be
bounded (and at least one not square integrable) for the three–dimensional solution  to be a scattering
state.

Of course, not every solution of Eq. (6.2) is of the form (6.5), since the sum of two or more such
solutions with the same energy E is still an eigenfunction with energy E (by linearity) which is not of
the form (6.5). Suppose, however, that each one-dimensional problem (6.6) has only point spectrum. In
this case, for each of these problems there is an orthonormal basis of L2.R/˚

 in.xi / W n 2 N
	
; i D 1; 2; 3;

whose elements are eigenfunctions of the corresponding Hamiltonian Hi , i.e.,

Hi 
i
n.xi / D E

i
n 

i
n.xi /; n 2 N; i D 1; 2; 3:

Here we are denoting the (point) spectrum of Hi by˚
Ein W n 2 N

	
;

with Ei
k
¤ Ein for k ¤ n (since, as shown in Section (3.5), the point spectrum of one-dimensional

potentials is non-degenerate). It can then be shown that the set

˚
 kln.r/ WD  1k .x1/ 

2
l .x2/ 

3
n.x3/ W k; l; n 2 Ng (6.8) psilmn

is an orthonormal basis of the Hilbert space H D L2.R3/ of the three-dimensional problem (6.2), with

H kln D Ekln kln; Ekln WD E
1
k CE

2
l CE

3
n; k; l; n D 1; 2; : : : : (6.9) En3DCart
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6.1 Separation of variables in Cartesian coordinates

Thus in this case the (point) spectrum of the three-dimensional Hamiltonian (6.1) is the set

˚
Ekln � E

1
k CE

2
l CE

3
n W k; l; n 2 N

	
with corresponding eigenfunctions

 kln.r/ D  1k .x1/ 
2
l .x2/ 

3
n.x3/:

Note that the orthonormality of the set (6.8) is straightforward to check:

�
 kln;  k0l 0n0

�
D

Z
d3r  �kln.r/ k0l 0n0.r/

D

�Z
d3x1

�
 1k .x1/

��
 1k0.x1/

��Z
d3x2

�
 2l .x2/

��
 2l 0.x2/

��Z
d3x3

�
 3n.x3/

��
 3n0.x3/

�
D
�
 1k ;  

1
k0

��
 2l ;  

2
l 0

��
 3n ;  

3
n0

�
D ıkk0ıl l 0ınn0 :

It follows from the discussion in Section 3.1 that the general solution 	.r; t / of the time-dependent
Schrödinger equation with initial condition 	.r; 0/ D  .r/ is given by

	.r; t / D
1X

k;l;nD1

cklne�
i
„
Eklnt kln.r/ �

1X
k;l;nD1

cklne�
i
„
.E1
k
CE2

l
CE3n/t 1k .x1/ 

2
l .x2/ 

3
n.x3/;

where the coefficients ckln are computed from the equation

ckln D
�
 kln;  

�
D

Z
d3r  �kln.r/ .r/:

Remarks.

� In the language of Section 4.6, the set fH1;H2;H3g is a CSCO for the Hilbert space H D L2.R3/.

� The Hamiltonian H in Eq. (6.4) can be interpreted as describing the motion of three one-dimensional
effective particles of the same mass m each of which is subject to its corresponding potential Vi .xi /,
but which do not interact with each other (since there is no term involving two or more coordinates).

� In general, the spectrum (6.9) is degenerate. The degeneracy of an energy E 2 �p.H/ is the cardinal
of the set ˚

.k; l; n/ 2 N3
W E1k CE

2
l CE

3
n D Eg: �

exe.nondeg Exercise 6.1. If each of the Hamiltonians Hi has only point spectrum, show that the ground state of
the Hamiltonian (6.4) is non-degenerate.

Solution. If the Hamiltonian Hi has only point spectrum, its energy levels are non-degenerate. By
Eq. (6.9) for the energy, the minimum energy is obtained by adding the minimum energy of each
Hamiltonian Hi . Thus the ground state is the state  111, with energy E111 D E11 CE

2
1 CE

3
1 .
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THREE-DIMENSIONAL PROBLEMS

6.1.1 The infinite well

As our first example of problem that can be solved separating variables in Cartesian coordinates, consider
the infinite potential well

V.r/ D

(
0; r 2 .0; L1/ � .0; L2/ � .0; L3/
1; otherwise.

(6.10) IW3D

This potential describes the free motion of a quantum particle confined inside a rectangular box with
impenetrable walls. Since we can formally write

V.r/ D V1.x1/C V2.x2/C V3.x3/;

where Vi .xi / is the infinite square well potential

Vi .xi / D

(
0; 0 < xi < Li ;

1; otherwise,

the time-independent Schrödinger equation (6.2) is separable in Cartesian coordinates. As we saw in
Section 3.4.1, the potential Vi has only point spectrum, with eigenvalues and corresponding normalized
eigenfunctions given by

Ein D
n2 2„2

2mL2i
; n 2 N;

and

 in.xi / D

s
2

Li
sin
�
n xi

Li

�
; n 2 N; i D 1; 2; 3:

From the above discussion it follows that the energies of the three-dimensional infinite well poten-
tial (6.10) are

Ekln D
 2„2

2m

 
k2

L21
C
l2

L22
C
n2

L23

!
; k; l; n 2 N;

with corresponding (normalized) eigenfunctions

 kln.r/ D 2
r
2

v
sin
�
k x1

L1

�
sin
�
l x2

L2

�
sin
�
n x3

L3

�
;

where v D L1L2L3 is the volume of the box. Note that, in contrast to the one-dimensional case, the
spectrum is in general degenerate. For instance, for a cubic well L1 D L2 D L3 � L and hence

Ekln D
 2„2

2mL2

�
k2 C l2 C n2

�
:

The degeneracy of an energy E 2 �p.H/ is in this case the number of triplets .n1; n2; n3/ 2 N3 such
that

n21 C n
2
2 C n

2
3 D

2mEL2

 2„2
:

For instance, the ground state has energy

E111 D
3 2„2

2mL2
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6.1 Separation of variables in Cartesian coordinates

and (as we know from Exercise 6.1) is non-degenerate, since (for k; l; n 2 N)

Ekln D E111 () k2 C l2 C n2 D 3 () k D l D n D 1:

The ground state wave function is therefore

 111.r/ D  11 .x1/ 
2
1 .x2/ 

3
1 .x3/ D 2

r
2

v
sin
�
 x1

L1

�
sin
�
 x2

L2

�
sin
�
 x3

L3

�
;

which (as in the one-dimensional case) does not vanish (is strictly positive) inside the box. The first
excited state has energy

E211 D E121 D E112 D
3 2„2

mL2
;

and is three times degenerate, etc.
WhenE is very large compared to „2=.mL2/, or equivalently k2Cl2Cn2 � 1, the energy difference

between two consecutive levels is very small (compared to E), and the spectrum is almost continuous.
In this limit, it is possible to estimate the number �.E/ of energy eigenstates with energy less than or
equal to a certain energy E (taking into account the degeneracy of each level) by noting that this number
is equal to the number of points .n1; n2; n3/ with positive integer coordinates such that

n21 C n
2
2 C n

2
3 6

2mL2E

 2„2
:

WhenE is very large, this number is approximately equal to the volume of an octant of a sphere of radius
p
2mE L=. „/, namely

�.E/ '
1

8
�
4 

3

v

 3„3
.2mE/3=2 D .2mE/3=2

v

6 2„3
:

The the number �.E/ dE of energy eigenstates with energy between E and E C dE is therefore given
by

�.E/ dE D �.E C dE/ � �.E/ ' �0.E/ dE '
.2m/3=2v

4 2„3
E1=2 dE:

The quantity

�.E/ D
.2m/3=2v

4 2„3
E1=2

is called the density of states, and it plays an important role in statistical mechanics.

6.1.2 The three-dimensional harmonic oscillator
sec.3DHO

Consider a smooth classical three-dimensional potential V.r/ having a stable equilibrium, which can be
assumed w.l.o.g. to be located at the origin. Thus rV.0/ D 0, and we can also take w.l.o.g. V.0/ D 0,
since in (non-relativistic) classical mechanics the potential is defined up to a constant. Taylor expanding
V.r/ about the equilibrium r D 0 we can write

V.r/ D
1

2

3X
i;jD1

aijxixj C o.r
2/;

where A D .aij /
3
i;jD1 is a symmetric matrix. If A is assumed to be non-degenerate it must be positive

definite, as the origin is a stable equilibrium by hypothesis. Hence there is an orthogonal transformation
(i.e., a rotation of the axes)

xi D

3X
jD1

Rij �j ; i D 1; 2; 3;
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THREE-DIMENSIONAL PROBLEMS

such that
3X

i;jD1

aijxixj D

3X
iD1

ki�
2
i ;

with ki > 0 for all i D 1; 2; 3. Hence

V.r/ D
1

2

3X
iD1

ki�
2
i C o.�

2/: (6.11) 3DHO

We thus see that the three-dimensional harmonic oscillator (HO) potential

V.r/ D
1

2

3X
iD1

kix
2
i ; with ki > 0; 8i D 1; 2; 3; (6.12) 3DHOpot

approximately describes in appropriate coordinates the motion of a particle in the neighborhood of a
(non-degenerate) stable equilibrium of an arbitrary (smooth) potential. Evidently V is of the form (6.3),
with

Vi .xi / D
1

2
kix

2
i ; i D 1; 2; 3;

a one-dimensional HO potential in the variable xi . Since the latter potential has only point spectrum,
from the general discussion of Section (6.1) we conclude that the normalized eigenfunctions of the three-
dimensional harmonic oscillator Hamiltonian

H D
P2

2m
C
1

2

3X
iD1

kiX
2
i (6.13) 3DHOHam

are given by

 n1n2n3.r/ D
3Y
iD1

24 �1=4s ˇi

2nini Š
e�

1
2
ˇ2
i
x2
i Hni .ˇixi /

35 �
ˇi WD

r
m!i

„

�
; (6.14) 3DHoeigf

with energies

En1n2n3 D

�
n1 C

1

2

�
„!1 C

�
n2 C

1

2

�
„!2 C

�
n3 C

1

2

�
„!3; ni D 0; 1; : : : ; (6.15) 3DHOeigv

where

!i D

r
ki

m
; i D 1; 2; 3: (6.16) omi3D

Formally, the Hamiltonian (6.13) describes three one-dimensional oscillators with the same mass m and
circular frequencies !1; !2; !3 which do not interact with each other. The system’s energy is thus the
sum of the individual energies of each oscillator, and its wave function is the product of each of the
one-dimensional oscillators’ wave functions.

As in the case of the infinite well potential, the energy levels above the ground state of the three-
dimensional HO can be degenerate, depending on the three frequencies !i . Indeed, the degeneracy of
the energy En1n2n3 is the number of solutions .l1; l2; l3/ 2 .N [ f0g/3 of the equation

El1l2l3 D En1n2n3 () .l1 � n1/!1 C .l2 � n2/!2 C .l3 � n3/!3 D 0:
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6.2 Separation of variables in spherical coordinates. Central potentials

We thus see that when the three frequencies are rationally independent, i.e., when�
k1!1 C k2!2 C k3!3 D 0; k1;2;3 2 Z

�
H) k1 D k2 D k3 D 0;

all the energy levels are non-degenerate, while if the three frequencies are rationally dependent (i.e., if
one of the frequencies is a linear combination of the other two with rational coefficients; for example, if
they are all rational numbers) the energy levels above the ground state may be degenerate.

The degeneracy of the levels can be easily evaluated for the isotropic oscillator, whose three frequen-
cies are equal. Calling ! the common value of these frequencies, the Hamiltonian becomes

H D
P2

2m
C
1

2
m!2R2:

The energies of the three-dimensional isotropic HO are given by

En1n2n3 D

�
n1 C n2 C n3 C

3

2

�
„!; ni D 0; 1; : : : ;

and thus the energy spectrum is in this case the set�
EN WD

�
N C

3

2

�
„! W N D 0; 1; : : :

�
:

The degeneracy of the energy EN is the number of ways in which the non-negative integer N can
be written as the sum of three non-negative integers n1;2;3. To compute this value, note that given
N D 0; 1; : : : the sum n1 C n2 can take the values n D 0; 1; : : : ; N , and to each of these values there
corresponds a unique value of n3 (n3 D N � n). Thus the degeneracy of the level EN is given by

dN D

NX
nD0

.nC 1/ D

NC1X
nD1

n D
1

2
.N C 1/.N C 2/; (6.17) dN3DHO

since n C 1 is the number of non-negative integer pairs .n1; n2/ with n1 C n2 D n. We thus see that
dN ' N

2=2 becomes very large when N is large, i.e., for highly excited states.

Exercise 6.2. Compute the density of states for the three-dimensional isotropic harmonic oscillator.

Solution. When N is very large, the number of levels with energy less than or equal to E D
�
N C

3
2

�
„! ' N„! is given by

�.E/ D
1

2

NX
nD0

.nC 1/.nC 2/ D
N 3

2
�
1

N

NX
nD0

�
n

N
C
1

N

��
n

N
C
2

N

�
'
N 3

2

Z 1

0

x2 dx D
1

6
N 3

'
E3

6„3!3
:

The density of states is thus

�.E/ D �0.E/ D
E2

2„3!3
:

Note that for the isotropic HO �.E/ is proportional toE2, while for the infinite well it was proportional
to E1=2.

6.2 Separation of variables in spherical coordinates. Central

potentials
sec.centpot

Spherical coordinates .r; �; '/ are defined by the equations

x1 D r sin � cos'; x2 D r sin � sin'; x3 D r cos �;
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THREE-DIMENSIONAL PROBLEMS

with
r > 0; 0 6 � 6  ; 0 6 ' < 2 :

Note that at the origin (r D 0) the angles � and ' are undefined, and that on the x3 axis the azimuthal
angle ' is undefined. In fact, the mapping .r; �; '/! .x1; x2; x3/ is a true change of coordinates (i.e., it
is smooth, bijective and with a smooth inverse) only for r > 0, 0 < � <   and 0 < ' < 2 , i.e., outside
the half plane fx2 D 0; x1 > 0g. The Laplacian in spherical coordinates is given by

r
2
D

1

r2
@r
�
r2@r

�
C

1

r2 sin �
@�
�

sin �@�
�
C

1

r2 sin2 �
@2' ; (6.18) Lapsph

so that the Schrödinger equation with a potential V.r; �; '/ reads

�
„2

2m

�
1

r2
@r
�
r2@r 

�
C

1

r2 sin �
@�
�

sin �@� 
�
C

1

r2 sin2 �
@2' 

�
C V D E : (6.19) Schrspher

Classically, the kinetic energy in spherical coordinates is given by

T D
1

2
m
�
Pr2 C r2 P�2 C r2 sin2 � P'2

�
D
p2r
2m
C
1

2
mr2

�
P�2 C sin2 � P'2

�
;

since

pr D
@T

@ Pr
D m Pr:

The last term in brackets can be expressed in terms of the angular momentum

L D mr � Pr D mrer � . Pr er C r P� e� C r sin � P' e'/ D mr2
�
P� e' � sin � P' e�

�
;

where

er D
@r
@r
D

r
r
D .sin � cos'; sin � sin'; cos �/;

e� D
1

r

@r
@�
D .cos � cos'; cos � sin';� sin �/;

e' D
1

r sin �
@r
@'
D .� sin'; cos'; 0/

are the unit coordinate vectors in spherical coordinates, as

1

2
mr2

�
P�2 C sin2 � P'2

�
D

L2

2mr2
:

Thus classically we have

T D
p2r
2m
C

L2

2mr2
: (6.20) Tclasssph

Since in quantum mechanics

T D
P2

2m
D �

„2

2m
r
2;

comparison with Eq. (6.18) suggests that

L2 D �„2
�
1

sin �
@�
�

sin � @�
�
C

1

sin2 �
@2'

�
; (6.21) L2spher
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6.2 Separation of variables in spherical coordinates. Central potentials

where L is the quantum mechanical angular momentum

L D R � P D �i„r � r:

In fact, it can be proved by direct calculation that Eq. (6.21) is indeed true (see Exercise 6.4). We can
thus write the Schrödinger equation in spherical coordinates as

�
„2

2mr2
@r
�
r2@r 

�
C

L2

2mr2
 C V D E : (6.22) SchrL2

Note that we can unambiguously write L2=.2mr2/, instead of using the more precise notations

1

2mr2
L2 or L2

1

2mr2
;

since by Eq. (6.21) the operator L2 commutes with r .

Exercise 6.3. Show that

�
„2

2mr2
@rr

2
D
P 2r
2m

;

where
Pr D �i„

1

r
@rr

is the radial momentum operatora. Thus the kinetic energy operator T can be written in spherical
coordinates as

T D
P 2r
2m
C

L2

2mr2
;

which is the quantum analogue of Eq. (6.20).

Solution. Indeed,

P 2r D �„
2 1

r
@rr �

1

r
@rr D �„

2 1

r
@2r r D �„

2

�
@2r C

1

r
Œ@2r ; r�

�
D �„

2

�
@2r C

1

r
@r Œ@r ; r�C

1

r
Œ@r ; r�@r

�
D �„

2

�
@2r C

2

r
@r

�
D �„

2 1

r2
@rr

2:

It is also straightforward to show that the operatorPr is Hermitian (exercise), and is thus an observable.

aDo not confuse Pr with the radial component of the momentum operator P D �i„r, namely er � P D �i„@r , which is
not an observable (i.e., is not self-adjoint).

