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1 The experimental basis of quantum
mechanics

1.1 Black body radiation and Planck’s hypothesis

An ideal black body is a hollow enclosure with perfectly absorbing (i.e., “black™) inner and outer walls,
whose surface is pierced by a tiny hole. If electromagnetic radiation falls into the enclosure, the smallness
of the hole makes it extremely unlikely that any radiation coming through it will eventually come out
after a certain number of reflections on the vessel’s inner surface, even if this surface is not perfectly
absorbing. On the other hand, the electromagnetic radiation entering the enclosure will be absorbed by
the atoms in its inner surface and make them vibrate, causing them to radiate electromagnetic energy.
When thermal equilibrium is reached, the energy of the electromagnetic radiation absorbed by the atoms
in the enclosure’s inner surface will equal the energy radiated by them. The electromagnetic radiation
coming from the enclosure’s walls after equilibrium is reached is called black body radiation, and
depends only on the equilibrium temperature of the enclosure’s walls. More precisely, from general
thermodynamic principles it can be shown' that black body radiation has the following properties:

1) The energy density (i.e., energy per unit volume and frequency) of the radiation field inside the
enclosure is the same function of frequency at a given temperature, regardless of the size and shape
of the enclosure and of the material its walls are made of.

2) The energy flux of the radiation field inside the enclosure is homogeneous (i.e., is the same at all
points inside the cavity) and isotropic (i.e., is the same in all directions).

Let us therefore denote by u(v, T') the energy density per unit frequency of the radiation field at any
point inside the enclosure for frequencies in the range [v, v + dv] at a temperature 7. In other words,
the energy of the radiation in an infinitesimal volume d3r centered on an arbitrary point r inside the
enclosure with frequencies in the range [v, v 4 dv] at a certain temperature 7 is u(v, T') d3r dv, and the
total energy (regardless of the frequency) is therefore U(T') d3r, where

U(T) = /Ooou(v, T)dv. (1.1)

The energy of the black body radiation field in the frequency range [v, v + dv] hitting the hole in the
enclosure emitted by an infinitesimal volume d3r centered at a point inside the enclosure with position
vector r with respect to the hole is thus

dA cos 6

u(v, T)d3r dv - >

r
where dA is the area of the hole and 6 is the angle between the normal to the surface of the hole and
the vector r. Indeed, by the isotropy of the radiation field the fraction of the total energy u(v, T)d3r dv
emitted by the infinitesimal volume d3r reaching the hole must equal the cross section of the hole
(dA cos 0) divided by the surface of a sphere of radius equal to the distance r from the emitter to the
hole. The radiation in the frequency range [v, v + dv] going through the hole in an infinitesimal time dt
is emitted by points inside the enclosure in a solid hemisphere H of radius ¢ d¢ (where c is the velocity

I'The original proof of this result is due to the German physicist Gustav Robert Kirchhoff (1824—1887), in 1859—62.
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

of light in vacuo) centered at the hole. The energy of this radiation is therefore given by

] 27 /2 cdt 0
u(v,T>dvdA/ = d3r=u(v,T)dvdA/ d¢[ a9 sin@/ ar 2 &
H 4m 0 0 0

r? 4dmr?
n/2 cdt ¢
=u(v,T)dvdA4-2x / sin 6 cos 6 d6 ek ZM(U’ T)dAdvdr.
0 T

Hence the power per unit surface area of the black body radiation coming through the hole in the fre-
quency range [v, v 4+ dv] when the walls of the enclosure are at a temperature T is p(v, T') dv, with

p(v,T) = %u(\), ). (1.2)

At the end of the nineteenth century there was great interest in computing from first principles the en-
ergy density u(v, ') —and hence the emitted power per unit frequency and surface area— of black body
radiation, which could be experimentally measured with great precision. The first theoretical calculation
of u(v, T) was carried out by Lord Rayleigh” in 1900. Rayleigh argued that, since the energy density
of black body radiation is independent of the shape of the enclosure, it can be computed without loss of
generality for a cubic enclosure of size L and volume V = L3. Since the phase of the electromagnetic
waves is kr — wt, where k € R3 is the wave vector and @ > 0 is the angular frequency of the waves,
imposing (for instance) periodic boundary conditions on the cube’s sides we find that

kL = 2mn,
where n = (n1,ny,n3) is a vector with integer components ;. We thus have

| Lkl Lo Lv

n-=—=——= —,

2n 2ne c

where v is the angular frequency of the wave. Thus the number of wave vectors k whose corresponding
frequency is in the range [v, v + dv] is equal to the volume of a spherical shell of radius [n| = Lv/c and

width L dv/c, namely
Lv\> Ldv 4nL?® ,
4t [ == = 3V dv.
c c c

Moreover, for each wave vector k there are two possible independent polarizations, and thus two possible
independent oscillation modes of the electromagnetic field, since the electric and magnetic field vectors
must be perpendicular to k (i.e., to the direction of propagation). Thus the number d/N(v) of modes of
the electromagnetic field inside the cavity with frequency in the range [v, v 4+ dv] is given by

8mL? _ 8wV

= v2dy = 3 v2dv. (1.3)

dN(v) =

Rayleigh argued that each of these modes behaves like an oscillator, so that the radiation in the cavity can
be regarded as an ensemble of oscillators. The energy density per unit frequency of black body radiation
with frequencies in the range [v, v 4+ dv] is thus

1 dN(v)

u,T) = v T

EWT) = i—3 vZEW,T), (1.4)

Vv

where E (v, T) is the average energy of a mode (i.e., of one of the oscillators in the ensemble) with
frequency v at a temperature 7. On the other hand, according to the fundamental principle of statistical

2John William Strutt, 3rd Baron Rayleigh (1842-1919), British mathematician and physicist and Nobel Prize winner in
1904.

© Artemio Gonzdlez Lépez 2
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1.1 Black body radiation and Planck’s hypothesis

mechanics introduced by Gibbs?, the probability that the energy of one of the oscillators in an ensemble
at thermal equilibrium is in the range [E, E + dE] is proportional to e #E dE, where 8 = (kgT)~! and
kp is Boltzmann’s* constant’. Hence the average energy of a mode is given by

— _JOEePEAE ) ® _4E ) 0 1
(1.5)

Using this result in Eq. (1.4) one finally obtains the so called Rayleigh—Jeans® formula

u(,T) = i—ngTvz. (1.6)

Although this formula is in excellent agreement with experiment at low frequencies, it cannot hold for
arbitrarily large v, since in that case the total energy density of the black body radiation field U(T") would
diverge (cf. Eq. (1.1)). This divergence was informally referred to as the ultraviolet catastrophe. In fact,
the experimental measurements showed that at high frequencies

u(,T) ~ Av3e BT, (1.7)

where A and B where two empirical constants. In 1900 Planck’ guessed a simple formula for u(v, T')
that interpolates between Eqgs. (1.6) and (1.7), namely

8mth p3
3 ohv/ksT _ |

u,T) = (1.8)

(cf. Fig. 1.1), where h a constant with units of action (energy x time or length x momentum) known ever
since as Planck’s constant. Note that Planck’s formula leads to a finite total energy density: indeed,

T _8Tl7h o0 v3dv _8nk2T4 00 3 d
(1) = 3 Jo emlksT —1 7~ 33 y eF 10

where the last integral is convergent at both endpoints since the integrand behaves as x2 for x — 0 and
as x3e™* for x — oo. In fact, this integral can be computed in closed form as follows®:

0 3 00 1 3o—X o0 o o o) o 1 4
/ dx:f —_dx:/ x3Ze_”xdx=Z/ x3e_”xdx=3!Z—4=3!—
0 eX —1 0 l—e™ 0 el el 0 nzln 90

We thus obtain the following expression for the total energy density of the black body thermal radiation
inside the enclosure:

8n5k§

4
mT . (1.9)

U(T) =

3. Willard Gibbs (1839-1903), American physicist.
4Ludwig Boltzmann, Austrian physicist (1844—1906).
>In the new SI system of units approved in 2019, the following physical constants have exact values:

Speed of light in vacuo ¢ = 299792458 m s1
Planck’s constant 1 = 6.62607015 - 10734 kgm? s™!
Electron’s charge e = —1.602176634-1071° C
Bolzmann’s constant kg = 1.380 649 - 10723 k!
Avogadro’s number N4 = 6.022 14076 - 10?3 mol ™.

6James Jeans, British physicist, astronomer and mathematician (1877-1946).

7Max Planck (1868-1947), German physicist and Nobel Prize winner in 1918.

8Permuting the infinite sum and the integral in the following calculation is mathematically justified by the dominated (or
monotone) convergence theorem in (Lebesgue) integration theory.

3 © Artemio Gonzélez Lépez



THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS
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Figure 1.1. Energy density per unit frequency of the radition field inside a black body as a function
of the frequency, for several values of the temperature. The dashed vertical lines indicate
the frequencies for which u is maximum for a given temperature. It is apparent that this
maximum frequency increases linearly with the temperature.

By Eq. (1.2), the total power per unit area R(t) radiated by a black body at a temperature 7 is given by
Stefan’s’ law

R(T) = %U(T) — oT*, (1.10)
where
2nkd
B —8 —2 o —4
= 7B _ 5670374419 10" Wm 2K 111
7T 15h3c2 m (11D

is called the Stefan-Boltzmann constant.

Although Planck obtained Eq. (1.8) essentially by interpolation, he later proposed a heuristic justifi-
cation thereof by postulating that the energy of an oscillation mode of frequency v of the black body
radiation field could only be an integer multiple nAv of a minimum energy hv. That this hypothesis
leads to Planck’s law (1.8) can be easily proved'’ by noting that if the energy of a mode can only take
the values nhv withn = 0, 1, ... Eq. (1.5) must be replaced by

o0

SBconstant

3" nhve=Bnhv o B
E = 9 J hve=Phv hv
EWw,T)= n=0  _ _ 7 log e—ﬂnhv = g (1— e_ﬂhv _ _
> o—Bnhv 9p ,g) B ( ) | — o—Bhv — oBhv _
n=0

Substituting this expression for E (v, T) into Eq. (1.4) we indeed obtain Planck’s distribution (1.8).

Remark. Before the introduction of Planck’s constant, the dependence of u(v, 7)) on v and T could have
been determined on dimensional grounds as follows. To begin with, if the existence of / is not known
u(v, T) can be expected to depend only on v, kg T, and ¢. Since u(v, T') has dimensions of

E .-
[M(V,T)]ZFZML lt 1,
and
] =t1, [kpT] = ML?*t™2, [c] = Lt~ !,

for v¥(kpT)Pt? to have the same dimension as u(v, T') the exponents «, 8, y must satisfy the linear
system

B =1, 284+ y =—1, —a—28—y =-1,

9Josef Stefan (1835-1893), Slovenian physicist.
10The following argument is actually due to Lorentz. Planck’s deduction, much more involved, was based on thermody-
namical considerations.

© Artemio Gonzdlez Lépez 4
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1.1 Black body radiation and Planck’s hypothesis

whose unique solution is

Thus on dimensional grounds we must have

UszT
c3

u(v, T)=a ,
where a is a dimensionless constant (in particular, independent of v and T'). This is essentially the
Rayleigh—Jeans formula (1.6). Since this formula cannot be valid for high frequencies (as it leads to an
infinite value for the total energy U(T')), we conclude that there must be an additional universal constant
on which u (v, T') depends. |

Exercise 1.1. Show that the power per unit wavelength p(A, T') radiated by a black body is given by*

2nhc?) >
PO T) = o — 1

Find the wavelength A,.x (T") for which this power is maximum for a given temperature 7 .
Solution. First of all, since obviously

p(A, T)dA = —p(v, T)dv,
where the minus sign takes into account that A = ¢ /v decreases when v increases, we obtain

dv c c? 2nthc2A™>
p()\’, T) = —p(V, T) a = A_Zp(v’ T) = 4k_2 M(U, T) = ehC/A.kBT _ l

Calling x = hc/AkpT we can write the previous formula as

27 x>

pOT) = 5 (kT f(x).  with f(x) = F—.

(1.12)

It is straightforward to show that f(x) has a unique maximum xg on the positive real axis. Indeed,
f(x) behaves as x* for small x > 0 and tends to 0 as x°e™* for x — oco. On the other hand,

5x4(eX — 1) — x5e¥ 4ex
_ 5t )—xet  xTe 5 8(x), with g(x) :=5(1 —e™™) — x.

L e

The function g(x) vanishes for x = 0 and tends to —oo as x — oo. Moreover, g’'(x) = 5¢™* — 1 is

positive for x < log5 and negative for x > log 5, and vanishes for x = log5. Thus g is increasing
for 0 < x < log5, has a maximum at x = log5 with g(log5) = 4 —log5 > 0 and decreases
monotonically for x > log 5. Since g(x) — —oo for x — o0, it follows that there is a unique number
xo > log 5 such that g(xg) = 0. Thus f/(x) = x*e*g(x) is positive for 0 < x < x¢ and negative
for x > xo, so that f(x) has a unique global maximum at x = xg. Solving numerically the equation
f’(x) = 0, or equivalently

51—e ™) —x=0, (1.13)

we obtain”
xo = 4.9651142317--- .

From Eq. (1.12) it then follows that for a fixed temperature the function p(A, T') has a unique maximum

at
he ahc

Amax(T) = = —,
max(T) kpTxog kpT

with a = x5! = 0.201405235-- - .

5 © Artemio Gonzélez Lépez
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

In particular, from the previous equation we deduce that the product

ahc
Amax(T)T = k_
B

is constant, a result that is known as Wien’s law.

Note: the frequency vmax(7T') for which p(v, T') is maximum for a given temperature 7" can be com-
puted in the same way, expressing p(v, T') as

c 27th v3 27 3
p0.T) = Ju®.T) =~ 5 o = 1.2 kBT h(x).
with 3
hv X
= —— h = o
YT ksT 0 =7
Proceeding as above we obtain
kpT
Vmax(T) = yOT,

where
yo = 2.8214393721 - - -

is the unique maximum of /(x) for x > 0, determined by the transcendental equation
3(l—e*)—x=0.

In particular, the product v (7T)T is again constant. Note, finally, that v (T) # ¢/Amax(T);
indeed,

1
- Vmax(T)Amax(T) = y_O ~ 0.568253.

“4Strictly speaking, the power per unit wavelength is a function of its arguments (4, T') different from the function
p(v, T), and should therefore be represented by a different symbol, for instance p(A, T'). Following widespread physical
usage, with a slight abuse of notation we shall represent both functions by the same symbol p when no possible confusion
can arise.

b A solution of the latter equation can be easily obtained recursively setting

Xnt1 = 5(1 —e ™),
with (for instance) x; = 5. Note that if this sequence converges its limit x must satisfy
lim Xx =x=5lim (1—e ) =51—-e%),
i v lim ( )=501-¢7)
so that x is the unique solution of the transcendental equation (1.13). Computing the first 5 terms in the sequence we obtain

x2 = 4.96631027, x3 = 4.96515593, x4 = 4.96511569, x5 = 4.96511428, x¢ = 4.96511423,...,

which is accurate to 8 decimal places.

1.2 The photoelectric effect. Photons

In his heuristic derivation of the black body radiation law (1.8), Planck had actually supposed that the
energies of the oscillators that made up the enclosure’s walls were quantized (i.e., took on a discrete
set of values proportional to a minimum energy sv dependent on the oscillators’ frequency v), and that
this caused in turn the quantization of the energy of the Fourier modes of the electromagnetic radiation
emitted by the walls. It was Albert Einstein who in 1905 actually imposed the quantization of energy to
the electromagnetic field itself, postulating that the energy of an electromagnetic wave of frequency v can
only be an integer multiple of v, where /4 is Planck’s constant. The minimum energy /v carried by an
electromagnetic wave of frequency v was called by Einstein a quantum of light. Although the wavelike

© Artemio Gonzdlez Lépez 6



1.2 The photoelectric effect. Photons

nature of light was well established by the end of the nineteenth century from interference and diffraction
phenomena, Einstein’s hypothesis suggested that light of frequency v was made up of individual particles
of energy hv which we now call photons'!. This assumption was in fact supported by his successful
explanation of the photoelectric effect, which we shall next describe.

A metal is a lattice of atoms that have each lost one or more outer electrons —the so called conduction
electrons. These electrons, which are able to move freely inside the metal, are responsible for the good
electrical and thermal conductivity characteristic of metals. The positively charged ions fixed at the lattice
sites in a metal create an electric field that keeps the conduction electrons inside the metal. Thus to extract
an electron from the metal it is necessary to provide a certain energy ¢ characteristic of each metal, called
the work function. At the end of the nineteenth century, it was observed that when a metal is illuminated
by ultraviolet light a negative electric charge can be extracted from the metal’s surface. It was naturally
assumed that this charge was carried by electrons, which had been discovered by J. J. Thomson'? in 1897.
It was also believed that the energy of the emitted electrons should increase with the intensity of the light
illuminating the metal. Precise experiments carried by Lennard'?, however, conclusively showed that
this is not the case. More precisely, Lennard found that no electrons are ejected from the metal until the
frequency reaches a certain threshold (usually in the ultraviolet range). When this threshold is exceeded,
the energy of the electrons expelled from the metal (usually called photoelectrons) grows linearly with
the frequency. Moreover, the intensity of the light only affects the number of photoelectrons emitted, not
their individual energies.

Lennard’s experimental findings can be elegantly explained by Einstein’s light quanta hypothesis.
Indeed, when an electron absorbs a photon of frequency v its energy increases by kv, and it cannot
therefore leave the metal unless this energy exceeds the work function ¢. On the other hand, it is ex-
tremely unlikely that an electron absorbs more than one photon. Thus the frequency threshold below
which no electrons are emitted is clearly ¢/h. When v exceeds this threshold'* the (kinetic) energy E
of a photoelectron is simply

E=hv—¢, (1.14)

which indeed increases linearly with v. Millikan’s!®> Chicago experiments in 1914—1916 fully confirmed
Einstein’s relation (1.14). In fact, the latter equation was used by Millikan to determine the value of A.
To this end, when hv > ¢ an electric current of increasing voltage is applied to the metal plate until no
photoelectrons are ejected when the voltage reaches a certain value V' (usually referred to as the retarding
potential). This will be the case when the energy hv — eV (where e > 0 is the absolute value of the
electron’s charge) supplied to the electrons exactly matches the work function ¢, so that

hv —eV = ¢.

""The name photon was coined by the American physical chemist Gilbert N. Lewis (1875-1946) in 1926.

12British physicist (1856—1940) and Nobel Prize winner in 1906.

3Philipp Lennard (1862—1947), German physicist and Nobel Prize winner in 1905.

1411 order to trigger the emission of photoelectrons, the frequency v of the light beam illuminating the metal must thus

satisfy the condition
I he "
vV=—>¢,
A
or in terms of the wavelength
he
< —.

¢

Since for most metals ¢ is typically of the order of a few eV, taking, for instance, ¢ ~ 5 eV ~ 8- 10712 J we obtain

A

6.6-10734.3.108
8-10—19
A wavelength of about 250 nm (or less) corresponds to the ultraviolet region of the spectrum, since the wavelength of the

visible spectrum extends from about 380 nm (violet) to about 700 nm (red).
I5Robert Andrews Millikan (1868—1953), American physicist and Nobel Prize winner in 1923.

A< m~2.5-10"7 m = 250 nm.

7 © Artemio Gonzélez Lépez
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

Repeating the experiment for two values v; of the frequency we obtain the linear system
h\)l — €V1 = ¢, hl)z — €V2 = ¢
which can be used to determine Planck’s constant /2 and the metal’s work function ¢ from the equations

e(Vi—V12) e(Vi —V2) e(2V1 —v112)
h=——, p=—""—""v1—eV) = ——m—F-—.
V1 — vy V1 — Vo V1p — V2
In this way Millikan found a value for Planck’s constant / in excellent agreement with the value obtained
from earlier measurements of black body radiation spectra.

1.3 Compton scattering

Einstein’s hypothesis of light quanta was further confirmed by the experiments on scattering of X rays
(electromagnetic radiation with much shorter wavelength than visible light) by electrons in atoms per-
formed by Compton'® in 1922-23. Indeed, since the energy of X rays is much greater than the binding
energy of electrons in light atoms'”, it is possible to regard the electrons as free particles. Moreover,
since X rays are much more energetic than visible or ultraviolet light, photons are not merely absorbed
but collide elastically with these electrons. As photons travel at the speed of light ¢ they must have zero
rest mass, as otherwise the relativistic relation between energy E, velocity v and momentum p
mv
p =

2
A4
-z

would assign photons an infinite momentum. From the relativistic formula

E? — 2p? = m2c*

it follows that the momentum of a photon of frequency v is

hv
P=—n,
c

where n = ﬁ is a unit vector in the direction of the photon’s velocity. Thus the 4-momentum p of a
photon of frequency v is given by
E hv p
p=\—p)=—|L )
¢ ¢ pl

If a photon of frequency v collides with an electron at rest, conservation of energy-momentum requires
that

Py + Pe = Py + Pl
where p,, p. denote the initial four-momenta of the photon and the electron, and p;,, p, their final four-
momenta. Using the relativistic identity p - p = p? = m?c*, where the dot stands for Minkowski
product, we easily obtain the relation

mzc* = (py — pj, + pe)* = (py — P})* + 2(py — P}) - pe + mzc*

=2(py — P}) - pe —2py - Py + mic* = py-p, = (py— D)) pe

16 Arthur Holly Compton, American physicist (1892-1962) and Noble Prize winner in 1927.
" Typically, (hard) X rays have energies of a few keV (i.e., thousands of €V), while the ionization energy of (say) the
electron in a hydrogen atom is about 13.6 eV. In terms of wavelengths, for X rays
¢ he 66-10734.3.108 10723
A=—=—~ m ~
v E 1.6-10—16 10-16

while the visible part of the electromagnetic spectrum starts at wavelengths of about 380 nm.

m = Inm,

© Artemio Gonzdlez Lépez 8
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1.4 Bohr’s atomic model

where m, denotes the electron’s mass. Choosing the x axis along the direction of motion of the incoming
photon, and calling 6 the photon’s scattering angle and v’ the frequency of the scattered photon, we can
write

h '
Py = —v(l, 1,0,0), P;/ = _V(I»COS 0,sin6,0), Pe = (mec,0,0,0),
c c

and therefore
h2vv’

c2

(1 —cos ) = hme(v —v').

Expressed in terms of the wavelengths A = ¢/v, A’ = ¢/Vv’, the previous identity yields Compton’s
formula

A=A =21 —=cosb), (1.15)

where

= 2.42631023867(73) - 1012 m (1.16)
MeC

is called the electron’s Compton wavelength. Compton’s experiments established the validity of the
previous formula, thus lending further support to the existence of photons.

Although the photoelectric and Compton effects fully supported Einstein’s light quanta hypothesis,
which amounted to a corpuscular theory of light, for several decades it remained a mystery how this
hypothesis could be reconciled with the results of interference and diffraction experiments, all of which
supported a wave theory of light. This apparent contradiction could not be satisfactorily explained till
the discovery of quantum mechanics in the mid nineteen-twenties, as we shall see in the sequel.

1.4 Bohr’s atomic model

When an electric current is made to go through a gas like hydrogen or helium, the gas is excited and as a
consequence emits light —or, in general, electromagnetic radiation— of characteristic frequencies. The
set of these frequencies is called the emission spectrum of the gas. These emission spectra were inten-
sively studied at the end of the nineteenth century since, as we shall see, they throw considerable light
on the fundamental structure of the gas under study at the atomic level. For hydrogen, the wavelengths
of the emission spectrum known in the early twentieth century obeyed the simple empiric formula

A =R b =3,4 1.1
n = H Z—n—z N 1’1—3, 90 0 ey (‘7)
where
Ry ~ 1.09677576 - 10" m™!. (1.18)

is the so called Rydberg'® constant. This set of wavelengths, called the Balmer series after the discov-
erer'” of Eq. (1.17), is entirely in the visible spectrum, since it is in the range

(Xoo, A3] = (364.705, 656.47] nm.

By 1911, the experiments carried out by Rutherford?’, Geiger?! and Marsden?? had conclusively estab-
lished that atoms consisted of a positively charged nucleus around which orbited the negatively charged
electrons, bound to the nucleus by their mutual electromagnetic attraction. For example, in the case of

18 Johannes Robert Rydberg (1854-1919), Swedish physicist.

19Johann Jakob Balmer (1825-1898), Swiss mathematician.

20Ermest Rutherford (1871-1937), British physicist and Nobel Prize winner in Chemistry in 1908.
2lHans Wilhelm Geiger (1882—1945), German physicist.

228ir Ernest Marsden (19 February 1889-1970), British physicist.

9 © Artemio Gonzélez Lépez
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

hydrogen there is a single electron of charge —e orbiting around the nucleus with charge e > 0, so that
the interaction potential binding the electron to the nucleus is the Coulomb one:

e2

V(r)=-—

Aieor

In the SI unit system the constant g9 appearing in the previous formula, called the vacuum permittivity,
has the value®?
g0 = 8.8541878128(13) - 10" 2Fm™!.

According to a standard result in classical electrodynamics, a particle (in this case, the electron) moving
along a circular orbit with frequency v will emit electromagnetic radiation of the same frequency v. It
could be thought that this radiation accounts for the emission spectrum of hydrogen detected experimen-
tally. This explanation is however unsatisfactory, since classically the frequency of the electron’s orbital
motion, and hence of the radiation emitted by it, could be any positive number. More importantly, the
classical model of the atom described above is clearly inconsistent, since the fact that the orbiting elec-
tron must radiate electromagnetic energy implies that it is steadily losing energy. Since the radius a of
a circular orbit (or, more generally, the major semiaxis of an elliptic orbit) in the Coulomb potential is

related to its energy by the formula
2

e
E=-—

<0,
8megpa

a decrease of the electron’s energy (i.e., an increase in | E|) implies a decrease in the radius of its orbit.
In other words, classical electrodynamics predicts that the electron in the hydrogen atom will fall onto
the nucleus following a spiral trajectory. The time t taken by the electron to fall into the nucleus —i.e.,
the classical lifetime of a hydrogen atom— can also be computed combining classical electrodynamics
with classical mechanics, with the result

4c372e2m2r3
r= — 20 (1.19)
e

where rg is the electron’s initial distance to the nucleus. Taking r¢ as what is nowadays called the Bohr
radius of the atom, namely

5~ 5.29177210903(80) - 10~ m,

we obtain the estimate
4631’168(5) 11
T=———0 = 1.55618 - 10 S.
19/ 02

Thus Rutherford’s atomic model is inconsistent, since it predicts that hydrogen should disintegrate in a
very short time.

Exercise 1.2. Prove Eq. (1.19) using Larmor’s® formula for the power P radiated by a charge ¢ moving

with an acceleration a:

2 2
qg-a
P = -

6megC

Solution. When the electron moves along a circular orbit of radius r, its acceleration and energy are

respectively given by
F e? e?

a = = =

Mme  4megmer?’

8meor

By energy conservation, the power P radiated by the electron must equal the rate —% at which the

23The Farad (abbreviated F) is the unit of capacitance, and has dimensions of kg~ Im~2 s* A2,
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1.4 Bohr’s atomic model

electron loses its mechanical energy. We thus obtain the differential equation

dE e dr e2a? e® dr 127:2831113(:3 5
_ —_— ¢ 7

- = — = — =3 — =
dr 8meogr2 dt  6megc3 96n383m§c3r4 dr e

Integrating between r = rg fort = 0 and r = 0 for t = t we obtain

12n2e3m2c3 [0 4n2eZm2c3rd
T=— 7 —— redr=——r——,
e 0 e

as claimed.

“4Sir Joseph Larmor (1857-1942), Irish physicist.

In 1913, Bohr?* developed a heuristic model of the atom which addressed the deficiencies of the
Rutherford model mentioned above. Bohr realized that the fact that the frequencies in the emission
spectrum of hydrogen and other gases were quantized (i.e., formed discrete sequences like the Balmer
series for hydrogen) suggested that the frequencies, and therefore the radii, of the circular orbits of
electrons in atoms should also be quantized. In other words, electrons could only orbit around the
nucleus along circular orbits whose radii belonged to a certain discrete set {r, : n = 1,2,...}. Fora
hydrogen-like (ionized) atom, consisting of a nucleus of charge Ze and a single electron, the energy of
the electron along one of these allowed orbits of radius r;, is

kZe?
E, =— , n=12,..., (1.20)
21y
where
1
k= .
47e

Thus the quantization of the radius of circular orbits leads to the quantization of the electron’s energy.
To avoid the instability problem of Rutherford’s model of the atom, Bohr further postulated that these
allowed circular orbits were stable, i.e., that when the electron moved along them it did not radiate.
Emission of light —or, in general, of electromagnetic radiation— occurred instead when the electron fell
from one of these stable orbits of radius r, and energy E; to a less energetic orbit of radius r; < ry, and
energy E; < E,. More precisely, following Einstein’s hypothesis of light quanta, Bohr assumed that in
the transition from the orbit of energy E,, to the orbit of energy E; the atom emitted a photon of energy
E, — E; and frequency

Vn—l = 2 = 2
To determine the radii rj of the allowed circular orbits, Bohr observed that Planck’s constant / has the
same dimensions as an angular momentum, which lead him to hypothesize that the angular momentum
of the electron’s allowed circular orbits must be an integer multiple of an elementary angular momentum
h expected to be proportional to /. In other words, the electron’s allowed angular momenta are

E,—E kZe?2 (1 1
- (1.21)

L, = nh, n=12,.... (1.22)

The above relation is easily transformed into a formula for the radii of the stable circular orbits by noting
that the electron’s centripetal acceleration along a circular orbit of radius r is given by
v kZe?

ar = — = ——
r Mmer?’

24Niels Bohr (1885-1962), Danish physicist and Nobel Prize winner in 1922.
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

and therefore

kZe?
v? = .
Merl
We thus have
2 222 2.2.2 2 kZe? 2 2
L, =n"h" =myvr, =m;, I, =kZemery.
Melyn
The radii of the stable orbits in Bohr’s atom are therefore
Gl 1,2 (1.23)
rp = ——, n=12,..., .
" kZe2m,
whose corresponding energies are obtained from Eq. (1.20):
. k*me.Z%e .

The wavelength of the photon emitted by the atom in the transition £, — E; (Where n > [) is computed
combining Egs. (1.21) and (1.23), namely

1 Vi_n 21 1
= =RxoZ|=——=, l, 1.25
Ap—si “ o 12 n2 "= (1.25)
where 5 A
k“mee
Roo = ———. 1.26
* 2chh? (1.26)

Equation (1.26) determines the emission spectrum of hydrogen-like atoms in terms of the unknown con-
stant 7. To compute this constant Bohr applied what he called the correspondence principle, according
to which the predictions of the new quantum theory should coincide with the classical results for large
quantum numbers. Indeed, when n — oo the quotient

Eny1—En . Ept1 n? 2n+1 2

|Enl En = (+1D2 (m+12 n

tends to zero, and thus the energies are virtually continuous. In this case, according to classical electro-
dynamics the frequency of the electromagnetic radiation emitted by the atom should coincide with the
frequency of the electron’s motion, which for a circular orbit of radius r, can be easily computed from
the law of areas and Eqgs. (1.22)-(1.23):

L L h k%2ZZ%e*m?2  k2ZZ%e* RoZ? h
n znr,% — oy, = n _ n e'm; e me CRooZ™ N

C 2mmer?  2mm, n*h* 2mdK3 w3 R

2mevy

According to Bohr’s correspondence principle, this frequency should coincide with the frequency v, 415
of the photon emitted by the ion in the transition from the n-th to the (n — 1)-th energy level, given by

R 72 1 1 Rz 2=l 2¢Ro0Z?
v _1=c — = | =c
non—l o (n—1)2 n2 7 n2(m—1)2 n3
Imposing that v,—,—1 = v, we deduce that the unknown constant 7, nowadays called the reduced
Planck constant, is given by
h
h=—. 1.27
T (1.27)

© Artemio Gonzélez Lopez 12
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1.4 Bohr’s atomic model

From this equation we obtain the following explicit expression for the Rydberg constant Ro:

k2mee? mee® mee*

Roo = = = ~ 1.0973731568160(21) - 10" m~!. 1.28
o0 4mth3c 64753837130 88%}130 2 ( )

In the special case Z = 1 and [ = 2 Egs. (1.25)-(1.28) yield the Balmer series (1.17) with A, = 1,2,
together with the value Rg = Ry for the empiric constant Rgy. We thus see that the n-th wavelength
in the Balmer series correspond to the transition of the electron from the n-th allowed orbit to the second
one. Moreover, Bohr’s formula (1.25) predicts the existence of other spectral series corresponding to / =
1,3, 4, etc. In fact, the spectral series for [ = 1, 3, 4, 5 (the so called Lyman, Paschen, Brackett and Pfund
series) were discovered shortly after Bohr proposed his atomic model, lending it strong experimental
support. Further confirmation of the existence of quantized energy levels in atomic spectra came from the
experiment with vapor of mercury performed in 1914 by Franck? and Hertz?®, who offered compelling
evidence of the existence of a gap of 4.9eV between the first excited state and the ground state of mercury.

Remark 1. According to Egs. (1.23)-(1.24), the ground state —i.e., the state of minimum energy— of
the hydrogen atom corresponds to the circular orbit of minimum radius

h? 4meoh? eoh? (1.29)
r = = = 9 .
! keZm, eZm, e2m,
called the Bohr radius. The ground state energy of the hydrogen atom is
By = _Kmeet et mee® 136057 ev (1.30)
= — = — = — >~ —15. eV. .
! 212 302n2e2h2  8e2h2

This is also the electron’s binding energy or ionization energy of the hydrogen atom, i.e., the energy
needed to remove the electron from the atom. |

Remark 2. The small discrepancy between the values of Ry and Ry is due to the fact that in the
argument leading to Egs. (1.25)-(1.28) we ignored the motion of the nucleus, or equivalently regarded
its mass as infinite. To take into account the finite value of the mass of the nucleus we should replace in
the equations derived above the mass of the electron by the reduced mass of the electron-nucleus system.
For hydrogen, this reduced mass is given by

-1
p= e _ (1 + @) Me ~ 0.999456 m,,
Mme + Mp

where m, is the proton’s mass. The Rydberg constant for hydrogen is therefore

-1
Ry = (1 i @) Reo ~ 1.09677583 - 107 m™~!,
mp

in excellent agreement with Eq. (1.18). |

Remark 3. In the previous deductions we have regarded the electron as non-relativistic. This is consis-
tent for light hydrogen-like atoms (Z <« 100, say), since for the electron in the n-th atomic orbital we
have

v?2 . kZe? _ kZe?kZe*m, _ VA v aZ <aZ

2 mec?rn,  mec? n2h2 n2 — T S

25 James Franck (1882-1964), German physicist and Nobel prize winner in 1925.
26Gustav Hertz (1887—1975), German physicist and Nobel prize winner in 1925.
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

where

e? e?

= = ~ 7.2973525693(11) - 1073 1.31
dmeghc  2gphc (11 ( )

is the fine structure constant?’. [ |

In the previous discussion of hydrogen-like atoms we assumed for simplicity’s sake (as originally done
by Bohr himself) that the electron was moving along a circular orbit. Bohr’s quantization rule (1.22) has
to be modified for the more general case of motion along an elliptic orbit. In 1915-16 Sommerfeld?®,
Wilson?® and Ishiwara’® independently proposed a generalization of Bohr’s quantization of angular mo-
mentum for hydrogen-like atoms to conservative N -dimensional multi-periodic Hamiltonian systems
admitting action-angle variables. Roughly speaking, this means that there is a set of generalized coordi-
nates (¢1,...,qn) with corresponding canonical momenta (p1, ..., py) such that along any trajectory
of the system each canonical momentum p; is a function of the corresponding generalized coordinate
g; alone, and the motion in the (g;, p;) plane is periodic’!. The Sommerfeld—Wilson—Ishiwara (SWI)
general quantization rules®” read

%p,- dg; = n;h, 1<i <N, (1.32)

where n; is a non-negative integer for all i and the integrals are extended along a period of the motion
in the (g;, p;) plane. For a hydrogen-like atom the Lagrangian governing the electron’s motion in polar
coordinates (7, ¢) can be taken as

1 kZe?
L = —m(i* +r?¢?) + :
2 r
The canonical momenta are therefore
_ . _ 2 .
Pr = Mer, Do = Mel @,

and the Hamiltonian is the total energy expressed in terms of the canonical momenta:

1 Py\ kze?
H = 2+ 2] - :
2me prt r2 r
Note that Hamilton’s equation of motion for py, is
oH 0
p = —_— = s
¢ ago

and thus p,, is conserved. In fact, p, is equal to the angular momentum L. The Sommerfeld—Wilson—
Ishiwara quantization rules are in this case

Sgpr dr = n,h, 9§p(p de = nyh. (1.33)

2TThe value of the fine structure constant is very close to 1/137.

28 Arnold Sommerfeld (1868-1951), British physicist.

29William Wilson (1875-1965), British physicist.

30Jun Ishiwara (1881-1947), Japanese physicist

3I'More precisely, either the projection of the orbit to the (g;, p;) plane is a closed curve (libration) or p; is a periodic
function of g; (rotation). See, e.g., H. Goldstein, Classical Mechanics, 2nd ed. (Addison Wesley, 1980), p. 463.

32 Also known as Bohr—-Sommerfeld, or Sommerfeld—Wilson, quantization rules.
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1.4 Bohr’s atomic model

The system is multi-separable, since p,, is constant and from the energy equation

1 L? kZe?
(024 755) "=k

2me r

kZe2\ L2
pr::l:\/Zme(E+ e)__2
r r

is a function of r alone. If we parametrize the orbits with the angle ¢, the line integrals become ordinary
integrals over the interval [0, 27] (since the angle ¢ goes from O to 27 in a period of the motion). In
particular, the last equation (1.33) becomes

we deduce that

27
p(o/ dp =2npy, =2nL =ny,h = L =nyh,
0

so that angular momentum is quantized as in Bohr’s original theory. On the other hand, the quantization
condition for the variables (r, p;) can be written as

27
d
/ pr—dg = nh, (1.34)
0 de
where it is understood that p, and r should be expressed in terms of ¢. Note than in circular orbits
pr = meri = 0 implies that n, = 0. Taking into account that

) dr .,  Ldr nghdr
=Ml =Me—@ = —— = ——,
pr e Ed(pgo 7'2 dgﬂ 7'2 d(p

the quantization rule (1.34) becomes

2 1 dr\? ny
-— ) dp =2n—. (1.35)
0 rde Ny

The equation of the classical orbits is
r=y(l+ecosp) !,

where bn
2
L ng 7]

- kmeZe?  kmeZe?’

¢ is the eccentricity of the orbit,

o[ 2EL [, 2En3
&= a2 + k2m.Z2%e* + k2meZ2e4’

and a and b are respectively its major and minor semiaxes. From these equations we obtain

1dr gsing /‘2“ e2sin? ¢ d 5 1 1 0t

_—_—— —t _— =2t — — = Z2ZTT—,

rdp 1+ecose o (1+ecosgp)? ¢ V1= g2 Ny
and therefore

b2 n2

l—e2=2 = le o 4yt (1.36)
a (nr + n(p) b n(p
g o RmeZe o Kmezet (137)
2ngh? 2ng +nr)2h2 ‘
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

We thus obtain the same equation for the allowed energies as with Bohr’s original approach, together
with the relation n = n, + n, between the quantum numbers 7, ny, and n,. In particular, n = n only
for n, = 0, i.e., when the electron moves along a circular orbit. From the classical formula relating the
energy of an elliptical orbit with its major semiaxis,

kZe?
2a

E =

we deduce the following quantization rules for the semiaxes a and b of an arbitrary elliptic orbit:
r1 r1
a= (nqj—l—nr)2 7 b=nyny+n;) A

where r; denotes the Bohr radius (1.29). The ground state energy is obtained when n, = 0 and n, = 1,
i.e., when the electron moves along a circular orbit of radius r;/Z. This, of course, coincides with
the prediction obtained from Bohr’s original quantization procedure. Note also that from Eq. (1.37) it
follows that the n-th energy level is n times degenerate, since for a fixed natural number 7 the possible
values of the quantum number ny, are 1, ..., n (and for each of these values n, =n —ny). [ |

Example 1.1. SWI quantization of one-dimensional systems.
The SWI quantization method is particularly simple to apply to one-dimensional systems. Indeed,
in Cartesian coordinates we have

»?
H=—+4+V(x), p = mx,
2m
where the last equation follows directly from Hamilton’s equation of motion of the coordinate x. For

a periodic orbit of energy E with turning points x1 2, we have

X2 X2
¢pdx = 2/ p(x)dx = 2\/2m/ VE —V(x) dx = nh, (1.38)
X X1

1
where the last equality follows form the energy equation

2
2 v =E.
2m

Applying Green’s theorem to the trajectory H(x, p) = E in phase space we obtain the alternative

formula
[ axap=nn (1.39)
H(x,p)<E

where the double integral is extended to the interior of the curve H(x, p) = E.
For example, for the harmonic oscillator we have
P> 1 5,

HZ%—FEWI&)X,

and the orbits H(x, p) = E in phase space are ellipses with semiaxes

2F

2mkE, > -

maw

From Eq. (1.39) we therefore get the quantization condition

2F E
nV2mE 4/ 5 =2n— = nh <= E =nho, n=0,1,.... (1.40) | |HOspecSWI
maw w
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1.5 De Broglie’s matter waves

Incidentally, this formula for the allowed energies of a harmonic oscillator provides a theoretical jus-
tification of Planck’s derivation of the black body radiation formula (1.8) which originated quantum
mechanics. We shall see in the next chapters that Eq. (1.40) actually differs by a constant energy hw/2
from the correct formula for the energy levels of a quantum harmonic oscillator. In particular, the
ground state energy of a quantum harmonic oscillator is #w /2 instead of 0.

Likewise, for a particle in a box of length L we can formally take V(x) = 0 for 0 < x < L and
V(x) = oo for x < 0orx = L. Inside the box the Hamiltonian is simply

2
He
2m
and the energy equation reads
2
E=2
2m
Hence the SWI quantization condition is in this case
L L n2h2
2/ pdx=2«/2mE/ dx =2LV2mE =nh — E=m, n=0,1,....
0 0 e

We shall again see in the sequel that the above formula coincides with the result derived using modern
quantum mechanics, except that the value n = 0 must be excluded. In other words, the ground state
energy is h?/(8mL?) instead of 0.

Bohr’s model of the atom, and the more general quantization scheme of Sommerfeld, Wilson and

Ishiwara, is the core of what is often referred to as the Old Quantum Theory. Although this theory was
undeniably successful in explaining the emission spectrum of simple systems like the hydrogen atom,
and was widely accepted by 1916, it was however plagued by several fundamental flaws. For instance:

e The theory is not able to predict correctly the degeneracy of the energy levels of atoms, which can be

experimentally verified by exposing them to external electric and magnetic fields causing the splitting
of the spectral lines.

e In fact, the SWI quantization rule only applies to a very restricted class of Hamiltonian systems admit-

ting action-angle variables with multi-periodic orbits, and is thus unable to deal even with relatively
simple systems like the helium atom. In particular, it cannot quantitatively explain the quantization of
atomic energy levels in the Franck—Hertz experiment.

e The theory is clearly inconsistent with the classical concept of a continuous trajectory, which only

applies when the electron moves along an allowed orbit but must be abandoned when it “jumps”
discontinuously from one allowed orbit to another.

e Much more importantly, the main hypotheses on which Bohr’s atomic model is based, namely that

electrons in atoms can only move along a discrete set of stable orbits, and that they do not radiate
electromagnetic energy while they move but only when they jump from one stable orbit to another,
were completely ad hoc assumptions for which no justification was provided.

1.5 De Broglie’s matter waves

As explained in Section 1.2, although since the development of modern electromagnetic theory by
Maxwell light had long been thought to have a wave-like nature, experiments like the photoelectric
effects uncovered a dual particle-like behavior. In his 1923 Ph. D. thesis, de Broglie®* speculated that

33 Louis de Broglie (1892—1987), French physicist and Nobel Prize winner in 1929.
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

matter could also exhibit this dual particle-wave nature. De Broglie noted that, since photons of fre-
quency v are massless particles with energy E = hv, from the relativistic relation E2 = p2?c? + m?c*
the magnitude p = |p| of their three-momentum should be given by

_E v h

P=v =%~
where A = c¢/v is the wavelength. De Broglie then went on to postulate that a material particle with
three momentum p should have an associated wave of wavelength A given by the previous formula,

namely

A= (1.41)

h
3

This wavelength is nowadays called the particle’s de Broglie wavelength. From equation (1.41) we
obtain the relation

2n
L
A h
where k = |k| is the magnitude of the wave vector. It is therefore natural to assume that the relation

between the particle’s (relativistic) three momentum p and the wave vector K is given by the formula

p
k=—. 1.42
5 (1.42)

De Broglie further assumed that the relation between the energy and the frequency of a photon, given by
Einstein’s equation
E =hv =ho,

where @ = 2mv is the circular frequency, also holds for material particles. Since the energy of a free
particle with three-momentum p is given by

/ p? p? p*
E =cy/p? +m2c2 =mc?,|1 + =mc*?+—+0 , (1.43)
m2c2 2m m3c2

in the non-relativistic limit p < mc the particle’s energy (disregarding the zero point energy mc?, which
plays no role in non-relativistic physics) should be related to the circular frequency w of the associated
wave by the formula

= L _ (1.44)

Combining the previous formulas we obtain the following equation for the amplitude of the (complex)
matter wave associated to a free material particle of mass m and three-momentum p:

W(r,1) = Aexp [%(p-r—E(p)I)], (1.45)
with A a complex constant and
2
P
E(pp) =—.
(p) =7

Note that the phase velocity (i.e., the velocity of propagation of the planes of constant phase) of the
plane wave (1.45) is simply
_E® _ r

v b
¢ p 2m
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1.5 De Broglie’s matter waves

i.e, half the particle’s velocity. On the other hand, if instead of a pure wave with well-defined frequency
we consider a wave packet®*

U(r,t) = /d3p A(p) exp (%(p-r—E(p)I)), (1.46)

with A(p) (assumed to be real, for simplicity) sharply peaked at a momentum p = pg, expanding E (p)
around p = po we obtain

p-r—E(P)t = p-r—[E(po) + VE(po)- (0—Po)]i = p- (1= VEPo)) +1(VE(Po)-Po— E(po) ).

and therefore
it

W(r.1) = exp [%(VE(PO) po - E(po))] [ Epamen (%’(r - VE<po)t))

- ‘U/(r,t)} ~ '/d3p A(p) exp (%(r— VE(po)t))‘.

Since the intensity !lll(r, t) }2 of the wave packet (1.46) is (approximately) a function of r and ¢ through
the linear combination
r— VE(po)t,

if (for instance) the wave packet is concentrated at a point ro at # = 0 it will be concentrated at the point
r(t) =ro + VE(po)t (1.47)

at any other time ¢. Thus the peak of the wave packet, located at r(¢) at time ¢, moves with a velocity

ve = VE(po) = 2

called the wave packet’s group velocity. Remarkably, this velocity coincides with the velocity of the
material particle associated to the wave packet. In fact, this is also true if we use the relativistic for-
mula (1.43) for the energy, since in this case

2
cp c’p
VEPp)= —————e=—

S imia  E

where the right-hand side is the well-known relativistic formula for the velocity in terms of the energy
and three-momentum.

wavepack

The equality between the particle velocity v and the group velocity v of the associated wave packet (1.46)

lends some support to de Broglie’s hypothesis of the existence of matter waves. Further theoretical con-
firmation of this hypothesis comes from the fact that Bohr’s quantization rule (1.22) for the angular
momentum an electron in a hydrogen-like atom moving along a circular orbit can be recast as follows:

rh nh
Ln =pr=-—=-— < I’lA:2TU’, (148)
A 27
where r is the radius of the orbit and p is the electron’s momentum. We thus see that Bohr’s rule for
the quantization of angular momentum is equivalent to imposing that the circumference of an allowed
orbit contain an exact number of de Broglie wavelengths. Equation (1.48), which is strongly reminiscent
of the condition for standing waves in a vibrating string with both ends clamped, provides an elegant
theoretical explanation of the possible origin of Bohr’s quantization hypothesis.

34In what follows we shall often omit the integration range when it coincides with the whole domain of the integration
variable (in this case, R3).
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

According to a widespread anecdote, when de Broglie was asked during his Ph. D. thesis defense
how could the existence of matter waves be experimentally ascertained, he answered that it should be
possible under appropriate conditions to observe diffraction phenomena involving matter waves, just as
for ordinary (electromagnetic) waves. More precisely, de Broglie suggested to analyze the diffraction
of electron waves by crystals, analogous to the diffraction of X-rays well known at the time. Since the
typical distance between atoms in a crystal is of the order of 10710 m = 1 A, the electrons’ de Broglie
wavelength A should be of the same order of magnitude for diffraction phenomena to be observable. On
the other hand, according to de Broglie’s formula (1.41), the de Broglie wavelength of a non-relativistic
electron (i.e., an electron with kinetic energy E < m,c?) is given by

h  h h _ 122643 A
P «/2meE \/2mel%lev \/E/leV

A= (1.49)

Thus, to obtain de Broglie wavelengths of the order of 1 A the electron’s energy should be of the order of
100 eV. (By comparison, X-rays have wavelengths between approximately 0.1 A and 100 A, or energies
between approximately 100 eV and 100 keV.) The experiment suggested by de Broglie was carried out
in 1927 by Davisson® and Germer®®, who indeed found that electrons scattered by a single crystal of
nickel gave rise to a diffraction pattern similar to that observed in X-ray diffraction. More precisely, for
any wave of wavelength A scattered by a crystal with interatomic distance d, reflection is enhanced when
the angle 6 between the direction of propagation of the incident and reflected waves takes certain values
0, (with n € N) determined by Bragg’s formula

nA = 2d cos(6,/2), n=12,....

Davisson and Germer used a beam of electrons of energy E = 54 eV, and found that the first angle for
which reflection was enhanced was 8; = 50°. Since d = 0.92 A for nickel, using Bragg’s formula with
n = 1 we obtain the following value for the wavelength of the electron’s matter wave:

A =2-0.92-0.906308 - A ~ 1.6676 A,
in excellent agreement with the value

o 122643 A
V54
37 5

computed from de Broglie’s formula (1.49). A similar experiment performed by G. P. Thomson”’ in
1928 confirmed Davisson and Germer’s result, thus conclusively establishing the existence of the matter
waves postulated by de Broglie.

~ 1.66896 A

Remark. The relation between the de Broglie wavelength of an electron and the wavelength of a photon
of the same energy E is given by

‘e h/VImE | E

Ay  he/E  \ 2mec?’

Since 2m.c? ~ 1 MeV, for (non-relativistic) energies in the range 10 eV to 10 keV this quotient is at
most 10™!. This is the idea behind the electron microscope, able to achieve much greater resolutions
than an ordinary (optical) microscope using photons of the same energy. |

35Clinton Davisson (1881-1958), American physicist and Nobel Prize winner in 1937.
36 ester Germer (1896-1971), American physicist and Nobel Prize winner in 1937.
37Sir George Paget Thomson (1892-1975), British physicist and Nobel Prize winner in 1937.
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1.5 De Broglie’s matter waves

Exercise 1.3. Consider a one-dimensional wave packet of the form
W(x,t) = / dpA(p)e% (px—E(p)t) ’

where |A( p)‘ is slowly varying and concentrated on an interval of width Ap centered at p = po.

i) Find the coordinate x,, of the maximum of |lP(x, t)‘ (this point is usually called the center of the
wave packet).

ii) Show that ¥ (x,t) is concentrated on an interval of width Ax around x,,, where Ax satisfies
AxAp Z 27h.

ii1) Generalize these results to a three-dimensional wave packet.

Solution.
1) Let us write

Ap) = f(p)ere®,
where f(p) = }A(p)‘ > 0 and a(p)/h € R is the argument of A(p). We thus have

(x.1) = / dpf(p)eropd), (1.50)

with
@(x,p,t) = px — E(p)t +a(p).

Since by hypothesis f(p) is slowly varying and negligible outside the interval [po—Ap/2, po+Ap/2],
we can write

Po+52 . : po+42 .
W(x, 1) ~ f(PO)/ > dpeiw(x,p,t) ~ f(po)e,'ltp(x,po,t)[ 2 dpeig%(x,Poal)(P—po)
Po—> D —%
Ap
= f(po)e;i,(o(X,POJ)/Az dpeig*‘ﬁ(xmo,t)p’ (1.51)
_4p
2

where for simplicity we have assumed that the terms of order (p — po)? and higher in the Taylor
expansion of ¢(p) about pq are negligible® for |p — po| < Ap/2. Thus at points (x,¢) for which
¢(x, p,t) has nonzero partial derivative with respect to p at pg the integrand in Eq. (1.50) is wildly
oscillatory (due to the smallness of #), and therefore the integral is very small in absolute value due to
cancellations. Hence the condition for a maximum of the absolute value of the integral is that

0
a—(p(x, p,t) =0.
p P=po
This is the so called principle of stationary phase for integrals of the type (1.50). Computing the
partial derivative we obtain the condition

xm— E'(po)t +a'(po) =0 = xm = —a'(po) + E'(po)t.

In other words, the peak (center) of the wave packet is located at the point —a’(pg) for t = 0, and
moves with constant velocity ve = E’(po) = po/m.

i1) The variation of the phase ¢(x, p,t)/# when p ranges from pg — % to po + Ap i approximately

2
given by

Agp

d Ap
_— , p,t
- apw(x p.t)

Ap / / Ap
& _(x—E +a o — )=
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

For the integral (1.50) not to be vanishingly small at x, | Agp|/#% can be at most of the order of (say) half
a period (in modulus) of the complex exponential, or equivalently

|x—xm|—p~n.
h

For this condition to hold for all x in an interval of width Ax centered at x;,, we must have

Ax A
Tx?pwn < Ax Ap ~ 2mh.

In other words, the intensity of the wave packet ¥ (x, t) is concentrated on an interval centered at xy,
of width Ax at least 21th/Ap, i.e., such that

Ax Ap = 2mth. (1.52) E

iii) In the three-dimensional case we have

U(r,t) = / d3pf(p)e%“’(r’l’”), (1.53) E

with f(p) = 0 slowly varying and concentrated on a solid sphere of radius |Ap|/2 centered at po,
a(p) € R and

@(r,p,t) =p-r— EP) + a(p).

The stationary phase condition becomes

=r— (VpE)(Po) + (Vpa)(po),
P=Po

0 d 0
Vo= —,—,—|].
P (3171 ap2 3173)

Hence the center of the wave packet is the point

rm = —(Vpa)(po) + (VpE)(po)t.

Vp(p(l’, p’ t)

where

Reasoning as before, we find that the wave packet is concentrated on a solid sphere centered at 1,
whose radius |Ar|/2 satisfies
‘ArHAp} > 27h.

Note. In fact, the integral (1.51) can be easily evaluated, with the result”

4p 4 4p
2 dp i g5 Gponp — [ 2 dpe,%p(x—xm)
_4p _4p
2 2
in (42 (x — ) :
__ h (eig‘;(x—xm) _e—if,f’(x—xm)) _ sm(”’ () _ ApSiné
i(x — xm) X = Xm £’

where we have set

= AP _
£ 1= (X — xXm).

© Artemio Gonzélez Lopez 22

tphase3D



fig.wpplot

sec.WPdual

1.6 Wave-particle duality. The wave function

Thus the intensity of the wave packet can be approximated by

sin

2
; ) = f(po)>Ap*g(£).

W, 0|2 = f(po)2Ap? (

From the graph of the function g(€) in Fig. 1.2 it is apparent that ‘lI/(x, t){2 will be significant only for
(say) |£] = m/2 (indeed, g(n/2) = 4/n? ~ 0.405285), i.e., for

Ap T
e — > =
> |x Xm|~2-

For this to hold for all x in an interval of width Ax/2 centered at x,, we need that

Ap Ax B
_p_ z _7
2h 2 2
which is the same condition derived above.
sin®(¢)
é:Z
1.0
0.8
0.6
@|p=mecey \
0.2
7:( 3n S5n n f
- b — 2m — 3 — 4
2 2 2 2

Figure 1.2. Graph of the function g(£) = sin® £/&2 for & > 0. The first secondary maximum of this
function is located at § = 4.49341, and is equal to 0.0471904.

“Note that, due to the term E(p)t in ¢(x, p,t), this simplifying assumption can only be valid for sufficiently small |¢|
even if it folds for t = 0.

bThe following calculation is only valid for x # X, but letting x tend to X, in the final result we obtain the correct
value of the integral also for x = xy,.

1.6 Wave-particle duality. The wave function

By the mid and late 1920’s, experimental phenomena like the photoelectric effect or the diffraction of
electrons by crystals had convincingly shown that both light —or, in general, electromagnetic waves—
and material particles like electrons exhibited a dual, and seemingly contradictory, wave-particle nature.
More precisely, in certain experiments (for example, the photoelectric or Compton effects) light behaves
as a stream of individual particles (photons), while in diffraction experiments it behaves as a wave. The
situation is similar for material particles like the electron, which exhibit wavelike behavior when their
de Broglie wavelength is comparable to the characteristic length of their surroundings (for instance,
the interatomic distance of the crystal in diffraction experiments), and otherwise behaves as particles.
Moreover, while for photons the associated wave is clearly the electromagnetic field®®, the physical
nature of de Broglie’s matter waves and their precise relation with the associated particle is not clear at
all.

38Classically, the intensity of light is proportional to the time average of EZ or of B2, where E and B are respectively the
electric and magnetic induction vector fields (both averages being proportional).
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

S$1
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v 0

S>

P

Figure 1.3. Setup of the double slit experiment. A monochromatic and unpolarized beam of light orig-
inating from a point source at & strikes an opaque screen in which two narrow slits S and
S, have been cut very close to each other and equidistant from &'. The beam’s intensity on a
plane parallel to the screen is then measured by the photographic plate P.

In order to better understand the interplay between the wave and particle aspects of matter and radia-
tion, let us analyze in some detail the so called double slit experiment (see Fig. 1.3). The results of this
experiment can be summarized as follows:

1) If we block the slit S» (resp. S1) the intensity /7 (x) (resp. I2(x)) of the light reaching the photo-
graphic plate P exhibits a characteristic diffraction pattern (see Fig. 1.4 left).

2) On the other hand, when both slits are open the intensity /(x) of the light reaching the photographic
plate is not simply the sum /1 (x) + I2(x), but rather the oscillating function shown in Fig. 1.4.