Since the operator L2 is independent of the r coordinate, we try to separate the variable r from the
angular variables .�; '/ by looking for solutions of the Schrödinger equation (6.22) of the form

 .r; �; '/ D R.r/Y.�; '/: (6.23) psiRY

Inserting this solution into Eq. (6.22) and dividing by  we obtain

L2Y
„2Y

D
1

R
@r
�
r2@rR

�
C r2." � v/; (6.24) L2YR

where we have used the notation
v D

2mV

„2
; " D

2mE

„2
:

Since the LHS of Eq. (6.24) depends only on the angle variables .�; '/, we conclude that:
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The Schrödinger equation (6.19) is separable in spherical coordinates if and only if the potential V is
central, i.e., depends only on the radial coordinate r .

For a central potential V.r/, the equation (6.24) separates into the two equations

L2Y.�; '/ D �„2Y.�; '/ (6.25) Ythvpeq

and

�
1

r2
@r
�
r2@rR.r/

�
C
�

r2
R.r/ D

�
" � v.r/

�
R.r/; (6.26) radeq

where � > 0 is a (dimensionless) separation constant1. The first of these equations is the eigenvalue
equation for the operator L2, �„2 being the eigenvalue. In fact, since

L2 D L2
�
R.r/Y.�; '/

�
D R.r/L2Y.�; '/ D �„2R.r/Y.�; '/ D �„2 ;

the wave function R.r/Y.�; '/, with R and Y satisfying Eqs. (6.25)-(6.26), is a common eigenfunction
of the commuting observables2 H and L2, with respective eigenvalues E and �„2.

exe.L2Lap Exercise 6.4. Derive Eq. (6.21) using the following expression for the gradient in spherical coordinates:

r D er@r C
1

r
e�@� C

1

r sin �
e'@' :

Solution. We have

L
�i„
D r � r D rer �

�
er@r C

1

r
e�@� C

e'
r sin �

@'

�
D e'@� �

1

sin �
e�@' :

Taking into account the explicit expressions of the unit vectors e� and e' given above we obtain

L1 D i„
�
sin'@� C cot � cos'@'

�
; L2 D i„

�
� cos'@� C cot � sin'@'

�
; L3 D �i„@' :

(6.27) Lis

Hence

�
L21 C L

2
2

„2
D
�
sin'@� C cot � cos'@'

�2
C
�
� cos'@� C cot � sin'@'

�2
D sin'@� sin'@� C cot � cos'@' cot � cos'@'
C cot � cos'@' sin'@� � cot � sin'@' cos'@�
C cos'@� cos'@� C cot � sin'@' cot � sin'@'

D sin2 ' @2� C cot2 � cos'
�

cos' @2' � sin'@'
�
C cot � cos'

�
sin' @'@� C cos' @�

�
� cot � sin'

�
cos' @'@� � sin' @�

�
C cos2 ' @2� C cot2 � sin'

�
sin' @2' C cos'@'

�
D @2� C cot � @� C cot2 � @2' ;

and therefore

�
L2

„2
D @2� C cot � @� C .1C cot2 �/@2' D @

2
� C cot � @� C

1

sin2 �
@2' :

1See Exercise 6.5 for the proof that � must be non-negative.
2In fact, it was shown in Exercise 4.3 that when V is a central potential each component Li of L commutes with H .
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6.2 Separation of variables in spherical coordinates. Central potentials

This is clearly equal to Eq. (6.21), since

1

sin �
@� .sin � @� / D @

2
� C cot � @� :

exe.L2sa Exercise 6.5. Show that L2, considered as a linear operator acting on the Hilbert space L2.Œ0;  � �
Œ0; 2 �I d˝/, is positive semidefinite. Deduce from this fact that the separation constant � in Eq. (6.25)
is non-negative.

Solution. Indeed, given a function f .�; '/ in the domain of L2 we have�
f;�

1

sin �
@�

�
sin �@�f

��
D �

Z 2 

0

d'
Z  

0

d� f �@�
�

sin �@�f
�

D �

Z 2 

0

d' sin � f �@�f
ˇ̌̌�D 
�D0
C

Z 2 

0

d'
Z  

0

d� sin �.@�f
�/.@�f /

D
@�f 2 > 0:

Similarly,�
f;�

1

sin2 �
@2'f

�
D �

Z 2 

0

d'
Z  

0

d�
f �

sin �
@2'f

D �

Z  

0

d�
f �

sin �
@'f

ˇ̌̌'D2 
'D0

C

Z 2 

0

d'
Z  

0

d�
1

sin �
.@'f

�/.@'f /

D

@'fsin �

2 > 0;
where we have taken into account that

f .�; 2 / D f .�; 0/; @'f .�; 2 / D @'f .�; 0/: (6.28) percondvp

From Eq. (6.21) it then follows that
.f;L2f / > 0

for any function f .�; '/, so that L2 is indeed positive semidefinite. Taking the scalar product of both
sides of the equation

L2Y.�; '/ D �„2Y.�; '/

with the function Y.�; '/ we then obtain

�„2
Y 2 D �Y;L2Y � > 0 H) � > 0;

as claimed.

Alternative proof. The operatorsLi , considered as linear operators from the Hilbert spaceL2.Œ0;  ��
Œ0; 2 �I d˝/ into itself, are still self-adjoint. This can be proved by integrating by parts, taking into
account the boundary conditions (6.28) above (exercise). Once this fact is established the claim follows
immediately, since

�
f;L2f

�
D

3X
iD1

�
f;L2i f

�
D

3X
iD1

�
Lif;Lif

�
D

3X
iD1

Lif 2 > 0:
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6.3 Spectrum of L2
sec.specL2

Let us next determine the eigenvalues of the operator L2, or equivalently the allowed values of the
separation constant � in Eq. (6.25). To this end, we note that a function Y.�; '/ of the angles � and ' can
be regarded as a function of the components . Ox1; Ox2; Ox3/ of the unit vector r=r . Let us Taylor expand Y
in powers of the latter variables as

Y D
X
l>0

pl. Ox1; Ox2; Ox3/; (6.29) Yexp

where pl. Ox1; Ox2; Ox3/ is a homogeneous polynomial3 in . Oxi ; Ox2; Ox3/ of degree l (or possibly zero). It
follows that

r lpl.r=r/ D Pl.r/;

where Pl.r/ is a homogeneous polynomial of degree l in r D .x1; x2; x3/ (or possibly zero). Moreover,
since the components xi@xj � xj @xi of L applied to a homogeneous polynomial in r do not lower the
degree, L2Pl is another homogeneous polynomial in r of degree l (or possibly zero). Since L2f .r/ D
f .r/L2,

L2pl D L2.r�lPl/ D r�lL2.Pl/

is then a homogeneous polynomial in r=r of degree l (or possibly zero). We thus have

L2Y D
X
l>0

L2pl D �„2Y D �„2
X
l>0

pl () L2pl D �„2pl ; 8l > 0:

In other words, each non-zero polynomial pl in the expansion (6.29) is an eigenfunction of L2 with the
same eigenvalue �„2 as Y . We can thus assume w.l.o.g. that Y.�; '/ is a homogeneous polynomial in
r=r of degree l .

We next note that from Eqs. (6.18) and (6.21) it follows that

r
2
D

1

r2

�
@rr

2@r �
L2

„2

�
: (6.30) LapL2

Applying both sides of this equality to the function r lY.�; '/, which by hypothesis is a homogeneous
polynomial in r of degree l satisfying the eigenvalue equation (6.25), we obtain:

r
2.r lY / D l.lC1/r l�2Y �

1

„2r2
L2.r lY / D l.lC1/r l�2Y �

r l�2

„2
L2Y D

�
l.lC1/��

�
r l�2Y: (6.31) nabla2rlY

Since r2 lowers the degree by two, the LHS of the previous equation is a homogeneous polynomial
of degree l � 2 in r, including the zero polynomial. Hence either l.l C 1/ � � D 0 or r l�2pl is a
homogeneous polynomial of degree l � 2 in r. However, the latter possibility cannot occur. Indeed, if
r l�2Y D r�2.r lY /were a homogeneous polynomial of degree l�2 in r then the polynomial r lY would
contain the factor r2. But this is not possible, since in that case Y would contain the factor Ox21C Ox

2
2C Ox

2
3 ,

which we had agreed to eliminate beforehand (cf. the previous footnote). This shows that the LHS of the
previous displayed equation must vanish, i.e., we must have � D l.l C 1/ and r2.r lY / D 0. In other

3In other words,
pl D

X
n1;n2;n3

n1Cn2Cn3Dl

cn1n2n3 Ox
n1
1 Ox

n2
2 Ox

n3
3 ;

with cn1n2n3 2 C. Since Ox21 C Ox
2
2 C Ox

2
3 D 1, it is understood that any factor of . Ox21 C Ox

2
2 C Ox

2
3/
k has been removed from pl .

For example, a homogeneous polynomial of degree zero is a constant, of degree 1 a linear combination of Ox1, Ox2, and Ox3, of
degree 2 a linear combination of Ox2i and Oxi Oxj with 1 6 i < j 6 3, etc.
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6.4 The radial equation

words, if Y is a (nonzero) homogeneous polynomial of degree l in r=r then Y is an eigenfunction of L2
with eigenvalue l.l C 1/„2 provided that

r
2
�
r lY.�; '/

�
D 0: (6.32) LaprlY

In other words, Y is the restriction to the unit sphere (r D 1) of a harmonic homogeneous polynomial of
degree l in r , namely r lY . For this reason, the homogeneous polynomials in r=r solving Eq. (6.25) are
called spherical harmonics. Since an arbitrary eigenfunction Y.�; '/ of L2 must be a sum of homoge-
neous polynomials in r=r all having the same eigenvalue as Y , i.e., the same degree, it follows that the
eigenvalues of L2 are the numbers

l.l C 1/„2; l D 0; 1; : : : ;

and its eigenfunctions are the spherical harmonics. We have thus proved the following fundamental
result:

The eigenvalues of the operator L2 are the numbers l.l C 1/„2, with l a non-negative integer. The
solutions Y.�; '/ of Eq. (6.25) with � D l.l C 1/ are the spherical harmonics of degree l , i.e., the
homogeneous polynomials of degree l in r=r satisfying Eq. (6.32).

Remark. Since L2 commutes with f .r/, if Y.�; '/ satisfies Eq. (6.25) with � D l.lC1/ then f .r/Y.�; '/
is also an eigenfunction of L2 with eigenvalue l.l C 1/„2. �

We shall next study Eqs. (6.25) and (6.26). Before doing so, note that since the volume element in
spherical coordinates is d3r D r2 dr d˝, where

d˝ WD sin � d� d'

is the surface element on the unit sphere r D 1, the normalization condition for the product (6.23) reads

 2 D Z d3r
ˇ̌
 
ˇ̌2
D

�Z 1
0

dr r2
ˇ̌
R.r/

ˇ̌2��Z 2 

0

d'
Z  

0

d� sin �
ˇ̌
Y.�; '/

ˇ̌2�
D 1;

It is convenient to require that both the radial and the angular parts of the wave function be normalized
separately, namely thatZ 1

0

dr r2
ˇ̌
R.r/

ˇ̌2
D

Z 2 

0

d'
Z  

0

d� sin �
ˇ̌
Y.�; '/

ˇ̌2
D 1: (6.33) normRY

We can thus regardR.r/ and Y.�; '/ as unit vectors in the Hilbert spacesL2.Œ0;1/I r2 dr/ andL2.Œ0;  ��
Œ0; 2 �I d˝/, with respective inner products

.R1; R2/ D

Z 1
0

dr r2R�1.r/R2.r/; .Y1; Y2/ D

Z 2 

0

d'
Z  

0

d� sin � Y �1 .�; '/Y2.�; '/:

6.4 The radial equation
sec.radeq

We shall next study the radial equation (6.26) with � D l.lC1/, where l is a non-negative integer. From
the identity

@rr D r@r C 1

it follows that

1

r2
@rr

2@r D
1

r2
@rr � r@r D

1

r
@rr@r C

1

r
@r D

1

r
@2r r �

1

r
@r C

1

r
@r D

1

r
@2r r: (6.34) pr2
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Setting

u.r/ D rR.r/; (6.35) udef

the radial equation (6.26) (multiplied by r) can be written as

�u00.r/C

�
l.l C 1/

r2
C v.r/

�
u.r/ D "u.r/; (6.36) radequ

where the prime denotes derivative with respect to r . Multiplying throughout by the factor „2=.2m/ we
obtain the equivalent equation

�
„2

2m
u00.r/C Vl.r/u.r/ D Eu.r/; (6.37) radequunits

where the effective potential Vl.r/ (which depends on the angular momentum quantum number l) is
given by

Vl.r/ D V.r/C
l.l C 1/„2

2mr2
: (6.38) Urdef

Since l.l C 1/„2 is the eigenvalue of the square of the angular momentum L2 for the angular part of the
wave function, the latter equation is the analogue of the classical formula

Vl.r/ D V.r/C
L2

2mr2
:

Note that if we are looking for the bound states of the central potential V.r/ the wave function (6.23)
must be normalizable, so that —using the normalization convention in Eq. (6.33)— the radial wave
function u.r/ must satisfy Z 1

0

dr ju.r/j2 D 1: (6.39) normurad

Thus the radial equation (6.37) for u.r/ is formally the Schrödinger equation for a one-dimensional par-
ticle moving on the half-line Œ0;1/ under the potential Vl.r/. We must, however, impose an appropriate
boundary condition to the wave function u.r/ at the origin. To find this condition we shall assume that
the potential V.r/ is either finite at the origin, or diverges there slower than 1=r2. In other words,

lim
r!0C

r2V.r/ D 0: (6.40) Vrorig

If this condition is satisfied then the radial equation (6.36) implies that

l.l C 1/ � r2
u00

u
D r2

�
" � v.r/

�
�!
r!0C

0:

If

u.r/ �
r!0C

rn H) l.l C 1/ � r2
u00

u
� l.l C 1/ � n.n � 1/ D 0;
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6.4 The radial equation

either n D l C 1 or n D �l . The latter possibility should be ruled out, since u.r/ � r�l at the origin
would imply that ju.r/j2 � r�2l would not be integrable at the origin unless l D 0, while for l D 0 the
condition u.r/ � 1 for r ! 0C would imply that R.r/ � 1=r , which is not acceptable4.

We thus conclude that the radial equation (6.36) should be supplemented by the boundary condition

u.r/ �
r!0C

r lC1; (6.41) bcrad

or equivalently (since r�l does not tend to zero as r ! 0C for l D 0; 1; : : : )

lim
r!0C

u.r/ D 0: (6.42) bcradlim

Note that in terms of the radial part of the wave function R.r/ the previous relation becomes

R.r/ �
r!0C

r l ; (6.43) Rrorig

so that the full wave function  .r/ in Eq. (6.23) satisfies

 .r/ �
r!0C

r lY.�; '/: (6.44) psiorig

In other words,  .r/ approaches a harmonic polynomial of degree l near the origin.
Since we are assuming that the potential V.r/ satisfies condition (6.40),for l > 0 the effective potential

in the Schrödinger equation (6.36) verifies

vl.r/ D v.r/C
l.l C 1/

r2
'

r!0C

l.l C 1/

r2
!1:

For l D 0 the centrifugal barrier term l.l C 1/=r2 disappears, but the boundary condition (6.41) on
u.r/ is equivalent to placing an infinite potential barrier at r D 0. Thus the radial equation (6.37) with
the boundary condition (6.41) is equivalent to solving a one-dimensional Schrödinger equation with a
potential (

1; r < 0
l.lC1/„2

2mr2
C V.r/; r > 0:

Since, in the notation of Section 3.5, V� D 1, from the discussion in the latter section it then follows
that:

For all l D 0; 1; : : : , all the energy levels of the radial Schrödinger equation (6.37) (genuine or gener-
alized) are non-degenerate.

If we further assumes that the limit

V1 WD lim
r!1

V.r/ D lim
r!1

Vl.r/

exists (or is infinite), for any l D 0; 1; : : : the energy spectrum of the effective Schrödinger equa-
tion (6.37)-(6.38) verifies:

4Indeed, when l D 0 the angular part of the wave function Y.�; '/ is a constant, and hence  .r/ D R.r/ � 1=r . However,
1=r cannot be a solution of the Schrödinger equation unless the potential V.r/ contains a delta function term, since

r
2

�
1

r

�
D �4 ı.r/:
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1) V1 D �1
In this case there is no point spectrum, and the continuous spectrum is the whole real line. This case
is actually unphysical, since the particle would cascade indefinitely to states of increasingly lower
energy, radiating in the process an infinite amount of energy.