To interpret these observations note first that, since the light used in this experiment is not polarized,
we can ignore the vector character of the (time averaged) electric field and represent it by a complex®’
scalar function E(x), whose modulus squared |E (x) |2 is proportional to the light intensity at the point
(with vertical coordinate) x on the plate P. The results of the double slit experiment are then easily
explained by the wave theory. Indeed, according to this theory the slits act as secondary light sources.
Consequently, when the slit S; is open and the other one is closed the intensity measured at P can be
taken (apart from an irrelevant constant factor) as

Li(x) = |E()]%,

where E;(x) is the electric field created by S;. It can be shown that this formula correctly accounts for
the diffraction pattern observed at P. On the other hand, when both slits are open the total electric field
E(x) at a point x on the plate is the sum of the electric fields created by both slits, namely

E(x) = E1(x) + E2(x),
and consequently the intensity at this point is given by

I(x) = |E1(x) + ]52(96)‘2 = }El(x)|2 + \Ez(x)‘z + 2Re (E1(x)E5 (x))
= I1(x) + I2(x) + 2Re (E1(x) E5 (x)) (1.54)

More precisely, for an oscillating electric field of the form &(x, ) = Re (E (x)e_i“”), with E(x) complex valued, the
time average of 8(x, )2 is %‘E(x)‘z. Moreover, if 81 (x,1) = Re(E1(x)e™®?) and E;(x, ) = Re(E2(x)e™®?) are two such
fields with the same frequency w, the time average of (8 1(x, 1) + & (x, t))2 is %|E 1(x)+ Ez(x) |2. Since the respective light
intensities are proportional to these time averages, and thus to the squared modulus of E(x) or E£1(x) + E2(x), it is customary
to represent the vector field &(x, ¢) by its complex amplitude E(x). See, e.g., M. Born and E. Wolf, Principles of Optics (5th
ed.), Pergamon Press, 1975.
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I(x)

o

Figure 1.4. Left: light intensities 71 (x) and I (x) (black lines) and their sum 77 (x) + I3 (x) (dashed line)
in the double slit experiment. Right: light intensity /(x) when both slits are unblocked.

which differs form 71 (x) 4+ I2(x) by the interference term
J12(x) = 2Re (Eq(x)E5 (x)) .

In other words, according to the wave theory the intensity pattern observed when both slits are open is
due to the interference between the waves originating at each slit.

From the point of view of the corpuscular theory of light, the intensity at a point x on the plate P is
proportional to the number N (x) of photons hitting this point per unit time, i.e,

I(x) =aN(x)

for some irrelevant constant a. Although the result of the first experiment (with one slit blocked) could
perhaps be explained by the interaction between the individual photons in the beam and the edges of the
slit, when both slits are open the number of photons per unit time hitting the point x is the sum of the
photons going through each slit, namely

I(x) = aN(x) = a(Ni(x) + N2(x)) = I1(x) + I2(x).

This result is clearly inconsistent with the intensity pattern actually observed, described by Eq. (1.54).
The corpuscular theory of light is thus unable to account for the interference term Jy5(x).

In point of fact, in the previous argument we assumed that the number of photons hitting a point on
the plate which pass through one of the slits S; is the same whether the other slit is blocked or not. This
assumption, however, may not be true if the photons passing through one slit interact with those passing
through the other one. In order to suppress this effect, the beam’s intensity can be diminished till ideally
the source emits only one photon at a time. The naive prediction of the corpuscular theory is that, since
in this limit there is no possible interaction between photons passing through different slits, the intensity
fringes disappear and /(x) = I1(x) + I2(x). On the other hand, according to the wave theory if the
beam’s intensity diminishes the intensity of the interference fringes will just diminish accordingly, but
the fringes will not disappear. Remarkably, neither the wave nor the corpuscular theory predictions are
supported by experiment. More precisely, when the source & emits one photon at a time the following is
observed:

1) If the exposure time is so short that only a few photons hit the photographic plate, the individual
impacts of these photons on seemingly random points on the plate can be clearly observed. This
result is inconsistent with the wave theory, which predicts instead a very weak interference pattern.

2) On the other hand, if the exposure time is increased so as to ensure that a large number of photons
hit the plate, the locations of the random individual impacts of the photons on the plate accumulate,
and over time give rise to a visible pattern of interference fringes described by Eq. (1.54). This result
is incompatible with the corpuscular theory prediction of an absence of interference fringes for a
sufficiently low beam intensity. It is essential to realize, however, that the pattern of interference
fringes arises gradually, as the individual impacts of the photons at random locations on the plate
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build up. In other words, the intensity at a point x on the plate is proportional to the number of
photons hitting the plate at this point. We thus conclude that the emergence of the interference fringes
is ultimately a statistical phenomenon. Note, however, that this statistical phenomenon affects each
individual photon, since it manifests itself even when only one photon at a time is emitted.

The previous analysis of the double slit experiment thus clearly points at a statistical connection be-
tween the wavelike and the particle aspects of photons. More precisely:

e The square of the modulus of the electric field at a point x on the photographic plate, | E(x) }2, is
proportional to the density of photon impacts at x. In other words, the probability that a photon

strikes the plate at a point in the interval [x, x 4+ dx] is proportional to ‘E (x) ‘2 dx.

e Moreover, to explain the existence of the interference fringes when both slits are unblocked we must
accept that, contrary to classical thought and everyday experience, the probability that a photon

strikes the plate at a point inside the interval [x, x +dx] is not the sum of the probabilities !E 1,2(x) ‘2
of the photon going through the slit S > before hitting the interval, but is instead given by |E 1(x) +

E>(x) ‘2. In other words, it is the (in general complex) probability amplitudes E;(x) of each of the
independent events

&; = photon strikes the plate inside the interval [x, x + dx] after passing
through the slit S; (i = 1, 2),

that are added up to obtain the probability amplitude E1(x) + E»(x) of the event
&1 U &, = photon strikes the plate inside the interval [x, x + dx].

The probability of the latter event is then obtained by computing the square of the modulus of this
probability amplitude, thus giving rise to interference fringes described by Eq. (1.54).

It should be stressed that the addition of probability amplitudes instead of probabilities, although es-
sential in order to explain the genesis of the interference fringes in the double slit experiment, flatly
contradicts our intuition based on everyday experience. Indeed, we may intuitively think that when the
beam intensity is so low that there is no interaction between photons passing through different slits, the
fact that one slit is blocked or not cannot affect the number of photons passing through the other (open)
slit. If this were true the intensity at a point x on the plate would be simply the sum /1 (x) + I2(x) of the
intensities obtained when either slit is blocked, and no interference fringes would therefore be observed.
In fact:

e In order to avoid a contradiction with classical logic, according to which the probability of the union
of two independent events (i.e., a photon passing through either slit and striking a certain region of
the plate) is the sum of their individual probabilities, the belief that photons pass through either one
or the other slit must be abandoned.

e This in turn entails that it is impossible to assign a definite classical trajectory to photons in the
double slit experiment, since otherwise we would be forced to conclude that each photon must pass
through one and only one of the open slits.

Another fundamental consequence of the previous analysis is the following:

e Contrary to classical lines of thought, the explanation of the emergence of interference fringes in
the double slit experiment is ultimately of a probabilistic nature. In other words, the theory cannot
predict where on the plate will an individual photon strike, but only provides a probability for the
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photon hitting a point on the plate (proportional to the square of the modulus of the electric field at
that point). The interference fringes arise as the individual impacts of photons on the plate build
up following this probability distribution. Put differently, the interference fringes in the double slit
experiment are caused by a statistical property of a single photon, rather than by an interaction
between photons.

The previous analysis of the double slit experiment can be summarized as follows:

1) The particle and wave aspects of light are inseparable: light behaves simultaneously like a wave
and like a stream of particles (photons). The energy E and momentum p of the photon are related
to the frequency v and wave vector k of the associated wave by the Einstein—de Broglie relations

E =hv = ho, p = 7k. (1.55)

2) The wave and the particle aspects of light are connected as follows: the probability of finding a
photon at time ¢ inside an infinitesimal volume d3r centered at a point r in space is proportional to
{E(r, t)

3) Predictions about the behavior of a photon are thus necessarily of a probabilistic nature.

2 . . .
, where E is the field vector of the associated electromagnetic wave.

As a matter of fact, the double slit experiment can be performed with material particles (electrons,
neutrons, protons, etc.) instead of photons*’, and the results are exactly the same as discussed above.
Namely, when the particle beam has a sufficiently high intensity a continuous interference fringe is ob-
served on a plate (actually, a detector of some kind) placed behind the slits, whereas for low intensities
the individual impacts of particles at seemingly random positions on the plate can be detected, the inter-
ference fringes eventually appearing as these impacts accumulate*'. Just as in the case of photons, we
conclude that these interference fringes are not caused by an interaction between the particles, but are
rather a statistical property of a single particle. In other words, we cannot predict the precise point on the
plate each particle is going to strike, but only the probability of a particle hitting the plate at a particular
point. It is natural to assume that the role played by the electric field in determining this probability for
photons should now be played by de Broglie’s matter wave ¥ (r,t) associated to the particle. In other
words:

The probability of finding a material particle at a time # inside an infinitesimal volume d3r centered at

. . . . 2 .
a point r in space is proportional to |lI/(r, t)‘ d3r, where the complex valued smooth function ¥ (r, t)
is de Broglie’s matter wave for the particle in question.

In general, since the probability of finding the particle anywhere in space must equal 1, the actual
probability is given by

W (r,0)|* d3r
/d3r"1/(r,t)|2’

dP(r,t) = (1.56)

where as usual the integral is extended over the whole space R3. In particular, the latter integral must be
finite:

/d%\xp(r, H|? < 0. (1.57)

40The double slit experiment has been performed with electrons, neutrons, atoms, and even some heavy molecules.
4ISee https://www.hitachi.com/rd/research/materials/quantum/doubleslit/index.html for a practical
demonstration of the double slit experiment with electrons.
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Remark. The linear space of (complex valued) scalar functions ¢ (r) whose modulus squared }d)(r) ‘2 is
integrable over R3 is called the Lebesgue space L*(R3). Thus Eq. (1.57) states that ¥ (r, ¢) is in LZ(R3)
for each fixed ¢t € R. We shall see in the sequel that under certain conditions this requirement can be
relaxed. |

Equation (1.56) furnishes an interpretation of de Broglie’s matter wave W(r, t) as proportional to the
probability amplitude for the particle being found inside an infinitesimal volume centered at a point
r at time 7. In more modern terminology ¥ (r, ¢) is called the particle’s wave function, and completely
determines its state at a certain instant ¢ through equation (1.56). Indeed, as mentioned above we can only
expect to know the probability of finding the particle inside a certain infinitesimal volume at any time 7,
given by the latter equation. Thus, whereas in classical mechanics the state of a particle is determined by
6 real variables (the particle’s coordinates and momentum), and is thus a point in the finite-dimensional
vector space R®, in quantum mechanics the particle’s state is an element of the infinite-dimensional linear
space L?(R3). In other words, in quantum mechanics the number of degrees of freedom of a single
particle is infinite. To determine the state of a particle, we must compute its wave function ¥ (r, ¢) for all
times f. As we shall explain in the next chapter, in mathematical terms this amounts to solving a certain
(linear) partial differential equation (Schrddinger’s wave equation) with appropriate initial and boundary
conditions (usually, that the wave function vanish fast enough at spatial infinity so that Eq. (1.57) is
satisfied). Even for a single particle, this is in general an extremely difficult problem which can be
exactly solved only in a handful of simple yet physically important situations, that we shall study in
some detail in the following chapters.

Example 1.2. De Broglie wavelength of conduction electrons in copper.

Whether the particle or the wave aspect of material particles is relevant in a given physical situation
respectively depends on whether the particle’s de Broglie wavelength is very small compared to the
problem’s characteristic length or is comparable to it. In the former case we can treat the particle as a
point particle following the laws of classical mechanics, while in the latter we must use the quantum
wave function to properly describe the particle’s behavior.

Consider, for instance, conduction electrons in a copper wire carrying a 220 V current. The char-
acteristic length in this problem is copper’s interatomic distance d = 2.54 A. The energy of the
conduction electrons is

E =220eV ~ 3.52479-10717 7,

and their momentum is therefore
p = +/2m.E ~ 801357 - 107> kgms L.

Note that the conduction electrons can be considered non-relativistic, since their potential energy is
very small compared to their rest mass energy m.c? ~ 0.5 - 10% eV. Thus the de Broglie wavelength
of a conduction electron is

h
A= — ~826856-10"'1 m,
P

which is of the same order of magnitude as copper’s interatomic spacing d = 2.54 - 107! m. Hence
conduction electrons in copper wires at 220 V must be treated as quantum mechanical, i.e., must be
described by their quantum wave function and exhibit a wavelike behavior.

On the other hand, for a dust speck of diameter 1 1« and mass 10~ kg moving at a speed of 1 mm s~
we have

1

h 6.6-1073* kgm?s™!
A=~ Y 66107 m=66-10"14.
mv 10715 kg x 1073 ms~!
Since the de Broglie’s wavelength of the speck of dust is ten orders of magnitude less than its diameter,
we conclude that a description of the speck as a point particle following the laws of classical mechanics

is appropriate.
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1.7 Heisenberg’s uncertainty principle

As pointed out in the previous section, the results of the double slit experiment make it unavoidable
to abandon the classical notion of trajectory, and in particular the intuitive idea that the photon (or the
material particle used in the experiment) must pass through either slit before hitting the photographic
plate. From the quantum mechanical point of view, the fact that we cannot determine through which
slit the photon has passed does not contradict any fundamental physical principle. Indeed, physics deals
ultimately with experimentally measurable properties, and in the double slit experiment no attempt is
made to detect the passage of a photon or particle through the slits. A crude way of experimentally de-
tecting through which slit the photons pass is to place a photomultiplier behind both slits. It is found in
this way that approximately half the photons go through each slit. However, in the process of measuring
the passage of a photon through either slit we have fundamentally altered the original experiment, since
the photons are destroyed after being detected by the photomultiplier, and obviously the photographic
plate does not register any intensity. To remedy this problem, we could place a photomultiplier behind
only one of the slits, say S>. The result of this experiment is that the photomultiplier records approx-
imately the passage of half of the incoming photons through S5, so that we can assume that the other
half have passed through S on their way to the plate. However, since the slit S» is effectively blocked
the photographic plate shows only the diffraction pattern of the other slit, and no interference pattern
is observed. Again, we find that the attempt to measure the number of photons going through S, has
fundamentally affected the original experiment. Although several other more sophisticated experiments
can be performed to detect the passage of photons through the slits in the double slit experiment, in all
cases it has been found that it is impossible to achieve this objective without destroying the interference
pattern. This result underscores what has been acknowledged as one of the fundamental principles of
modern quantum mechanics, namely

Any measure performed on a system inevitably alters its physical state in a fundamental way.

A related, but more quantitative, fundamental principle of quantum mechanics was formulated by Heisen-
berg*? in 1927:

Heisenberg’s uncertainty principle: if two canonically conjugate dynamical variables ¢ and p are
simultaneously measured, their respective uncertainties Aq and Ap must satisfy the approximate in-
equality

Aq Ap Z h. (1.58)

We shall provide a formal proof of this relation in the next Chapter. In fact, we shall precisely define
the uncertainty of any dynamical variable, and show that with this definition we have the more precise
inequality

h
AqAp= 7. (1.59)

An immediate consequence of the uncertainty principle is that it is impossible to measure simultane-
ously with arbitrary precision two canonically conjugate dynamical variables. This is prevented by the
laws of quantum mechanics as presently understood, and has nothing to do with any practical limitation
of our experimental setup. In fact, nothing prevents us in principle from measuring with arbitrary pre-
cision one of a pair of canonically conjugate dynamical variables, but in doing so the uncertainty of the
other variable will increase without bound due to Eq. (1.58).

Recall that in Lagrangian mechanics the canonical momentum associated to a generalized coordinate
qi 1s

oL

R

“2Werner Heisenbreg (1901-1976), German physicist and Nobel Prize winner in 1932.

pi i=1,...,N, (1.60)
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THE EXPERIMENTAL BASIS OF QUANTUM MECHANICS

where L(¢,41,...,4N.q1,--.,4nN) is the system’s Lagrangian. The dynamical variables ¢; and p; are
said to be canonically conjugate. From the Lagrangian L we construct the system’s Hamiltonian

N
H(taql,,qNaplaspN):Zplql_L7

i=1

where it is understood that in the RHS the variables ¢j are expressed in terms of the canonical momenta
p; using Eq. (1.60). The equations of motion of two canonically conjugate variables (g;, p;) are then
Hamilton’s canonical equations

oH ) oH

= —, p = ——.
api ' 0qi

In particular, for a single particle of mass m moving subject to a potential V' (r) the Lagrangian in Carte-
sian coordinates is simply

qi

L(r,t) = %mi’z — V(r).

The canonical coordinates are the particle’s three Cartesian coordinates (x1, X2, x3), i.e., the components
of its position vector r. The canonical momentum p; conjugate to the coordinate x; is then

oL

= — =mx;
E)x,- ’

Di

i.e., the i-th component of the linear momentum. Therefore in this case Heisenberg’s uncertainty rela-
tion (1.58) reads

Axi Ap; 2 h,  1<i<3. (1.61)

It follows that:

It is impossible to measure simultaneously with arbitrary precision one of the particle’s coordinates
and the corresponding component of its linear momentum.

(Of course, nothing prevents us from measuring simultaneously and with arbitrary precision a coordinate
x; and a different momentum component p; with j # i). An immediate consequence of this fact is that,
as we already knew from our analysis of the double slit experiment in the previous section, is that:

In quantum mechanics, it is impossible to determine (with arbitrary precision) the trajectory of a parti-
cle.

Indeed, this would require knowing simultaneously the particle’s position and velocity (and hence mo-
mentum) at all times. In practice, however, given the smallness of the constant # compared to typical
actions of macroscopic particles, this restriction is only effective in the microscopic realm (see, e.g.,
Exercise 1.4).

Remark. Heisenberg’s uncertainty principle always applies to a pair of canonically conjugate variables.
For instance, in Cartesian coordinates the Lagrangian of a particle of charge e and mass m moving under
the influence of an external electromagnetic field is given by

L(t,r,tr) = %mi‘2 + e(i- -A(r,t) — ¢(r, t)),

where ¢ (r, ) and A(r, t) are the scalar and vector potentials generating the electromagnetic field through
the equations

E(r,t) = —V¢(r,t) — %—?(r, t), B(r,1) =V x A(r, 1),
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1.7 Heisenberg’s uncertainty principle

In this case the canonical momentum conjugate to the Cartesian coordinate x; is

pi= L5 i+ edi(n0),
ax,-
which in general differs from the i-th component of the particle’s linear momentum mx;. Of course,
even in this case it is impossible to measure simultaneously with arbitrary precision the coordinate x;
and the corresponding linear momentum component mx;, since by the previous formula this would
require determining with arbitrary precision both x; and its conjugate momentum p;. |

Example 1.3. As seen in Section 1.5, the wave function of a particle of mass m moving freely (i.e.,
subject to no external force) in one dimension can be taken as

W(x,1) = AehPox—E®@D)

where A > 0, pg is the particle’s momentum and E(pg) = % its momentum. Note that ¥ is not
in L2(R), since ‘lI/(x, t)| = A is constant. In fact, in this case the probability density of finding the
particle at a point x is the constant A%. In other words, it is equally likely to find the particle anywhere
on the real line, and thus the position uncertainty Ax is infinite. This is in agreement with Heisenberg’s
uncertainty principle, since p = po is exactly known and therefore Ap = 0.

More realistically, if the particle’s momentum is only known with an uncertainty Ap its wave func-
tion can be taken as the wave packet

W(x,1) = /dp A(p)er PX—E®D)

where |A(p)| is slowly varying, sharply peaked at p = p¢ and vanishingly small outside an interval of
width Ap centered at pg. As we saw in Exercise 1.3, at any time ¢ the function |lI/(x, t)‘ (and hence

the particle’s probability density, which is proportional to |11/(x, t)‘z) is concentrated on an interval

centered at the point

Pol
Xm (1) = o — o' (po),

where a(p)/h is the argument of A(p). Moreover, the width Ax of this interval, i.e., the uncertainty
in the particle’s position, satisfies
Ax Ap Z 27mth

(cf. Eq. (1.52)). This is again in full agreement with Heisenberg’s uncertainty principle.

Exercise 1.4. Discuss whether it is possible to attribute a classical trajectory to the following parti-
cles: i) a dust speck of diameter 1z and mass 10~!° kg moving at a speed of 1 mms™!, and ii) an
electron in Bohr’s model of the atom.

Solution. For the classical trajectory of a particle to be well defined, both its position and momentum
uncertainties must be small enough so that the particle’s position and momentum can be simultaneously
measured with sufficient accuracy.

By Heisenberg’s uncertainty relation, to be able to measure both the position and the momentum of a
particle with a relative error ¢ we must have

h
AxAp=e*xp2h = &= .[—.
xp

Thus the maximum relative precision in a simultaneous measurement of position and momentum al-
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lowed by Heisenberg’s uncertainty relation is (of the order of)

h 1017

~ | —

Xxp - VXxp (SI)’

if x and p are measured in SI units. In order to be able to assign a classical trajectory to the particle,
&max should be much less than 1.

Emax

i) For the dust particle we can take
x=1p=10°%m p=10"" kg x 103ms™ ! =108 kgms™!
= xp>10]s = epy > 107°.

Thus it would be reasonable to attribute a classical trajectory to the dust particle.

ii) On the other hand, for an electron in the n-th allowed circular orbit of a Bohr atom we have

rp=L=n e ~ = .
P max rp \/E

Thus it is not possible to assign a classical trajectory to an electron in Bohr’s model of the atom unless
the quantum number 7 is very large (of the order of 108 for a relative precision of only 1073).
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2 The Schrodinger wave equation

2.1 The wave function and Born’s rule

As we saw in the previous chapter, in quantum mechanics the state of a material particle at a certain time
t is represented by a (nonzero) wave function ¥ (r, t) satisfying

/d3r‘lI/(r, t)|2 < 00.

More precisely, what this statement means is that when the particle is in the state ¥ (r, t) the probability
of finding the particle at any time # in a volume element d3r centered at a point r is given by

‘lP(r, t)!2 &Sy

dP(r,1) = ————>
x-) [, d3r

2.1

If we define the (L?) norm of ¥ (-, 1) as!

@) = (/ d3r|lp(r,z)\2)1/2 > 0,

the function

~ Y(r,t
lI/(r’ t) — L
[¥]@
has unit norm, i.e.,
/d3r\'q7(r,z)|2 =1, 2.2)
and by Eq. (2.1) the probability d P (r, ¢) is simply
dP(r,1) = [¥(r,1)|"dr. (2.3)

From now on, unless otherwise stated we shall always assume that the wave function obeys the normal-
ization (2.2). With this proviso, we can state what is usually called Born’s rule’:

Born’s rule. The state of a material particle is represented by a (normalized) wave function ¥ (r, t)
satisfying

/d3r‘ll/(r, t)|2 =1,

in the sense that the probability of finding the particle at a time ¢ in a volume element d3r centered at
a point r is given by
dP(r,1) = |¥(r,0)|> dr.

I'The notation ¥ (-, t) stands for ¥ (r, t) considered as a function of r with ¢ fixed.
2 After Max Born (1882-1970), German physicist and Nobel prize winner in 1954.
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THE SCHRODINGER WAVE EQUATION

Remarks.

e We thus see that in quantum mechanics knowing the state of a particle at a certain time does not
determine (as in classical mechanics) the particle’s position, but only the probability of finding the
particle anywhere in space.

e The function |¥(r, 1) }2 is the probability density of finding the particle at some time # in a volume
element d3r centered at r. The wave function ¥ (r, t) is thus the probability amplitude (per unit vol-
ume) of finding the particle inside this volume element. In particular, since }W!z d3r is dimensionless,

the wave function ¥ has dimensions of L™3/2 (or, more generally, L~%/2 in d-dimensional space for
d =1,2).

e We shall show in the sequel that the wave function ¥ (r, t) is defined up to a global constant phase ',
with @ € R independent of r and ¢. In other words, ¥(r, t) and e'* W (r,t) define the same quantum
state. In particular, the respective probability densities |lI/(r, t) ‘2 and ‘ei“lll(r, t) }2 obviously coincide.

e It should, however, be stressed that the quantum state is determined by the wave function ¥ (r, t), not
just by the probability density }lI/(r, t) ‘2. This is essential, since interference effects are of paramount
importance in quantum mechanics. In other words, although ¥ (r,¢) and @(r, 1) = e®®DY(r 1)
(with a(r, t) a non-constant real valued function) give rise to the same probability density ‘ w(r,t) !2 =
‘@(r, t) 2, these wave functions represent different physical states. For example, we shall see below
that the probability density of finding the particle with a certain linear momentum p is not the same
for the state ¥ than for the state ¥'.

e Suppose that at a certain time ¢ we measure the position of a particle, and find it to be at a point rg
(more precisely, inside a small volume element centered at ro). Where was the particle just before we
measured its position? The classical, or realist, answer to this question is that the particle was at ry.
If this answer were correct, quantum mechanics would provide an essentially incomplete description
of nature, since even knowing the state of the particle it is impossible to predict were it is at any
time . The proponents of the realist answer, among others Einstein and de Broglie, counter that
the incompleteness of quantum mechanics stems from the fact that there are certain hidden variables
governing the particle’s motion whose values are unknown. This explanation, however, has been
conclusively disproved by experiment’. Another problem with the realist point of view is that if the
particle is at a certain point at every instant ¢ (even if quantum mechanics is not able to predict where)
then it is following some continuous trajectory, a notion contradicted for example by the double slit
experiment. The “orthodox” answer to the question of where was the particle immediately before
we measured its position, defended by most (though not all!) modern day physicists, is that this
question actually does not make sense. Indeed, we can only find where a particle is at a certain instant
by measuring its position, so all we can experimentally know is where is the particle going to be
immediately after we measure its position, not before. In a way, it is as if the particle is nowhere in
particular before we measure its position, and it only manifests itself at some point in space when we
force it to do so by measuring its position. This is the so called Copenhagen school point of view,
named after Niels Bohr, one of the first physicists to advance it.

e Suppose, again, that we measure the position of a particle at a certain time ?¢, finding it inside a small
volume element centered at ro. What is the result of a position measurement performed immediately

3Indeed, in 1964 the British physicist John Bell (1928-1990) proved a now famous inequality relating the probabilities of
three events that must be satisfied in all (local) hidden variable theories. Several experiments carried out, among others, by the
2022 Nobel Prize winners Alain Aspect, John F. Clauser and Anton Zeilinger have conclusively shown that this inequality is
violated in exactly the way predicted by quantum mechanics. This invalidates all (Iocal) hidden variable theories, and providing
a strong experimental confirmation of quantum mechanics. See [GS18, Section 12.2] for an elementary discussion of Bell’s
theorem.
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2.2 Schrodinger’s wave equation

afterwards? It is intuitively clear (and can be experimentally verified) that we should find the parti-
cle at the same point if the interval between both measurements is sufficiently small, since otherwise
the position of a particle would become meaningless. In other words, even if the probability density
‘llf(r, to) ‘2 at the time of the first position measurement is spread out over the whole space, its proba-

bility density ‘llf(r, t) |2 atatime t = o+ At with Az > 0 small enough must be sharply peaked at ry.
In other words, our measurement of the particle’s position forces its state to change discontinuously,
becoming located (for a sufficiently small time) inside a small volume element centered at the point rg
obtained as a result of the first position measurement. This is an instance of the general phenomenon
called collapse of the wave function, which as we shall see is characteristic of measurements of
observables in quantum mechanics. |

2.2 Schrodinger’s wave equation

Our next objective is to derive a differential equation satisfied by the wave function ¥ (r, t) of a particle,
that will allows us to determine ¥ imposing appropriate initial and boundary conditions. We shall start
by the simplest case of a particle of mass m moving freely (i.e., not acted upon by any forces) in space,
whose linear momentum p and energy E are classically related by the familiar equation®

p2

E(p) = o (2.4)

As we saw in Section (1.5), the particle’s wave function in this case is the plane wave with wave vector
k and frequency w(Kk) satisfying the Einstein—de Broglie relations

(2.5)

(cf. Eq. (1.55)). In other words,

W(r.1) = At Pr—E®1) (2.6)

where A is a constant that we can take as real and positive without loss of generality (why?). If the wave
function is of the latter form we have

iho,¥ = EW,  —ihVV¥ = pW, Q2.7)

where

0
V = (Ox;, 0xp5 0x3) » Ox; = 8_x,~’ = at

In the latter equation

3
VP=V.V=>) 9

i=1

4In what follows we shall assume that the speeds of all particles involved are small compared to the speed of light, so
that by “classical mechanics” we shall usually mean non-relativistic classical mechanics. The corresponding quantum theory
that we shall develop in these notes is accordingly called “non-relativistic quantum mechanics”. As in non-relativistic classical
mechanics, in non-relativistic quantum mechanics particles cannot be created or destroyed. By contrast, relativity theory allows
for particle creation or annihilation, provided that the total energy of the system is conserved. The relativistic version of
quantum mechanics, which is able to accommodate particle creation and annihilation, is called “quantum field theory”. It is
essentially a field theory (like, e.g., electromagnetism) in which the value of a field at a point in spacetime is an operator instead
of a complex number.
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is the Laplacian operator in Cartesian coordinates. Moreover, from the non-relativistic energy-momentum
relation (2.4) and the previous equation it follows that

p? 1
ho W = —W = — (—ihV)? ¥,
2m 2m
ie.,
h2
ihd, W = — V2, (2.8)
2m

Since the latter equation does not contain explicitly the momentum p, it is satisfied by all wave func-
tions (2.6) regardless of the particle’s momentum. Equation (2.8) is Schrédinger’s® wave equation for
a free particle of mass m.

It might be objected that the plane waves (2.6) are not acceptable as wave functions, since they are
obviously not normalizable; indeed, for these functions

/d3r\q/(r,z)|2 = |A|2/d3r = o0.

This is a valid objection, since the momentum of a particle cannot be experimentally determined with
infinite accuracy. More realistically, if the linear momentum of a free particle is only known to be pg
with a certain accuracy !Ap{ the particle’s wave function will be a wave packet of the form

W(r,1) = f a3 p A(p) et (PrE®)). (2.9)

where A(p) is an (in general complex valued) function concentrated on a solid sphere of radius |Ap|
centered at pg in momentum space. According to the theory of the Fourier transform, the squared norm
of the latter wave function is equal to

[ |P0) = @xh)? / & A,

and is thus finite (and independent of ¢) for such a function A(p). Moreover, since the Schrodinger
equation (2.8) is linear, and the wave packet (2.9) is a linear combination® of the solutions (2.6), it
follows that (2.9) is also a solution. More explicitly, from Eq. (2.8) immediately obtain

h? h2 ;
(st + 52 = (04 529°) [ @p ek
2m 2m

3 h s i( T—E( )t)
=/d p A(p) (ih8t+—V )eh PR =0,
2m
Remark. If instead of the classical energy-momentum relation we had used the relativistic one
E? = ¢2p? + m2c4,

instead of Schrodinger’s equation (2.8) we would have obtained the Klein—-Gordon equation’

FPw — 2V +

This relativistically covariant equation was considered by Schrodinger as early as 1925, but it was soon
discarded by him because it lead to negative energy solutions, which are unacceptable in relativity theory
(and would imply the instability of all matter). It is, however, relevant in the context of quantum field
theory. |

SErwin Schrodinger (1887-1961), German physicist and Nobel Prize winner in 1933

6 Although in mathematics linear combinations involve only a finite number of terms, it is common in the physics literature
to use this terminology for infinite sums or even integrals.

7Named after the Swedish physicist Oskar Klein (1894—1977) and the German physicist Walter Gordon (1893-1939).
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2.2 Schrodinger’s wave equation

Our next aim is to write down the analogue of the free Schrodinger equation (2.8) when the particle
moves subject to a potential V(r). To this end, note that in non-relativistic mechanics the energy of a
particle is defined up to an arbitrary constant. Thus for a free particle, instead of the usual relation (2.4)

we could have taken 5

p
E(p) = m + Vo.
m

where V) is any real constant. Proceeding as before we obtain
h2 ) 2 ) .
lhat + _vz e%(p-r—E(p)l‘) — E(p) _ p_ e% (p-r—E(p)t) — Voe%(pT—E(p)Z)’
2m 2m

so that the plane waves (2.6) now satisfy the equation

h2
ihd, o = —2—V2'1/ + Vow (2.10) [schrve
m

instead of (2.8). The same is true, by linearity, of the more general wave packets (2.9). Equation (2.10)
strongly suggests that the appropriate generalization of the free particle Schrodinger equation when the
potential V(r) is not constant is

. w2,

This is the celebrated time-dependent Schrédinger equation, proposed by Erwin Schrodinger in 19268,
Equation (2.11) is the fundamental equation of non-relativistic quantum mechanics, in many ways com-
parable to Newton’s second law F = ma for classical mechanics. The previous derivation of Schrodinger’s
equation is only a heuristic argument, not a formal or rigorous proof. Equation (2.11) can in fact be con-
sidered as one of the axioms of non-relativistic quantum mechanics. Its best “proof” is ultimately the
total agreement so far of its predictions with experiment.

The Schrodinger equation (2.11) is a linear partial differential equation of evolutionary type, since
does not contain terms with time derivatives of order greater than one. What this entails is that, under
appropriate smoothness conditions for the potential V(r), there is a unique solution satisfying the initial
condition

¥(r,0) = y(r),

where v is any (sufficiently smooth, in general complex valued) function. Note, however, that if at a
certain time fo > 0 the position of the particle is measured and found to be’ rg, the particle’s state
immediately after this measurement is performed jumps discontinuously from W (r, t¢) to a wave function
sharply peaked at ro. This is the so called collapse of the wave function, which is one of the most
controversial and least understood aspects of quantum mechanics. The collapse of the wave function
is clearly a consequence of the inevitable and uncontrollable perturbation produced by measuring —
or, as is often said, observing— the particle’s position. In fact, as we shall see in more detail in the
next chapters, it takes place whenever a measurement of any dynamical variable (position, momentum,
energy, angular momentum, spin ... ) is performed on the particle. Summarizing:

The knowledge of the particle’s state at the initial time # = 0 completely determines its state at any
other time ¢ > g provided that no measurement is performed on the particle during the interval [0, ¢].

In this sense, even if the information on the particle’s state provided by the wave function is of a proba-
bilistic or statistical nature, quantum mechanics is a deterministic theory. It should be stressed, however,

8Schrodinger’s derivation of Eq. (2.11) was based on the classical Hamilton—Jacobi equation in Hamiltonian mechanics.
9When no confusion is possible, we shall simply say that “the particle’s position is found to be rg,” instead of the more
correct statement “the particle’s position is found to lie inside a volume element d3r centered at ro.”
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that in quantum mechanics there are two different types of evolutions: the deterministic and continuous
evolution governed by Schrodinger’s time-dependent equation (when no intermediate measurement is
performed on the particle), and the discontinuous collapse of the wave function immediately after a mea-
surement is performed. The latter type of evolution is of course not deterministic in nature, since as we
shall see in the sequel (and have already remarked for position measurements) it is impossible in general
to predict the outcome of a measurement even when the state of the particle is known (the theory only
provides the probability of obtaining a certain value of the dynamical variable measured).
In our heuristic derivation of the Schrédinger equation, we noted that

—ihV =p

when both sides act on a momentum wave function (2.6). For this reason, we shall define the linear
momentum operator P as

P = —ihV, 2.12)

with components
Py = —ihoy,, k=1,2,3.

We thus have . '
Pe— i ®T-E®N _ p e w@r—E@1)

for any constant vector p € R3. Another justification for the previous definition of the linear momentum
operator in quantum mechanics is that P is the generator of translations. (Recall that in classical mechan-
ics the linear momentum of a particle is the quantity that is conserved when the particle’s Lagrangian is
invariant under translations.) Indeed, if a € R? is a constant vector and ¥ (-, ¢) is an analytic function,
by Taylor’s theorem in multivariable calculus we have

o0

e%a'l’lp(r,z) = Z %(ia . P)nllf(r, t) = Z %(a-V)"lP(r,Z) =U(r+a,t).

'\ !
n=0 n=0

We shall also define the position operator R as the multiplication operator by the vector r. In other
words, if ¥ (r, ¢) is any wave function the (vector valued) function R is defined by

RY(r,t) :=r¥(r,1).

The components of the vector-valued operator R, denoted by Xy, are accordingly defined by
XpW(r,t) = xpW(r,t).

In general, if f(r) is any smooth function of the vector variable r, we defined the corresponding multi-
plication operator f(R) by

JR)W(r.1) ;= f()¥(r, 7).

With these definitions, the time-dependent Schrodinger equation (2.11) can be written as

iho, ¥ = HY,

where the quantum Hamiltonian H is the linear operator

2

P
H=—+V(R).
2m
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2.2 Schrodinger’s wave equation

In other words, the quantum Hamiltonian is formally obtained from the classical Hamiltonian of a particle
of mass m (in Cartesian coordinates)
2
Ha= 2~ + V()
2m

by the replacement

p —> P=—-inV, r— R.

The passage from the classical to the quantum Hamiltonian through the previous replacement is called
canonical quantization. In other words, in canonical quantization we replace the classical dynamical
variables r and p by their corresponding linear operators R and P (see p. 40 for further details).

The linear space L?(R3) to which the wave functions of a quantum particle belong is endowed with a
natural scalar product, defined by!'®

(w¢y=/ﬁ%WWmﬂn Vy.¢ € L2RY).

where the integral is extended as usual to the whole space R3. This product has the usual properties of a
complex scalar product, namely

i) [¥|*:= @ v) =0 and |y| = 0if and only if'! y = 0.
i) (9.9) = (V.9)".
iil) (Y, A1¢1 + A2¢2) = A1(Y, ¢1) + A2(Y, ¢2), forall A1 2 € C.
Note that properties ii) and iii) imply that

A 1Y + A2z, @) = AT (V1. 9) + A5 (V2. b).

The space L?(R?), with the norm ||-|| defined by i), is complete, by which it is meant that every Cauchy
sequence'? of functions ¥, € L?(R3) is convergent. Moreover, it can be shown that LZ(R3) is sepa-
rable, i.e., it contains a countable dense'? subset (actually, there is an infinite number of such subsets).
Thus LZ(R3) is an infinite dimensional Hilbert space.

As in the finite-dimensional case, given a linear operator A : L2(R3) — C, we define its adjoint AT
as the linear operator satisfying'#

(W, Ap) = (ATy,¢), Vo, ¥ € LAR?).

10Using Hélder’s inequality, it can be shown that when ¥, ¢ € L2(R3) the integral of ¥ *¢ is absolutely convergent.

n fact, the elements of L2(R3) are equivalence classes of complex valued functions, with two functions considered to be
equivalent if they differ on a set of measure zero. In particular, 1 = 0 actually means that ¥ vanishes except at most on a set
of measure zero. This statement is often abbreviated by saying that ¥ vanishes almost everywhere, or a. e. for short.

12A sequence of functions {v, Joe, C L2(R3) is a Cauchy sequence if for every ¢ > 0 there exists a natural number
N e N such that ||1//n — VUm || < eforall n,m = N. The sequence is convergent if there is an element ¥ € L2(R?) such that
H v —Yn H tends to zero as n tends to infinity.

I3A set S in a topological space X is dense in X if the closure of S (i.e., the union of S and the set of its accumulation
points of ) is the whole space X . Intuitively, S is dense in X if there is a point of .S arbitrarily close to every point of X. For
instance, the set Q of rational numbers is dense in the set R of real numbers with its standard topology.

4More precisely, if the domain of A is only a dense proper subset @ (A) of L%(R3) we say that ¥ is in the domain of Af
if there exists an element ¥; € L2(R3) such that

(V. A9) = (Y1.9). V¢ € D(A).

When this is the case, we define ATW 1= 1. Itis immediate to show that the operator thus defined is linear.
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A linear operator A4 : L?>(R3) — C is self-adjoint if AT = A, or equivalently if the following equality

holds!?:
(Y, Ap) = (AY, ¢), Vo, € LA(R?). (2.13)

As in the finite-dimensional case, a complex number A is an eigenvalue of a linear operator A : L?(R3) —
C if there exists a nonzero element ¥ € L?(R3) such that

Ay = 2.

We then say that v is an eigenvector —or, more commonly in this context, eigenfunction— of A with
eigenvalue A. An important property of self-adjoint operators is that their eigenvalues must be real
numbers. Indeed, if A € C is an eigenvalue of 4 : L?(R3) — C and ¥ € L?(R?) is an eigenfunction
of A with eigenvalue A we have

(. AY) =AW ¥) = Ay |* = Ay.y) = Ay p) = A" @wy) = 2%y | = A=2%

since H ¥ H # 0 by definition of eigenfunction. This property is essential in quantum mechanics since,
as we shall see in the next chapters, the eigenvalues of an operator representing a classical dynamical
variable are the possible values that can be obtained when we measure that variable, and thus must be
real numbers. For instance, it is straightforward to check that the position and momentum operators are
self-adjoint. Indeed, for the position operator it suffices to note that

0 Xe9) = [ Ervt@xeg® = [ Er(np®) 90 = ).

Likewise, for the momentum operator we have

(. Pip) = [ Ery it 6w =it [ (0 @)om = [ (- mtvm) o0
= (Pv. ).

where in the second equality we have integrated by parts taking into account that ¢ and i vanish at

infinity (as they are both in LZ(IR3))'®. As a matter of fact, the previous calculation only shows that

the position and momentum operators are symmetric, not self-adjoint. It can be shown, however, that

they are self-adjoint in their natural domains. In what follows we shall avoid these technical issues, for

whose resolution a knowledge of functional analysis is indispensable, and use the terms ‘“self-adjoint”
@ and “symmetric” (or “Hermitian”) almost interchangeably.

The process of canonical quantization can in principle be performed with any dynamical variable
f(xr,p), with the following important proviso. While the classical coordinates x; and momenta p; are
commutative variables, i.e., x; pj = p;x; forall i, j, the same is not true for the corresponding quantum
operators X; and P; unless i # j. More precisely, we clearly have

X X;j =XjXi. P;P; = P;j P;
for all i, j, the latter equality expressing the commutativity of the partial derivatives:

d a d
T v = ox:

ilﬂ(l‘)
0x; 8x,- 0x;

J

15 A5 a matter of fact, the previous definition assumes that the domain of the operator A is the whole Hilbert space L2(R3),
which in practice (for instance, for the position and linear momentum operators) is often not the case. If A is only defined on a
dense subset D (A4) ¢ L2(R3) and (2.13) holds for all ¢, ¥ € D (A), the operator A is said to be symmetric (or Hermitian). A
symmetric operator A is self-adjoint if

(V. A¢) = (V1.9)
forall ¢ € D(A)ifand onlyif ¥ € D(A) and yy; = Ay. A is symmetric but not self-adjoint if and only if the adjoint operator
A is a proper extension of A, i.e, it is defined on a domain D (AT) 2 D (A4) and AT = 4 on D (4). Whether a symmetric
operator is actually self-adjoint depends crucially on its domain, i.e., on the precise boundary conditions used to define it.

16 A5 a matter of fact, there are (pathological) examples of square integrable functions not vanishing at infinity. It can be
shown, however, that none of these functions can belong to the domain of the momentum operator.
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2.2 Schrodinger’s wave equation

for all functions v of class C2. On the other hand,
., 0 ., 0 ., 0 .
Xi P (e) = b 50, Py X () = it (i (0) = it (1) = A8 ()
Xj axj' 3)6]'
and therefore
[Xi. Pj]ly(r) := (X; Pj — Pj X;) ¥ (r) = ih8;j ¥ (r).

Since the latter equality holds for any (sufficiently smooth) wave function, we have proved the operator
identity

[Xi, Pj] = ihd;;. (2.14)

The latter identities are called the canonical commutation relations, and play a similar role in quantum
mechanics as the fundamental Poisson bracket identities

{xi,pj} = by
in classical mechanics. We thus see that the canonical quantization prescription
fr.p) = f(RP)

is ambiguous in most cases. For example, classically

Xi Pk = XkPkXk = PkXj = %(X;%pk + prxp),
while the corresponding quantum mechanical operators are not all equal:
Xi Pe X = Xg[Pr, Xi) + X7P Pr = X2 Py —ih Xy, PeX? = Xg Py Xi + [Pr, Xp)Xx = X7 Pg — 2ih Xy,
%(X,ka + P X}) = X7 Pk —ih Xy = Xi Pr Xy

Since the linear operator associated to a classical dynamical variable must be self-adjoint, the operators
XZ Py and Pi X7 are clearly unsuitable, as

(x2P)" = P X2 = X2Px—2ihX) # X2Pk,  (PeX2)' = X2P, = Pk X2 +2ihX) # PeX2.

On the other hand, Xj Py Xy is obviously self-adjoint, and hence is the only quantum operator that
can represent the classical dynamical variable x]% Pr- Thus in this case the self-adjointness requirement
removes the ambiguity in canonical quantization. Unfortunately, this is not true in general. For instance,
both self-adjoint operators

1
Xy P2 Xy, E(X,kaz + PZX7)
reduce to the classical canonical variable x,% p]% under (X%, Pr) — (xx, pr), but they are different:
1 1 .
5(X,fP,f + P2X?) = Xk P2 X + 3 (X[ Xk. PE] + [PZ. Xk | Xk) = Xi PZ Xy + ih(Xg P — P Xg)
= X P2 Xy — 1*.

This shows that the self-adjointness requirement is in general not enough to remove the ambiguity in
canonical quantization. In practice, however, one seldom needs to quantize monomials of order greater
than 2 containing both coordinates x; and momenta p;. Of these monomials, the only one for which
canonical quantization is ambiguous is xj py, but in this case the prescription

1
Xk Dk —> E(kak + P Xy)
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is the only possible canonical quantization yielding a self-adjoint operator. Thus any observable of the

form
3

a(r) +b(p) + Y cijxipj.
ij=1

with ¢;; = ¢j; € R constant, can be canonically quantized in a unique way as

3
1
a(R) +b(P) + .Zl cij (Xi P + Pj X;).
L,]=

For instance, for the components of the angular momentum I = x; pj — x; pi, with (i, j, k) a cyclic
permutation of (1, 2, 3), the canonical quantization procedure yields the operator

1 1
L= 5 (XiPj + PjXi = X; Pi = PiXj) = Xi Pj = Xj Pi + 5 ([Pj. Xi] = [Pi, X;]) = Xi P; — X; Pi,

where in the last equality we have used the canonical commutation relations (2.14).

Example 2.1. Schrodinger equation for a system of particles.
The classical Hamiltonian (in Cartesian coordinates) of a system of N particles subject to a potential
V(ry,...,ry) is given by

p.
H(;]:Z - —|—V(I'1,...,I'N),

where m;, r; and p; are respectively the mass, position vector and linear momentum of the i -th particle.
To canonically quantize this system, we replace the classical (vector) dynamical variables ry, pi by
the linear operators Ry, Py, where Ry is the multiplication operator by rg,

Py = —ihVy,,

and V, is the gradient with respect to the coordinates ry = (xgj, Xx2, Xk3) of the k-th particle. These
operators act on wave functions ¥ (rq, ..., ry) € L2(R3V) satisfying the normalization condition

/d3r1---d3rNW(r1,...,rN)|2 =1.

The system’s quantum Hamiltonian is then

N P-2
H:Z L + V(Ry,....Ry);
i=1

2m;
note that in this case canonical quantization is not ambiguous, since clearly
[Xik, Xji] = [Pir, Pj1] = 0, Wil o
Accordingly, the time-dependent Schrédinger equation for this system reads
ihd; ¥ (ry,...,ry,t) = HY(ry,...,ry,t),
or in expanded form

N 2>

h
iho; ¥ = —
110y IZZI p—

VEW + V(ry,....rn)W.
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2.3 The continuity equation

Example 2.2. Non-covariance of canonical quantization.

Canonical quantization is not covariant, by which we mean that it must be performed in Cartesian
coordinates. In other words, suppose that q = (q1,¢2,¢g3) is any set of generalized coordinates,
and let p = (p1, p2, p3) denote the corresponding canonical momenta (in general different from the
components of the particle’s linear momentum). If the classical Hamiltonian is a certain function
H(q, p) of the non-Cartesian canonical variables (q, p), Schrodinger’s equation is not

ih0:¥(q.t) = Ha(q, —1AVq)¥(q,1).

The correct procedure for obtaining Schrodinger’s equation in the new coordinate system q is, of
course, to perform the change of variables q = q(r) in Schrodinger’s equation in Cartesian coordi-
nates (2.11).

To illustrate this important point, let us write down Schrodinger’s time-dependent equation for a
particle of mass m in cylindrical coordinates q = (p, ¢, Z), where

X1 = pcosg, Xp = psing, X3 = Z.

As is well known, the Laplacian V? is expressed in cylindrical coordinates as follows:
V2=8§+lap+iza§,+8§.
P p
Substituting into Eq. (2.11) we immediately obtain the equation

iho,w = — I
e 02 T odp | R ag | a2

h2 (02w 10w 1 3*w Qv
2m

) + V(p, ¢, 2)¥,

with ¥ regarded as a function of (p, ¢, z, ). On the other hand, the classical Hamiltonian of a particle
of mass m in cylindrical coordinates can be taken as

1 P2
Ha(p. 9.2, Pp. Ppr P2) = 5 — (pi + p—ﬁ + pﬁ) + V(p,9.2).

The naive canonical quantization using the replacements
DPp — —ihd,, Py — —ihdy, pz — —ihd,

in He(p, .2, pp, P, pz) would have led to the wrong equation

hr (%W 1P e
oW =— |5+ 55— +— Vip, ¢, 2)¥,
o 2m(8p2+p28g02+8z2)+ .9.2)
in which the term proportional to %%—f is missing.

2.3 The continuity equation

The wave function ¥ (r, t) of a particle must satisfy the normalization condition (2.2) at all times ¢, since
the probability of finding the particle anywhere in space must obviously be 1. At the same time, ¥
must satisfy Schrodinger’s equation (2.11), which determines ¥ (r, ¢) from the initial data ¥ (r, 0) if no
measurement is performed on the particle in the time interval [0,7]. Indeed, the Schrodinger equation
can be written in operator form as

iho, ¥ = HY, (2.15)
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where the Hamiltonian H : L?(R3) — L?(R?) is a linear operator independent of the time ¢ (since we
are assuming that the potential V' is time independent). Formally, the solution of the latter equation is

W(r, 1) =e "HW(r,0), (2.16)
where the exponential of an operator is defined as in the finite-dimensional case (i.e., when H is a

matrix):
it 1 irtH\"
e i H = ZE(_T[ ) . 2.17)

n=0
The operator H is self-adjoint, since it can be expressed in terms of the self-adjoint operators R and P as
1)2
H=—+V(R),
2m
and
2
@) =(p") =P v®=VRH =V®)

where in the penultimate equality we have taken into account that the potential V' is real valued. By a
standard result in functional analysis, it follows that the RHS of Eq. (2.17) converges to a unitary operator
U@) = e~ Note that the unitarity of U(¢) can be formally proved as follows:
U(Z)T — e(_%H)T — e%HT = C%H = U(t)_l
Calling ¥ (r) = ¥(r, 0) we then have
2
[¥]” = @ww) = WOy U0 = . UTOUOY) = (.9) = 1.

This establishes the following fundamental result:

If initially the wave function is normalized, and we let it evolve in time according to the time-dependent
Schrodinger equation (2.15), the wave function will remain normalized at all times.

In other words, probability is globally conserved.

Exercise 2.1. Show that probability is conserved by differentiating the squared norm of the wave func-
tion ¥ and applying the Schrédinger equation.

Solution. We have

ihd, Hw”z = ihd, (¥, ¥) =ik [(0,; ¥, ¥) + (¥, 0, ¥)] = (—ihd, ¥, ¥) + (¥,ih0,¥)
= (—HY,¥) + (¥, HY) = 0,

where in the third equality we have used Schrodinger’s equation and in the last one the self-adjointness
of H.

In fact, it can be shown that probability is also locally conserved, i.e., that it cannot disappear from
some region in space and appear in a different region, even if this would not violate global probability
conservation. Indeed, we have

ihatwf\z = ihd,(Y*W¥) = (—ihd,¥)* ¥ + ¥*ihd,¥ = U*(HY) — (HY)*W
2 2
= 5= [(VZU*)w —u*V2y] = f—mv (v —wrvy],
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2.4 Position and momentum eigenfunctions

where in the fourth equality we have used Schrodinger’s equation taking into account that the potential
V(r) is real valued. Defining the probability density p(r, ¢) and the probability current (density) j(r, )
by

p(r,1) = [w(,0))?, )= % [(Vo*)w —w*vy], 2.18)

we have thus established the continuity equation

d:p(r, 1) + V- j(r,z) = 0. (2.19)

Integrating the continuity equation over a fixed (time independent) volume 2 and applying the diver-
gence theorem we immediately obtain the identity

a,/ o(r,t)d3r = —/ j(r,t)-ndS,
2 082

where 942 is the boundary of £2, n denotes the outer normal to 92 and dS its surface element. In other
words, the increase in the probability contained in the volume $2 must equal the probability flowing into
2 through its boundary'”. Of course, if in the previous equation we take as £2 a sphere of radius a then
in the limit @ — oo the RHS vanishes (since the wave function, being square integrable, must vanish
together with its first partial derivatives at spatial infinity'®), and we recover the law of global probability
conservation derived above.

Remark.
e The probability current for a plane wave
W(r 1) = Aer ®TED

. . . 2. .
of momentum p and intensity proportional to }A‘ is given by

in 21p 2p
jir,t) = — | =2|4|"— | = |4|"—.
.0 = 3 (<24 ) = |2
The vector j is therefore proportional to the product of the intensity of the wave and the particle’s
velocity p/m. Thus j - n is proportional to the particle flux (i.e., number of particles per unit time
and area) crossing an infinitesimal surface centered at r perpendicular to the unit vector n (and in the
direction of the latter vector) at a time ¢.

2.4 Position and momentum eigenfunctions

In a finite-dimensional Hilbert space (i.e., C" with its standard complex scalar product) all self-adjoint
operators are diagonalizable, and in fact possess an orthonormal basis of eigenvectors. In infinite-
dimensional Hilbert spaces the situation is far more complex. In particular, a self-adjoint operator may
not have any eigenvalues.

An important example of the latter fact is provided by the position and momentum operators in the
Hilbert space L2(R?). Indeed, if (for example) ¥ (r) is an eigenfunction of the momentum operator P
with eigenvalue'® p = (p1, p2. p3) € R3 it must satisfy the differential equation

—iAVY = py.

17Note that a negative value of the surface integral in Eq. (2.19) means that probability is entering the volume £2 through its
boundary 052, since by definition the normal vector n points outside 2.

18 A5 pointed out above, there are square integrable functions that do not vanish at infinity. However, it is always assumed
that physical wave functions, together with their first partial derivatives, vanish sufficiently fast at spatial infinity.

19Recall that the eigenvalues of a self-adjoint operator must be real.
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This vector equation is equivalent to the three scalar equations

9
—iha—w — v, k=123,
Xk

whose general solution is

¥ (r) = AehPT, (2.20)
with A = 1(0) an arbitrary complex constant. Since
2 2
[y®|" = [4]

is constant, the probability of finding the particle anywhere in space is uniform. (This is in agreement
with Heisenberg’s uncertainty principle, since when the particle’s momentum is perfectly known the
uncertainty in its position must be infinite so as not to violate the inequality (1.61).) However, the plane
wave (2.20) is not a true eigenfunction of P, since it is not normalizable (i.e., is not in L?(R3)):

/d3rW(r)}2 = /d3r\A|2 = 0.

Thus strictly speaking the momentum operator has no eigenvalues. On the other hand, a plane wave of
the form Ae#POT can be considered as a limiting case of a wave packet

Y(r) = / &3 pA(p) erPT

with |A| narrowly concentrated near a certain momentum po, which as we have remarked above is a
physical state as long as

[d3p\A(p)\ < co.
Such a wave packet is clearly an approximate eigenfunction of the linear momentum operator P, since
Py (r) = —ihV / d* pA(p) T = —i / d*pA(p) VerPT = / d® pA(p) perP*

~ Ppo / & pA(p) e#P* = poy ()

if }A(p)‘ is narrowly concentrated around pg. From the mathematical point of view plane waves are
extremely useful, as we shall see below, and as a matter of fact we shall use them extensively in what
follows.

Definition 2.3. When a nonzero function ¥ that is not normalizable is a solution of the equation

AY = ay,

where A is a linear operator A and a a complex number, we shall say that ¢ is a formal eigenfunction
of A with eigenvalue a. For instance, from the above discussion it follows that the plane wave (2.20)
is a formal eigenfunction of the linear momentum operator P with eigenvalue p.

The situation is similar for position eigenfunctions. Indeed, if ¥ is an eigenfunction of the position
operator R with eigenvalue ro = (x¢1, X02, X03) € R3 then

ry(r) = roy (r).

This equation implies that ¥ (r) = 0 for all r # rg, and hence

/d3r|1/f(r)|2 =0
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2.4 Position and momentum eigenfunctions

however we define v (rp), which is incompatible with the normalization condition (2.2). Thus the posi-
tion operator R does not possess any eigenfunctions.

Note, however, that any square integrable function ¥ concentrated on a small region around the point
ro is an approximate eigenfunction of the position operator r with approximate eigenvalue rg. For
example, we can take

0, r —ro| > ¢

Ve(r) = ( 3 )1/2’ r—ro| <e.

47e3

which fails to satisfy the eigenvalue equation only inside the infinitesimal (as ¢ — 0) region |r —rg| < ¢

and is normalized: 3
/d3r|1//g(r)‘2 :/ d3r ;=1
[r—rg|<e dme

A similar example is provided by the family of smooth functions

(r—rg)2
Ye(r) = (ne?) e 22

which is non-negligible only for |r — rg| < ¢ and also satisfies the normalization condition:

_ r—r)?

2
/d3r|1/fg(r)‘2 = (nsz)_3/2/d3re 2 = (nez)_3/2/d3r e 2 = (]T82)_3/283TE3/2 =1.