2) V1 <1

The point spectrum is contained in the interval .minVl.r/; V1/. In particular, there is no point
spectrum if Vl.r/ > V1 for all r . The point spectrum (when it exists) is either finite, or countably
infinite with an accumulation point at V1 (and in the latter case V1 belongs to the spectrum, usually
to its continuous part). The half-line .V1;1/ belongs to the continuous spectrum.
A potential of this form is the Coulomb potential V.r/ D ˛=r , with continuous spectrum .0;1/ (with
or without the point 0) and no point spectrum in the repulsive case .˛ > 0/, while in the attractive case
(˛ < 0) there is both point spectrum contained in the interval

�
�

m˛2

2l.lC1/„2
; 0
�

as well as continuous
spectrum including the half-line .0;1/. (In fact, we shall see in the sequel that when ˛ < 0 the point
spectrum is countably infinite and accumulates at zero, which belongs to the continuous spectrum.)

3) V1 D1
In this case there is no continuous spectrum, and the point spectrum is a countably infinite set with no
accumulation points, unbounded above and strictly bounded below by minVl.r/. A potential of this
type is the isotropic harmonic oscillator potential V.r/ D 1

2
kr2 with k > 0.

Notation. As in Section (3.3), we shall denote by

E1l < E2l < � � � < Enl < � � �

the point spectrum of the radial equation (6.37) (i.e., the values of E for which the latter equation
admits a square integrable solution) for a given l D 0; 1; : : : . We shall accordingly denote by unl.r/ a
(normalized) eigenfunction with energy Enl (usually chosen so that unl.r/ is real for r > 0), and set
Rnl.r/ D r

�1unl.r/.

Note that the above notation for the eigenfunctions Rnl or unl is unambiguous (up to a trivial constant
phase), since by the previous framed remark the spectrum of the radial Schrödinger equation (6.37) is
non-degenerate.

The point spectrum of the Hamiltonian

H D
P2

2m
C V.R/ (6.45) Hcentral

is the union of the point spectra of all the radial Schrödinger equations (6.37), namely (using the previous
notation)

�p.H/ D
˚
Enl W n D 1; 2; : : : ; l D 0; 1; : : :

	
:

By construction,
n < m H) Enl < Eml :

It can also be shown [GP90, p. 231] that

l < l 0 H) Enl < Enl 0 : (6.46) Enlnlp

An immediate consequence of Eq. (6.46) is the following:

The ground state of the Hamiltonian H has angular momentum l D 0 and energy E10.
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6.5 The angular equation. Spherical harmonics

6.5 The angular equation. Spherical harmonics
sec.spherharm

The angular equation

L2Y.�; '/ D l.l C 1/„2Y.�; '/ (6.47) angeq

is simply the eigenvalue equation for the operator L2. Since this operator commutes with any of the
components Li of L, without loss of generality we can look for common eigenvalues of L2 and one of
the operators Li . From Exercise 6.4 we see that in spherical coordinates the simplest of these operators
is

L3 D �i„@' :

We thus shall look for solutions of the angular equation (6.47) that satisfy the eigenvalue equation

L3Y � �i„@'Y D �Y:

The solution of the latter equation is immediate:

Y.�; '/ D y.�/e
i
„
�' ;

where y.�/ is an arbitrary function of � . However, since the azimuthal angles ' D 0 and ' D 2 

actually correspond to the same point in space we must require the boundary condition

Y.�; 0/ D Y.�; 2 /; (6.48) percond

which implies that � can only take the values m„ with m 2 Z. In other words, the spectrum of the
operator L3 (in fact, of any component of the angular momentum or, in general, any operator n � L with
n an arbitrary constant unit vector) is the discrete set of numbers˚

m„ W m 2 Z
	
:

For historical reasons, the integer m is called the magnetic quantum number.

Remark. The condition Y.�; 2 / D Y.�; 0/ is also necessary for the operator L3 to be Hermitian.
Indeed,�

Y1; L3Y2
�
D

Z 2 

0

d'
Z  

0

d� sin � Y �1 .�i„@'/Y2

D �i„
Z  

0

d� sin � Y �1 Y2
ˇ̌̌'D2 
'D0

C

Z 2 

0

d'
Z  

0

d� sin � .�i„@'Y1/�Y2

D �i„
Z  

0

d� sin � Y �1 Y2
ˇ̌̌'D2 
'D0

C .L3Y1; Y2/

D .L3Y1; Y2/ ()

Z  

0

d� sin � Y �1 Y2
ˇ̌̌
'D0
D

Z  

0

d� sin � Y �1 Y2
ˇ̌̌
'D2 

:

Since Y1 and Y2 are arbitrary functions of the variables .�; '/, the latter condition requires that both
functions satisfy the boundary condition (6.48). �

Substituting
Y.�; '/ D y.�/eim' .with m 2 Z/

into the angular equation (6.47), and taking into account the explicit expression (6.21) for the operator
L2, we easily arrive at the equation

sin � @�
�

sin � @�y
�
C l.l C 1/ sin2 � y D m2y: (6.49) angeqlm
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Note that Z 2 

0

d'
Z  

0

d� sin �
ˇ̌
Y.�; '/

ˇ̌2
D 2 

Z  

0

d� sin �
ˇ̌
y.�/

ˇ̌2
;

and hence we seek for solutions y.�/ of Eq. (6.49) that are square integrable on the interval Œ0;  �. The
change of independent variable

s D cos � 2 Œ�1; 1�;

so that
@� D

ds
d�
@s D � sin � @s H) sin � @� D � sin2 � @s D �.1 � s2/@s

transforms Eq. (6.49) into the associated Legendre equation

@s
�
.1 � s2/@sw

�
C

�
l.l C 1/ �

m2

1 � s2

�
w D 0;

or equivalently

.1 � s2/ @2sw � 2s @sw C

�
l.l C 1/ �

m2

1 � s2

�
w D 0 (6.50) ALeq

with w.s/ D y.�/. Note that the square integrability of y.�/ on the interval Œ0;  � with respect to the
measure sin � d� is equivalent to the square integrability of w.s/ on Œ�1; 1� with respect to the standard
measure ds. It can be shown that equation (6.50) admits a solution square integrable on the interval
Œ�1; 1� only for the following values of the magnetic quantum number m:

m D �l;�l C 1; : : : ; l : (6.51) mcond

Whenm takes on one of these values, the square integrable solutions of the associated Legendre equation
are proportional to the associated Legendre functions

P
jmj

l
.s/ D .�1/jmj.1 � s2/jmj=2@jmjs Pl.s/; (6.52) PlmLeg

where

Pl.s/ D
1

2l lŠ
@ls .s

2
� 1/l (6.53) PlLeg

is the Legendre polynomial of degree l . The latter polynomials are (up to a multiplicative constant) the
polynomial solutions of Eq. (6.50) with m D 0. In fact, it is convenient to define

P�ml .s/ D .�1/m
.l �m/Š

.l Cm/Š
Pml .s/; m > 0; (6.54) Plmm

since then we can write

Pml .s/ D
.�1/m

2l lŠ
.1 � s2/m=2@lCms .s2 � 1/l (6.55) Plmall

for both positive and negative values of m (cf. Exercise 6.6). The admissible (i.e., square integrable on
Œ0;  �� Œ0; 2 � with respect to the measure d˝ D sin � d� d') solutions of equation (6.49) —i.e., for the
common eigenfunctions of the operators L2 and L3 with respective eigenvalues l.l C 1/„2 and m„—
are then proportional to the spherical harmonics Y m

l
defined by

Y ml .�; '/ D

s
2l C 1

4 

.l �m/Š

.l Cm/Š
Pml .cos �/eim' ; m D �l;�l C 1; : : : ; l; (6.56) SpherHarm
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where the factor multiplying P jmj
l

eim' ensures thatY ml  D 1 (6.57) Ylmnorm

(see Exercise 6.7 for a proof). The functions Y m
l

with m D �l; : : : ; l are thus a basis of eigenfunctions
of L3 in the eigenspace of L2 with eigenvalue l.l C 1/„2. In other words:

The square integrable solutions of the angular equation (6.47) are linear combinations of the spherical
harmonics Y m

l
.�; '/ in Eq. (6.56) withm D �l;�lC1; : : : ; l . The latter functions are normalized on

the domain Œ0;  � � Œ0; 2 � with respect to the measure d˝ D sin � d� d', and satisfy the eigenvalue
equations

L2Y ml D l.l C 1/„
2Y ml ; L3Y

m
l D m„Y

m
l : (6.58) Ylmeigeqs

In particular, note that from Eqs. (6.54) and (6.56) it follows that

Y �ml .�; '/ D .�1/me�2im'Y ml .�; '/: (6.59) Ylpmm

Remarks.

� If .l; m/ ¤ .l 0; m0/ then Ylm and Yl 0m0 are orthogonal, since they are eigenfunctions of a self-adjoint
operator (L2 or L3) with different eigenvalues. Since by construction the spherical harmonics are
normalized, we conclude that the set˚

Y ml W m D �l;�l C 1; : : : ; l; l D 0; 1; : : : g (6.60) Ylmset

is an orthonormal set in L2.Œ0;  � � Œ0; 2 �I d˝/. In other words,

�
Y ml ; Y

m0

l 0

�
�

Z 2 

0

d'
Z  

0

d� sin �
�
Y ml .�; '/

��
Y m
0

l 0 .�; '/ D ıl l 0ımm0 : (6.61) Ylmorth

In fact, it can be shown that the functions spherical harmonics Y m
l

are also complete, i.e, the set (6.60)
is an orthonormal basis of L2.Œ0;  � � Œ0; 2 �I d˝/. In other words, every function f .�; '/ 2
L2.Œ0;  � � Œ0; 2 �I d˝/ can be expanded as

f .�; '/ D

1X
lD0

lX
mD�l

clmY
m
l .�; '/;

with

clm D
�
Ylm; f / D

Z 2 

0

d'
Z  

0

d� sin �
�
Y ml .�; '/

��
f .�; '/:

� From Eqs. (6.52)-(6.53), it follows that P jmj
l
.cos �/ is a polynomial of degree l � jmj in cos � multi-

plied by sinjmj � . Hence for m even P jmj
l

can be expressed as a polynomial of degree l in cos � , while

when m is odd P jmj
l

is the product of sin � times a polynomial of degree l � 1 in cos � .

� In spherical coordinates, the parity transformation r 7! �r corresponds to5

.r; �; '/ 7! .r;   � �; ' ˙  /:

Since cos.  � �/ D � cos � and Pm
l
.s/ has obviously parity .�1/lCm under s 7! �s, under a parity

transformations the spherical harmonics behave as

Y ml .�; '/ 7! Y ml .  � �; ' ˙  / D .�1/
lCm.�1/mY ml .�; '/ D .�1/

lY ml .�; '/:

In other words, the spherical harmonics have parity .�1/l (independent of m) under the transforma-
tion r 7! �r. �

5The˙ in the following formula is the sign of   � '.
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exe.SHnegm Exercise 6.6. Show that

.1� s2/�m=2@l�ms .s2�1/l D .�1/m
.l �m/Š

.l Cm/Š
.1� s2/m=2@lCms .s2�1/l ; m D �l;�lC1; : : : ; l:

Solution. Since the identity doesn’t change whenm goes into �m, we can assume w.l.o.g. thatm > 0.
We then have

@l�ms .s2 � 1/l D @l�ms

�
.s C 1/l.s � 1/l

�
D

l�mX
kD0

 
l �m

k

!
.lŠ/2

.l � k/Š.k Cm/Š
.s C 1/l�k.s � 1/kCm:

On the other hand,

@lCms .s2 � 1/l D @lCms

�
.s C 1/l.s � 1/l

�
D

lX
kDm

 
l Cm

k

!
.lŠ/2

.l � k/Š.k �m/Š
.s C 1/l�k.s � 1/k�m

D

l�mX
kD0

 
l Cm

k Cm

!
.lŠ/2

.l � k �m/ŠkŠ
.s C 1/l�k�m.s � 1/k;

and hence

.1 � s2/m@lCms .s2 � 1/l D .�1/m
l�mX
kD0

 
l Cm

k Cm

!
.lŠ/2

.l � k �m/ŠkŠ
.s C 1/l�k.s � 1/kCm:

From the identity  
l �m

k

! 
l Cm

k Cm

!�1
.l � k �m/ŠkŠ

.l � k/Š.k Cm/Š
D
.l �m/Š

.l Cm/Š

it then follows that

@l�ms .s2 � 1/l D .�1/m
.l �m/Š

.l Cm/Š
.1 � s2/m@lCms .s2 � 1/l ;

from which the proposed identity is obtained multiplying both sides by .1 � s2/�m=2.

Note: the previous identity suggests defining the associated Legendre polynomial Pm
l
.s/ by

Pml .s/ D
.�1/m

2l lŠ
.1 � s2/m=2@lCms .s2 � 1/l

for both positive and negative values of m between �l and l . This definition obviously coincides with
Eqs. (6.52)-(6.53) for m > 0, and for m < 0 the identity just proved implies that

P�ml .s/ D .�1/m
.l �m/Š

.l Cm/Š
Pml .s/;

which is Eq. (6.54).

exe.spherharmnorm Exercise 6.7. Using the identity in the previous exercise, show thatZ 1

�1

ds
�
Pml .s/

�2
D

2

2l C 1

.l Cm/Š

.l �m/Š
: (6.62) normPlm
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Solution. Suppose, to begin with, that m > 0. By the identity in the previous exercise, we haveZ 1

�1

ds
�
Pml .s/

�2
D .�1/m

.l Cm/Š

.l �m/Š

Z 1

�1

ds Pml .s/P
�m
l .s/

D
.�1/m

22l.lŠ/2

.l Cm/Š

.l �m/Š

Z 1

�1

ds
h
@lCms .s2 � 1/l

i h
@l�ms .s2 � 1/l

i
D

1

22l.lŠ/2

.l Cm/Š

.l �m/Š

Z 1

�1

ds .1 � s2/l@2ls .s
2
� 1/l D

.2l/Š

22l.lŠ/2

.l Cm/Š

.l �m/Š

Z 1

�1

ds .1 � s2/l ;

where we have integrated by parts l�m times taking into account that form > 0 the term @l�m�ks .s2�

1/l vanishes at s D ˙1 for k D 0; : : : ; l �m (exercise). Integrating by parts l times we findZ 1

�1

ds .1 � s2/l D
Z 1

�1

ds .1 � s/l.1C s/l D
l

l C 1

Z 1

�1

ds .1 � s/l�1.1C s/lC1

D
l.l � 1/

.l C 1/.l C 2/

Z 1

�1

ds .1 � s/l�2.1C s/lC2 D � � �

D
.lŠ/2

.2l/Š

Z 1

�1

ds .1C s/2l D
.lŠ/2

.2l/Š

22lC1

2l C 1
:

We thus have Z 1

�1

ds
�
Pml .s/

�2
D

2

2l C 1

.l Cm/Š

.l �m/Š
;

which proves Eq. (6.62) for m > 0. On the other hand, for m < 0 Eq. (6.54) implies thatZ 1

�1

ds
�
Pml .s/

�2
D

�
.l Cm/Š

.l �m/Š

�2 Z 1

�1

ds
�
P�ml .s/

�2
D

�
.l Cm/Š

.l �m/Š

�2 2

2l C 1

.l �m/Š

.l Cm/Š
D

2

2l C 1

.l Cm/Š

.l �m/Š
;

as was to be shown. Note that from Eq. (6.62) it immediately follows that the spherical harmonic
Y m
l
.�; '/ is normalized on the unit sphere:Z 2 

0

d'
Z  

0

d� sin �
ˇ̌
Y ml .�; '/

ˇ̌2
D 2  �

2l C 1

4 

.l �m/Š

.l Cm/Š

Z  

0

d� sin �
�
Pml .cos �/

�2
D
2l C 1

2

.l �m/Š

.l Cm/Š

Z 1

�1

ds
�
Pml .s/

�2
D 1:

For each l D 0; 1; : : : , the wave functions

 nlm.r/ WD Rnl.r/Y ml .�; '/ D
unl.r/

r
Y ml .�; '/

satisfy the Schrödinger equation6 (6.22) with an energy Enl , and are eigenfunctions of L2 and L3 with
respective eigenvalues l.l C 1/„2 and m„. In other words,

H nlm D Enl nlm; L2 nlm D l.l C 1/„2 nlm; L3 nlm D m„ nlm

In particular, since the eigenvalue Enl of H is independent of the quantum number m, the 2l C 1

eigenfunctions  nlm with m D �l;�l C 1; : : : ; l have the same energy Enl . It follows that the energy
levels of a central potential are at least 2l C 1 times degenerate. For a generic central potential Enl ¤

6The constant m appearing in Eq. (6.22), which denotes the particle’s mass, should not be confused with the magnetic
quantum number m.

165 © Artemio González López



THREE-DIMENSIONAL PROBLEMS

En0l 0 unless n D n0 and l D l 0, so the degeneracy of each level Enl is exactly 2l C 1. We shall show
in Section 6.8 that this degeneracy is a consequence of the symmetry (i.e., invariance) of the potential
under rotations. On the other hand, if the potential V.r/ has some additional symmetry (apart from
the symmetry under rotations common to all central potentials), it can happen that Enl D En0l 0 for
.n; l/ ¤ .n0; l 0/. If this is the case some levels could be more than 2lC1 time degenerate, a phenomenon
sometimes referred to as accidental degeneracy.