Note that in both cases V¢ (rp) is of the order of £73/2 and thus tends to infinity as ¢ — 0. This is
reasonable, since as ¢ — 0 the wave function 1/ is concentrated inside a sphere centered at ro with a
radius of the order of &, whose volume is proportional to &3, |y ‘2 must be of the order of £3 so that
the normalization condition (2.2) is fulfilled. Although the family of wave functions {{.(r) : € > 0} are
approximate eigenfunctions of the position operator R with increasing accuracy as ¢ — 0+, their limit

0, r#ry
o0, r=1TIp

sl—i>r(§l+ lﬁ(l’) -

vanishes for all r # ro but blows up at r = rg, and its squared norm vanishes. On the other hand, if
¢ (r) is a smooth function vanishing (together with its partial derivatives of all orders) sufficiently fast at
infinity —usually called a test function— and ¢ > 0 is small enough then

[ Erowluel = pawo) [ @rlpw ] = piwo)
or more rigorously
Jim [ o]y = g(ro). 21

We can thus write

sl—i>r(l)1+ / d3r¢(r)}w3(r)‘2 = 81‘0(‘1))’

where 8y, is a linear functional acting on the linear space of test functions as follows:
8r0 (#) = ¢(ro).

. . 2 . o

In mathematical terms, we say that as ¢ — 0+ the function Wg (r)‘ converges in the sense of distribu-
tions to Dirac’s delta function §;,. In practical terms, one uses the notation 6(r —rp) instead of ,, and
proceeds formally as if

ey () = f dr(D)S(r - ro)
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for some ordinary function dy,. In other words, the identity

/ a3 $(0)8(x — o) = $(ro) (2.22)

for any test function ¢ (r) is regarded as the defining property of the symbol §(r — rg). In the same vein,
any identity of the form A(r) = B(r) involving Dirac’s delta function is taken to mean

/d3r A)p(r) = /d3r B(r)¢(r)

for all test functions ¢. For example,

f()8(r—ro) = f(ro)d(r—ro) (2.23)

for any function f', since by the defining property of §(r — r¢) we have

[ € rwpmae—ro) = faopa0) = [ Er fr0p@se -0
for all test functions ¢. In particular,
ré(r —rp) = rod(r —ro),

so that formally §(r — rg) is an eigenfunction of the position operator R with eigenvalue ry.

Exercise 2.2. Show that §(ar) = |a|~38(r), where a # 0 is a real number.

Solution. For any test function ¢ (r) we have

/ &r ps(ar) = lal> [ r p(e/a)s) = 2 = [ Sr @)

jal? jal?”

which by definition is equivalently to the identity we had to proof. Note that the same argument shows
that in one dimension we have §(ax) = |a|~'§(x).

2.5 Expectation values. Ehrenfest’s theorem

From the probabilistic interpretation of the wave function it follows that if at a certain time ¢ a particle
is in the state described by the wave function ¥ (r, t) and we measure its position, the average value we
shall obtain for any (real) dynamical variable f(r) depending only on the particle’s position is given by
the formula

avy (f(r)) = / &Er fO) .0’ = @ fOW) = (& fR)Y). (2.24)
Note that by “average value of f(r) in the state ¥” we mean the average
1 N
~ 2 /@,
i=1
where ry, ..., ry are the values of the position obtained after performing a large number N of position

measurements on an ensemble of particles of the same type all of which are in the same state ¥. Al-

ternatively, r; can represent the value obtained measuring the position of the particle for the i-th time if
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2.5 Expectation values. Ehrenfest’s theorem

prior to each measurement we prepare the particle in the state ¥. In general, given an operator A acting
on the Hilbert space of states of a particle we define its expectation value in the state ¥ by the formula

(4)g == (W, AV).

Note that the expectation value of a self-adjoint operator is automatically real, since
(W, AV)* = (AW, W) = (W, AY).
By Eq. (2.24), the average of f(r) is the expectation value of the multiplication operator f(R):
avg (f(r) = (f(R))y:

in particular, the average value of the particle’s position when the particle is in a state ¥ is (R)W

Let us next determine how the expectation value of an operator A not depending explicitly on time (for
example, one of the components of the particle’s position or momentum, or a function thereof) varies
with time. To this end, note that

1hd,(A)y, = ihd, (¥, AW) = (—ihd; ¥, AV) + (P.ihd,(A¥)) = (— HY, AWP) + (¥, A(ihd,¥))
= (W, —H(AY) + AHY) = (¥, [A, H]Y),

where we have applied the time-dependent Schrodinger equation in the third and fourth equalities and
the self-adjoint character of H in the fourth one. We thus have proved the relation

ihd:(A), = (W.[A, HI¥) = ([A, H]),. (2.25)

This formula should be compared with its classical analogue

a ={a, Hy}
for a dynamical variable a(q, p), where {-, -} is the classical Poisson bracket defined by

da 0b

Y (da ob
{a(@.p).b@p} =) (—a— - ——) .

= \9qi dpi  9pi g
In particular, applying Eq. (2.25) to a component of the position operator we have
1hd,(Xi)y = (V. [Xi. HIW).

The commutator is easily computed?’:

h? 2 h? 0w
[(Xg, HIW = | X, ———V? |¥ = — (V2()¥) — xx VW) = — [, V2 + 2— — x, V2
2m 2m 2m 0Xy
o
Com Oxg

20 Alternatively, taking into account that [Xx, V(R)] = 0 we have
2m[Xg, H] = [Xg. P?] = [Xg., P2l = P[Xg. Pl + [Xg. Px] Py = 2ih Py,
where we have used the canonical commutation relations and the operator identity

[4, BC] = B[A.C] + [A. BIC.
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Substituting in the previous formula for i%0 t(X k)'lf we obtain the identity

ih oW 1 1
or in vector form
1

Since, as mentioned above, the average value of the position vector when the particle is in the state ¥
coincides with the expectation value (R) comparing this formula with the classical identity
p

P=—
m

W’

we are led to the conclusion that the RHS of Eq. (2.26) should coincide with the average value of the
particle’s momentum in the state V'

avy(p) = (P)q/'
The above analysis strongly suggests the following general property:

The average value of any dynamical variable a(r, p) when a particle is in a quantum state ¥ is equal
to the expectation value

(AR.P)), = (. AR, P)¥) (2.27)

of the self-adjoint operator A(R, P) representing a(r, p), obtained by canonical quantization (with a
suitable ordering of the operators involved, as explained in Section 2.2).

The previous property establishes a correspondence between classical dynamical variables and self-
adjoint operators A. For this reason, in quantum mechanics self-adjoint operators are usually called
observables. Note that the self-adjointness of the operator A representing an observable is essential to
guarantee that the expectation value of A4 in any state, which is the average value of the corresponding dy-
namical variable, is real. In these notes we shall usually assume that we are dealing with scalar particles,
which have no internal degrees of freedom (like, for instance, spin). When this is the case the relevant
observables are obtained by canonical quantization (with a suitable ordering of the operators involved)
from classical dynamical variables (i.e., ordinary functions) a(r, p). On the other hand, when there are
internal degrees of freedom there are quantum observables —for example, the spin components— not
obtained by canonical quantization from a corresponding classical dynamical variable a(r, p). The most
important observables we shall deal with in these notes are the following:

Position: R (multiplication by r)
Linear momentum: P = —iAV
Angular momentum: R X P = —iAr x V
Kinetic energy: P—2 = —ﬁ V2
2m 2m
Potential energy: V(R) (multiplication by V(r))

Applying Eq. (2.25) to a component Py = —ihdy, of the linear momentum we obtain the equation
ihde(Pe)y = (W.[Pr. H]9)

for the rate of variation of the average value of py in the state ¥. Taking into account that the momentum
components commute with one another we easily obtain

d
[Pe H] = [Pe. VR)] = it [, V(R)] = ‘ihé(R)
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2.5 Expectation values. Ehrenfest’s theorem

(for the last equality, just apply both sides to an arbitrary wave function ¢), or in vector form
[P.H]| = —iAVV(R).

From the general formula. (2.25) we conclude that

3:(P)y = —(VV(R)),. (2.28)

Equations (2.26) and (2.28) are the content of Ehrenfest’s>! theorem. Although these equations are
similar to the classical equations of motion

i=2  p=_vvm,
m

they do not imply that the average position
potential V((R)W) since in general

—_—

R)qj moves as a classical particle of mass m subject to the

(VV(R)), # VV((R)W).

The latter equality is approximately true at some instant f¢ if the wave function is concentrated near a
point rop, since in that case

~rg = (VV(R)), =~ VV(rg) ~ VV((R),).

However, as the wave function ¥ (r,?) evolves in time according to the time-dependent Schrodinger
equation it will in general spread out, so that after a sufficiently long time it will no longer be concentrated
near any point in space, and the approximate equality of (V V(R)>;v and V ((R)lp) will cease to hold. This
can be clearly seen in the following example:

Example 2.4. Consider a particle moving freely (i.e., subject to no forces) in space, and suppose that
for t+ = 0 the particle’s wave function is the Gaussian

Y(E.0) = ¥ (@) = (@Pn) 45,

where a > 0 is a constant. It can be easily checked that ¥ is normalized:

2 2 3
vl = @ny 2 [t = @m0 ([ eFar) =

Moreover, ¥ is concentrated on a sphere of radius of the order of a centered at the origin. On the other
hand, integrating the time-dependent Schrodinger equation

h2
ihd; W(r,t) = —— V2U(r,1)
2m
with the initial condition ¥ (r, 0) = ¥ (r) it is found that®

) 2\ 3/4 iht
W(r,t) = NA(t) ™32 240,  with N := (a—) L AG) =a? +
T m

21paul Ehrenfest (1880-1933), Austrian physicist.
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3/2

where? = |z|3/ 2¢3 A2 This can be easily checked by differentiation:

r2 3 r2 hz hz r2
ihd,(W/N) =e 24 (——A2 4 A732 ) [-=— ) = ——A77/2(+2 = 34)e 24,
u(/)e(2 T (o) = a2 s
VW/N) = A=3/2c 53 (—5) — _AS5/2g Eay,
A
2

2
V2(W/N) = —A3/2e" 22 (3 - %) = A72(r2 —34)e"2a.

Note that ¥ (r,t) is automatically normalized for all ¢, since it is a solution of the time-dependent
Schrodinger equation with ¥ (0, r) = v (r) of unit norm. This can also be checked directly:

2\ 3/2 2\ 3/2 . 2 3/2 B
w|? = (a_) |A‘—3e—§(%+ﬁ) = (a_) }A‘_%_Rﬁﬁzz = (a;) ‘A‘_%_% (2.29)

Note that the state ¥(r, ¢) has zero average momentum, since

(P>'P = (lp? PlI/) S (lI/, —1thI/) = NZ‘A|_3/d3r e—%(_ihv)e_%

2
=0

2
e 24

= ihN2|A\‘3A—1/d3rr

(the integrand is antisymmetric under r — —r). According to Ehrenfest’s equation (2.26), the average
position of the particle is therefore independent of time; in fact, it can be easily checked that (R)vp =0
for all z. More importantly, from Eq. (2.29) it follows that at an arbitrary time ¢ > 0 the probability
density ‘lll(r, t) }2 is concentrated on a sphere centered at the origin (i.e., at the average position (R)'I/)
whose radius

h2t?

Ar(t)=m=a I+ ——
a m2a*

increases without bound as ¢ — co. Note also that the rate of increase of this radius, given by

d hzt )
SAK() = Atjma .
@+

is approximately equal to mia as a — 0. In other words, the more concentrated the wave function is
initially the faster it spreads out.

“See Example 2.6.
bIn these notes Arg z € (—, ] will always denote the principal argument of the complex number z.

2.6 Eigenfunctions and eigenvalues of observables

Let us suppose that at a certain time ¢ a particle is in a state ¥ (r) which is an eigenfunction of an
observable A with eigenvalue A, i.e.,

Ay = Ay

Note that A is necessarily real, as A is self-adjoint. Since

(A7), = (. A™) = (Y. A" ) = X" (¥, ) = A7,
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2.7 The momentum representation

the uncertainty (root mean square deviation) of the observable A in the state ¥, denoted by Ay A4, van-
ishes: 5 5
— [ 42 242
(AyA)" =(4%), —(4), =2 -2 =0.

Thus A has a well-defined value, which must be equal to A since (A) » = A Hence:

If at a certain time the particle is in a state {» which is an eigenfunction of an observable A with
eigenvalue A, a measurement of the observable A performed at this time will yield with certainty the
value A.

Conversely, suppose that when we measure the value of an observable A at a certain time 7y we
obtain the value A. If we measure again the observable A at a later time 79 + At with At — 0+, by
consistency we should obtain the same value A. It follows that the state of the particle immediately after
the measurement of A is such that the uncertainty of A vanishes. Since

0= (a5 )’ =((4-1),)’)

= (A-{4),)y =0

- (v 4= {a))2v) = (4= (a),)v[?

we conclude that v is an eigenstate of A with eigenvalue A = (A) " In other words:

If an observable A is measured at a certain time and the value A is obtained, the state of the particle
immediately after the measurement is an eigenstate of A with eigenvalue A. In particular, the only
possible values that can be obtained when an observable is measured are its eigenvalues.

2.7 The momentum representation

According to Born’s rule, the square of the modulus of the wave function ¥(r, ¢) of a quantum particle
represents the probability density of finding the particle at the time ¢ in an infinitesimal volume d3r
centered at the point r. We now ask ourselves how to obtain the probability density of finding the
particle’s momentum inside an infinitesimal volume d> p in momentum space about a given momentum
p- To this end, we shall start by recalling some fundamental facts about the Fourier transform. Given a
function ¥ (r) in L2(R3), we define its Fourier transform v/ (p) by the formula?

(p) = 2mh) =32 / dr e HPTY (1), (2.30)

It can be shown that 1& is in L2(R3) if and only if v is, and that the Fourier transform is in fact a unitary
mapping from L?(R3) into itself. In other words,

W.¢) = (V.¢), V.4 € LAR3). 2.31)

Moreover, the inverse ¥ (r) of the Fourier transform of a function g@(p) can be computed from the
formula

¥ (r) = 2mwh) "3/ f & p e#PT (p). (2.32)

221n point of fact, the integral in Eq. (2.30) is only guaranteed to converge if ¢ € L1(R3) (i.e., if || is integrable), and there
are functions in L2 (R3) that are not in L! (R3) (for instance, (r* + 1)_1/ 2). If ¥ is any such function, it can be shown that there
is a sequence of functions ¥; (j € N) with compact support (i.e., vanishing outside a compact set) such that || Y=Yy H -0
as j — oo. It is also shown that the sequence 1/A/_,- (j € N) is a Cauchy sequence, and therefore (since L%(R?) is complete) it
has a limit, denoted by I,Z, which is shown to be independent of the sequence v/; chosen to approximate . It is this function
1@ = lim; 500 %' that is then defined as the Fourier transform of the function ¥ € L2(R3)\ L1 (R3).
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Remark. In one dimension, the Fourier transform of a wave function ¥ (x) in L?(R) is defined by the
analogous formula

J(p) = @uh)~V/2 / dx e RP7y (x).

With this normalization the Fourier transform is still unitary, i.e.,

W.¢) = (V. ¢). V.9 e L*(R),

and the inverse Fourier transform is given by

V(x) = k)2 / dp P (p). n

Suppose that at a certain time ¢ the state of a particle is described by a wave function v (r). We wish to
find the probability density 6(p) in momentum space when the particle is in the state ¥. A well known
result in probability theory states that o6(p) is uniquely determined by its moments

avy (py) = /d3pp;’éﬁ(p), k=1,2,3 neN.

As we saw in the previous section, the average value of any function f(p) of the particle’s momentum
can be computed by taking the expectation value of the corresponding quantum operator f(P). Thus the
sought for probability density is the unique function p(p) satisfying

(PE), =W PLy) = /d3p ppp). k=123 neN. (2.33)
On the other hand, from Eq. (2.32) we easily obtain
Py (r) = Qui) /2 / & p (~ihdy,)" P (p) = @A)~ / & p i pi (p).

and therefore

P @) = (PIY) ().
From Eq. (2.31) it then follows that
(P, = (. PPw) = (9. (PFY) ) = W pi).

and thus

(Pl)y = /d3p P[> (2.34)

Comparing Egs. (2.33) and (2.34) we conclude that
n A 2
pp) = [V ()|

In other words, &(p) }2 is the probability density in momentum space. In the above discussion we have
kept the time ¢ fixed, and have accordingly dropped it from Egs. (2.30) and (2.32). Restoring it we obtain
the analogous equations

J(p,t) = 2nh)~3/? / d3re WP (r, 1), W(r 1) = (2uh)"3/? / d3perPT(p 1), | (2.35)

and similarly for the one-dimensional case. In summary:
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D . - 2 e .

If a quantum particle is in a state ¥ (r, ¢), the function |lI/(p, t)} represents the probability density of
finding the particle’s momentum in an infinitesimal volume d>p about p in momentum space at the
time 7.

Exercise 2.3. Using the unitarity of the Fourier transform, prove the identity

d3k

ikr __
W € = 8(1’)

Solution. We have:
(1:9) = [ @y o) = @aty [ Erepdp' i )i E)e
— [@p&p i @) [ @ @ah k0T =) = [ @it @d)
— [ @ i @350 - p).
Thus
[ Epep @) [ Eran @D = [ @pdp i @3ee - p).

and hence

s(p' —p) = @nh)~3 / d3r en @ —P)T, (2.36)
Setting # = 1 and p’ — p = k we obtain
Er e
T =§(k),
an)? © (k)

which yields the sought for identity exchanging the roles of r and k. A similar argument shows that in
one dimension o

ek = §(x). (2.37)
27

Remark. Equation (2.37) can be directly established as follows. To begin with, we have

/L dk i, sin(Lx)
eikx _

_L 27 X

’

and thus we need to prove that
. sin(Lx)
lim
L—oco TX

= 8(x)

in the sense of distributions. In other words, we must show that for any test function ¢ (x) the following

equality holds:

_ ©  sin(Lx)
lim dx
L—oo J_no X

¢(x) = ¢(0).
And indeed,

/00 dx sin(Lx)¢(x) _ /oo ds g(p(s/ll) L::o ¢ (0) /_Oo ds % = ¢(0),

—00 X - T

where in the last step we have made use of the well-known integral
/ ®  sins
ds — =m=
—0 s
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which can be computed using residue theory. |

If the Fourier transform lf/(p, t) of a state ¥(r, t) is known, we can compute the average (i.e., expectation
value) of any observable A(R, P) in the state ¥. Indeed, we have already seen that the Fourier transform
of PU(r,t) is p¥(p, t), or expressed symbolically

~

PU(r,t) —— p¥(p.1).

On the other hand, we have
(Xe¥) (p) = (2mh) ™32 / Broxg W (r, e T = 2nh)32ihi, / &Brw(r, )e #PT

= ihd,, ¥(p.1),

and therefore

RY(r,1) —— ihVp¥(p,1).

It follows that, more generally,

AR, P)¥(r, 1) —A—> ARV, p)¥(p. 1),

whence A R A A
(AR, P)), = (& AR, P)¥) = (q/, [AR, P)¥] ) — (lI/,A(ihV ,p)lI/).

Thus the average of any observable A(R, P) can be computed either as

(AR, P)), = (W, A(x, —inV)¥), (2.38)

i.e., in the so called position representation, or equivalently from

(AR P)), = (¥, A({AV,, p)¥). (2.39)

i.e., in the momentum representation). We conclude that

The Fourier transform lf/(p, t) represents the particle’s wave function (i.e., probability amplitude) in the
momentum representation. In particular, in this representation the operators R and P are respectively
given by

R = iAVp, P=p

(the latter regarded as a multiplication operator).

Example 2.5. Normalization of momentum “eigenfunctions”.
We saw in Section (2.4) that the plane waves

Yo(r) = AchP”

are formal eigenfunctions of the momentum operator P with eigenvalue p. Although these functions
are not normalizable in the usual sense, i.e.,

/d3r [vp@)|* = |A|2/d3r = o,
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2.8 The free particle. Wave packets

it is of interest to find a prescription for choosing the value of the constant A in a convenient way. To
begin with, since a global (i.e., position independent) phase does not change the state, we can take A
as real and positive without loss of generality. Secondly, using Eq. (2.36) we obtain

(v/p’ wp/) — AZ / d3re%(p/_l))-r — (2Tfh)3A28(p/ . p)

It follows that the functions .
Yp(r) := (2h) >/ 2eiPT (2.40)

obey the normalization condition
Vp. ¥p) = 8(p — P). (2.41)

This condition, usually known as Dirac’s (or delta function) normalization, is the analogue for (for-
mal) eigenfunctions depending on a continuous parameter (in this case, the momentum p) of the usual
normalization for a discrete set {1, : n € N} of (genuine) eigenfunctions of a self-adjoint operator:

(Wn, 1,”m) = 8nm-
With the above normalization, Eq. (2.32) can be written as
Y = / & p YY), (2.42)

which is again the continuous analogue of the expansion
o0
V(r) = Z CnYn(r)
n=1

of a function ¥ € L?(R3) in terms of an orthonormal basis {1/, : n € N} of eigenfunctions of a
self-adjoint operator. We thus see that the value of the momentum wave function 1} (p) at a point p can
be interpreted as the coefficient of the plane wave (2.40) with momentum p in the expansion (2.42) of
a normalized wave function.

Of course, similar statements can be made for the formal position eigenfunctions

¢ry := 8(r —ro),
which formally satisfy the eigenvalue equation
Ryr, = r8(r — rg) = rod(r —ro) = ro@r,(r).
Indeed, by the defining equation (2.22) of the Dirac delta they also obey the Dirac normalization

o0 1) = / B r ) — 6 = )

analogous to (2.41), as well as the identity

V() = [ & Y @) —r) = f &' ¥ ()ge (©).

2.8 The free particle. Wave packets

The position and momentum representations are equivalent descriptions of the state of a quantum par-
ticle, each of which is useful in different situations. For example, since the momentum operator P is
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simply a multiplication operator in the momentum representation, i.e.,

PY(p,t) = p¥(p,1),

the momentum representation is especially suited to describe a free particle. Indeed, the time-dependent
Schrodinger equation for a free particle in the momentum representation,

. p? -
ihd, ¥ (p, 1) = %W(p, 1),

is easily solved:

i 2
W(p,1) =e #E®1P(p 0),  with E(p) = ;’_'
m

From the Fourier transform relation (2.32) we then easily obtain the particle’s wave function in the
position representation:

W(r,t) = (2nh)">/? / d3pe #E®IG(p 0)erPT = (27h) /2 / ap @(p,O)e%(P'r‘E(l’)’). (2.43)

We thus see that ¥ (r, ¢) is a wave packet made up of a (continuous) superposition of de Broglie matter
waves

Uo(r, 1) = (2h)~Y/2eh (Pr-E®))

with well defined momentum p. Moreover, as we saw in the previous section the corresponding weight
Y (p, 0) multiplying v (r, 7) in Eq. (2.43) represents the probability amplitude for the particle having a
momentum p at the initial time # = 0. On the other hand, Ehrenfest’s theorem with V' = 0 implies that

9:(R) =7‘”, 3:(P), = 0;

in particular, the particle’s average momentum P)d/ is constant (like the classical momentum of a free
particle). We thus have

(R) = (R>W + 7t, (2.44) |wpmotion

where ¥ (r) = ¥(r, 0). In other words, the average position of the particle moves as a classical particle
with constant momentum (P) " If ¢ is sharply peaked at pg then (P) v = Po, and from the Eq. (2.44) we
obtain tp
0 .
(R>lI/ ~ <R)1/f + 7, with 1o = <R)W
This is in agreement with the analysis in Section 1.5, since (R) obviously coincides with the center of
the wave packet at ¢t = 0 (denoted by ro in Eq. (1.47)).
Equation (2.43) allows one to compute the wave function ¥ (r, ¢) in the position representation if the
momentum wave function ¥ is known at the initial time ¢ = 0. We can easily express ¥ (r, ¢) in terms of
the initial wave function ¥ (r, 0) in the position representation using the definition (2.30) of the Fourier

transform, namely

W(r,1) = 2uh)~> / &3 p et (Pr-E®X) / &S (', 0)e # P
. , 2
= (2nh) 3 / &3’ w(r,0) / RE pei(p-(r—r)—%)'

The Gaussian integral in momentum space is easily computed by completing the square:

tp? t (p_m(r—r’))2+m(r—r’)2

/ [ —
p-(r—r) m m t 2t

) Z#O’
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2.8 The free particle. Wave packets

and using the general formula

3/2
d3 pe—a®—po)® _ (E) ,
[ e a

where Rea > 0 (with a # 0) and ¢3/2 = |a|3/ze% Argd We thus obtain

. 5 3/2 . ,
[@petlrmr ) _ (2"7;Th) S Y
1

Inserting the value of this integral into the previous equation for ¥ (r, ¢) we finally arrive at the following
explicit formula for the general solution of the time-dependent Schrodinger equation for a free particle:

U(r,t) = /d3r’G (Ir=r'|,2) ¥, 0), t#0, (2.45)
where
m 3/2 ims2
G(s,t) = 2ht |
(s.2) (2niht> e

The function G (s, t) is the so called Green function (or propagator) for the free time-dependent Schrodinger

equation
hZ
ihd, W (r,1) = ——V2U(r,1).
2m

Note also that comparing Eq. (2.45) with the general equation (2.16) we obtain the following explicit
formula for the exponential of the operator —itP?/(2m#) in the position representation:

iht 2

e2m w(r)=fd3r/G (Ir—r'l.t) ¥ ().

a2

e~ Sy (r)

Remark. If initially ¥ (r, 0) = §(r), from Eq. (2.45) we obtain
v(r,t)=G(r|,1).

Thus G (|r|, ) is the wave function at a time ¢ of a particle that at t+ = 0 was located precisely at the
origin. Note that, even if initially the uncertainty in the position vanishes, at any subsequent time ¢ > 0
the particle’s wave function G(|r|, ) has modulus 1, and is thus uniformly spread out throughout the
whole space. In particular, the uncertainty in the position is infinite for t > 0. This is in fact an extreme
instance of the general phenomenon observed in Example 2.4, namely that the more concentrated is the
wave function at a certain time the faster it will start spreading out as time elapses. |

Example 2.6. Let us apply Eq. (2.45) to compute the wave function of a free particle if initially

2
w(r,0) = (a’n) /4 242

(cf. Example 2.4). Note, first of all, that ¥ (r, 0) is normalized. According to Eq. (2.45),

Sz ima—)2 _ 2
lI/(r, [) = (Zghl‘) (azn)—3/4/d3r/e 2ht 2a2’ t # 0.

To evaluate the Gaussian integral, we complete the square of the exponent. To this end, let

iht
A :a2+1_5
m
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so that
ime—-r)? " 1 im 1Y\ , im , , im > Y
_ - ==|—=-=)r — @ —=2r-r) = Ar'c —=2a°r-r +a‘r
2ht 2a2 2\ At a2 + 2hz( ) 2hta? ( + )

m Alv azr 2 n ihta® , mA v a2r > g2
= —— —_— _—r = —— —_— = ==
2ihta? A mA 2ihta? A 24

where we have made use of the elementary identities

im 1 im 5 a* a? ihta?
- = s a = 8
ht  a?  hta? A A mA

We thus have

2
U(r,t) =( m )3/2 (azn)—3/4e—§f,[d3r/e—2i';jt22(r’—‘f4r)

2miht
) /2 2\ 3/4
m \3/2 5 —3/4 12 2mihta? 3 a —3/0 12
= 24 | ——— = — A 24 .
(ZTEiht) (@"x) © mA B ©

2.9 General uncertainty relation

In this section we shall state and prove a general and precise version of Heisenberg’s uncertainty principle
discussed informally in Section 1.7. To this end, we shall start by formulating a precise definition of the
uncertainty of a dynamical variable a(r, p) represented by a self-adjoint operator A (usually obtained by
canonical quantization from a(r, p)). We have seen in the previous sections that when a particle is in a
state ¥(r, t) the average value of a(r, p) is given by the expectation value

(4)y = (W AW).

The standard deviation (root mean square deviation) Aga of the dynamical variable a is therefore given
by

AgA = \/<(A —(A)2)’) = V{4%)g — (45, (2.46)

We shall take the standard deviation Ay A as a precise measure of the uncertainty in the value of the
dynamical variable represented by the self-adjoint operator A when the particle is in the state .

Given two self-adjoint operators A and B, we shall next prove a general inequality satisfied by the
product® (A2)(B2). To this end, note that

(4%) = (&, A2¥) = (AW, Aw) = | Av |,

and similarly for (B2). We then have

(A2(B2) = [ Aw|*| Be|* > |(Aw. B[,

ZFor convenience, in this section we shall often drop the subscript ¥ when no confusion can arise.
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where the last inequality follows from the Cauchy—Schwarz inequality for the inner product. On the
other hand,

1 [(#. ABW) — (ABY, W)] i

(v B = | AR = (m (v, ABY))" =

Note that the RHS of this inequality is non-negative, since the expectation value of the commutator of
two self-adjoint operators is pure imaginary (exercise). We can therefore simplify the previous inequality

as follows: |
(42)(B2)2 = 5 (4. B))J. (2.47)

_If A and B are two observables the expectation values (A4) and (B) are both real, and thus the operators
A= A—(A) and B = B — (B) are self-adjoint. Taking into account that

[A, B] = [A—(4), B~ (B)] = [, B]

and applying Eq. (2.47) we deduce the following general inequality relating the uncertainties of the
observables A and B in any state ¥':

AgAAgB =

(4. Bl)y|. (2.48)

Equation (2.48) is a general form of the uncertainty principle discussed in Section 1.7. Indeed, if we
apply it to the operators A = X; and B = P; and make use of the canonical commutation relation (2.14)
we immediately arrive at the inequality

N —

AgXi Ag P =

. (2.49) |Heisuncrelx

Note that the passage from the general Eq. (2.48) to the previous equation relies only on the canonical
commutation relations (2.14). Therefore if P and Q are any observables satisfying

oS-

[Q, P] =ih (2.50) [ccr

then their uncertainties in any state ¥ will also verify the inequality

AgP AgQ =

: 2.51)

N | Sk

We shall say in this case that Q and P are canonically conjugate, since Eq. (2.50) is usually obtained
as a result of canonically quantizing two classical canonically conjugate variables ¢ and p (i.e., two
dynamical variables satisfying {¢, p} = 1). From Eq. (2.51) it then follows that:

Two canonically conjugate observables cannot be simultaneously measured with infinite precision.

This is the import of Heisenberg’s uncertainty principle as originally formulated.
We shall say that two observables A and B are compatible if [4, B] = 0, and incompatible) if
[A, B] # 0. An important consequence of the general uncertainty principle (2.48) is the following:
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Two incompatible observables A and B cannot be simultaneously measured with infinite precision
unless the system is in a state ¥ such that ([A, B])W = 0.

Example 2.7. Minimum-uncertainty wave function.
The position-momentum uncertainty relation (2.49) is optimal, in the sense that there are states v (r)
for which

h
Ay XiAy P; = > Vi =1,2,3. (2.52)
To find such states, we start by looking for one-dimensional states v (x) such that

h
AyX AyP = 2. (2.53)

From the proof of the general inequality (2.48) it follows that a necessary condition for (2.53) to hold
is that

[ =)D =P = |(x = (x))v. (2 ~(P))¥)).
or equivalently that the “vectors” (X — (X ) W/f and (P — (P) Vf)w be parallel. Thus

(P — po)¥ = iha(x —xo)¥Y <= (ihdx + po)¥ = —iha(x — xo)¥

for some complex constant a := a; + ia,, where we have set xo = (X ) yo PO = (P) v Integrating this
differential equation for ¥ (x) we find
¥(x) = Ne~§0—x0¢rpox, (2.54)

where N can be taken as real and positive without loss of generality. Note that Rea = a; must be
positive in order that i be square integrable. Imposing that ¥ have unit norm we obtain

[axlpeopf = w2 [are 5?2 faremomo® —y2 JZ o1 — v = (4
al T

Let us now find under what conditions the wave function (2.54) does indeed verify Eq. (2.53). To this
end, we first compute the averages of the particle’s position and momentum in the state :

<X)W = /dxx}l/f(x)F = Nz/dx xe—al(x—XO)Z = xo + NZ/dx (x _xo)e_al(x_xo)z — Yo
(P), = /dx Y (X)(=ihdx) Y (x) = Nz/dx e~ (F%0) 6% Po¥ (_i3..) (e—%(x—xo)zeipox)
=V / dx ™70 (g 4 iah(x — x0)) = po + iahN> / dx (x — xg)e~ 120 — p

since the integrand in the last integrals is odd in x — xo. We next compute the uncertainties in X and
P. To begin with,

(AyX)* = | Cx —xo)wuz = N2/dx (x —xo)ze_“‘("_"‘))2 = —Nzai/dx e 91 (x—x0)>
ai
(@) (x)o L
B n/ da; \a; T 2ap’

(Ay P)? = (P = po)v |,

Likewise,
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2.9 General uncertainty relation

with

We thus obtain

|a|2h2
2611

’

(Ay P)* = |a*h* N> / dx (x — x0)%e ™ X% = 14 22(4y, X)? =

and therefore h lal
a
Ay XAy P = - —.
vASYy 2 a1
Hence Eq. (2.53) will hold if and only if |a| = a;, i.e., if @ is real and positive. This shows that in one
dimension the only wave function ¥ (x) verifying Eq. (2.53) is the Gaussian wave packet (2.54) with
a > 0. Using this result it is straightforward to show that in three dimensions the only wave function

verifying the minimum uncertainty relations (2.52) is the Gaussian wave packet

3/4 _4 i

v = (L) et egeo, (2.55)
18

with a > 0 and rg, po € R3, for which

ah?

1
(R>¢ = ro, (P)w = Po, (AWXI)Z = Z’ (AllfPl)z — ;

(P—po)y = —(ihdx+po)¥ = —N(ihdx+ po) (e—%@-xo)ze%POX) — iahN(x—xo)e~ 3 ¥—%0 ¢t poy.

Exercise 2.4. Study the time evolution of the uncertainty product Ay X Ay P for the Gaussian wave
packet (2.54) with xo = po = 0 in the absence of external forces.

Solution. Proceeding as in Example 2.6, we find that

1/4 ax? ih
W(x,t):(%) f(O)"V2e D, with  £(r) ::1+%z (2.56)

and f(1)"Y2 = | f(0)|7Y 2e=3 A S0 1t s easy to see that (apart from a time-dependent overall
phase) ¥ (x, t) is obtained from Eq. (2.54) (with complex a) by the replacement

a
a — —.

Indeed, under this replacement we have

V=)= (50) - () - (e () - @

_ (3)1/4 f—l/ZCﬁArgf'
1

Although the (time dependent) phase e2 ™/ is necessary in order that ¥ (x,7) satisfy the time-
dependent Schrodinger equation, since it does not depend on the x coordinate it can be dropped when
computing expectation values. We thus conclude that (X )g,, (P)lp Ag X and Ay P can be obtained
from the previous example (in the general case of complex @) replacing a by a/ f, and hence a; = Rea

by
“(5)- 7
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THE SCHRODINGER WAVE EQUATION

We thus obtain

|f? n2 a? |fI?  ah?

We thus see that, although the momentum uncertainty does not change with time, the position uncer-
tainty is time-dependent. In particular, the uncertainty product

h h h2a2
AgX AgP = — = —4/1 2
v X Ay 5 =5 t- 32

steadily increases with time for ¢ > 0, and is equal to 72/2 only for ¢ = 0. In other words, the Gaussian
wave packet (2.56) minimizes the uncertainty product only at # = 0.

Remark. The fact that Ay P is constant is a direct consequence of Ehrenfest’s general theorem. In-
deed, the momentum operator P commutes with the free Hamiltonian H = P?2/(2m), so that by
Eq. (2.25) the expectation value of any power of P must be time-independent. On the other hand,
since

1 2 1 ih
[X,H] = —I[X,P°]= — (P[X,P]+ [X,P]P)= —P,
2m 2m m

[X2,H] = X[X,H] + [X,H]X = f(XP + PX)
m
we have

i
= —(XP + PX)

ihd,(X?) —

= md,(X?), = (XP + PX), = (W.XP¥) + (¥, PXV¥)

v '

= (X¥, PW) + (PW, X¥) = 2Re(X W, PV)

and therefore

i ax - Imf _ax2
= a* 27128 f| 7' Re (—)/dxx2e o7 =a P 2 T /dxx2e 72
S |/
_ I VL _ ah?
IGS/ZT[ 1/2h2|f| 3—-—|f|3a 3/2:—t.
m 2 2m
Integrating the differential equation
2
> ah
0(X7)y = — 51
with the initial condition :
X2 = —
( )W ) 2a
we obtain ) un 5
e e R ) Bl
Y 2a  2m? 2 2 2a "’
as before.
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2.10 The time-energy uncertainty principle

2.10 The time-energy uncertainty principle

The general Heisenberg uncertainty relation (2.48) can be used to derive an uncertainty relation involving
the particle’s energy E and the time z. This is natural from a relativistic point of view, since E/c and
ct are respectively the zero components of the particle’s four-momentum p and spacetime “position”
vector x. Note, however, that in non-relativistic quantum mechanics time is not an observable (i.e., a
self-adjoint operator), but rather a universal independent variable labeling the evolution of the system.

To formulate the energy-time uncertainty relation, we apply the general uncertainty principle (2.48) to
the Hamiltonian H and any other observable A:

1
AvE ApA = S [([H Ayl (2.57)

where (as is customary) we have written Ay E instead of Ay H (indeed, recall that in a conservative
natural Hamiltonian system H = E). On the other hand, from Ehrenfest’s general theorem (2.25) we
have

[(H, Ay | = h[a{4), |
If a,(A)g, is slowly varying with time, the average value of the observable will change by one standard

deviation Ag A in a time Agt4 given by

AgA
Agty = ————.
‘at<’4)np‘
Thus Aud
_ v
{IH. Ayl =77

which combined with Eq. (2.57) yields the following time-energy uncertainty relation’*:

| S+

AgE Agtq =

: (2.58)

In spite of its obvious similarity with the position-momentum uncertainty relation (2.49), it should be
noted that Agt4 is not the uncertainty in time, but, roughly speaking, the time that must elapse for the
average value of the observable A to change appreciably (more precisely by one standard deviation). In
particular, this lapse depends on the observable A. In practice, however, this relation is written more
informally as

AgE Agt =

, (2.59)

N | Sk

where Ayt is loosely interpreted as a characteristic time lapse required for the system’s state to change
appreciably when it is in a given state ¥.

An important particular case of the time-energy uncertainty relation ensues when ¥ is a stationary
state, i.e., an eigenstate of the Hamiltonian H . In this case

HY = E¥Y = (H"), =W H"Y)=W.E"Y)=E"(W.¥)=E",

and therefore

(H?), = E*=((H),)” = AH=AE=0.

24This version of the time-energy uncertainty relation is due to the Russian physicists Leonid Mandelstam (1879—1944) and
Igor Tamm (1895-1971, Nobel prize winner in 1958).
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Thus in this case AE = 0, and therefore At = oo. To understand what this means, note that if ¥ is a
stationary state and A is any observable (not explicitly depending on time) we have

([A.H])y = (W.(AH — HA)Y) = (W, AHY) — (AHW,¥) = E(W, AY) — E(AW,¥) =0,

since A is by hypothesis self-adjoint®>. From Eq. (2.25) it then follows that

8,(A), = 0.

In other words:

In a stationary state ¥ the averages of all (time-independent) observables are time independent.

In particular, for any observable A the time Ayt4 required for (A)q, to change by one standard deviation

is infinite (since (A)

18 not changing at all!). It is in this sense that in a stationary state the characteristic

time At of the system is infinite.

2.11 Summary

Let us briefly summarize the main results obtained in this chapter:

)

ii)

1i1)

The state of a particle is represented by a square integrable wave function (or probability ampli-
tude) ¥ (r, t) of unit norm. The probability density of finding the particle at a certain time ¢ inside
an infinitesimal volume d3r around r is equal to !llf(r, t) }2.

If the particle is subject to a potential V' (r) and we do not perform any measurements on it over
a certain time interval, the evolution of the wave function is governed by the time-dependent

Schrodinger equation
ihd; ¥ = HVY,
where the Hamiltonian H is the differential operator
p? h?
H=_—+4+VR) =——V?+V(r)
2m 2m

obtained from the classical Hamiltonian

p?
Hg(r,p) = m + V(r)

by the replacement
r — R, p > P=—-iaV (2.60)

with R¥(r,t) = r¥(r,1).
In the momentum representation, the state of the particle is represented by the Fourier transform

(p,t) = 2uh)~/? / d3r e #PTY(r, 1)

of the position space wave function ¥ (r, ¢). The probability density of finding the particle at a
N . P . = 2

certain time ¢ inside an infinitesimal volume d3 p around a momentum p is equal to ‘lP(p, t)| .

The particle’s position and momentum operator in the momentum representation are given by

R=i4V,  P=p.

Z5Note that in the third equality we have used the fact that the eigenvalue E is real, since H is self-adjoint.
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2.11 Summary

iv) A classical dynamical variable a(r, p) is represented by a self-adjoint operator A(R,P) obtained
from a through the prescription (2.60) with a suitable ordering of the operators involved.

v) If a particle is in a quantum state ¥, the average value of a dynamical variable a represented by
a quantum observable A is given by the expectation value of A in the state 1y, namely

(4)y = (@, AW).

Note that (A)W is necessarily real, since A is self-adjoint.

vi) If A does not depend explicitly on time, the time evolution of the average of A is given by
Ehrenfest’s general theorem

ihd(A), = ([A. H]),.

vii) If at a certain time the particle is in a state ¥ which is an eigenfunction of an observable A with
eigenvalue A, a measurement of the observable A performed at this time will yield with certainty
the value A.

viii) If an observable A is measured at a certain time and the value A is obtained, the state of the
particle immediately after the measurement is performed is an eigenstate of A with eigenvalue A.
ix) The only possible values that can be obtained when an observable A is measured are the eigen-
values of A.
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3 One-dimensional problems

3.1 The time-independent Schrodinger equation

From the mathematical point of view, the Schrddinger equation for a particle of mass m subject to a time
independent potential V(r),

2
i0,¥(r,t) = —;l—mvzllf(r, )+ V(@)¥(r,t) = HY(r,1), 3.

is a second-order /inear partial differential equation whose general solution can be formally obtained by
the method of separation of variables. Indeed, since the potential V' is time-independent, we look for
solutions of the latter equation of the form

(1) =ty (r).
Substituting into Eq. (3.1) and dividing by ¥ we arrive at the equation

LT _ HY()
HORETC)

in the nonempty open set defined by the inequalities
) #0,  y(r)#0.

Since the LHS of Eq. (3.2) depends only on ¢ and the RHS is a function of r, both sides of the latter
equation must be constant. Thus there exists a number E (the so-called separation constant) such that

(3.2)

iht'(t) = Et(1), Hy(r) = Ey(r).
The general solution of the first equation is

(t) = ce wEL,

where ¢ = t(0) is an arbitrary constant that can be absorbed in ¥ (r). We thus have shown that the
function

W(r,1) = e #ELy(r) (3.3)

is a solution of the time-dependent Schrodinger equation (3.1) provided that the function 1 (r) is a solu-
tion of the second-order partial differential equation

h2
Hy (r) = ==V () + V)Y (r) = Ey (r). (34
Moreover, since
o, 0)| = |y
we must have
@@ =[v] =1
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ONE-DIMENSIONAL PROBLEMS

in other words, the function ¥ (r) must be in LZ(IR3) and have unit norm. Thus equation (3.4), which is
known as the time-independent Schrodinger equation, simply states that the function v (r) is an eigen-
function of the Hamiltonian operator H with eigenvalue E. This implies that the separation constant £
must be real, since it is an eigenvalue of the self-adjoint operator H. As to the physical significance of
this constant, note that for any time ¢ the wave function ¥ (r, ¢) is also an eigenfunction of H with eigen-
value E. In other words, W(r, t) is a stationary state (cf. Section (2.9)). From item vii) in Section 2.11
it then follows that:

In a stationary state (3.3), where ¥ is an eigenfunction of H with eigenvalue E, the particle has a
well-defined and constant energy E.

As we shall see in more detail below, for a generic value of the parameter £ € R the time-independent
equation (3.4) has no normalizable solutions. Indeed, in general the set of energies E for which Eq. (3.4)
has normalizable solutions is a discrete' set. This set is called the point spectrum? of the Hamiltonian
H. By item ix) in Section 2.11, the elements of the point spectrum of H are the possible values of
the particle’s energy. Thus the set of allowed energies is necessarily a discrete set. This observation
provides a simple and clear explanation of the quantization of energy, which Bohr’s old quantum theory
was unable to account for:

In quantum mechanics the quantization of energy need not be imposed (as in Bohr’s old quantum the-
ory), but is an automatic consequence of the discrete character of the point spectrum of the Hamiltonian
operator H .

A fundamental property of the eigenfunctions of any self-adjoint operator that we shall often use in
the sequel is the following:

Two eigenfunctions /1 > of a self-adjoint operator A with different eigenvalues A1 # A, are orthogo-
nal.

Proof. Indeed,

(Y1, AY2) = (Y1, A2¥2) = A2 (Y1, ¥2) = (AY1¥2) = (A1v1yr2) = A1 (V1. ¥2)
= (L2—A)W1.¥2)=0 = (Y1.¥2)=0. ]

In particular, two eigenfunctions of H with different energies must be orthogonal. Let us now assume
that, as is the case in many problems of physical interest, there is an orthonormal basis

{V¥n :n € N} (3.5)

of the Hilbert space L?(R3) whose elements are eigenfunctions of the Hamiltonian operator H . In other
words, the functions v, satisfy’

Hvyn = EnVn, (Wnﬂﬂm) = Onms

and each function ¥ (r) in L?(R3) admits an expansion

V(r) = Z CnYn(r). 3.6)
=1

'A subset S of the real line is discrete if all of its points are isolated, i.e., if for every point x in the set there is a
neighborhood U of x such that U NS = {x}. Equivalently, S is discrete if it does not contain its accumulation points. It can
be shown that discrete subsets of R are either finite or countably infinite.

2The term discrete spectrum is used sometimes as a synonym, but we shall avoid it in these notes since some authors give
it a slightly different meaning.

3Note that we are not assuming that E,, # Ep, forn # m.
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3.1 The time-independent Schrodinger equation

The coefficients ¢ € C can be computed by taking the scalar product of the previous equation with the
eigenfunction

e = () = [ Er vz, ()
and they must verify the condition (usually called Parseval’s relation)
o0 o0 oo o0
IWIIZ = ¥) = (Z Cn¥n, Z Cme) = Z C;Cm(Wn’wm) = Z C;Cmgnm
n=0 m=0 n.m=0 n.m=0
o0
=| Y | =1 (3.8)
n=1

Remark. If the point spectrum of H is non-degenerate, i.e., if E,, # E, form # n, we shall show in
the next chapter that the probability p; of obtaining the value E; when measuring the particle’s energy
in the state v is given by

Pk = }Ck}z = \(Wkﬂ#)\z- ]

When there exists an orthonormal basis {1/, : n € N} of L?(R?) whose elements are eigenfunctions
of the Hamiltonian H, we can find the solution of the time dependent Schrédinger equation (3.1) with
an arbitrary initial condition

o0
W(r.0) =y() =Y catu(r) (3.9)
=1
as follows. As we have remarked above, each function
W (r.1) = Y (r)eH Ent (3.10)

is a solution of Eq. (3.1). By linearity, so is the infinite sum

W) =Y cnfn(r)e 7, (.11)
n=1

Since ¥ (r,0) = ¥ (r) by Eq. (3.9), we conclude that (3.11) is the unique solution of the initial value
problem (3.1)-(3.9). In other words:

The function ¥(r, ¢) in Eq. (3.11) with coefficients ¢, € C satisfying Eq. (3.8) is the general solution
of the Schrodinger equation (3.1).

Remark. The previous result can be also proved in a more abstract way as follows. As we saw in the
previous chapter, the solution of (3.1) with the initial condition (3.9) is given by Eq. (2.16). Using the
expansion (3.6) of ¥ (r) in terms of the eigenfunctions v, of H and the identity

we easily obtain
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ONE-DIMENSIONAL PROBLEMS

3.2 Stationary states. Bound and scattering states

Recall that a stationary state is an eigenstate ¥ (r, ¢) of the Hamiltonian H . From the eigenvalue equation

HY = FEY

and the time independent equation (3.1) we obtain

iho, W = EW = W(r,¢)=e wEy(r),  with Hy = Ey and ¥ (r) = ¥(r,0).

(3.12)
Thus the only stationary states are the separable solutions of the time-dependent Schrédinger equation
found in the previous section. Let us briefly summarize the main properties of the stationary states (3.3):

4. In fact, since for each fixed time ¢ the factor e_f«L

. The stationary state (3.12) has a well-defined and constant energy E.

2. Two eigenfunctions V1 » of H with different energies E1 # E must necessarily be orthogonal.

3. The probability density |lI/(r, t)‘ associated to a stationary state is time-independent:

W) =lymf, VvieR.

Et is a global (i.e., position independent) phase,
W(r,t1) and ¥(r, 1) actually describe the same quantum state. In other words, in a stationary state
the state of the particle does not change in time. This is, in fact, the reason for the terminology
“stationary state”.

. An immediate consequence of this fact is that in a stationary state the averages of all observables
not explicitly depending on time must be constant (i.e., time-independent). We had already proved
this property of stationary states in Section 2.9 using Ehrenfest’s general formula (2.25), but it can
also be established directly as follows:

(A)y = (THE Y, AETHE ) = e ELeThE (g Ay) = (v, AV) = (4),,.

6. As we saw in the previous section, when the Hilbert space L?(R3) admits an orthonormal basis

of eigenstates ¥, of the Hamiltonian H the general solution of the time-dependent Schrodinger
equation (3.1) can be expanded in terms of the corresponding stationary states (3.10) as

W) =Y cnlu(rr) = Y cne By, (r), (3.13)
n=0 n=0

for appropriate (in general complex) constants ¢ satisfying Eq. (3.8). Note that, although each state
v, is stationary and has a well-defined energy, it is clear that ¥ (r, ) will neither be a stationary
state nor have well-defined energy unless all the nonzero coefficients ¢, in the latter expansion
correspond to states ¥, having the same energy. On the other hand, the probability pg (¢) of finding
the value E; when measuring the particle’s energy at a time ¢,

. 2
wEnt) = |Ck|2,

pr(0) = |(Wi, W 0)|* =

cne

is time-independent.
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3.2 Stationary states. Bound and scattering states

Example 3.1. Consider, for instance, a linear combination of two stationary states ¥1 » with different
energies £y # Ej, ie.,
W(r,1) = cre” # 5V Y (r) + coe” 7 B2y (r),
with
Hvy; = Eiy;, i=1,2.

Since E1 # E; implies (Y1, ¥2) = 0, if the states 1 > are normalized then ¥ will have unit norm
provided that
W) = |1 + |e2 = 1.

The probability density of the state ¥ is

w|* = (CTC%E”W + CE‘G%Eztl/fz) (Cle_%Eltl/fl + 626_%E2’1/f2)
2 2 i(E— —i(E—
= lealP[¥1[” + le2P [y + el eaet BB yrys 4 orcfemh BBy g
2 2 i(E—
= ety * + lealP[va]* + 2Re (efeaet B1=Eyiyn).
The latter term is clearly oscillating in time with the Bohr frequency

_ |E1 — Ea|

012 ;
h

indeed,

Re (c’fczehl(E‘_Ez)tWi"wz) = Re (c’fczlﬁ‘wz) cos(wiat) + Im (CTCZWTIM) sin(w121),

where we have assumed that £y < E,. For instance, if the coefficients c; > and the wave functions
¥1,2(r) are real, the probability density

2
(@ (r.0)|” = ciy1(0)* + 3Y2(r)® + 2c10291 (1) Y2 (x) cos(w121)
oscillates at a fixed point r between the two extreme values
2
p+(r) = (Cllﬁl(r) + 62102(1‘))
with frequency w12. The same is true for the average value of any observable not explicitly depending

on time. For instance, the average value of the position r in the state ¥ (assuming, again, that ¢y, and
Yr1,2 are real) is given by

(R), = /dS”r“I/(r,fﬂz = c(R),, +3(R), +2cic2(¥1, r92) cos(wiat).

The stationary states we have considered so far, which are genuine (i.e., square integrable) eigenfunc-
tions of the Hamiltonian, are called bound states. The reason is that, since |11/‘2 = |w }2 is integrable,
|l/f| must decay sufficiently fast at infinity*. Hence the probability of finding the particle at infinity (or,
more precisely, far away from a given finite point in space) is vanishingly small. Quantum bound states
thus roughly correspond to classical bounded orbits. It is also of practical interest, however, to consider
generalized stationary states (3.12) which are only formal eigenfunctions (i.e., bounded but not square
integrable) of the Hamiltonian. For example, if H = %, then the plane waves (normalized according

4See footnote 18 on Chapter 2.
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to Eq. (2.40))

) . 2
Wy (r, 1) 1= Yp()e HE®! = Qui) 32k @T-E®D  wih  E(p) = ;L, (3.14)
m

are generalized stationary states of H satisfying the equations
iho Wy = HY, = E(p)¥p.

Generalized stationary states of this type (i.e., bounded but not square integrable) are called scattering
states. The reason for this terminology is that, since scattering states are not normalizable, there is
a nonvanishing probability for the particle to be at infinity. Therefore these stationary states are the
quantum analogues of classical unbounded motion, in which a particle comes from infinity, is scattered
by the potential, and returns to infinity.

Although strictly speaking scattering states are not physical states (as they are not normalizable), one
can construct out of them wave packets that are square integrable and thus represent genuine physical
states. For example, the function

W(r,t) = /d3p c(p)¥p(r, 1) (3.15)
is a solution of the free Schrodinger equation
P2
ihd ¥ = —VY,
2m

since it is a linear combination® of solutions Wp(r, 1) and the equation is obviously linear. As we saw
in Section 2.7, the norm of this wave packet is equal to that of the function c(p), which represents the
particle’s probability amplitude in momentum space at ¢ = 0. This can be easily verified noting that

(W, Uy) = (e—iE(p’)tv,p, e—iE(p)twp/) — ei(E(p)—E(p’))t(l/,p’ V) = ei(E(p)—E(p/))t(g(p —p)

=8(p—p').

and therefore
”‘1’”2 = (/ &pep¥ ,/d3p/c(p/)‘1’p’) = /d3p &p c*P)c() (Y, ¥y)

= fd3pd3p’6*(p)6(p’)8(p—p’) = /d3p\6(p)\2 = | c|*.

Equation (3.15) provides a representation of the general solution of the time-dependent Schrodinger
equation with zero potential akin to Eq. (3.13) when the Hamiltonian possesses an orthonormal basis of
eigenfunctions {y, : n € N}. Indeed, as remarked above in this case ¥ (r, ¢) in Eq. (3.15) is a solution
of the free Schrodinger equation, and verifies any given initial condition ¥ (r, 0) = v (r) provided that

c(p) = ¥ (p):

w0 = [ & p @) = @ty 2 [ @ pe@etr = @am) 2 [ @5 i@t = v
(3.16)
(cf. Egs. (2.30)-(2.32)). Formally, the free particle Hamiltonian H = % has a continuous spectrum of
nonnegative “eigenvalues” —the energies E (p)— with (3.14) as formal (bounded but not normalizable)
eigenfunctions. Note the similarities between the spatial part of the formal eigenfunctions, i.e., the func-
tions Y (r), labeled by the continuous index p, and the eigenfunctions v, (r) in Egs. (3.6)-(3.7). Indeed,
the expansion (3.16) of an arbitrary square integrable wave function in terms of the eigenfunctions v/, (r)

. 2 . .
of the free Hamiltonian ;—m can be regarded as the continuous analogue of the series (3.13).

SStrictly speaking, in mathematics by a “linear combination™ it is always understood a finite sum of certain functions (or
vectors, in a general vector space) multiplied by appropriate scalar coefficients (complex numbers, in our case). However, in
the physics terminology this requirement is usually relaxed, and infinite sums or even integrals —as in Eq. (3.15)— are allowed
in linear combinations.
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3.3 One-dimensional problems

3.3 One-dimensional problems

In the rest of this chapter we shall focus on studying in some detail the time-independent Schrodinger
equation in one dimension, namely

HY(x) = —%w”m + VY () = Ey (), (3.17)
or equivalently
Y6 + (2= v(@) Y (0 =0, (3.18)
with
v(x) = i—’fvu), e = 2’:2]5 (3.19)

Note that in one dimension the wave function v (x) has dimensions of L~1/2 (indeed, | (x)|?> dx is a
probability, which is dimensionless), and v and & have dimensions of =2 (why?). For the time being,
we shall suppose that the potential V(x), and hence v(x), is a piecewise continuous® function. By the
standard uniqueness and existence theorems for linear homogeneous second-order ordinary differential
equations (ODEs), this guarantees that for every real E equation (3.19) has two linearly independent
(piecewise C?) solutions 1 2(x). These solutions can be taken as real, since E and v(x) are both real.
The general solution of Eq. (3.19) is a linear combination of the two linearly independent solutions /1 >
with arbitrary complex coefficients:

lﬁ(x) = Cl‘/’l(x) + CZW2(X), 1,2 € C.

Note that, although the coefficient function ¢ — v(x) in the Schrédinger equation (3.18) is real, it is
essential to allow ¥ to be complex-valued so as not to destroy the interference effects characteristic of
quantum mechanics.

In order that a certain energy E belong to the point spectrum of the Hamiltonian H, equation (3.17)
must admit at least one linearly independent square integrable solution ¥ (x), which in particular must
satisfy the boundary conditions’ at =00

lim v (x)=0.
|x|—o00
In most practical problems the latter condition does in fact imply the square integrability of ¥. Simi-
larly, for E to belong to the continuous spectrum of H equation (3.17) must admit at least one linearly
independent solution bounded at infinity but not square integrable, i.e., satisfying

/ W(x)!zdx = 00, W(x)‘ bounded as |x| — oo.

In practice, the first of the latter two conditions can be replaced by either
Jim yr(x) # 0
or

lim ¥ (x) # 0

X—>—00

(or both).

A function defined on the real line is called piecewise continuous if it has a finite number of jump discontinuities, and
piecewise C” if it is piecewise continuous and of class C” in any open interval not containing any discontinuities.
7See footnote 18 on Chapter 2.
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Definition 3.2. The spectrum o (H) of a Hamiltonian H is the union of its point and its continuous
spectrum, respectively denoted by 0, (H ) and o¢(H).

Thus the spectrum of H is made up of all real numbers E such that the time-independent Schrodinger
equation (3.17) has at least one linearly independent solution which is (at least) bounded at +o0.

Remark. Although it is not obvious from the definition, it can be shown that the point and the continuous
spectrum of a self-adjoint operator H are disjoint sets, i.e.,

op(H)Noe(H)=0. |

Before dealing with specific examples, we shall briefly discuss the continuity requirements on the
wave function ¥ (x) (a solution of the time-independent Schrodinger equation) and its first derivative.
Clearly, ¥ and v’ must be continuous in regions on which the potential V' (x) is continuous (indeed, in
these regions ¥ is of class C2 by the standard existence and uniqueness theorems for linear ODEs).