The spherical harmonic Y m
l
.�; '/ has parity .�1/l under r 7! �r, and Rnl.r/ is obviously even. It

follows that the wave function  nlm has parity .�1/l :

 nlm.�r/ D .�1/l nlm.r/:

By construction,�
 nlm;  n0l 0m0

�
D
�
unl ; un0l 0

��
Y ml ; Y

m0

l 0 / D ıl l 0ımm0
�
unl ; un0l

�
D ınn0ıl l 0ımm0 ;

since both unl and Ylm are normalized, and for n ¤ n0 the functions unl.r/ and un0l.r/ are solutions of
the same Schrödinger equation (6.37) with different eigenvalues Enl and En0l . Hence the set

˚
 nlm W n D 1; 2; : : : ; l D 0; 1; : : : ; m D �l;�l C 1; : : : ; l

	
(6.63) psinlm

is orthonormal. It can be shown that this set is complete in the (closed) linear subspace Hpoint of the
Hilbert space H spanned by the genuine eigenfunctions of H . In particular, any eigenfunction of H
with energy E is a (finite or infinite) linear combination of eigenfunctions  nlm with Enl D E.

Remark. Since the quantum numbers .n; l;m/ obviously determine the common eigenfunction  nlm
of the commuting self-adjoint operators H , L2, and L3 up to a global phase, the set

˚
H;L2; L3

	
is a

CSCO in Hpoint. If V1 D1 the HamiltonianH has no continuous spectrum (since .Vl/1 D V1 for all
l), and Hpoint is the whole Hilbert space. Thus when V1 D 1 the set (6.63) is an orthonormal basis of
L2.R3/, and fH;L2; L3g is a CSCO. On the other hand, when V1 is finite (like, e.g., for the Coulomb
potential �˛=r with ˛ > 0), the half-line .V1;1/ is in the continuous spectrum of H , and the formal
eigenfunctions with energy E > V1 are therefore needed to construct a generalized orthonormal basis
of L2.R3/. In particular, when V1 is finite the set (6.63) is not an orthonormal basis of L2.R3/. �

Exercise 6.8. Prove condition (6.51) by counting the number of independent harmonic polynomials of
degree l . Using the fact that the angular equation (6.47) is equivalent to (6.32), compute the spherical
harmonics Y m

l
for l D 0; 1; 2 up to normalization. (Cf. [Wei15, pp. 36–37].)

Solution. A homogeneous polynomial pl of degree l in the variables . Ox1; Ox2; Ox3/ can be written as
sum of monomials

Ox
nC
C
Oxn�� Ox

n3
3 ; (6.64) hxpm3

with Ox˙ D Ox1 ˙ i Ox2 and
0 6 n˙; n3 6 l; nC C n� C n3 D l: (6.65) hxpm3cond

Since
Ox1 ˙ Ox2 D sin � e˙i' ; Ox3 D cos �

we have
L3 Ox

nC
C
Oxn�� Ox

n3
3 D .nC � n�/„ Ox

nC
C
Oxn�� Ox

n3
3 :

For pl to be an eigenfunction of L3 with eigenvalue m„ we must therefore have

nC � n� D m:
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Since n˙ range from 0 to l , the difference nC � n� ranges from �l to l , which shows that

�l 6 m 6 l:

We must still prove that for all integer values of m between �l and l there is exactly one linearly
independent homogeneous polynomial of degree l in r=r which is a simultaneous eigenfunction of L2
and L3 with respective eigenvalues l.l C 1/„2 and m„. To this end, recall that

L2pl D l.l C 1/„2pl () r
2.r lpl/ D 0;

where r lpl is a homogeneous polynomial in r of degree l . The number Nl of independent homo-
geneous polynomials of degree l in r is equal to the number of monomials xn11 x

n2
2 x

n3
3 such that

n1 C n2 C n3 D l and 0 6 ni 6 l . Thus n3 can take the values 0; 1; : : : ; l without restriction.
For each of these values, n2 can range between 0 and l � n3 and n1 D l � n2 � n3 is determined by
n2 and n3. Thus

Nl D

lX
n3D0

.l � n3 C 1/ D

lC1X
kD1

k D
1

2
.l C 1/.l C 2/:

On the other hand, since r2.r lpl/ is a homogeneous polynomial of degree l � 2, the number of
independent equations ensuing from the condition r2.r lpl/ is Nl�2. Thus the number of independent
harmonic homogeneous polynomials of degree l is

Nl �Nl�2 D
1

2
.l C 1/.l C 2/ �

1

2
l.l � 1/ D 2l C 1:

Since this is also the number of harmonic polynomials r lY m
l

with �l 6 m 6 l , we conclude that
these polynomials are a basis of the space of harmonic homogeneous polynomials in r of degree l , and
hence fY m

l
W m D �l: � l C 1; : : : ; lg is a basis of the space of spherical harmonics of degree l .

As mentioned above, Y m
l

must be a linear combination of monomials (6.64) whose exponents satisfy
condition (6.65). The spherical harmonic Y 00 must be a constant, since it is of degree 0. For l D 1, the
condition nC � n� D m 2 f0;˙1g shows that

Y ˙11 / Ox˙ D sin � e˙i' ; Y 01 / Ox3 D cos �:

For degree l D 2, from the condition nC � n� D m 2 f0;˙1;˙2g we deduce that

Y ˙22 / Ox2˙ D sin2 � e˙2i' ; Y ˙12 / Ox˙ Ox3 D sin � cos � e˙i' :

On the other hand, Y 02 must be a linear combination of OxC Ox� and Ox23 , i.e.,

Y 02 D a OxC Ox� C b Ox
2
3 H) r2Y 02 D a.x

2
1 C x

2
2/C bx

2
3 :

Imposing the condition r2.r2Y 02 / D 0 we obtain

r
2.r2Y 02 / D 4aC 2b D 0 H) b D �2a

H) Y 02 / OxC Ox� � 2 Ox
2
3 D sin2 � � 2 cos2 � D 1 � 3 cos2 �:

6.6 Algebraic theory of angular momentum
sec.algangmom

As we saw in Example 4.9, the components Li of the angular momentum operator L are self-adjoint
operators satisfying the commutation relations (4.26). In this section we shall derive some fundamental
consequences that follow algebraically from these commutation relations, without making use of the
explicit expression of the operators Li . To underscore this fact, we shall make the following definition:
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Definition 6.1. A general angular momentum operator is a vector operator J D .J1; J2; J3/ whose
components are self-adjoint operators satisfying the commutation relations

�
Jj ; Jk

�
D i„

3X
lD1

"jklJl ; 1 6 j; k 6 3: (6.66) Jcommrel

In other words,

ŒJ1; J2� D i„J3; ŒJ2; J3� D i„J1; ŒJ3; J1� D i„J2;

or equivalently �
Jj ; Jk

�
D i„Jl ; with .j; k; l/ D cyclic permutation of .1; 2; 3/:

These commutation relations could also be symbolically expressed as

J � J D i„J:

Note also that from the commutation relations it follows that each operator Ji has the same dimension
as „, i.e., angular momentum, and that the operator

J2 WD
3X
iD1

J 2i

commutes with all the Ji ’s: �
J2; Ji

�
D 0; i D 1; 2; 3 (6.67) J2Jicomm

(the proof is the same as that given in Example 4.9 for the orbital angular momentum L).

exa.Pauli Example 6.2. Since in finite dimension

trŒA; B� D 0;

the components Ji of an angular momentum operator defined in a finite-dimensional Hilbert space
must be self-adjoint traceless matrices. In two dimensions, the three Pauli matrices

�1 D

�
0 1

�1 0

�
; �2 D

�
0 �i
i 0

�
; �3 D

�
1 0

0 �1

�
are a basis of the (real) vector space of 2� 2 self-adjoint traceless (complex) matrices. Moreover, from
the identities

�j�k D i
3X
lD1

"jkl�l ; 1 6 j ¤ k 6 3;

it follows that

Œ�j ; �k� D 2i
3X
lD1

"jkl�l :

The vector operator J with components

Ji D
„

2
�i
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is therefore an angular momentum operator in H D C2, since

�
Jj ; Jk

�
D
„2

4

�
�j ; �k

�
D

i„2

2

3X
lD1

"jkl�l D i„
3X
lD1

"jklJl :

This is the simplest non-trivial example of an angular momentum operator, since in one dimension all
operators commute. Note also that

�2i D 1; 1 6 i 6 3;

and therefore

J2 D
„2

4

3X
iD1

�2i D
3„2

4

is proportional to the identity.

Let us next define the raising and lowering operators J˙ by

J˙ WD J1 ˙ iJ2I

note that, since the operators Ji are self-adjoint by hypothesis, we have

J
�
˙
D J�:

The commutator of JC and J� is easily computed:

ŒJC; J�� D ŒJ1 C iJ2; J1 � iJ2� D �2iŒJ1; J2� D 2„J3:

We also have

J˙J� D .J1 ˙ iJ2/.J1 � iJ2/ D J 21 C J
2
2 � i ŒJ1; J2� D J 21 C J

2
2 ˙ „J3;

and therefore

J2 D J˙J� C J3.J3 � „/: (6.68) J2Jpm

Since J2 commutes with all the components of J, let us look for common eigenvectors of J2 and one
of the Ji ’s, for example J3. Suppose, therefore, that

ˇ̌
 
�

�

˛
is a nonzero vector (i.e., an element of the

Hilbert space on which J acts) satisfying

J2
ˇ̌
 
�

�

˛
D �„2

ˇ̌
 
�

�

˛
; J3

ˇ̌
 
�

�

˛
D �„

ˇ̌
 
�

�

˛
; (6.69) lamudef

with � and � two dimensionless real numbers (since J2 and J3 are both self-adjoint). Note also that
� > 0, since J2 is positive semidefinite:�

 ; J2 
�
D

3X
iD1

�
 ; J 2i  

�
D

3X
iD1

Ji 2 > 0:
Consider next the vector J˙

ˇ̌
 
�

�

˛
, whose norm is easily computed:J˙ˇ̌ �� ˛2 D h �� jJ �˙J˙j �� i D h �� jJ�J˙j �� i D h �� jJ2 � J3.J3 ˙ „/j �� i

D „
2 Œ� � �.�˙ 1/�

˝
 
�

�

ˇ̌
 
�

�

˛
: (6.70) Jpmnorm

Thus
J˙
ˇ̌
 
�

�

˛
D 0 () � D �.�˙ 1/: (6.71) Jpmlamu0

Since J2 commutes with J˙, we have

J2
�
J˙
ˇ̌
 
�

�

˛�
D J˙

�
J2
ˇ̌
 
�

�

˛�
D �„J˙

ˇ̌
 
�

�

˛
;

i.e.:
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J˙
ˇ̌
 
�

�

˛
is either zero or an eigenvector of J2 with the same eigenvalue �„2 as

ˇ̌
 
�

�

˛
.

On the other hand, since

ŒJ3; J˙� D ŒJ3; J1 ˙ iJ2� D i„J2 ˙ „J1 D ˙„J˙;

we have
J3
�
J˙
ˇ̌
 
�

�

˛�
D J˙

�
J3
ˇ̌
 
�

�

˛�
˙ „J˙

ˇ̌
 
�

�

˛
D .�˙ 1/„

ˇ̌
 
�

�

˛
:

In other words:

J˙
ˇ̌
 
�

�

˛
is either zero or an eigenvector of J3 with eigenvalue .�˙ 1/„.

Note that from the equality
J 23 D J2 � .J 21 C J

2
2 /;

it follows (since J 21 C J
2
2 is positive semidefinite) that

�2 6 � () j�j 6
p
�:

Hence there must exist a positive integer p such that

J kC
ˇ̌
 
�

�

˛
¤ 0 for k D 0; : : : ; p � 1; J

p
C

ˇ̌
 
�

�

˛
D 0:

Similarly, there must exist another positive integer q such that

J k�
ˇ̌
 
�

�

˛
¤ 0 for k D 0; : : : ; q � 1; J q�

ˇ̌
 
�

�

˛
D 0:

Thus the vectors ˇ̌
 
�Ck

�

˛
WD J kC

ˇ̌
 
�

�

˛
; k D 0; : : : ; p � 1;

are eigenvectors of J2 and J3 with respective eigenvalues �„2 and .�C k/„, and

JC
ˇ̌
 
�Cp�1

�

˛
D J

p
C

ˇ̌
 
�

�

˛
D 0:

From the upper Eq. (6.71) (with � replaced by �C p � 1) it then follows that

� D .�C p � 1/.�C p/:

Likewise, the vectors ˇ̌
 
��k

�

˛
WD J k�

ˇ̌
 
�

�

˛
; k D 0; : : : ; q � 1;

are eigenvectors of J2 and J3 with respective eigenvalues �„2 and .� � k/„, and

J�
ˇ̌
 
��qC1

�

˛
D J q�

ˇ̌
 
�

�

˛
D 0;

whence (from the lower Eq. (6.71) with � replaced by � � q C 1)

� D .� � q/.� � q C 1/:

Equating both expressions for � we obtain

.�C p � 1/.�C p/ D .� � q/.� � q C 1/;
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from which it follows that7

�C p D � � q C 1 or �C p D q � �:

The first of these equations, which is equivalent to p C q D 1, is impossible, since both p and q are
positive integers. We conclude that

� D
1

2
.q � p/

is integer or half-integer. It then follows from the first equation for � that

� D j.j C 1/;

where
j D �C p � 1 D

1

2
.q � p/C p � 1 D

1

2
.q C p/ � 1

is a non-negative integer or half-integer. In other words, j can only take the values

0;
1

2
; 1;

3

2
; : : : :

The vectors ˇ̌
 
��qC1

�

˛
; : : : ;

ˇ̌
 
��1

�

˛
;
ˇ̌
 
�

�

˛
;
ˇ̌
 
�C1

�

˛
; : : : ;

ˇ̌
 
�Cp�1

�

˛
(6.72) ladder

form a sequence (“ladder”) of eigenvectors of J2=„2 with eigenvalue � D j.j C 1/ and of J3=„ with
respective eigenvalues

� � q C 1; : : : ; � � 1; �; �C 1; : : : ; �C p � 1

increasing by 1 from left to right. Taking into account the value of � found above and the definition of
j , we find that the highest and lowest eigenvalues of J3=„ are

1

2
.q � p/ � q C 1 D �

1

2
.q C p/C 1 D �j; �C p � 1 D j:

It follows that the 2j C 1 vectors jjmi defined by

jjmi D

ˇ̌
 m
�

˛˝
 m
�

ˇ̌
 m
�

˛1=2 ; m D �j;�j C 1; : : : ; j; (6.73) jmdef

(with � D j.j C 1/) satisfy hjmjjmi D 1 and

J2jjmi D j.j C 1/„2jjmi; J3jjmi D m„jjmi: (6.74) J2J3eigvs

Note that, by the last two framed remarks, J˙jjmi is proportional to jj;m˙ 1i (where jj; j C 1i and
jj;�j � 1i should be interpreted as the zero vector). We have thus proved the following fundamental
result:

7Indeed, if s D �C p and t D � � q we have

s.s � 1/ � t .t C 1/ D s2 � t2 � s � t D .s C t /.s � t � 1/ D 0 () s D t C 1 or s D �t:
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thm.J Theorem 6.3.
1) The only possible eigenvalues of the operator J2 are the numbers j.jC1/„2, with j D 0; 1

2
; 1; 3

2
; : : :

a non-negative integer or half-integer.
2) If j.j C 1/„2 is an eigenvalue of J2, there is as a set of 2j C 1 vectors jjmi, with m D �j;�j C
1; : : : ; j , which are common eigenvectors of J2 and J3 with respective eigenvalues j.j C 1/„2 and
m„.

3) J˙jjmi is proportional to jj;m˙ 1i, and J˙jj;˙j i D 0.

Remarks.

� With a slight abuse of language, we shall say that the state jjmi has angular momentum j , even if
strictly speaking the value of the angular momentum in such a state is

p
j.j C 1/ „.

� Although the square J2 of a general angular momentum operator J can have eigenvalues j.j C 1/„2

with j a half integer, we showed in Section 6.3 that in the case of the orbital angular momentum
operator L the values of j are necessarily (non-negative) integers. This is due to the fact that the 2 -
periodicity in ' of the eigenfunctions Y.�; '/ of L3 requires that the eigenvalues of the latter operator
be integer multiples of „. This implies that j must itself be an integer, since the allowed values of m
for a given j are �j;�j C 1; : : : ; j , which are integers if and only of j is an integer.

� The vectors jjmi satisfy the orthonormalization condition

hjmjj 0m0i D ımm0ıjj 0 ;

since they are normalized by construction, and .j;m/ ¤ .j 0; m0/ implies that jjmi and jj 0m0i are
eigenvectors of the same self-adjoint operator (J2 or J3, or both) with different eigenvalues. In
particular, the 2j C 1 vectors (6.73) make up an orthonormal basis of their span, which is thus a
.2j C 1/-dimensional subspace of H that we shall denote by Hj . Note also that, by construction,
Hj � kerŒJ2 � j.j C 1/„2�.