1) If the potential V is piecewise continuous, both the wave function and its derivative must be con-
tinuous at points of discontinuity of V.

Proof. Indeed, since the potential (and hence the function v(x)) is piecewise continuous, it has at most
a finite number of jump discontinuities. If v(x) has a jump discontinuity at a point xg, clearly the wave
function ¥ can have at most a jump discontinuity at this point (since to the right and to the left of x¢ we
can apply the existence and uniqueness theorem for linear second-order ODEs). Restricting ourselves
to an open interval around x¢ not containing any discontinuities of V' (x) other than x¢ we can represent

¥(x) as
V(x) = ¥4+ (x)0(x — xo) + Y—(x)0(x0 — x),

where
0, s <0

9(5)={1 §>0

is Heaviside’s step function®, and ¥ (x) are smooth (C?) functions equal to the restrictions of the wave
function to the regions x > x¢ (in the case of ¥4 ) or x < x¢ (for ¥_). Differentiating with respect to x
we obtain

¥'(x) = ¥4+ (x)'0(x — x0) + ¥—(x)'0(x0 — x) + ¥+ (x)8(x — x0) — ¥—(x)8(x0 — x)
= Y (1) 0(x — X0) + Y- (x)'0(x0 — 1) + (Y4+(0) = Y—(x) )(x = x0)
= Y+ (x)'0(x — x0) + Y—(x)'0(xo — x) + (¢+(X0) - w—(xo))S(x — Xo),
where we have used the identities 8(s) = 8(—s) and
0'(s) = 8(s)

(see next exercise). Differentiating again we obtain
P () = Y (2)0x = x0) + Y- (x)Bx0 = x) + (¥ (¥0) = ¥ (x0) )8 (x — x0)
+ (¥4 (x0) = Y- (x0) )8/ (x = x0) = (6= v() v/ ().

Since the RHS has at most a jump discontinuity at xg, the coefficients of the singular terms 6(x — x¢)
and §'(x — x¢) in the LHS must vanish, i.e.,

Yt (x0) — ¥—(x0) = ¥y (x0) — ¥ (x0) =0,
which establishes the continuity of ¥ and v’ at x. [

8 Although the value of 6(s) at s = 0 is immaterial. it is usually defined as 1/2.
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Remark. Animportant consequence of the previous result is that if the potential is piecewise continuous,
both the probability density and the probability current are continuous.

Exercise 3.1. Show that 6’ (s) = 5(s).

Proof. We must show that

/ ds ¢ ()8’ (s) :/ ds ¢ (s5)8(s)

for all test functions ¢ (s). The right-hand side evaluates to ¢(0). As to the left-hand side, integrating
by parts we obtain

oo

ds ¢(s)0(s) = —/0 ds ¢'(s) = —¢(00) +¢(0) = $(0),

[ wswee=sse0)” -

as was to be proved. ]

2) If the potential V is infinite on the half line (—oo, x¢] or [xg, 0), the wave function must vanish on
this half line.

Proof. Suppose, for instance, that V(x) = 400 for x < x¢. To investigate the behavior of the wave
function at xo, we shall instead take V(x) = Vy for x < x¢ and then let Vj tend to infinity. Since the
boundary condition at xg is only going to be affected by the behavior of the potential in an arbitrarily
small neighborhood of x¢, we can further assume that V' (x) is constant for xg < x < xo + 6 with § > 0.
This constant can be taken equal to zero without loss of generality (it can be absorbed in V and ¢).
It is also clear that the value of x¢ is immaterial for the result (indeed, if 1 (x) solves the Schrodinger
equation for V(x) then ¥ (x — x¢o) solves the Schrodinger equation for V(x — x¢)), so we shall take
xo = 0. We thus have to solve the differential equation

" o (vo — &)Y (x), x<0
v = —e(x), 0<x <, (3.20)

where we have set vg = 2mVy/h2. Since vy is eventually going to tend to infinity, we can assume that
vo > €. Although this is not essential, we shall also take ¢ > 0 (the cases ¢ = 0 and ¢ < 0 are dealt with
similarly). Calling

the solution 1 (x) of the differential equation (3.20) is

ae™ + be ¥, x <0,

Y(x) = csin(yv/ex) +dcos(y/ex), 0<x<S§,

where a, b, ¢, d are complex constants. Since the wave function (both for the point and the continuous
spectrum) must be bounded at x = —o0, the constant b must vanish. Imposing the continuity of ¥ and
Y’ at xo (which is necessary, since V is piecewise continuous) we obtain the equalities

a=d, na = +J/sc.
We thus have

_ ) ’ x <0,
V)= c(sin(\/Ex)—l—‘/TEcos(\/Ex)), 0<x<38.
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Since n — 00 as vg — oo with ¢ fixed, in this limit we obtain

(x) = 0, x <0,
~)esin( Ve x), 0<x<3d.

which vanishes for x < 0 as claimed. Note, however, that in this case ¥’ has a jump discontinuity at
x = 0, since
lim v¥/(x) =0, lim ¥/ (x) = c/e # 0. |
x—>0— x—>0+

The following two general results shall also be useful in the sequel:

3) The eigenfunctions (genuine or formal) of a one-dimensional Hamiltonian H can be taken as real
valued without loss of generality.

Proof. Indeed, if ¢ is a solution of the one-dimensional Schrédinger equation (3.1) so is its complex
conjugate ¥ *. By linearity, the linear combinations

1 1
Rey = (0 +v™).  Imy = (V")

are both real solutions of the Schrodinger equation. Moreover, v is square integrable or bounded if and
only if Re ¢ and Im v are square integrable or bounded. |

4) If ¢ is an eigenfunction of H with eigenvalue E (belonging either to the point or the continuous
spectrum), then
E = min V(x).

Moreover, if i is a genuine eigenfunction (i.e, if £ belongs to the point spectrum), then

E > min V(x).

Proof. Indeed, suppose that i is a (genuine or formal) eigenfunction of H with eigenvalue E satisfying
E < min V(x).

Then  is a solution of the Schrodinger equation

v(x) = (v0) - &) (),
where by hypothesis
v(x)—e>0

for all x. By the third result at the end of the last section, we can assume without loss of generality that
¥ (x) is real. Setting

p(x) = [y (0))? = ¥ (x)?
we then have
P (x) = 29 (x)¥' (),
p'(x) = 2 (Y ()Y (x) + ¥/ (x)?) = 2 (¥ (x)? + (0(x) — )y (x)?) = 0.

Moreover, since v(x) — & > 0 by hypothesis, p”(x¢) = 0 if and only if ¥ (xg) = ¥'(x¢) = 0, which
implies that ¥ (x) is identically zero by the existence and uniqueness theorem for linear second-order
ODEs. Hence p”(x) > 0 for all x, which integrated twice leads to

p(x) > p(xo) + p'(x0)(x — x0) Vx. (3.21)
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We can choose xg such that p’(xg) # 0, since otherwise p’(x) = 0 for all x would imply that p”(x) = 0
for all x, which as seen above is only possible if ¥ vanishes identically. From Eq. (3.21) it then follows
that p = ‘W ‘2 is unbounded at o0, so that ¥ cannot be a (genuine or formal) eigenfunction.

Suppose next that ¢ is a genuine eigenfunction, and thus is square integrable. We then have

1 1
W HY) = EW.9) = 2. P2Y) + (0. V) = o[ Py + @ V@w)
1
— %HPw”z = /dx (E — V(x))‘w(x)‘z.

Since P has no genuine eigenfunctions H Py H # 0, and therefore

2
/dx (E — V) |y ) > 0.
This implies that £ > min V(x), since otherwise
E<minV(x) = /dx (E — V(x))|¢(x)}2 <0. [

Remark. The fact that £ > min V(x) for a bound state energy E is essentially a consequence of the
uncertainty principle. Indeed, if £ = min V(x) = V(xg) then classically x = Xx¢ is an equilibrium
solution, and therefore p = 0. Quantum mechanically, if the particle’s position has an uncertainty Ax
then the uncertainty Ap in the momentum must be at least /(2Ax), and thus the particle’s energy is at
least

Ap? .

Ty + V(x0) > V(x9) = min V(x).

3.4 Potential wells and barriers

3.4.1 The infinite well

In this case the potential is
00, x € (—00,0]U[L,00)

Y= ceo.D).

Classically, this potential describes the motion inside the interval [0, L] of a particle subject to no forces,
the endpoints 0, L being two impenetrable barriers. Thus the particle’s energy is non-negative, and the
two endpoints 0, L are turning points for any energy E = 0. Moreover, since the energy of the particle is
equal to p2/(2m) = mv?/2, the absolute value of the particle’s velocity must be constant. Hence when
the particle hits the endpoints of the interval [0, L] its velocity is instantly reversed.

Let us next analyze the corresponding quantum problem. By the second framed result in the previ-
ous section, the wave function must vanish on the intervals (—oo, 0) and (L, co), and must satisfy the
Schrodinger equation

Vv (x) + ey (x) =0, 0<x<L, (3.22)

inside the interval (0, L) with the boundary conditions
¥(0) =y (L) =0. (3.23)

Equations (3.22)-(3.23) are a very simple instance of what in mathematics is known as a Sturm—Liouville
problem. The type of solutions of Eq. (3.22) depends on the sign of the eigenvalue

2mE
h2

™
Il
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(cf. Eq. (3.19)). Indeed, the general solution of this equation is

acos(y/e x) + bsin( /g x), e>0
Y(x) = ja+bx, e=0
a cosh(y/—¢e x) + b sinh(y/—ex), & <0.

As in the classical case, the energy (i.e., the eigenvalue €) cannot be negative. Indeed, imposing the
boundary conditions (3.23) to the solution with negative ¢ we obtain

a=0, bsinh(v/—¢L) — b =0,

and thus ¥ = 0. Although the energy can be zero classically, the same is not true in the quantum case.
Indeed, imposing again the boundary conditions to the solution for ¢ = 0 we obtain

a=0, bL=0 = b=0 = ¢y =0.

Thus in this case the eigenvalues of H are positive, in agreement with the framed statement 4) on p. 78.
Let us next turn to the positive energy solutions. Imposing the boundary conditions at x = 0, L we
now obtain
a=0, bsin(v/eL) =0 = sin(v/eL)=0

and thus’
ﬁL = nri, n e N

or

h2 2 2h2
_rE_RTR _E., n=102,... (3.24)

E =
2m 2mL2

Thus the energy is quantized, since it can only take the discrete set of values {E1, E»,...}. The corre-
sponding eigenfunctions inside the interval [0, L] are

nmx
) 0<x<L,

Yn(x) = bsin(/ey x) = bsin (T

where the constant b (which can be taken as real and positive without loss of generality) is determined
by normalization:

o0 L 2 L 2
2 5 . o (NTX b 2nmx Lb

dx x)|"=b / sin“ { — )dx = — [l—cos( )]dx:—zl
/oo [¥n) 0 ( L ) 2 Jo L 2

2
— b= >.
L

Hence

2 . /nmx
Vn(x) = \E sin (T) 0<x<L. (3.25)

Remarks.

e Since the functions (3.25) are square integrable they are genuine eigenfunctions, and hence all the
quantized energies E, belong to the point spectrum. In particular, in this case there is no continuous
spectrum. This is not surprising, since in the classical case the motion is bounded for any (nonnegative)
energy.

9Note that the integer n must be positive, since /£ is positive.
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3.4 Potential wells and barriers

o All of the energy levels are non-degenerate. As we shall see in Section (3.5), this is actually a general
property of the bound-state energies of all one-dimensional potentials.

e The n-th eigenfunction v, has exactly n — 1 zeros in the interval (0, L). Indeed:
Yp(x) =0 <— n% =mn me?Z) — x= "L withm =1,...,n—1,
n

where the restriction on m comes from requiring that x € (0, L). In particular, the ground state wave
function ha no zeros in the interval (0, L). We shall see that this is a general property of all one-
dimensional potentials (replacing (0, L) by the open interval in which the potential is finite). In other
words, if we label the energies in the point spectrum of a one-dimensional potential V/(x) in increasing
order as

Ei<Ey<---<E,<---,

then the eigenfunction Vry, with eigenvalue E, has exactly n — 1 zeros.
e In this case the physical wave functions are functions of class C ! on the interval [0, L] vanishing at

the endpoints x = 0, L. (Note that continuity on [0, L] automatically implies square integrability.) By
Dirichlet’s theorem, any such function 1 (x) can be expanded in a Fourier sine series

Y(x) = ]; ay sin (k%) ,

L
ap = %/{; sin (k%x) ¥(x)dx.

The latter equations are nothing but Egs. (3.6)-(3.7), with ¥ given by Eq. (3.25) and ¢ = /L /2 ay.
In fact, it can be shown that the eigenfunctions ¥ in Eq. (3.25) make up an orthonormal basis of
L2([0, L)) (this is essentially a consequence of the Stone—Weierstrass theorem in functional analysis).
It can be proved (using the spectral theorem for self-adjoint operators in functional analysis) that this
is actually a general property of potentials having only point spectrum.

with

e When the quantum number 7 is very large the eigenfunction v, is wildly oscillatory, as is the corre-
sponding probability density p, (x) = ¥, (x)?. In this case we can effectively replace p, (x) at a point
x € (0, L) by its average over an interval centered at x of length equal to one period L/n of py:

L L
2 X455 X+75

n . o (NTS _n 2nms 1
pn(x)—>zz ek sin (T)ds_ﬁ - |:1—cos( 7 )}ds——.

In other words, as n — oo the probability density becomes approximately uniform, as in the classical
case. This is yet another example of Bohr’s correspondence principle.

3.4.2 The square well potential: bound states

Consider now the square well potential

_V L/2
V(x) = 0. <L/ (3.26)

where 1y > 0 is the “depth” of the well (cf. Fig. 3.1). Since the potential is an even function of x, if
¥ (x) is an eigenfunction so are ¥ (—x) and (by linearity) the two linear combinations

Vo) = S GO+ Y. Yol = 5 (F(0) — Y(-x)),
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which are respectively even and odd functions of x. Thus without loss of generality we can look for
eigenfunctions of a definite parity (i.e., even or odd). This argument is obviously valid for any even
potential V(x).

From the fourth result at the end of the last Section, we know that the spectrum of H is contained in
the set [—Vp, 00), i.e., E = —Vj. We shall focus our attention on energies in the range

Vo< E <0,

which in classical mechanics corresponds to bounded motion (see Section 3.4.4 for the case £ > 0). In
the interval [L /2, c0) we must have

Y(x) = —ey(x) = )=, ni=J—e=|g] >0, (3.27)

where we have discarded the exponentially increasing solution e”* (since it blows up as x — 00) and
without loss of generality have set the arbitrary constant multiplying the decreasing exponential equal
to one (indeed, we shall normalize the eigenfunctions later on). Since v (x) is exponentially decreasing
as x — oo and is either even or odd, it is also exponentially decreasing as x — —oo, and hence is
normalizable. Thus E belongs to the point spectrum, and therefore (by the third result at the end of the
last section) £ > min V(x) = —V}, or equivalently

2mVy
&> — 22 = Vo
Likewise, in the interval [0, L /2] we have
V' (x) = —(vo + &)Y (x) = ¥(x)=acos(kx)+ bsin(kx), (3.28)

where a and b are complex constants and we have set

k = /vg— |g| > 0.

Since the potential is piecewise continuous, we must impose the continuity of ¥ and ¥’ at x = L/2,
obtaining the linear system

acos(kL/2) + bsin(kL/2) = e /2, k(— asin(kL/2) + b cos(kL/Z)) = —ne "2 (3.29)

Vi(x)

-L/2 L

) PR N | I .

-V

Figure 3.1. Square well potential of depth V and width L. The blue lines represent the five bound state
energies in the case VoL? = 9842 /m, listed in Eq (3.38).
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3.4 Potential wells and barriers
If v is an even eigenfunction then 1 (x) = ¥ (—x) for x < 0. Thus ¥ is automatically continuous at the
origin, but the continuity of ¥’ at x = 0 implies that ¥'(0) = 0, i.e.,
b =0.
Thus for even eigenfunctions conditions (3.29) reduce to
acos(kL/2) = e /2, kasin(kL/2) = ne /2. (3.30)

Eliminating a we get the eigenvalue equation

L
ktan(kL/2) =n <= |+/vo—|e/tan (— Vvo — |8|) = || (even eigenfunctions),

condeven

2
(3.31)
which is a transcendental equation for the eigenvalue €. We shall see below that this equation has a finite
number (depending on L and Vj) of solutions that we shall denote by'?

o <& < &gy < vv

The eigenfunction ,, corresponding to the eigenvalue €5, is the even extension of the function ¥ (x)
in Egs. (3.28)-(3.27), namely

—nopL/2
c:s(k;L/z_) cos(k2nx), x| < L/2

3.32
e M2nlxl x| = L/2, (5-32)

Van(x) = Nay {

where k,, and 75, are obtained from k and 7 replacing € by &35, and N, > 0 is a constant determined
imposing that HW” =1:

N273=/ dxlr/fzn(x>}2=2f0 dx 120 (x)|”

2e_n2l’lL L/2 5 o0 27) x
= k d 2 TeMnX g
o2 (anl/2) Jo cos“(kapx)dx + /L/Ze x

— L n%n Liz e_nan
— e~ M2n 1+ =2 (1 + cos(2k2nx)) dx +
k2n 0 Tan

. (L sin(anL)) n e Mnl
=e Pt = .
k%n 2 2k2n 7’2n

Noting that

2tan(kL/2)  2n/k  2nk 2nk

in(kL) = 2tan(kL/2) cos?(kL/2) = = = -
sin(kL) tan(k L /2) cos”(kL/2) 1 + tan2(kL/2) 1+Z_§ k2 + n? Vo

’

we finally obtain

L 1 L 2 —+ k2 —n2nL L
N;2 = el # + '7% 4+~ | =l ”20 4 2n Ton ) e 2v0 (1 n 772n) ’
2k, k3, N2n 2k5, N2nk3, N2nks, 2

and therefore

L —-1/2
N2n = nﬂ kzneWZnL/z (1 4 772n) )

101p this problem it is convenient to number the eigenvalues and eigenfunctions of H starting with 0 instead of 1.
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Similarly, for odd eigenfunctions the appropriate condition ensuring that both v and ¥’ are continuous
at the origin is that ¥ (0) = 0 (indeed, if ¥ (—x) = —¥(x) and ¥ is continuous at the origin then
automatically v is continuous at the origin). Imposing this requirement we obtain a = 0, and therefore
conditions (3.29) now reduces to

bsin(kL/2) = "2 kbcos(kL/2) = —ne /2,

from which we obtain the eigenvalue equation

L
kcot(kL/2) =—n <<= |+/vo— |g|cot (E Vo — |8|) = —lé¢| (odd eigenfunctions) .
(3.33) |eigvodd

Again, we shall show that this equation has a finite number of solutions that we shall denote by
€1 <&€3- < &p41 < --- .

The eigenfunction 5,41 corresponding to the eigenvalue €;,; is the odd extension of the function
¥ (x) in Egs. (3.28)-(3.27), namely

e M2n+1L/2

= sin(k x), x| <L/2
Yan41(x) = Napyq { Snk20+1L/2) L) ol / (3.34)

e M2n+1xl gon x| |x| = L/2,

where k>, +1 and 12,41 are obtained from k and 7 replacing € by €25,41, and Nap4+1 > 0 is a constant
determined imposing that H v H = 1. Proceeding as before we obtain

I ~1/2
Non+1 =/ 772:0+1 kony1e™rti L2 (1 + —7722n+1) :

The eigenvalue equations (3.31)-(3.33) can be somewhat simplified noting that

—-1/2 2 —-1/2
2 U k . .
!cos(kL/2)| = (1 + tan (kL/2)) = (1 + k_z) = 12 (even eigenfunctions),
Yo
-1/2 2\ "1/2 k
‘ sin(kL/2)| = (1 + cotz(kL/Z)) = (1 + Z_Z) = 1z (odd eigenfunctions)
Yo

Since tan(k L /2) must be positive (resp. negative) if Eq. (3.31) (resp. (3.33)) is satisfied, Egs. (3.31)-
(3.33) are equivalent to the following:

1/2
Yo

(3.35) |eigvssqwell

From the latter equations it immediately follows that the odd eigenvalues are intertwined with the even
ones, i.e., that

k | cos(kL/ 2)|, tan(kL/2) > 0 (even eigenfunctions)
|sin(kL/2)|, tan(kL/2) <0  (odd eigenfunctions).

o <é&1 < <&y <&p41 <.

In order to get a better intuitive understanding the eigenvalue equation (3.35), it is convenient to
introduce the dimensionless quantities

kL Lvé/2
K = 9 uO = b
2 2
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1'0 ------ N7 P I ] " - -I

08| : : : : :

06| : : : : :

0af : : : : :

02} : : : : :
n 3n 5n k=kL/2
= n — 2r —
2 2 2

Figure 3.2. Eigenvalues of the square well potential (3.26) with ug = 7 (i.e., VoL? = 98%2/m). The
red (resp. blue) curve is the graph of the function y = cosk (resp. y = sink) in the region
tank > O (resp. tank < 0), while the green line is the straight line y = x/uo = /7. The
abscissas of the red (resp. blue) points are the values of k3, with n = 0, 1,2 (resp. k2,41
withn =0, 1).

in terms of which Eq. (3.35) is simply

K ‘ COS K {, tank > 0 (even eigenfunctions)
- = (3.36)
Uo ‘ sin K }, tank < 0 (odd eigenfunctions).

The physical energies E; can be computed from the roots k; of the latter equation taking into account
that

K2 2 2h2
Ey=——|en| = %(—UO + kyzl) = _m(ug _KI%)' (3.37)

Note that all of these energies verify the condition —Vy < E, < 0, since from Egs. (3.36) it follows that
0 < ky < up.

The roots k5, of the eigenvalue equation (3.35) are the abscissas of the intersection points of the
straight line y = «/ug with the curves y = |cosk| (in the regions where tank > 0, i.e., the inter-
vals (mrc, 7+ mn) withm = 0,1,...) or y = |sink| (in the regions where tanx < 0, i.e., the intervals
(% + mm, (m + l)n) withm = 0, 1,...). For example, for ug = 7, or equivalently

h2vg ZhZu% h2
Vo = = = 98—
2m mL?2 mL?2

there are exactly five such points, three corresponding to even eigenfunctions and the rest to odd ones
(see Fig. 3.2). Their abscissas can be computed by numerically solving the eigenvalue Eq. (3.36), namely

ko = 1.37333, k1 =2.73949, K, =4.08863, k3 =5.40172, k4 = 6.61597,
with corresponding energies (in units of 42 /(mL?))

Eo =-94.228, E; =-82.9904, E; = —64.5662, FE3 = —39.6429, FE4; = —10.458.
(3.38)

The associated eigenfunctions, which can be readily computed using the above values of «,, and Egs. (3.32)-

(3.34), are plotted in Fig. 3.3.

In general, it is apparent from Fig. 3.2 that for any value of ug > O there is a finite number of solutions
of the eigenvalue equation (3.36), and that (as stated above) the eigenvalues corresponding to even and
odd eigenfunction alternate. It is also clear from this figure that for uo sufficiently small there is only
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VL/2¢(x) VL/2¢(x)
10} 10t

—
. : 2x/L s ; , . 2x/L
-15 . . 15 1.0 0.5 0. 1.0 15
— Yo b5l
— ¥
—10F — Ya -10F

Figure 3.3. Even (left) and odd (right) eigenfunctions of the square well potential (3.26) with ug = 7
(i.e., VoL? = 98K2%/m).

one solution of the eigenvalue equation, until the line y = k/u¢ intersects the vertical line x = 7/2 at
height y = 1, i.e, for

Thus, for

T
O<u0$5

the eigenvalue equation has exactly one solution. Likewise, for

T
5<ug$n

a second solution of the eigenvalue equation appears, and so on. In general, when
T nmw

n—1—<ug < —

(n—=1)7 5

the eigenvalue equation has exactly n solutions. Thus the number of eigenvalues, i.e., of allowed bound

state energies, is equal to
2Ug 2m \\/?
{TW = Rm) ACEE

where [x] is the smallest integer greater than or equal to x.

Remarks.

e All the bound state energies are non-degenerate. In other words, for each bound state energy there
is only one linearly independent eigenfunction. As mentioned above, this is a feature shared by all
one-dimensional potentials.

e Each eigenfunction v has exactly k zeros. Again, according to a standard result in the theory of
Sturm—Liouville problems this happens to be true for all one-dimensional potentials.

Indeed, consider first an even eigenfunction vr,,. The zeros of V¥, inside the interval [0, L /2) are the
numbers x,, = (L/2)&,,, with &, € [0, 1) satisfying

il
’

cos(koném) =0 — &,=0C2m+1) m=0,1,..., Mmax.
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From Fig. 3.2 it is apparent that'!

Kon € (nn, 2n + l)g) ,

2m+1 2m+1
Em € .

and thus

2n+1" 2n

Since & must belong to the interval [0, 1), the maximum value of m is mmx = n — 1. Thus ¥p,
has exactly n nonzero roots in the interval [0, L/2), and (being an even function) 2n roots in the
interval (—L /2, L /2). On the other hand, ¥», cannot vanish for |x| = L/2, as it is proportional to an
exponential function on this region. It follows that the total number of roots of yr», is 2n, as claimed.

Similarly, if ¥2,+1 is an odd eigenfunction its zeros on the interval [0, L/2) are the numbers x,, =
(L/2)&y, with &, € [0, 1) satisfying

mT

Sin(KZném) = O — Em = m = 01 la c ooy Mmax.

9
K2n

Looking at Fig. (3.2) it is clear that now

L
Kon+1 € ((21’1 + 1)5, (n+ 1)]‘[) ,

£, m 2m
" n+12n+1)°

whence it follows that my,x = n. Thus the number of roots of 5,41 inside the interval [0, L/2)
isn + 1. Since Y241 is 0odd, it has exactly 2n + 1 roots in the interval (—L/2, L/2), which again
proves our claim (since there are no roots in the half lines (—oo, —L /2] U [L/2, o0)).

and therefore

e Classically, a particle with energy E € [V}, 0) is not allowed to move outside the interval [—L /2, L /2],

where its kinetic energy would become negative. Quantum mechanically, it is clear from Egs. (3.32)-
(3.34) that there is a small but non-zero probability that the particle can be found outside the classically
allowed interval [—L /2, L /2]. In other words, in quantum mechanics there is a non-vanishing proba-
bility that a particle can penetrate (“tunnel”) into a classically forbidden region. As we shall see in
the sequel, this fact has far reaching consequences. |

Exercise 3.2. Compute the probability p, of finding the particle outside the classically allowed region
[-L/2, L/2] when it is in the bound state v, of the square well potential (3.26).

Solution. The probability p, is given by

%) o) N2 k2 L -1
Pn = 2/ }lﬂn(x)}zdx = 2N,%/ e 2Mm¥ dx = e ml = "n (1 + 77n) )
L2 L/2 Nn Vo 2

This expression can be simplified by noting that
k2«2 2
— — — _ 2 = = 2 _ 2
% —u%, Mn = Vlen| = y/vo kn—L‘/uo K7,

Ka /g

pn = — =
1+ ,/u%—lc,%

and therefore

(3.39)

Note that k = I7t/2 with [ an integer is not a solution of the eigenvalue equation (3.36), since tan(/7t/2) is either zero or
Fo0.
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This probability clearly increases with «, (i.e., with the particle’s energy), as expected. For example,
in the case ug = 7 discussed above we have

po = 0.00489452, p; = 0.0205813, p = 0.0510581, p3 =0.10922, ps = 0.271788.

We thus see that when the particle is in the bound state with highest energy the tunneling probability
is greater than 27% !

In fact, from Eq. (3.39) and Fig. 3.2 it is apparent that p, can be very close to one when ug is
slightly greater than an integer multiple of 1t/2 and the quantum number 7 is the highest possible
(corresponding to the highest bound state energy), since in that case k, < ug. By Eq. (3.37), this is the
case when the highest excited state has an energy < 0. For instance, for

ug = 21 + 1073 ~ 6.28419

there are 5 bound states, and ps = 0.993773. In other words, in this case the probability of finding the
particle outside the classically allowed region when it is in the highest energy bound state is greater
than 99%. (The highest excited energy is in this case £4 ~ 7.84895 - 10~ in units of #2/(mL?), or
less than 10~ the depth of the potential well.) On the other hand, for

up = 2m — 1073 ~ 6.28219

there are 4 bound states and p3 = 0.160854.

3.4.3 Potential step. Reflection and transmission coefficients

Consider next the potential

0, x <0

V(x) = Vb(x) = 7 (3.40)
0

x>0

with Vp > 0, plotted in Fig. 3.4. Classically, the motion is unbounded to the left for 0 < E < Vj, and
unbounded in both directions for E > Vy. For E = 0 (resp. E = V)) all the points on the negative
(resp. positive) x axis are equilibria. More precisely, for 0 < E < Vj the particle comes from —oo with
constant velocity and is reflected by the potential barrier when it reaches the origin, changing the sign of
its velocity and moving back towards —oco. On the other hand, for E > Vj the particle comes from —oo
(resp. +00) with constant velocity, which suddenly decreases (resp. increases) as it passes through the
origin, and keeps moving in the same direction.
Let us analyze next the quantum mechanical problem.