� In the case of the orbital angular momentum L no additional quantum number ˛ is needed to label the
common eigenstates of L2 and L3, since jlmi D Y m

l
is uniquely determined up to a phase.

� Of course, the set fJ2; J3g need not be a CSCO, and thus there will be in general several (perhaps even
an infinite number of) subspaces Hj with the same j that we shall denote by H˛

j , where ˛ is an extra
index labeling different instances ofHj . The corresponding vectors (6.73) will be accordingly denoted
by j j̨mi. In many cases the extra index ˛ is the eigenvalue of a third observable A commuting with
both J2 and J3, such that

˚
A; J2; J3g is a CSCO. If that is the case (and assuming, for simplicity, that

the index ˛ is discrete) then
h j̨mj˛0j 0m0i D ı˛˛0ımm0ıjj 0 ;

since for ˛ ¤ ˛0 the vectors j j̨mi and j˛0j 0m0i are eigenvectors of the observable A with different
eigenvalues. �

By parts 2) and 3) of Theorem 6.3, each .2j C 1/-dimensional subspace Hj generated by the vec-
tors (6.73) is invariant under the action of the operators J3 and J˙, and hence of the three compo-
nents of the angular momentum operator J. In other words, the restriction of each Ji to Hj acts as a
.2j C 1/ � .2j C 1/ matrix, whose matrix elements we shall determine next. We shall say that these
matrices provide an irreducible8 representation of spin j of the commutation relations (6.66), or more
formally of the so.3/ Lie algebra.

8The term “irreducible” means that there is no proper subspace of Hj left invariant by all the components Ji of J.
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The Lie algebra so.3/.
The Lie algebra so.3/ of the rotation group SO.3/ in three-dimensional space is defined by

so.3/ D
˚
X 2M3.R/ W X

T; trX D 0g;

where M3.R/ denotes the set of 3 � 3 real matrices. In other words, the elements of so.3/ are by
definition antisymmetric traceless 3 � 3 (real) matrices. The matrices X 2 so.3/ can be regarded as
generators of infinitesimal rotations in three dimensions. For instance, consider the matrix R3.˛/ of a
rotation around the x3 axis by an angle ˛, defined by

R3.˛/ D

0@cos˛ � sin˛ 0

sin˛ cos˛ 0

0 0 1

1A :
The matrices R.˛/ (with ˛ 2 R) make up a one-parameter group of transformations of R3, since
clearly

R.˛1 C ˛2/ D R.˛1/R.˛2/:

The generator of rotations around the x3 axis is the matrix

X3 D
d

d˛

ˇ̌̌̌
˛D0

R3.˛/ D

0@0 �1 0

1 0 0

0 0 0

1A ;
which is clearly in so.3/. By construction

R3.˛/ D 1C ˛X3 CO.˛
2/;

so that 1C ˛X3 represents a rotation around the x3 axis by an infinitesimal angle ˛. Moreover, it can
be shown that

R3.˛/ D e˛X3 ;

and similarly for rotations around the other axes, whose corresponding generators are

X1 D

0@0 0 0

0 0 �1

0 1 0

1A ; X2 D

0@ 0 0 1

0 0 0

�1 0 0

1A :
The set so.3/ is a Lie algebra under the commutator, by which is meant that the commutator of two
so.3/ matrices is itself an so.3/ matrix. This is a consequence of the fact that the product of two
rotations is a rotation. It can be easily verified that the three generators Xi (i D 1; 2; 3) of rotations
around the coordinate axes are a basis of so.3/. Moreover, a direct calculation shows that

ŒXj ; Xk� D

3X
lD1

"jklXl ; 1 6 j; k 6 3:

Hence the 3 � 3 matrices Jk D i„Xk are self-adjoint and traceless, and satisfy the commutation
relations (6.66) characteristic of a general angular momentum operator.

Note: in quantum mechanics, the orbital angular momentum operator L is the generator of rotations
(in the case of a spinless particle). Indeed, a rotation by an angle ˛ around the x3 acts on the wave
function  .r/ as

 .r/ 7!  ˛.r/ D  
�
R3.˛/r

�
;
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which in spherical coordinates reads

 .r; �; '/ 7!  ˛.r; �; '/ D  .r; �; ' C ˛/;

where R3.˛/ is the rotation matrix defined above. Since

L3 D �i„@' ;

by Taylor’s formula we have

e
i
„
˛L3 .r; �; '/ D

1X
nD0

1

nŠ

�
i˛L3
„

�n
 .r; �; '/ D

1X
nD0

˛n

nŠ
@n' .r; �; '/ D  

�
r; �; ' C ˛

�
�  ˛.r; �; '/:

More generally, if Rn.˛/ is a rotation around the axis n by an angle ˛, choosing the x3 axis in the
direction of the unit vector n we deduce that

 
�
Rn.˛/r

�
D e

i
„
˛ n�L .r/:

In particular, if ˛ is infinitesimal then

 
�
Rn.˛/r

�
D  .r/C

i˛
„
.n � L/  .r/CO.˛2/:

We shall next determine the matrix elements in the basis (6.73) of the restriction of the operators Ji
or, equivalently, of J˙ and J3, to each subspace Hj . Obviously, by the last Eq. (6.74) J3 is diagonal,
with matrix elements ˝

jm
ˇ̌
J3
ˇ̌
jm0

˛
D m„ımm0 : (6.75) J3mat

Likewise, by the first Eq. (6.74) J2 is proportional to the identity in Hj :

J2 D j.j C 1/„21 in Hj :

Consider next the ladder operators J˙. By Theorem 6.3, J˙jjmi is proportional to jj;m ˙ 1i. To
determine the proportionality constant note that, by Eq. (6.70) with � D m and � D j.j C 1/ we haveJ˙jjmi2 D „2 Œj.j C 1/ �m.m˙ 1/� D „2.j �m/.j ˙mC 1/:
Hence

J˙jjmi D ˛
˙
m„
p
.j �m/.j ˙mC 1/ jj;m˙ 1i; (6.76) Jpmjm

where ˛˙m is a phase (i.e., a complex number of modulus 1). It can be shown (see Exercise 6.9) that these
phases can be eliminated by appropriately redefining the vectors jjmi. In other words, we can assume
w.l.o.g. that

J˙jjmi D „
p
.j �m/.j ˙mC 1/ jj;m˙ 1i; m D �j;�j C 1; : : : ; j: (6.77) Jpmjmfinal

(Note that, although in the previous equation formally appear the undefined vectors jj;�j � 1i and
jj; j C1i, this is harmless as their respective coefficients vanish.) Thus the matrix elements of the ladder
operators J˙ are ˝

jm
ˇ̌
J˙
ˇ̌
jm0

˛
D „

p
.j ˙m/.j �mC 1/ ım;m0˙1: (6.78) Jpmmat
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The matrix elements of J1;2 are then easily computed from the identities

J1 D
1

2
.JC C J�/; J2 D

1

2i
.JC � J�/:

In particular, note that in this representation the matrix elements of J2, J3, J˙, and J1 are all real, while
those of J2 are pure imaginary.

exe.phases Exercise 6.9. Show that the phases ˛˙m in Eq. (6.76) can be eliminated by appropriately redefining the
vectors jjmi.

Solution. Indeed, let us set

jjmi0 D ˇmjjmi; m D �j;�j C 1; : : : ; j;

where ˇm is a phase. Obviously the vectors jjmi0 still satisfy both equations in (6.74), and they are
normalized. We shall next show that we can choose the phases ˇm so that

J˙jjmi
0
D „

p
.j �m/.j ˙mC 1/ jj;m˙ 1i0: (6.79) Jpmjmp

Indeed, multiplying both sides of Eq. (6.76) for JCjjmi by ˇm we obtain

JCjjmi
0
D
˛Cmˇm

ˇmC1
„
p
.j �m/.j ˙mC 1/ jj;m˙ 1i0; m D �j; : : : ; j � 1:

Thus Eq. (6.79) with the upper sign will be satisfied provided that

ˇmC1 D ˛
C
mˇm; m D �j; : : : ; j � 1;

which is obviously solved by ˇ�j D 1 and

ˇm D ˛
C
�j˛

C
�jC1 � � �˛

C
m�1; m D �j C 1; : : : ; j:

(Note that ˇm is a phase, since it is a product of phases.) With this choice of ˇm we have

JCjjmi
0
D „

p
.j �m/.j CmC 1/ jj;mC 1i0; m D �j; : : : ; j � 1:

Applying the operator J� to both sides of the latter equation and taking into account Eq. (6.68) we
obtain�

J2 � J3.J3 C „/
�
jjmi0 D „2 Œj.j C 1/ �m.mC 1/� jjmi0 D „2.j �m/.j CmC 1/jjmi0

D „
p
.j �m/.j CmC 1/ J�jj;mC 1i

0;

and therefore

J�jj;mC 1i
0
D „

p
.j �m/.j CmC 1/ jjmi0; m D �j; : : : ; j � 1;

or equivalently

J�jj;mi
0
D „

p
.j Cm/.j �mC 1/ jj;m � 1i0; m D �j C 1; : : : ; j:

Thus the set
˚
jjmi0 W m D �j;�j C 1; : : : ; j

	
satisfies Eq. (6.79), as was to be shown.

Example 6.4. For j D 0, J2 D 0 and hence the three components Ji vanish on H0 D C. This is the
trivial (scalar) spin zero representation. The first non-trivial case is that of spin j D 1=2, for which

175 © Artemio González López



THREE-DIMENSIONAL PROBLEMS

m D �1=2; 1=2 and

J2 D
3

4
„
21:

By Eq. (6.75), ordering (as is customary) the basis jjmi asˇ̌̌
1
2
1
2

E
;

ˇ̌̌
1
2
�
1
2

E
we have

J3 D

�
„=2 0

0 �„=2

�
D
„

2
�3:

Moreover, by Eq. (6.78) the only non-vanishing matrix element of JC is

.JC/12 D
D
1
2
1
2

ˇ̌̌
JC

ˇ̌̌
1
2
�
1
2

E
D „

s�
1

2
C
1

2

��
1

2
�
1

2
C 1

�
D „;

so that

JC D

�
0 „

0 0

�
; J� D J

�
C
D

�
0 0

„ 0

�
;

and hence

J1 D
1

2

�
0 „

„ 0

�
D
„

2
�1; J2 D

1

2i

�
0 „

�„ 0

�
D
„

2
�2:

Thus the spin 1=2 representation is that of Example 6.2.
Likewise, for spin j D 1 we have m D �1; 0; 1 and J2 D 2„21. Ordering the basis vectors in

descending order as
j1 1i; j1 0i; j1 �1i

we then obtain

J3 D „

0@1 0 0

0 0 0

0 0 �1

1A :
The only non-vanishing matrix elements of JC are

.JC/12 D
˝
11
ˇ̌
JC
ˇ̌
10
˛
D „

p
.1C 1/.1 � 1C 1/ D

p
2 „;

.JC/23 D
˝
10
ˇ̌
JC
ˇ̌
1�1

˛
D „

p
.1C 0/.1 � 0C 1/ D

p
2 „;

so that

JC D
p
2 „

0@0 1 0

0 0 1

0 0 0

1A ; J� D J
�
C
D
p
2 „

0@0 0 0

1 0 0

0 1 0

1A ;
and therefore

J1 D
„
p
2

0@0 1 0

1 0 1

0 1 0

1A ; J2 D
„
p
2

0@0 �i 0

i 0 �i
0 i 0

1A :

Exercise 6.10. Show that

jjmi D

s
.j �m/Š

.2j /Š.j ˙m/Š

�
J˙

„

�j˙m
jj;�j i: (6.80) jmJpm
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Solution. By Eq. (6.77), we have�
J�

„

�j�m
jjj i D

p
2j

�
J�

„

�j�m�1
jj; j � 1i D

p
2j.2j � 1/ � 2Š

�
J�

„

�j�m�2
jj; j � 2i D : : :

D
p
2j.2j � 1/ � � � .j CmC 1/ � .j �m/Š jjmi �

s
.2j /Š.j �m/Š

.j Cm/Š
jjmi:

Likewise,�
JC

„

�jCm
jj;�j i D

p
2j

�
J�

„

�jCm�1
jj;�j C 1i D

p
2j.2j � 1/ � 2Š

�
J�

„

�jCm�2
jj;�j C 2i D : : :

D
p
2j.2j � 1/ � � � .j �mC 1/ � .j Cm/Š jjmi �

s
.2j /Š.j Cm/Š

.j �m/Š
jjmi:

Example 6.5. Construction of Y m
l

for m D �l;�l C 1; : : : ; l � 1 from Y l
l

.
Equation (6.80) can be used to construct any spherical harmonic Y m

l
from Y l

l
. Indeed, note first of all

that from Eq. (6.27) it follows that

L˙ D „e˙i'�
˙ @� C i cot �@'

�
:

In particular, writing
Y ll .�; '/ D fl.�/e

i l' ;

from the identity LCY ll D 0 we obtain the following differential equation for the function fl.�/:

f 0l .�/ � l cot � f .�/ D 0:

The general solution of this equation is

fl.�/ D cl sinl �;

where cl is a complex constant that can be determined up to a phase imposing that Y l
l

ve normalized,
i.e., that

jcl j
2

Z 2 

0

d'
Z  

0

d� sin � � sin2l � D 2 jcl j
2

Z  

0

d� sin2lC1 � D 1:

Since for l > 0 we have

Il �

Z  

0

d� sin2lC1 D �
Z  

0

d.cos �/ sin2l � D
Z  

0

d� cos � � 2l sin2l�1 � cos � D 2l.Il�1 � Il/;

it follows that

Il D
2l

2l C 1
Il�1 D

2l.2l � 2/

.2l C 1/.2l � 1/
Il�2 D � � � D

.2l/ŠŠ

.2l C 1/ŠŠ
I0 D 2

.2l/ŠŠ

.2l C 1/ŠŠ
D 2

�
.2l/ŠŠ

�2
.2l C 1/Š

D
22lC1.lŠ/2

.2l C 1/Š
;

and hence

cl D
˛l

2l lŠ

r
.2l C 1/Š

4 
;
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where ˛l is a phase. We thus have

Y ll .�; '/ D
˛l

2l lŠ

r
.2l C 1/Š

4 
ei l' sinl �: (6.81) Yll

From the previous equation it is straightforward to obtain an explicit formula for the general spherical
harmonic Y m

l
with m D �l;�l C 1; : : : ; l using Eq. (6.80). To this end, note first that

L�

„

�
f .�/ein'�

D �ei.n�1/'�@� C n cot �
�
f .�/ D ei.n�1/' sin1�n �

�
�

1

sin �
@�

� �
sinn � f .�/

�
:

(6.82) Lmhbar

Calling

g.�/ D sin1�n �
�
�

1

sin �
@�

� �
sinn � f .�/

�
and applying L�„ again we obtain�

L�

„

�2 �
f .�/ein'�

D
L�

„

h
g.�/ei.n�1/'

i
D ei.n�2/' sin2�n �

�
�

1

sin �
@�

� �
sinn�1 � g.�/

�
D ei.n�2/' sin2�n �

�
�

1

sin �
@�

�2 �
sinn � f .�/

�
;

and in general�
L�

„

�k �
f .�/ein'�

D ei.n�k/' sink�n �
�
�

1

sin �
@�

�k �
sinn � f .�/

�
; k D 1; 2; : : : :

From Eq. (6.81), Eq. (6.80) and the previous equation with k D l �m and n D l we then obtain

Y ml .�; '/ D
˛leim'

2l lŠ

r
.2l C 1/Š

4 

s
.l Cm/Š

.2l/Š.l �m/Š
sin�m �

�
�

1

sin �
@�

�l�m �
sin2l �

�
D
˛leim'

2l lŠ

s
2l C 1

4 

.l Cm/Š

.l �m/Š
.1 � s2/�m=2 @l�ms .1 � s2/l ; s � cos �:

Using Eqs. (6.54) and (6.55) we can rewrite the last equation as

Y ml .�; '/ D .�1/
lCm˛l

s
2l C 1

4 

.l Cm/Š

.l �m/Š
P�ml .cos �/eim'

D .�1/l˛l

s
2l C 1

4 

.l �m/Š

.l Cm/Š
Pml .cos �/eim' ;

which indeed coincides with Eq. (6.56) if we take

˛l D .�1/
l :

As an example, let us construct the three spherical harmonics with l D 2 (and hence ˛2 D 1) starting
from

Y 22 .�; '/ D
1

8

r
5Š

4 
e2i' sin2 � D

1

8

r
30

 
e2i' sin2 �:
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In practice, it is better to use Eq. (6.77), i.e.,

Y m�1l D
�
.l Cm/.l �mC 1/

��1=2 �L�
„

�
Y ml ;

together with Eq. (6.82). In this way we obtain

Y 12 D
1

2

�
L�

„

�
Y 22 D

1

16

r
30

 
ei' sin�1 �

�
�

1

sin �
@�

�
.sin4 �/ D �

1

4

r
30

 
ei' sin � cos �;

Y 02 D
1
p
6

�
L�

„

�
Y 12 D �

1

4

r
5

 

�
�

1

sin �
@�

�
.sin2 � cos �/ D

1

4

r
5

 
.2 cos2 � � sin2 �/

D
1

4

r
5

 
.3 cos2 � � 1/:

From Eq. (6.59) we then obtain

Y �12 D �Y 12 D
1

4

r
30

 
ei' sin � cos �; Y �22 D Y 22 D

1

8

r
30

 
e�2i' sin2 �:

6.7 The infinite spherical well
seq.sphwell

For a quantum particle confined to move inside a sphere of radius a > 0 centered at the origin the
potential can be taken as

V.r/ D

(
0; r < a

1; r > a:
(6.83) spherpot

We must therefore solve Schrödinger’s equation

�
„2

2m
r
2 D E 

for r < a, with the boundary condition that  vanishes on the boundary of the well, i.e., for r D a

(since  must vanish in the region r > a where the potential is infinite). For zero angular momentum
the solution of this problem is straightforward, since the radial equation for u.r/ is simply

�
„2

2m
u00.r/ D Eu.r/; 0 6 r 6 a;

where the prime denotes derivative with respect to r , with the boundary conditions

u.0/ D u.a/ D 0:

Thus the solutions of this problem are the eigenfunctions of an infinite one-dimensional well of width a,
namely9

un0.r/ D

r
2

a
sin
�n r
a

�
�Œ0;a�.r/; n 2 N;

with energies

En0 D
n2 2„2

2ma2
:

Hence the normalized zero angular momentum (sometimes called s-wave) radial wave functions are
given by

Rn0.r/ D

r
2

a

1

r
sin
�n r
a

�
�Œ0;a�.r/; n 2 N:

9In the following formula �Œ0;a�.r/ denotes the characteristic function of the interval Œ0; a�, equal to 1 for 0 6 r 6 a and
zero otherwise.
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Taking into account the angular part Y 00 D .4 /�1=2 we obtain the explicit expression for the full zero
angular momentum wave functions:

 n00.r/ D .2 a/�1=2
1

r
sin
�n r
a

�
�Œ0;a�.r/; n 2 N:

For nonzero angular momentum l , it is more convenient to work directly with the differential equa-
tion (6.26) for the radial function R.r/, namely

�
1

r2

�
r2R0.r/

�0
C
l.l C 1/

r2
R D k2R; 0 6 r 6 a; k WD

r
2mE

„2
;

or equivalently
r2R00 C 2rR0 C

�
k2r2 � l.l C 1/

�
R D 0; 0 6 r 6 a:

Setting s D kr we obtain the spherical Bessel equation10

s2@2sRC 2s@sRC
�
s2 � l.l C 1/

�
R D 0; 0 6 r 6 a; (6.84) Besselspheq

A basis of solutions of this equation consists of the spherical Bessel functions of order l

jl.s/ D .�s/
l
�
s�1@s

�l sin s
s
; yl.s/ D �.�s/

l
�
s�1@s

�l cos s
s
:

It can be easily shown by induction that

yl.s/ D �.2l � 1/ŠŠ
cos s
slC1

CO.s�l/;

and thus yl diverges at the origin for all l . On the other hand, it is also straightforward to show by
induction that jl.s/ is finite at the origin for all l . More precisely,

jl.s/ D
sl

.2l C 1/ŠŠ
CO.slC1/:

From the boundary condition at r D 0 we thus conclude that

R.r/ / jl.s/ � jl.kr/:

The eigenvalue equation is then obtained from the boundary condition at r D a, namely

jl.ka/ D 0:

It can be shown that the spherical Bessel function jl.s/ is oscillating, with an infinite number of positive
zeros ´nl (n 2 N), which we shall order as follows:

´1l < ´2l < � � � < ´nl < � � � :

The eigenvalue equation for angular momentum l is thus

ka D ´nl .n 2 N/ H) Enl D
„2´2

nl

2ma2
:

The radial wave functions with angular momentum l are given by

Rnl.r/ D Nnljl

�´nlr
a

�
�Œ0;a�.r/;

10In these notes we shall follow the standard reference https://dlmf.nist.gov/10.47 for the properties of the spherical
Bessel equation and its solutions, the spherical Bessel functions.
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where Nnl is a normalization constant11. Note that the previous formulas are also valid for l D 0, since

j0.s/ D
sin s
s

H) ´n0 D n :

In Table 6.1 we list the zeros of the spherical Bessel functions jl.s/ with 0 6 l 6 6 in the interval

l

n
1 2 3 4 5

0 3.14159 6.28319 9.42478 12.5664 15.708
1 4.49341 7.72525 10.9041 14.0662 17.2208
2 5.76346 9.09501 12.3229 15.5146 18.689
3 6.98793 10.4171 13.698 16.9236
4 8.18256 11.7049 15.0397 18.3013
5 9.35581 12.9665 16.3547 19.6532
6 10.5128 14.2074 17.648

Table 6.1. Zeros in the interval 0 6 s 6 20 of the spherical Bessel functions jl.s/ with 0 6 l 6 6.tab.Besselz

0 6 s 6 20. Since, as we saw in Section 6.4, Enl < Enl 0 if l < l 0 or n < n0, we can infer from this
table the ten lowest energies of the infinite spherical square well potential (6.83), together with the value
of the angular momentum for each of these levels (see Table 6.2).

nl Enl
1s 9.8696
1p 20.1907
1d 33.2175
2s 39.4784
1f 48.8312
2p 59.6795
1g 66.9543
2d 82.7192
1h 87.5312
3s 88.8264

Table 6.2. Lowest ten energy levels of the infinite spherical well potential (6.83). Energies are measured
in units of „2=.2ma2/, and we use the traditional spectroscopic notation s, p, d , f , g, h to
denote the values l D 0; : : : ; 5 of the angular momentum.tab.sphwelllevs

6.8 Hydrogen-like atoms
sec.H

A hydrogen-like atom is an ionized atom whose heavy nucleus is made up of Z protons with charge
q > 0 (as well as a certain number N of neutrons, which are electrically neutral), around which orbits a
single electron of charge �q < 0. Since the mass of the nucleus, approximately equal to

.Z CN/mp ' .Z CN/ � 1:67262192369.51/ � 10
�27 kg ' 938:272.Z CN/MeV

11It can be shown that the normalization constant Nnl can be taken as

Nnl D

�
2

a3´nl

�1=2 ˇ̌
jl˙1.´nl /

ˇ̌�1
:
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l = 0

l = 1

l = 2

l = 3

r

Vl (r)

Figure 6.1. Effective potential Vl.r/ in Eq. (6.85) for several values of the angular momentum quantum
number l .fig.VlHy

is much greater than the electron’s mass

me ' 9:1093837015.28/ � 10
�31 kg ' 0:510999MeV

even for Z C N D 1, we shall assume that the nucleus is fixed at the origin of coordinates and the
electron moves in the electric field created by the nucleus, and is thus subject to a potential

V.r/ D �
Zq2

4 "0
� �

Ze2

r
; with e2 WD

q2

4 "0
:

The effective potential, which in this case is given by

Vl.r/ D �
Ze2

r
C
l.l C 1/„2

2mer2
; (6.85) VlHy

is plotted in Fig. 6.1 for several values of the angular momentum l . Since V1 D 0 for all values of l , the
point spectrum is contained in the half-line .�1; 0/ and the continuous spectrum contains all positive
energies. For l ¤ 0 the effective potential is bounded below by

minVl D �
meZ

2e4

2l.l C 1/„2
;

so that the point spectrum of Vl is in fact contained in the open interval .minVl ; 0/. For l D 0 the
effective potential is not bounded from below, but a heuristic argument based on Heisenberg’s uncertainty
principle shows that the point spectrum must also have a finite lower bound (exercise). Thus for all values
of l the point spectrum is a bounded set. We shall see below that the point spectrum is in fact a countably
infinite set accumulating at E D 0, which being an accumulation point of the point spectrum must itself
belong to the spectrum. In fact, we shall see that in this case E D 0 belongs to the continuous spectrum,
which is therefore the closed half-line Œ0;1/.

In what follows we shall only be interested in determining the point spectrum and the corresponding
bound states of a hydrogen-like atom of charge Zq. Since E < 0, the radial Schrödinger equation is

�@2ruC

�
l.l C 1/

r2
�
2me

„2

Ze2

r

�
u D �

2mejEj

„2
u: (6.86) radHy
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It is convenient to use the dimensionless length variable

� D �r;

where

� D

p
2mejEj

„
(6.87) kaHy

is an energy-dependent parameter with dimensions of an inverse length. In terms of this variable the
radial Schrödinger equation becomes

@2�u D

�
1 �

�

�
C
l.l C 1/

�2

�
u; (6.88) radrho

where

� WD
�Ze2

jEj
D
Ze2

„

s
2me

jEj
(6.89) laHy

is a dimensionless parameter. Equation (6.88), which can be written as

�2@2�uC �p1.�/@�uC p0.�/u D 0

with
p1.�/ D 0; p0.�/ D ��

2
C �� � l.l C 1/;

has a singular regular point at the origin with indicial equation

s.s � 1/C p1.0/s C p0.0/ D s.s � 1/ � l.l C 1/ D 0:

Since the roots of the indicial equation are

s1 D l C 1; s2 D �l;

by Frobenius theorem we know that there is a basis of solutions fu1; u2g of Eq. (6.88) of the form

u1.�/ D �
lC1f .�/; u2.�/ D �

�lg.�/C c log � u1.�/;

where f and g are analytic functions such that f .0/ D g.0/ D 1 and c is a real constant (possibly zero).
Since � is proportional to r , in view of the boundary condition (6.41) only the first of these solutions is
acceptable. Moreover, since for �� 1 Eq. (6.88) reduces to

@2�u � u D 0;

whose general solution is
u.�/ D ae�� C be�

with a; b arbitrary complex constants, the solutions of Eq. (6.88) behave as a linear combination ae��C
be� of the exponentials e˙� for � ! 1. Thus for u to be square integrable it must behave as e�� for
�!1. In other words, we seek for solutions of Eq. (6.88) satisfying the boundary conditions

u.�/ �
�!0C

�lC1; u.�/ �
�!1

e��:

For this reason, it is convenient to look for a new dependent variable v.�/ defined by

u D �lC1e��v:
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Since

@2�u D �
lC1e��@2�v C 2@�

�
�lC1e��

�
@�v C @

2
�.�

lC1e��/v

D �le��
�
�@2�v C 2 .l C 1 � �/ @�v C

�
l.l C 1/

�
� 2.l C 1/C �

�
v

�
;

in terms of the variable v the radial Schrödinger equation (6.88) becomes

�@2�v C 2 .l C 1 � �/ @�v C
�
� � 2.l C 1/

�
v D 0: (6.90) radrhov

Again � D 0 is a singular regular point of the latter equation, with indicial equation

s.s � 1/C 2.l C 1/s D 0

and roots
s1 D 0; s2 D �.2l C 1/:

Thus Frobenius’ theorem guarantees the existence of an analytic, non-vanishing solution of Eq. (6.90)

v.�/ D

1X
kD0

ak�
k (6.91) vseries

with a0 D 1. The second linearly independent solution of the latter equation is not physically acceptable,
since it behaves as ��2l�1 near the origin and thus u.�/ � ��l for �! 0C. Since

�@2�v D

1X
kD1

k.k � 1/ak�
k�1
D

1X
kD0

k.k C 1/akC1�
k;

.l C 1 � �/@�v D .l C 1/

1X
kD1

kak�
k�1
�

1X
kD0

kak�
k
D

1X
kD0

�
.l C 1/.k C 1/akC1 � kak

�
�k;

substituting Eq. (6.91) into (6.90) we obtain
1X
kD0

h
.k C 1/.k C 2l C 2/akC1 C

�
� � 2.l C k C 1/

�
ak

i
�k D 0;

which is equivalent to the recursion relation

akC1 D
2.l C k C 1/ � �

.k C 1/.2l C k C 2/
ak; k D 0; 1; : : : : (6.92) rrHy

Note that the denominator in the RHS never vanishes, since k; l > 0. It follows from the latter equation
that the infinite series (6.91) reduces to a polynomial of degree j if and only if

� D 2.l C j C 1/ � 2.nC l/; with n � j C 1 D 1; 2; : : : ; : (6.93) laquant

On the other hand, when � ¤ 2.n C l/ with n D 1; 2; : : : (i.e., when � is not an even integer greater
than l) the series (6.91) does not terminate, and the function v.�/ defined by it (with a0 D 1) satisfies

jv.�/j > C e
3
2
� (6.94) ve2rho

for some constant C > 0 and � large enough (cf. Exercise 6.12). It follows that

ju.�/j > C�lC1e�=2

for large enough �, so that u is not normalizable and hence is physically unacceptable. Hence:
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The radial equation (6.86) with angular momentum l has normalizable solutions if and only if � satis-
fies the quantization condition (6.93). When this is the case, the solution u is of the form

u.�/ D �lC1e��Pn�1.�/;

where Pn�1.�/ D
n�1P
kD0

ak�
k is the polynomial of degree n � 1 with coefficients ak satisfying the

recursion relation (6.92).

From the definition (6.89) it then follows that the energies of the bound states of the radial Schrödinger
equation (6.86) with a given angular momentum l D 0; 1; : : : are the numbers

Enl D �
meZ

2e4

2„2
1

.nC l/2
; n D 1; 2; : : : :

(Clearly, for fixed l the energy Enl increases with n, so that Enl is indeed the n-th energy level of the
radial Schrödinger equation with angular momentum l .) The number n 2 N is usually called the radial
quantum number. Note also that when � D 2.n C l/ the energy-dependent constant � in Eq. (6.87)
becomes

� D
meZe

2

„2

1

nC l
�

Z

.nC l/a
;

where

a WD
„2

mee2
(6.95) Bohra

is the Bohr radius of the hydrogen atom. The radial eigenfunction unl corresponding to the energy Enl
is thus proportional to

�lC1e��Pn�1.�/; n 2 N;

where Pn�1.�/ is the polynomial of degree n � 1 with coefficients determined by Eq. (6.92) with � D
2.nC l/. The latter recursion relation is easily solved:

ak

ak�1
D
2.l C k/ � 2.l C n/

k.k C 2l C 1/
D �

2.n � k/

k.k C 2l C 1/

H) aj D

jY
kD1

ak

ak�1
D

.�2/j .n � 1/ � � � .n � j /

j Š.2l C 2/ � � � .2l C j C 1/
D
.�2/j

j Š

.n � 1/Š

.n � j � 1/Š

.2l C 1/Š

.2l C j C 1/Š

D

 
nC 2l

2l C 1

!�1
.�2/j

j Š

 
nC 2l

2l C j C 1

!
;

where we have taken into account that a0 D 1. Hence

Pn.�/ D

 
nC 2l C 1

2l C 1

!�1 nX
jD0

 
nC 2l C 1

j C 2l C 1

!
.�2�/j

j Š
�

 
nC 2l C 1

2l C 1

!�1
L2lC1n .2�/;

where Lkn is an associated Laguerre polynomial of degree n, defined by

Lkn.´/ D

nX
jD0

 
nC k

j C k

!
.�´/j

j Š
: (6.96) ALser

We can thus write
unl.r/ D Anl�

lC1e��L2lC1n�1 .2�/; n 2 N: (6.97) uassLag
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where Anl is a normalization constant. Taking into account the identityZ 1
0

dx xkC1e�x
h
Lkn.x/

i2
D .2nC k C 1/

.nC k/Š

nŠ
(6.98) normRnl

we easily findu2
nl


jAnl j

2
D

Z 1
0

dr �2lC2e�2�
h
L2lC1n�1 .2�/

i2
D
1

�

Z 1
0

d� �2lC2e�2�
h
L2lC1n�1 .2�/

i2
D
2�.2lC3/

�

Z 1
0

dx x2lC2e�x
h
L2lC1n�1 .x/

i2
D
2�.2lC3/

�
2.nC l/

.nC 2l/Š

.n � 1/Š
D 2�2.lC1/

a

Z
.nC l/2

.nC 2l/Š

.n � 1/Š
:

We can thus take the normalization constant Anl in Eq. (6.97) as

Anl D
2lC1

nC l

s
Z.n � 1/Š

a.nC 2l/Š
: (6.99) Nnhy

Hence

unl.r/ D
1

nC l

s
Z.n � 1/Š

a.nC 2l/Š
.2�/lC1e��L2lC1n�1 .2�/

and

Rnl.r/ D
unl.r/

r
D
�unl.r/

�
D

2

.nC l/2

�
Z

a

�3=2s .n � 1/Š

.nC 2l/Š
.2�/le��L2lC1n�1 .2�/;

with
� D �r D

Zr

.nC l/a
:

Since the allowed energies of a hydrogen-like atom depend on the radial quantum number n and the
angular momentum l only through the combination n C l , it is convenient in this case to define the
principal quantum number N as

N WD nC l: (6.100) pqn

With this definition the allowed (bound state) energies are

EN D �
meZ

2e4

2„2
1

N 2
D �

Z2e2

2a

1

N 2
' �13:6057

Z2

N 2
eV; N D 1; 2; : : : : (6.101) Hyspec

Note that, since n > 1, for eachN the angular momentum l can only take the values l D 0; 1; : : : ; N �1,
and for each of these values of l the radial quantum number n is equal toN � l . The corresponding radial
wave functions with energyEN and angular momentum l , that we shall denote byRlN to avoid confusion
with the general notation Rnl adopted in Section 6.4, are given by

RlN .r/ D RN�l;l.r/ D
2

N 2

�
Z

a

�3=2s.N � l � 1/Š

.N C l/Š
.2�/le��L2lC1

N�l�1
.2�/; � D

Zr

Na
:

Multiplying by the spherical harmonic Y m
l
.�; '/ we obtain the following expression for the normalized

eigenfunctions
 lmN .r/ �  N�l;lm.r/ D RlN .r/Ylm.�; '/
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of a hydrogen-like atom with energy EN , which are simultaneous eigenfunctions of L2 and L3 with
respective eigenvalues l.l C 1/„2 and m„:

 lmN .r/ D
�
Z

a

�3=2 2

N 2

s
.N � l � 1/Š

.N C l/Š

�
2s

N

�l
e�

s
N L2lC1

N�l�1

�
2s
N

�
Y ml .�; '/; s WD

Zr

a
;

(6.102) Hywfs

where

l D 0; 1; : : : ; N � 1; m D �l;�l C 1; : : : ; l:

Since all of the above wave functions have the same energy EN , given by Eq. (6.101), the degeneracy of
the N -th energy level is given by

dN D

N�1X
lD0

.2l C 1/ D N C 2

N�1X
kD1

k D N CN.N � 1/ D N 2:

Note that the subindex N in  lmN denotes the energy level, and that the number of zeros (usually called
nodes in the literature) of the radial part RlN D RN�l;l of this eigenfunction is therefore N � l � 1.
Moreover, the parity of  lmN is that of its angular part Y m

l
, namely .�1/l :

 lmN .�r/ D .�1/l lmN .r/:

Remark.

� As remarked in Section 6.5, the energyEnl of a state  nlm in an arbitrary central potential is indepen-
dent of the magnetic quantum number m. This is a direct consequence of the rotational invariance of
the Hamiltonian (6.45), i.e., of the fact that H commutes with the generators Li of the rotation group
SO.3/:

ŒH;L� D 0:

To prove this statement, notice that the previous commutation relations obviously imply that

ŒH;L˙� D 0:

Suppose that a state  has energy E and also satisfies

L2 D l.l C 1/„2 ; L3 D m„ ;

which is possible since the three operators fH;L2; L3g commute. (In other words,  is proportional
to one of the states  nlm defined above.) Applying the operators L˙ to both sides of the eigenvalue
equation

H D E ;

and taking advantage of the commutativity of H and L˙, we thus find

L˙
�
H 

�
D H

�
L˙ 

�
D E.L˙ 

�
;

and of course (as we saw in Section 6.6)

L2.L˙ / D l.l C 1/„2L˙ ; L3
�
L˙ 

�
D .m˙ 1/„L˙ :

In other words, the states L˙ either vanish or are eigenstates of L3 with eigenvalue .m˙ 1/„, and
still have energy E and angular momentum l . Proceeding as explained in Section 6.6, by repeatedly
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applying the operators L˙ to the original state  we can construct a “ladder” of 2l C 1 states with
the same energy E and angular momentum l , which are eigenstates of L3 with eigenvalues �l„,
.�l C 1/„, . . . , l„. For a generic central potential, Enl D En0l 0 if and only if .n; l/ D .n0; l 0/; hence,
as remarked in Section 6.5, the degeneracy of each energy level Enl in a generic central potential is
2l C 1.

On the other hand, the energy Enl in a hydrogen-like atom depends on n and l only through the sum
n C l , and thus the N levels EN0; EN�1;1; : : : ; E1;N�1 have all the same energy. In other words,
the spectrum of a hydrogen-like has an accidental degeneracy not accounted for by the rotational —
SO.3/— invariance of the Hamiltonian. In fact, it can be shown that this accidental degeneracy is
actually a direct consequence of the invariance of the Hamiltonian (6.45) with a 1=r potential under
the group SO.4/, generated by the three components of the orbital angular momentum operator and
the Laplace–Runge–Lenz vector operator

M D
1

2m
.P � L � L � P/ �

Ze2

r
I

see, e.g., [GP90, Section 6.7]. �

Exercise 6.11. Prove that the Laplace–Runge–Lenz vector operator is Hermitian.

Solution. Obviously, it suffices to show that P � L � L � P is Hermitian. To this end note that, since
P and L are self-adjoint, we have

.PiLj � PjLi /
�
D LjPi � LiPj ;

or in vector form
.P � L/� D �L � P:

Hence
.P � L � L � P/� D �L � PC P � L;

as was to be shown.

For instance, the ground state (N D 1) has energy

E1 D �
meZ

2e4

2„2

and is non-degenerate. Its normalized eigenfunction is a spherically symmetric state (since l D m D 0

implies that the angular part is Y 00 D 1=
p
4 ), given by

 001 .r/ D 2
�
Z

a

�3=2
e�Zr=aL10

�
2Zr
a

� 1
p
4 
D

�
Z

a

�3=2 e�Zr=a
p
 

:

It is straightforward to check that  001 .r/ is indeed normalized:

 001 2 D 4  Z 1
0

dr r2 001 .r/
2
D 4

�
Z

a

�3 Z 1
0

dr r2e�2Zr=a D
1

2

Z 1
0

ds s2e�s D 1:

The next energy level (N D 2) has energy E2 D E1=4, and is four-fold degenerate. The four eigenfunc-
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tions with this energy are

 002 D

�
Z

a

�3=2 e�
Zr
2a

2
p
2
L11

�
Zr
a

� 1
p
4 
D

�
Z

a

�3=2 e�
Zr
2a

4
p
2 

�
2 �

Zr

a

�
;

 112 D

�
Z

a

�3=2 Zr
a

e�
Zr
2a

2
p
6
L30

�
Zr
a

� 
�
1

2

r
3

2 
sin � ei'

!
D �

�
Z

a

�3=2 Zr
a

e�
Zr
2a

8
p
 

sin � ei' ;

 102 D

�
Z

a

�3=2 Zr
a

e�
Zr
2a

2
p
6
L30

�
Zr
a

�
�
1

2

r
3

 
cos � D �

�
Z

a

�3=2 Zr
a

e�
Zr
2a

4
p
2 

cos �;

 
1;�1
2 D

�
Z

a

�3=2 Zr
a

e�
Zr
2a

2
p
6
L30

�
Zr
a

�
�
1

2

r
3

2 
sin � e�i'

D

�
Z

a

�3=2 Zr
a

e�
Zr
2a

8
p
 

sin � e�i' :

exe.serieLag Exercise 6.12. Prove Eq. (6.94).

Solution. Let

f .�/ D e2� D

1X
kD0

bk�
k; with bk D

2k

kŠ
:

We then have
bkC1

bk
D

2

k C 1
;

and therefore

akC1

ak
�
bkC1

bk
D

1

k C 1

�
2.l C k C 1/ � �

2l C k C 2
� 2

�
D �

1

k C 1

�C 2l C 2

k C 2l C 2
:

Since
�C 2l C 2

k C 2l C 2
�!
k!1

0;

for any " 2 .0; 1/ there exists a sufficiently large integer N such that

k > N H)
�C 2l C 2

k C 2l C 2
< 2";

and therefore

k > N H)
akC1

ak
�
bkC1

bk
> �

2"

k C 1
D �"

bkC1

bk
;

or equivalently (taking into account that bkC1=bk > 0),

k > N H)
akC1

ak
> .1 � "/

bkC1

bk
> 0:

Thus

j > N H)
ajC1

aN
D

jY
kDN

akC1

ak
>

jY
kDN

.1 � "/bkC1

bk
D .1 � "/jC1�N

bjC1

bN
;

and therefore (multiplying throughout by �jC1 > 0 and summing over j from N to1)

1

aN
.v.�/ � pN .�// >

.1 � "/�N

bN

�
f
�
.1 � "/�

�
� qN .�/

�
D
.1 � "/�N

bN

�
e2.1�"/� � qN .�/

�
;
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with

pN .�/ D

NX
jD0

aj�
j ; qN .�/ D

NX
jD0

bj
�
.1 � "/��j

polynomials of degree at most N in �. Rearranging terms in the previous inequality we can rewrite it
as

v.�/ > .1 � "/�N
aN

bN

�
e2.1�"/� C rN .�/

�
;

where rN is another polynomial of degree at most N in �. Since

e�2.1�"/�rN .�/ �!
�!1

0;

if � is large enough so that

e�2.1�"/�jrN .�/j <
1

2

we have
v.�/ > .1 � "/�N

aN

2bN
e2.1�"/�:

As the RHS of the previous inequality is positive so is the LHS, and thus

jv.�/j D v.�/ > .1 � "/�N
aN

2bN
e2.1�"/� H) jv.�/j > C e2.1�"/�;

with C D .1 � "/�N jaN j
2bN

> 0. Setting " D 1=4 we obtain Eq. (6.94).

The associated Laguerre polynomials.
The associated Laguerre polynomial Lkn.x/ is defined by

Lkn.x/ D .�1/
k@kxLnCk.x/;

where Ln.x/ denotes the Laguerre polynomial of degree n

Ln.x/ D
ex

nŠ
@nx.x

ne�x/ � L0n.x/:

From the operator identity
ex@nxe�x D

�
ex@xe�x

�n
D .@x � 1/

n;

we obtain

Ln.x/ D
1

nŠ
.@x � 1/

n.xn/ D
1

nŠ

nX
jD0

 
n

j

!
.�1/j @n�jx xn D

1

nŠ

nX
jD0

 
n

j

!
.�1/j

nŠ

j Š
xj

D

nX
jD0

 
n

j

!
.�x/j

j Š
;

and therefore

Lkn.x/ D .�1/
k@kx

nCkX
jD0

 
nC k

j

!
.�x/j

j Š
D

nCkX
jDk

 
nC k

j

!
.�1/jCk

j Š

j Š

.j � k/Š
xj�k

D

nX
jD0

 
nC k

j C k

!
.�x/j

j Š
;
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which is Eq. (6.96).
A useful tool for establishing the properties of the associated Laguerre polynomials is their generat-

ing function, defined by

Fk.x; s/ D

1X
nD0

Lkn.x/s
n:

This function can be easily evaluated from Eq. (6.96). Indeed, for k D 0 we have

F0.x; s/ D

1X
nD0

Ln.x/s
n
D

1X
nD0

nX
jD0

 
n

j

!
.�x/j

j Š
sn D

1X
jD0

.�x/j

j Š

1X
nDj

 
n

j

!
sn

D

1X
jD0

.�sx/j

j Š

1X
nD0

 
nC j

j

!
sn:

On the other hand, differentiating j times the equality

.1 � s/�1 D

1X
nD0

sn

we obtain

j Š.1 � s/�j�1 D

1X
nDj

nŠ

.n � j /Š
sn�j D

1X
nD0

.nC j /Š

nŠ
sn H) .1 � s/�j�1 D

1X
nD0

 
nC j

j

!
sn;

and therefore

F0.x; s/ D

1X
jD0

.�sx/j

j Š
.1 � s/�j�1 D .1 � s/�1

1X
jD0

1

j Š

�
�sx

1 � s

�j
D

e�
sx
1�s

1 � s
:

Applying the operator .�1/k@kx to both sides of this equality we thus obtain

Fk.x; s/ D

1X
nD0

.�1/k@kxLnCk.x/s
n
D .�1/ks�k@kx

1X
nDk

Ln.x/s
n

D .�1/ks�k@kxF0.x/;

where we have taken into account that

@kxLn.x/ D 0; n D 0; : : : ; k � 1

(since Ln.x/ is a polynomial of degree n in x). Using the previous expression for F0.x/ we obtain the
explicit formula

Fk.x; s/ D
e�

sx
1�s

.1 � s/kC1
:

With the help of the previous formula for the generating function, it is straightforward to establish
Eq. (6.98). Indeed, from the definition of the generating function we haveZ 1

0

dx xkC1e�xFk.x; s/Fk.x; t/ D
1X

n;mD0

sntm
Z 1
0

dx xkC1e�xLkn.x/L
k
m.x/: (6.103) intgendef
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On the other hand, using the explicit formula for the generating function we obtainZ 1
0

dx xkC1e�xFk.x; s/Fk.x; t/ D .1 � s/
�k�1.1 � t /�k�1

Z 1
0

dx xkC1e�xe�
sx
1�s e�

tx
1�t :

Taking into account the identity

1C
s

1 � s
C

t

1 � t
D
.1 � s/.1 � t /C s.1 � t /C t .1 � s/

.1 � s/.1 � t /
D

1 � st

.1 � s/.1 � t /

and the value of the integralZ 1
0

dx xme�ax D mŠ a�m�1; m D 0; 1; : : : ; a > 0;

we can rewrite the previous formula asZ 1
0

dx xkC1e�xFk.x; s/Fk.x; t/ D .1 � s/
�k�1.1 � t /�k�1

Z 1
0

dx xkC1e�
1�st

.1�s/.1�t/
x

D .k C 1/Š
.1 � s/.1 � t /

.1 � st/kC2
D .1 � s � t C st/

1X
nD0

.nC k C 1/Š

nŠ
sntn:

The coefficient of sntn in the RHS of previous expression is

.nC k C 1/Š

nŠ
C
.nC k/Š

.n � 1/Š
D
.nC k/Š

nŠ
.nC k C 1C n/ D .2nC k C 1/

.nC k/Š

nŠ
(6.104) sntncoeff

for n > 0 and
.k C 1/Š

0Š
D .k C 1/Š

for n D 0, which coincides with (6.104) with n D 0. Thus Eq. (6.104) is valid for all n. Equating the
latter equation to the coefficient of sntn in Eq. (6.103) we obtain Eq. (6.98).

Exercise 6.13. Prove Rodrigues’ formula for the associated Laguerre polynomials:

Lkn.x/ D
x�kex

nŠ
@nx
�
xnCke�x

�
:

Solution. From the definition of the generating function Fk.x; s/ it follows that

Lkn.x/ D
1

nŠ
@nsFk.x; s/

ˇ̌̌
sD0
D

1

2 i

I
Fk.x; s/

snC1
ds D

1

2 i

I
e�

sx
1�s

snC1.1 � s/kC1
ds;

where the integral is extended (for instance) along the (positively oriented) circle jsj D " with " < 1.
Performing the change of variables

s

1 � s
D t H) 1 � s D

1

1C t
; s D

t

1C t
; ds D

dt
.1C t /2

we obtain
Lkn.x/ D

1

2 i

I
t�n�1.1C t /nCke�tx dt;

where for small enough " the integral is extended along a positively oriented simple closed curve
encircling the origin (indeed, s D "ei' implies that t D "ei' CO."2/). The last integral can be easily
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computed with the help of the residue theorem, namely

Lkn.x/ D
1

nŠ
@nt

ˇ̌̌
tD0

�
.1C t /nCke�tx

�
D
1

nŠ
@nu

ˇ̌̌
uD1

�
unCke.1�u/x

�
D

ex

nŠ
@nu

ˇ̌̌
uD1

�
unCke�ux

�
:

Performing the change of variable

� D xu H) @u D x@�

we finally obtain

Lkn.x/ D
ex

nŠ
xn@n�

ˇ̌̌
�Dx

�
x�n�k�nCke��

�
D
x�kex

nŠ
@n�

ˇ̌̌
�Dx

�
�nCke��

�
�
x�kex

nŠ
@nx
�
xnCke�x

�
:

Exercise 6.14.

i) Determine the probability density of finding the electron in a hydrogen-like atom at a distance r
from the origin when it is in the energy eigenstate  lmN .

ii) Find the most likely and the mean distance of the electron to the origin when l D N � 1 (which
in Bohr’s atomic model corresponds to a circular orbit).

iii) Again for l D N � 1, find the uncertainty in the electron’s distance to the origin, and comment
on the result obtained.

Solution.
i) The probability of finding the electron at a distance in the range Œr; r C dr� from the origin is found
integrating the probability densityˇ̌

 lmN .r; �; '/
ˇ̌2 d3r �

ˇ̌
RlN .r/Y

m
l .�; '/

ˇ̌2
r2 dr d˝

over � 2 Œ0;  � and ' 2 Œ0; 2 �, namelyˇ̌
RlN .r/

ˇ̌2
r2 dr

Z
Œ0; ��Œ0;2 �

ˇ̌
Y ml .�; '/

ˇ̌2
D
ˇ̌
RlN .r/

ˇ̌2
r2 dr;

since the spherical harmonics are normalized over the unit sphere (cf. Eq. (6.57)). Thus the sought-for
probability density is

plN .r/ WD
ˇ̌
RlN .r/

ˇ̌2
r2:

which is obviously independent of the magnetic quantum number m.

ii) When l D N � 1 we have

pN�1N .r/ D
4

N 4

�
Z

a

�3
r2
.2�/2.N�1/e�2�

.2N � 1/Š
D

Z

N 2a

.2�/2N e�2�

.2N � 1/Š
; � D

Zr

Na
;

as Lk0.s/ D 1. Since pN�1N is proportional to �2N e�2�, the most likely distance of the electron to the
origin is found setting the derivative of the latter function equal to zero, namely

0 D @�

�
�2N e�2�

�
D .2N � 2�/�2N�1e�2� () � D 0;N:

Clearly � D 0 is a minimum of �2N e�2� and � D N is a maximum. Thus the most likely distance of
the electron to the origin is obtained when � D N , i.e.,

Zr

Na
D N () r D

N 2a

Z
:
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(This is, coincidentally, the radius of the N -th electron orbit in Bohr’s atomic model.) To determine
the average value of the distance of the electron to the origin we must evaluate the integral

˝
r
˛
D

Z 1
0

dr rpN�1N .r/ D
1

.2N � 1/Š

Z

N 2a

Z 1
0

dr r.2�/2N e�2�

D
1

.2N � 1/Š

Z

N 2a

�
Na

2Z

�2 Z 1
0

ds s2NC1e�s D
a

4Z

.2N C 1/Š

.2N � 1/Š
D N

�
N C

1

2

�
a

Z
:

In particular, notice that the mean distance to the origin is slightly larger than the most probable dis-
tance.
iii) The expectation value of r2 in an orbital with l D N � 1 is computed similarly:

˝
r2
˛
D

Z 1
0

dr r2pN�1N .r/ D
1

.2N � 1/Š

Z

N 2a

Z 1
0

dr r2.2�/2N e�2�

D
1

.2N � 1/Š

Z

N 2a

�
Na

2Z

�3 Z 1
0

ds s2NC2e�s D
Na2

8Z2
.2N C 2/Š

.2N � 1/Š
D N 2.N C 1/

�
N C

1

2

�
a2

Z2
:

Thus the square of the uncertainty in the electron’s distance to the origin is given by

�r2 D
˝
r2
˛
�
˝
r
˛2
D

a2

2Z2
N 2

�
N C

1

2

�
:

In particular, the relative uncertainty

�r˝
r
˛ D .2N C 1/�1=2 �!

N!1
0;

in agreement with Bohr’s correspondence principle.

6.9 The three-dimensional isotropic oscillator

In Section 6.1.2 we solved the Schrödinger equation for the three-dimensional harmonic oscillator po-
tential (6.12) by separation of variables in Cartesian coordinates. In the isotropic case, i.e., when the
three constants ki are equal:

k1 D k2 D k3 � k D
1

2
m!2;

the oscillator potential reduces to the central potential

V.r/ D
1

2
m!2r2: (6.105) IsoHOpot

Thus the Schrödinger equation for the isotropic harmonic oscillator can also be solved by separating
variables in spherical coordinates, using the method outlined in Section 6.2.

Remark. The fact that the Schrödinger equation for a potential V.r/ can be solved by separating vari-
ables in more than one coordinate system always indicates that the potential in question possesses a
certain symmetry. In the case of the isotropic harmonic oscillator, this symmetry is known to be related
to the U.3/ group. Likewise, the Schrödinger equation for the Coulomb potential can be solved by sep-
arating variables both in spherical and parabolic coordinates. In this case, the corresponding symmetry
group is SO.4/. �

The radial equation for the isotropic three-dimensional oscillator is

�
„2

2m
@2ruC

�
1

2
m!2r2 C

l.l C 1/

r2
�E

�
u.r/ D 0:
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l = 0

l = 1

l = 2

l = 3

l = 4

r

Vl (r)

Figure 6.2. Effective potential Vl.r/ for the three-dimensional isotropic harmonic oscillator for several
values of the angular momentum quantum number l .fig.VlHO

It is convenient to use the dimensionless length variable

s D ˛r; ˛ WD
p
m!„;

in terms of which the radial equation becomes

u00.s/ �

�
s2 C

l.l C 1/

s2

�
uC 2�u D 0; � WD

E

„!
; (6.106) ueq3DHO

where the prime denotes differentiation with respect to s. We seek for square integrable solutions u.s/
of the latter equation satisfying the boundary condition at the origin

u.s/ �
s!0C

slC1:

Moreover, for s !1 we have
u00.s/ �

s!1
s2u.s/;

an approximate solution of which is

u.s/ D e˙
s2

2 :

Thus for jsj ! 1 the solutions of Eq. (6.106) should behave as e˙s
2=2. Since es

2=2 is not square
integrable, we conclude that the square-integrable solutions of Eq. (6.106) must behave as e�s

2=2 at
infinity. The asymptotic behavior of the normalizable solutions of the latter equation suggests the change
of dependent variable

u.s/ D slC1e�s
2=2v.s/:

The differential equation satisfied by the function v.s/ is easily found:

u0.s/ D sle�s
2=2
�
.l C 1 � s2/v.s/C sv0.s/

�
;

u00.s/ D sl�1e�s
2=2
n
.l � s2/

�
.l C 1 � s2/v.s/C sv0.s/

�
C s2v00.s/C .l C 2 � s2/sv0.s/ � 2s2v.s/

o
D sl�1e�s

2=2
n
s2v00.s/C 2s.l C 1 � s2/v0.s/C

�
l.l C 1/ � .2l C 3/s2 C s4

�
v.s/

o
;

and thus

s2u00.s/C
�
2�s2� s4� l.lC1/

�
u.s/ D slC2e�s

2=2
h
sv00.s/C2.lC1� s2/v0.s/C .2��2l �3/sv.s/

i
;

whence
sv00.s/C 2.l C 1 � s2/v0.s/C .2� � 2l � 3/sv.s/ D 0: (6.107) veq3DHO
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The latter equation has a singular regular point at the origin, with indicial equation

�.� � 1/C 2.l C 1/� D 0

and roots
�1 D 0; �2 D �2l � 1:

By Frobenius’s theorem, Eq. (6.107) has a fundamental systems of solutions of the form

v1.s/ D

1X
nD0

ans
n; v2.s/ D s

�2l�1
1X
nD0

bns
n
C c log s v1.s/;

with a0; b0 ¤ 0 and c a (possibly vanishing) constant. However, for u.s/ to behave as slC1 for s ! 0C

we need v.s/ to tend to a non-zero constant in this limit. It follows that the only acceptable solutions of
Eq. (6.107) are proportional to the power series v1. Substituting this series into the latter equation we
obtain

1X
nD0

Œn.n � 1/C 2n.l C 1/� ans
n�1
C

1X
nD0

.2� � 2l � 3 � 2n/ ans
nC1

D 2.l C 1/a1 C

1X
nD2

n.nC 2l C 1/ans
n�1
C

1X
nD0

.2� � 2l � 3 � 2n/ ans
nC1

D 2.l C 1/a1 C

1X
nD0

Œ.nC 2/.nC 2l C 3/anC2 C .2� � 2l � 3 � 2n/an� s
nC1
D 0:

Equating to zero the coefficients of the powers of s in the previous equation we obtain

a1 D 0

and

anC2 D
2nC 2l C 3 � 2�

.nC 2/.nC 2l C 3/
an; n D 0; 1; : : : :

From the recursion relation and the vanishing of a1 we deduce that the odd coefficients vanish:

a2kC1 D 0; 8k D 0; 1; : : : :

Calling bk D a2k , we can write the recursion relation for the even coefficients a2k as

bkC1 D
2k C l C 3=2 � �

.k C 1/.2k C 2l C 3/
bk; k D 0; 1; : : : :

Moreover, since the quotient
bkC1

bk
'

k!1

1

k

is asymptotically the same as for the series of es
2

, reasoning as in Sections 5.1 and 6.8 we conclude that
the if the power series v1.s/ does not terminate then v1.s/ � es

2

for s ! 1. But this is unacceptable,
since it implies that u.s/ D slC1e�s

2=2v1.s/ � e
s2=2 is not square integrable. Hence the series for v1.s/

must terminate. In view of the recursion relation, this is only possible if

� D 2nr C l C
3

2
(6.108) laeq3DHO

for some nonnegative integer nr . From the latter equation we obtain the following formula for the
energies of the bound states of the three-dimensional isotropic harmonic oscillator:

Enr l D

�
2nr C l C

3

2

�
„!; l; nr D 0; 1; 2; : : : :
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The nonnegative integer nr appearing in the latter formula is called the radial quantum number. It is
apparent that the energy depends on nr and l through the combination N WD 2nr C l . It follows that, for
a given N , the angular momentum quantum number l must have the same parity as N . We can therefore
label the energy levels as

ElN � E.N�l/=2;l D

�
N C

3

2

�
„!; l D  .N/;  .N /C 2; : : : ; N;

where  .N/ denotes the parity of N (i.e.,  .N/ D 0 for even N ,  .N/ D 1 for odd N ). Note that
we obtain the same numerical value of the energies of the bound states that we derived in Section 6.1.2
solving the Schrödinger equation in Cartesian coordinates, as expected. As to the degeneracy of the
energy levels, for N even we have

l D 0; 2; : : : ; N H) l D 2p; p D 0; 1; : : : ;
N

2
:

Since the energy is independent of the azimuthal quantum number m, which for a given l can take
2l C 1 D 4p C 1 values, the degeneracy dN of the energy .N C 3

2
/„! is in this case

dN D

N=2X
pD0

.4p C 1/ D 2
N

2

�
N

2
C 1

�
C
N

2
C 1 D

1

2
.N C 1/.N C 2/:

Likewise, for odd N we have

l D 1; 3; : : : ; N H) l D 2p C 1; p D 0; 1; : : : ;
N � 1

2
;

and

dN D

.N�1/=2X
pD0

.4p C 3/ D 2
N � 1

2

N C 1

2
C
3

2
.N C 1/ D

1

2
.N C 1/.N C 2/:

We thus see that the degeneracy of the energy .N C 3
2
/„! is in all cases

dN D
1

2
.N C 1/.N C 2/;

again in agreement with the result obtained in Section 6.1.2 (cf. Eq. (6.17)).
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A Some useful integrals

Euler’s gamma function � .´/ is defined by

� .´/ WD

Z 1
0

t´�1e�t dt; Re ´ > 0: (A.1) Gadef

Note that the integral is indeed convergent for all complex ´ with Re ´ > 0. Integrating by parts we
obtain

� .´C 1/ D

Z 1
0

t´e�t dt D �t´e�t
ˇ̌̌tD1
tD0
C ´

Z 1
0

t´�1e�t dt D ´� .´/;

so that
� .´C 1/ D ´� .´/: (A.2) Gaid

When n 2 N, applying the previous identity n times we obtain

� .nC 1/ D nŠ: (A.3) Gafact

Note that this equality is obviously valid for n D 0. From Eq. (A.3) we easily obtainZ 1
0

xne�ax dx D a�n�1� .nC 1/ D
nŠ

anC1
; a > 0: (A.4) Gapar

This identity can be more directly proved differentiating the integral for n D 0 with respect to the
parameter a:Z 1

0

xne�ax dx D
�
�
@

@a

�n Z 1
0

e�ax dx D
�
�
@

@a

�n
a�1 D 1 � 2 � � � � � na�n�1 D

nŠ

anC1
:

Consider next the Gaussian integral Z 1
�1

e�ax
2

dx:

The integral is obviously convergent when Re a > 0, and it can be shown to be also convergent for all
nonzero a with Re a D 0. By suitably deforming the integration contour, it is shown thatZ 1

�1

e�ax
2

dx D
r
 

a
; a ¤ 0 and Re a > 0; (A.5) Gaussint

with the following choice of square root:

p
a WD jaj1=2 e

i
2

Arga;

where Arg a 2 .� ; � is the principal value of the argument of a. For instance,Z 1
�1

eix2 dx D
p
  e

i 
4 ;

or equivalently Z 1
�1

cos.x2/ dx D
Z 1
�1

sin.x2/ dx D
r
 

2
: (A.6) sincosint
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The more general integral Z 1
�1

e�.ax
2CbxCc/ dx;

where b; c are arbitrary complex constants, is computed completing the square:

ax2 C bx C c D a

�
x C

b

2a

�2
C c �

b2

4a
H)

Z 1
�1

e�.ax
2CbxCc/ dx D

r
 

a
e
b2�4ac
4a ; (A.7) Gaussintgen

where we have used the fact (easily proved by deforming the integration contour) thatZ 1
�1

e�a.x�´0/
2

dx D
Z 1
�1

e�ax
2

dx

for arbitrary complex ´0. Equation (A.7) admits a straightforward three-dimensional generalization that
is often used in quantum mechanics, namelyZ

d3r e�.ar
2Cb�rCc/

D

� 
a

�3=2
e
b2�4ac
4a ;

where a and c are as above and b 2 C3 is a constant vector. Indeed, completing the square we obtain

ar2 C b � rC c D a
�

rC
b
2a

�2
C c �

b2

4a

and thereforeZ
d3r e�.ar

2Cb�rCc/
D e

b2�4ac
4a

Z
d3r e�a.rC

b
2a /

2

D e
b2�4ac
4a

3Y
iD1

Z 1
�1

dxi e�a
�
xiC

bi
2a

�2
D

� 
a

�3=2
e
b2�4ac
4a :

A related integral that frequently appears in quantum mechanics is

In.a/ WD

Z 1
�1

x2ne�ax
2

dx D a�
�
nC 1

2

�
In.1/;

where a > 0 and n D 0; 1; : : : . This integral can be easily evaluated by differentiating

I0.a/ D

Z 1
�1

e�ax
2

dx D
r
 

a

with respect to the parameter a:

In.a/ D
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�
@
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�n Z 1
0
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2

dx D
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�
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@a

�n
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p
 
1

2
�
3

2
� � � � �

2n � 1

2
a�

1
2
�n;

whence Z 1
�1

x2ne�ax
2

D
.2n � 1/ŠŠ

2n

p
 a�

�
nC 1

2

�
; a > 0 and n D 0; 1; 2; : : : : (A.8) Gaussxint

In fact. the integral In.1/ could also have been evaluated through the change of variable x2 D s:

In.1/ D 2

Z 1
0

x2ne�x
2

dx D
Z 1
0

sn�
1
2 e�s ds D �

�
nC 1

2

�
using the fundamental identity (A.2) for the gamma function:
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;

which coincides with the previous result since

�
�
1
2

�
D I0.1/ D

p
 : (A.9) Ga1half
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Index

accidental degeneracy, 166, 188
adjoint, 39
annihilation operator, 138
associated Legendre

equation, 162
functions, 162

Balmer series, 9
black body, 1

radiation, 1
Bohr

frequency, 73
radius, 10, 13, 185

Boltzmann’s constant, 3
Born’s rule, 33
bra, 102

canonical
commutation relations, 41, 120
quantization, 39, 120

Cauchy–Schwarz inequality, 61
central potential, 154
closure relation, see completeness relation
coefficient

reflection, 90
transmission, 90

compatible observables, 61, 122
complete set of commuting observables, 124
completeness relation, 106
Compton scattering, 8
conserved quantity, see constant of motion
constant of motion, 118
continuity equation, 45
correspondence principle, 12
creation operator, 138
CSCO, see complete set of commuting observ-

ables

de Broglie wavelength, 18
Dirac

delta function, 47
normalization, 57
notation, 102

double slit experiment, 24

dual, 102
dynamical variable, 105

effective potential, 158
Ehrenfest’s theorem, 51
eigenfunction, 40

formal, 46
eigenvalue, 40
Einstein–de Broglie relations, 27, 35
expectation value, 49

fine structure constant, 14
Fourier transform, 53

generalized
completeness relation, 108
orthonormal basis, 108
orthonormal set, 108

Green function, 59
group velocity, 19

Hamiltonian, 30, 38, 117
harmonic oscillator, 129

three-dimensional, 149, 150
Hermite polynomial, 135
Hilbert space, 39, 101

ket, 101
generalized, 108

Lagrangian, 30
Laplacian, 36
Larmor’s formula, 10
linear functional, 102

matter wave, 18
momentum

angular, 153
general, 168

linear, 38
radial, 153
representation, 53, 56

norm, 33

observable, 50, 105
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Index

Pauli matrices, 168
phase velocity, 18
photoelectric effect, 6
photon, 7
Planck

constant, 3
reduced, 12

formula, 3
position

operator, 38
representation, 56

probability
amplitude, 26, 28, 34
current, 45
density, 34

projector, 104

quantum number, 124

Rayleigh-Jeans formula, 3
resonance, 94
Rydberg constant, 9, 13

Schrödinger equation
free particle, 36
time independent, 70
time-dependent, 37, 117

self-adjoint operator, 40
spectral decomposition, 110

separation constant, 146
Sommerfeld–Wilson–Ishiwara quantization, 14
spectrum, 75, 76

continuous, 74, 75
discrete, see point spectrum
point, 70

spherical harmonic, 162
spherical harmonic, 157
standard deviation, 60
state, 101

bound, 73
physical, 101
scattering, 72, 74, 89
stationary, 65, 72

stationary phase, principle of, 21
Stefan’s law, 4
Stefan–Boltzmann constant, 4
superposition principle, 101
SWI quantization rule, see Sommerfeld–Wilson–

Ishiwara quantization

test function, 47
time evolution operator, 116
tunnel effect, 96

ultraviolet catastrophe, 3
uncertainty, 60

principle, 29
relation, 61

general, 61
time-energy, 65

variables
compatible, 61
incompatible, 61

wave function, 28, 33
collapse, 35, 113

wave packet, 19
Wien’s law, 6
work function, 7
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