Vi(x)

Vo

Figure 3.4. Potential step of height V.
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) E>V

Consider first the case in which the energy of the particle is greater than V. For x < 0 the Schrodinger
equation reads

Y (x) + kY (x) =0,  ki:=+e>0 (x <0),

and thus
V(x) = aje®* 4 prekix, x <0,

where a1 and b; are two complex constants. Similarly, for x = 0 the Schriodinger equation reduces to

V(X)) + kY (x) =0,  kyi=Je—vg>0 (x = 0),

and thus
Y (x) = aze®* 4 bpe7 ¥, x>0,

with as, by € C. Imposing the continuity of the wave function and its derivative at the origin we arrive
at the system
ai+by =ax+bz,  ki(ar —b1) = ka(az — ba).

This is a linear homogeneous system in the four unknowns a1, b1, as, by, whose coefficient matrix

1 1 -1 -1
(kl —k1 —k2 kz)
has obviously rank 2. Thus the space of solutions of the system is a linear space of dimension 2. In other
words, for each energy E > V) there are two linearly independent eigenfunctions, which are bounded
but nor normalizable. This shows that the half line (Vj, o) belongs to the continuous spectrum, and that
each energy in this range is twice degenerate.

For each energy E > V), the corresponding eigenfunctions are not normalizable and thus represent
scattering states. In fact, the two linearly independent solutions for each energy E > V{ can be chosen
to describe either the scattering of the particle coming from the right (+00) or from the left (—o0). Let
us study in detail, for instance, the scattering of the particle coming from —oo, i.e., moving from left to
right with positive momentum p = hk;. We must then choose the solutions with b, = 0, so that the
particle moves with momentum p, = hk, after going through the origin. In other words, we have

aleik]x_"_ble—ik].x’ xso
yo={"
are2x x =0,
where the coefficients ay, as, by verify the linear system
ai + by =a, ki(ar —b1) = kaas. (3.41)

Although classically the particle only reduces its velocity when it goes past the origin, quantum mechan-
ically there is a certain probability that the particle be reflected by the potential step. This is due to the
presence of the term ble__ik 1* in the wave function for x < 0, which indeed is (when multiplied by the
time-dependent factor e wEly g plane wave moving to the left with momentum —#k,. The probability
currents of the incident wave Vr; = aleik X the transmitted wave ¥y = azeik”‘ and the reflected wave
Yr = bie kiX gre respectively given by

ji = la1*—, jr = laa?—, jr = —|b1)*—.

Physically, these currents are respectively proportional to the incoming, transmitted and reflected particle
fluxes, where the minus sign in the expression for j, simply takes into account that the reflected flux is
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moving to the left (negative x direction). Accordingly, the probability that the particle be transmitted or
reflected by the potential step is respectively given by

_ it _kala)? R:_j_r:|bl|2
Ji kilar]? Ji  lal?

These are respectively called the transmission and reflection coefficients, and are easily computed from
equations (3.41). Indeed, we have

b —kl_kza a, = 2k a
"kt ke U 2T kit ko
and therefore
. 4k1k2 R = (kl_k2)2
(k1 + k)2’ - \ki + k2

In particular, note that R + 7" = 1, as it should.

mMo<E<VW

The only difference with the previous case is that in the half line x = 0 the solutions of the Schrédinger
equation are linear combinations of real exponentials e*"* | with

n = 4/vo—¢e>0.
Only the negative exponential is physically acceptable in this region, and hence
Y(x) = (ay + by)e™ ", x =0,

where we have imposed the continuity of ¥ at the origin to determine the coefficient in front of the
exponential. Thus in this case there is no transmitted wave. Imposing now the continuity of ¥’ at the
origin we obtain the relation

n+iky ki —in
a1 =

iki(a; —by) = — +b) — bh=—1-a= ~
11(611 1) 77(611 1) 1 —r)—l—lkl ! k1+”’a1

Setting for simplicity, without loss of generality, a; = 1 we thus have

eik1x + ]’;1_{—_11;)] e—iklx’ x<0
V=9 5 S _ (3.42)
m € , X = 0.

Thus there is a single formal (bounded but not normalizable) eigenfunction for each energy E in the
interval (0, V). Hence the latter interval belongs to the continuous spectrum of H, and each of these
energies is non-degenerate. Furthermore, the reflection coefficient is now

R=1bh|>=1.

In other words, in this case the incoming wave is totally reflected by the potential, as in the classical
problem.

Remark. In the region x < 0 the wave function can be written as

w(x) — eiklx + e—ik1x—2i(p(k1)’ x < O,
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with

1/1)()—]{%

@(ky) = arg(kq + in) = arctan i arctan
ki k1

In other words, there is a phase shift 2¢ (k1) between the reflected and the incident waves. This suggests
that before being reflected by the potential at x = 0 the particle spends some time inside the classically
forbidden region x > 0. It can be shown (cf. [CDL20, Complement Ji]) that this is indeed the case by
studying the time evolution of a wave packet built out of eigenfunctions of the form (3.42), namely

lII(X,t) — 9(—)6)[ dkg(k) (elkx + e—1(kx+2(o(k))) e—lw(k)t

2k k . ' hk?
T )/ g( ) = /V0—k2 x—ig (k) g—iw ()t (k) = s (3.43)

with |g (k)| sharply peaked at a wave vector kg € (0, /vg ).

Exercise 3.3. Deduce Eq. (3.43).

Solution. We can more concisely write down Eq. (3.42) for the eigenfunction ¥ (x) of energy

hZe B hzkf
2m  2m

E = =hoky) <V

as follows:

. 2k12(k1) — [ 52 s
U(x) = 0(— x)( x| 1(k1x+2(p(k1))) +9(x)%e Yok} x—ig (k)

where we have taken into account that
ki +in = k1 + in|ei(o(k1) — (k% + n2)1/2ei<p(k1) — \/v—oeiw(/ﬂ)_
Since ¥ (x) = ¥(x, 0) is a stationary state of energy £ = hw(k1), its time evolution is given by

W(x, 1) = Y(x)e #EL = y(x)emioknr

— 0(—x) (eiklx n e—i(k1x+2<p(k1))) okl | g(y) 2k18(K1) —Jvo—k? x~ip(k1) ~iw(kr)t
NAT

To form a wave packet out of these functions, we multiply by an amplitude g(k;) and integrate over
kq from O (corresponding to £ = 0) to ,/vg (corresponding to ¢ = vy, i.e., E = Vp). In this way
(replacing the dummy integration variable k1 by k) Eq. (3.43) is obtained.

Exercise 3.4. Determine whether £ = 0 and £ = V) belong to the spectrum of the Hamiltonian of
the step potential (3.40).

Solution. For E = 0, the Schrodinger equation reads

x <0

Y (x) =

V0, x>0
The general solution of the Schrédinger equation for negative x is therefore

Y(x) =ax + b, x <0,
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with a and b complex constants. However, for 1 to be bounded as x — —oo we must take b = 0.
Similarly, for x > 0 the general solution of the Schrédinger equation is

Y(x) = ce VX 4 g eVU0x x =0,

although we must take d = 0 for ¥ to be bounded as x — oo and ¢ = a for ¥ to be continuous at the
origin. In other words, we have

a,
V)= ae VX,

e

However, requesting that v/’ be continuous at the origin we obtain
0=—Vvya =— a=0 = Y(kx)=0 VxeR.

Since there are no bounded nonzero solutions of the Schrédinger equation with £ = 0, we conclude
that £ = 0 does not belong to the spectrum of H .
Likewise, solving the Schrodinger equation with E = V), i.e.,

—vo¥r(x), x <0

v (x)zgo, x>0,

we obtain
a cos(4/vg x) + b sin(/vg x), x <0,

V) = cx +d, x = 0.

For ¥ (x) to be bounded as x — oo we must have ¢ = 0, while the continuity of ¥ and ¥ at x = 0
leads to the equations
a=d, bJvgy=0 <— b=0.

Thus the only bounded solutions of the Schrodinger equation with E = Vj are the functions

a cos (/v x), x <0,
a >

’

v(x) = {

for arbitrary @ € C. Since ¥ (x) is bounded but not square integrable, we conclude that £ = Vj
belongs to the continuous spectrum of H, and is in fact a non-degenerate formal eigenvalue (indeed,
all the solutions found above are proportional to the one with ¢ = 1). Note that in this case we have

V() = SV 4 eV,
and hence the reflection and transmission coefficient are
R=1, T =0.

However, even if there is no transmitted wave (since 7" = 0) there is a uniform probability density of
finding the particle to the right of the origin.

3.4.4 Potential barrier. Tunnel effect

Consider, finally, the potential barrier

o, 0 < L,
Vixy=1"° =X (3.44)
0, x<0or x>1L
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3.4 Potential wells and barriers

Vi(x)

Vo

Figure 3.5. Potential barrier of height V and width L.

with Vg > 0, plotted in Fig. 3.5. Classically, the motion is unbounded to the left (x < 0) or right (x = L)
for 0 < E < Vj, and unbounded in both directions for £ > Vj. For E = 0 all the points in the intervals
(—00,0] U [L, x] are equilibria, while for E = Vj the segment [0, L] is made up of equilibria and the
motion is unbounded to the left (resp. right) if x(0) < 0 (resp. x(0) > L). Moreover, for0 < E < Vj
the interval (0, L) is classically forbidden.

1) E > Vj: resonances

Quantum mechanically, when E > V} the general solution of the Schrodinger equation is given by

aleik‘x—i—ble_ik‘x, x<0
Y (x) = 1 azelk2* 4 pre=ikex, 0<x<L
aszelk1 + pyeikix x=1L,

with

k1=\/g>0, k2=./8—vo>0.
There are 6 unknown coefficients a;, b; (withi = 1,2, 3) subject to 4 conditions (continuity of both v
and ¥’ at x = 0, L), so that it is to be expected that there are two linearly independent eigenfunctions for
each energy E > V. This is indeed the case, since the matching conditions at x = 0, L can be written
as

A-(a1.b1,a2.b3,a3,b3)" =0, (3.45)
with
11 ~1 ~1 0 0
ki —ki  —ka k2 0 0
A= 0 0 eik2L e—ikaL _ekiL _e—ikiL (3.46)

0 0 kzeikzL _kze—ikzL _kleile kle—ile

clearly of rank 4. Moreover, for each energy £ > V) the two linearly independent eigenfunctions with
energy E are obviously formal (bounded but not normalizable), since they are oscillatory for x — Fo0.
Thus the half line (Vp, 0o) belongs to the continuous spectrum of the potential (3.44).

As in the previous potential, the two linearly independent eigenfunctions of each energy £ > Vj can
be chosen to describe the scattering of the particle by the potential, either from left to right or from right
to left. Let us study, for instance, the former problem, for which we must choose b3 = 0 as there is no
reflection at x = L. Solving Eqs. (3.45)-(3.46), after a straightforward calculation we readily find

eilea3 lellea3

2k1k, 2k1ky
(see next exercise). In this case the incident, reflected and transmitted waves have all wave number k7.
The corresponding probability currents are thus given by

> hk , hk > hk
= |a1 2=, = —|by] —1 Jo = las? =,
m m

a; = (2k1ka cos(kaL) —i(kT + k3) sin(kaL)), b1 = ———— (k3 —k7)sin(k2L). (3.47)
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04r

02§

- - - - EJV,
2 3 4 5/O

Figure 3.6. Transmission coefficient T as a function of r = E/V, for a potential barrier with voL? =

g.T.barrier 30.

so that
R _dr _ il _ (k3 — k})?sin®(ka L) _ (B —k}Psin’(koL)

Ji e 4kikG cos? (ko L) + (kf + k3)?sin® (ko L) 4kTk3 + (kT — k3)? sin® (k2 L)
T = J_t _ |Cl3|2 . 4k%k§ 4k%k§

Jji a1 T k2kZ cos2(kaL) + (K2 + k2)2sin2(koL)  4k2K2 + (k2 — k2)2 sin(kaL)’

Using the explicit values of k1 and k» we arrive at the expressions

R vg sinz(La/e—vo)
B 4e(e —vo) + v} sinz(L e — vo)’

3.48 RTpotbar

R a4

 de(e —vo) + v3sin?(L/e—vg)

In particular, as expected R + T = 1. It is also clear that R and 7" depend only on the relative energy
r:=¢/vg = E/Vp > 1 and the dimensionless parameter A := voL? = 2mVyL?/h?. Indeed,

T — 4r(r — 1)
4r(r—1) + sinz(\/)&(r -1 )
and similarly for R. For fixed values of vy and L, we have

L2\"!
lim T=(1+U04 ) , lim T = 1.

e—=>vo+ £—>00

In fact, for fixed V and L the transmission coefficient T reaches its maximum value 7;,.x = 1 when
n?n?
L/e—vg=nn << e=v9+ 72 n=12,....

For these energies all the incident flux is transmitted, and hence there is no reflection. In other words, at
these resonant energies the potential barrier becomes perfectly transparent. This phenomenon, which is
called resonance, has important practical applications.

Remark. Nowhere in the previous calculation we have used the fact that Vj is positive. Hence the latter
analysis is valid for £ > 0 in the square well potential (3.26) if we replace Vy by — V. In other words,
the transmission and reflection coefficients of the latter potential for £ > 0 are given by

T 4e(e + vo)
 4e(e + vo) + v3sin(Ly/z T vg)

R=1-T. |
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Exercise 3.5. Prove Eqgs. (3.47).
Solution. We first solve the last two Egs. (3.45)-(3.46) with b3 = 0, namely

eikzL —ikszz — eik]L eikzLa2 _ e—iksz2 — lﬂeilea

2

ar +¢€ as,

’

for a» and by, obtaining
1 i~k ki L iy vk ki
= 1+ —)as,  by=ze®rTkdl (1 _—
a 26 == ks as b 26 = as
From the first two Eqgs. (3.45)-(3.46) we have

k
ai + by =az + by, al—blzk—z(az—bz)
1
and hence

1 k 1 k 1 k
1=—(a2+b2)+—2(a2—b2)=E(l—f-k—z)az—f——(l——z)bz

2 k1

_ Litki—kyr (k1 +k2)? as - Leita+eyr k1= k2)2a3

4 k1ko 4 kiko

. k% +
=ekilg, (cos(kzL) — i kiks ) n(kzL)) ,

1 kz 1 kz 1 k2
— = 2 gy " (1

b = (a2 +ba) = 52 (a2 —b2) = 5 ( kl)az s ( T kl)b
2 2 2 2

_ Ltk ki — k2a3 _ LitathaL ki —k3 a5

4 ki1ko 4 kika

ik L

ie®1-qgs .

= T (k2 k%) sin(kp L).

i) £ < Vp: tunnel effect

The only difference with the previous case is that the wave function in the interval [0, L] is a linear
combination of real exponentials:

Y(x) = aze™ "™ + bye, 0<x<L,

with

n=.vg—¢e>0.
Note that we cannot drop the “positive” exponential e”*, since the interval [0, L] is bounded. Hence we
can use the equations (3.47) with k, = in, namely

eik]La3 s . lelle )
ap = T (2kincosh(nL) —i(ky — n*)sinh(nL)), by = —T(U + k1) sinh(nL).
The transmission and reflection coefficients are therefore given by
b1 |? (7% + k?)? sinh?(nL) (7% + k?)? sinh?(yL)
_ _ 1 _ 1
@12~ 432 cosh® (ko L) + (2 — k)2 sinb®(nL) — 4k + v3 sinh>(1L)
jas? 4k 4kin®

"~ a1 4en?cosh®(kaL) + (n? — k?)2 sinh?(nL) B 4k2n2 + v3sinh*(nL)’
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or more explicitly

T — 4e(vg — &)
4e(vo — €) + v sinh? (L /vg — 8)’

R=1-T (3.49)

As before, T depends on ¢, vy and L through the dimensionless quantities

2mVyL?
h2

E
r=i=—<1, A=U0L2=
Vo 0

namely
4r(1—r)

r= 4r(1 —r) +sinh?(y/A(1 = 1))

The previous result is completely at odds with the classical behavior of a particle with energy in the
range 0 < E < Vj. Indeed, in classical mechanics the particle is confined to the half line [0, co) (if
x(0) < 0)or[L,o0) (if x(0) > L), since it cannot enter the interval (0, L) where it would have negative
kinetic energy. Thus, classically the transmission coefficient vanishes. On the other hand, we have just
seen that in quantum mechanics the transmission coefficient, given by Eq. (3.49), is strictly positive. In
other words, there is a non-vanishing probability (equal to 7") that the particle coming from —oo will
tunnel through the classically forbidden interval (0, L) and emerge in the region x > L. This is the
so called tunnel effect, which has wide ranging technological applications (inversion of the ammonia
molecule, tunnel diode, Josephson effect, & decay of nuclei, etc.).

The tunneling probability depends essentially on A(1 — r) = L?(vg — ¢). Indeed,

-1

1- -1 212

M(l-n<K1l = T—1:1+u - T 1+i — (142 ,
4r(l1 —r) 4r

1 —
Mi-n>»1 = T:16r(1—r)e—2vl<1—r>:—6‘9(”‘; &) 2L /e
Yo

Thus T can be very large when A = voL? is small and r < 1 (i.e., ¢ < vg), and is exponentially small
when A(1 — r) is large (essentially, when voL? is large and ¢ is not too close to vg). In general, it can be
shown that 7 increases with r for A fixed, from 7 = 0 for r — 0+ to its maximum value

fim 7= (142 - 1+ vl
im 7T = = =
r—>1— 4 4

3.5 The spectrum of general one-dimensional potentials

-1

In this section we shall briefly discuss the nature of the spectrum of a general (piecewise continuous)
potential V' (x). We shall assume (as is always the case in practice, with the only exception of periodic
potentials) that V(x) is a monotonic function for both x — —oo and x — co. Hence there exist the two
limits

Vi:= lim V(x)

x—Foo

(finite or possibly infinite). We shall accept without proof the following results (see [Mes99, pp. 101—
105]):

D If
E>V+
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(which can only happen if V is finite), the real solutions of the Schrodinger equation

Y (x) + (e —v(x)¥(x) = 0

remain bounded as x — oo and oscillate between two opposite values. If, moreover,
lim x(v(x) —v4) =0
Jim (v(x) —v4)

(i.e., if v(x) — vy = 2mV4 /h? faster than 1/x) then as x — oo the general solution of the
Schrédinger equation behaves as

Y (x) ~ aek+X 4 pe kX ky = Je—vy.

with a and b complex constants.
Iy 12
E < V+,

for a sufficiently large x¢ € R there is a positive constant 1 such that
v(x)—e=n? >0, Vx > Xop.

(Indeed, if V(x) is decreasing for x > xo we can take n = ,/vy — &, while when V(x) is
increasing 7 can be any positive number strictly less than /vy — ¢ in particular, 7 can be any
positive real number if V4 = o0.) Then there exists a nonzero (real) solution 4 (x) of the
Schrodinger equation such that ¥4 (x) — 0 as x — oo at least as fast as e~7*. In other words,

|4 (0)| < ae™™

for some constant ¢ > 0 as x — oo. All other real solutions ¢ (x) linearly independent from
W4 (x) tend to 0o as x — oo at least as fast as e”*. In other words, if ¢ is any solution of
Schrodinger’s equation with energy E linearly independent from 1 we have

p(x)| = be™

for some constant b > 0 as x — oo.

Totally analogous results hold for the behavior of the solutions of the Schrodinger equation for x —
—00. |

With the help of the previous results, it is straightforward to describe the spectrum of any potential
satisfying the above assumptions. We shall further suppose that the potential is bounded from below, i.e.,
that there is a constant Vy € R such that

V(ix) = W, Vx e R.

Potentials that do not satisfy this condition are physically unacceptable, since (as we shall see below)
they admit arbitrarily low eigenvalues and are therefore unstable (there is no ground state of minimum
energy, and hence the particle can lose an arbitrarily large amount of energy by transitioning from one
eigenstate to any other of lower energy). We shall also assume for definiteness that, as depicted in
Fig. 3.7,

| 7

(the case V4 < V_ is similar). We then have:

12This case corresponds to the exponential type solutions in square well potentials.
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Figure 3.7. One dimensional potential with —oco < min V(x) < V_ < V4 < oo. The red and green

1y

2)

3)

vertical lines respectively indicate the twice degenerate and the non-degenerate continuous
spectrum. The point spectrum is contained in the dashed blue vertical segment.

E > V+

This case is only possible if V. is finite. Since V1 = V_ by hypothesis, then also £ > V_. Accord-
ing to result I) above, in this case all the solutions of the Schrédinger equation are oscillating, and
therefore bounded but not normalizable, both as x — —oo and as x — oco. Hence E belongs to the
continuous spectrum and is twice degenerate.

Vo< E < V4t

This case can only arise if V4 > V_. By result II) above, the only linearly independent solution
of the Schrodinger equation bounded as x — oo is ¥4 (x). However, by result I) this solution (as
any other solution) is oscillatory as x — —o0, and therefore bounded but not normalizable. Hence
for this energy there is only one linearly independent bounded (but not normalizable) solution of the
Schrodinger equation. It follows that E belongs to the continuous spectrum and is non-degenerate.
E<V_

This case can occur only if min V(x) < V_. As V_ < V4, we also have £ < V4. By result II)
above, there is again only one linearly independent solution of the Schrodinger equation 4+ (x) ex-
ponentially decreasing as x — co. Let us denote by 1/ (x) the analogous solution of the Schrédinger
equation (with the same energy E) exponentially decreasing as x — —oo, and by ¢ (x) a second real
solution linearly independent from 1y_. Again by result II) above, the solution ¢ (x) is exponentially
increasing as x — —oo. Moreover, since Y¥_ and ¢ are two linearly independent solutions of the
Schrodinger equation we must have

Y+ (x) = a(E)Y—(x) + b(E)$(x).

for some real coefficients a(E),b(E) € R (indeed, ¥4 and ¢ are all real). Thus the necessary and
sufficient condition for ¥4 to be bounded as x — —oo is that

b(E) = 0. (3.50)

This is the eigenvalue equation. Indeed, if E is a solution of the latter equation the eigenfunction
¥4 (x) is proportional to ¥—(x), and therefore is also exponentially decaying as x — —oo. It follows
that ¥+ is normalizable, and thus E belongs to the point spectrum and is non-degenerate. |

Thus the point spectrum o, (H ) is the set of solutions of the eigenvalue equation (3.50). The point

spectrum is necessarily a finite or at most countable set, since eigenfunctions with different eigenvalues
are orthogonal, and in a (separable) Hilbert space a set of mutually orthogonal vectors can be at most
countable. It is also shown in courses in functional analysis that an accumulation point of the point
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spectrum belongs to the spectrum. In fact, for the potentials usually occurring in quantum mechanics, the
accumulation points of the point spectrum belong to the continuous spectrum. Since o,(H) Noc(H) =
@, it follows that for these potentials the point spectrum does not contain its accumulation points, and is
therefore a discrete set

op(H) ={Ex 1k =1,2,...}.
Furthermore, as shown in result 4) of Section (3.3), all of the eigenvalues Ej are strictly greater than

min V(x) for all k. It can also be shown that o,,(H ) has actually a minimum'3, so that if we label the
eigenvalues in increasing order we have

mnV(x)<Ej<Ey<---<Ep<---<V_.
It can also be shown that if 0, (/) is infinite then

lim E, =V_.

n—-oo

In particular, if V_ is finite then the eigenvalues Ej accumulate at V_, and hence V_ is in the continuous
spectrum. Finally, as remarked above, from standard properties of Sturm-Liouville problems it follows
that the eigenfunction v corresponding to the k-th eigenvalue Ej has exactly k — 1 real zeros (see, e.g.,
[Mes99, p. 109-110]).

Remarks.

e The limiting values £ = V4 or E = V_ must be dealt with on a case by case basis (i.e., whether they
belong to the continuous or the point spectrum depends on the potential).

e From the previous discussion it follows that (under the assumptions on the potential stated above) the
square integrable solutions of the time-independent Schrodinger equation in one dimension are those
that tend to zero at +oo. It follows that a real number E is in the point spectrum if and only if there is
at least one linearly independent solution ¥ (x) of the Schrodinger equation with energy £ such that

lim y(x) =0.

x—>*o0

In fact, from the previous analysis it also follows that there can be at most one such solution.

Example 3.3. Spectrum of an even potential.
Let the potential V/(x) be an even function of x, i.e.,

V(—x) = V(x), Vx € R.

Hence
Vo =V,

and therefore there is no non-degenerate continuous spectrum (except, at most, the point V4 = V_).

There are essentially three possibilities (since, as usual, we are assuming that the potential is bounded

from below):

1. Vf =0

In this case there is only point spectrum. In this case the point spectrum is an infinite set un-
bounded above. Moreover, it can be shown that the eigenfunctions {wn in € N} make up an
orthonormal basis of L*>(R). An example of a potential of this kind is the harmonic oscillator
potential V(x) = 1mw?x2.

2. V(x) = Vi, VYxeR.

Bndeed, if the set op(H) = {Ex : k = 1,2,...} did not have a minimum it would be an infinite set bounded below
by min V(x), and hence would have an infimum Eo, € [min V(x), V_) not belonging to the set. Then Eo would be an
accumulation point of o (H ), and therefore it would belong to the continuous spectrum of H. But this is impossible, since we
have just shown that the continuous spectrum in this case is contained in the interval [V_, 00).

99 © Artemio Gonzélez Lépez



ONE-DIMENSIONAL PROBLEMS

There is only continuous and twice degenerate spectrum, namely the half line (V, 00). A poten-
tial satisfying this condition is, for instance, V(x) = Vp sech? x with Vg > 0.

3. minV(x) < V4
In this case the point spectrum is contained in the segment (min V(x), V1), while the half line
(Vi, 00) makes up the continuous (and twice degenerate) spectrum (the point V4 could actually
be either in the point or the continuous spectrum, depending on the potential considered). An

important potential in this class is the Pdschi-Teller potential V(x) = —Vj sech? x, with Vg > 0.
Let ¥ (x) be a genuine (i.e, normalizable) eigenfunction of H = —%8)26 + V(x) with eigenvalue

E. Since V is even, ¥ (—x) is also an eigenfunction of H with the same eigenvalue. As the point
spectrum of a one-dimensional potential is non-degenerate), W (—x) and ¥ (x) must be proportional,
namely

V(—x) = AW (x) = A2y (—x) = A =+l.

Thus a genuine eigenfunction V¥ (x) of an even potential has a well defined parity (i.e., is either even or
odd). The above argument does not apply to generalized eigenfunctions whose formal eigenvalues lie
in the continuous spectrum, since as we remarked above the continuous spectrum of an even potential
(when it exists) is twice degenerate. All we can say in this case is that for every energy E in the
continuous spectrum we can choose a basis of the two-dimensional eigenspace of E whose elements
have well defined parity.
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4 The postulates of quantum mechanics

In the previous chapters we have studied the formulation of quantum mechanics first developed by
Schrodinger in 1926, based on the wave function in position (or momentum) space and the Schrodinger
equation. In the present chapter we shall outline a more abstract and general formulation, essentially
due to Dirac.! This elegant formulation, which includes Schrodinger’s as a particular (though important)
case, has led to a deeper understanding of the foundations of quantum mechanics and of its practical use.
We shall also develop a widely used notation, also due to Dirac, to represent quantum states and their
duals.

4.1 Quantum states

In classical physics, the state of a system is determined by the coordinates and momenta of all of its
particles. Thus a classical state is an element of a real vector space of dimension 6 N, where N is the
number of particles in the system.

Axiom 1. The state of any physical system at a certain time #o is represented by a vector in an
abstract Hilbert space &¢.

Recall that a Hilbert space is a complex vector space endowed with a (complex) scalar product, which
is complete (i.e., all Cauchy sequences in it have a limit) and separable (i.e., there exist numerable
sets which are dense in the whole space). For instance, a finite-dimensional complex vector space is
automatically a Hilbert space with its standard scalar product

n
v, w) =Y viw,

i=1

where n = dimd#€. As another example, in the case of a single (spinless) particle moving in three-
dimensional space the Hilbert space # can be taken as LZ(R3).
Following Dirac, we shall denote the elements of #{ by

). 18, lx). la). ...

The symbol |) is called a ket vector (or simply a ker), and is analogous to the arrow sometimes used
to denote vectors in Euclidean space R3. It is important to note that, although all physical states are
vectors in &€, not every element of #€ can represent a physical state. For example, in the case of a single
particle in R3, the physical states must satisfy some minimal requirements (the state and a sufficiently
high number of its partial derivatives must be continuous, it must decay sufficiently fast at infinity, etc.).
We shall therefore denote by #{p C  the space of physical states. We shall assume that #p is a
dense linear subspace of #{. In other words, #p is a vector space itself, and there are physical states
“arbitrarily close” to any element of (.

The fact that #p (as well as #) is a linear space is the basis of the superposition principle, which
posits that a linear combination of physical states is a physical state. This principle is fundamental to
account for the interference effects which are an essential feature of quantum mechanics.

'Paul Adrien Maurice Dirac (1902—1984), British physicist and Nobel Prize winner in 1933.
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Remark. To be more precise, a quantum state must have unit norm since, as we shall see below, it shall
be used to construct a probability density. Moreover, we shall see in the sequel that the vectors |y) and
e'?|y), where ¢ is any real number, actually represent the same physical state. For this reason, to be
absolutely precise a quantum state is a unit ray in #€, i.e., a set

) o e R lIIY)I =1}

In other words, any element in this ray represents the same quantum state, and hence quantum states are
defined up to a constant phase. u

A continuous? linear functional is a continuous linear map o : # — C. In other words, a|V/) is a
complex number for every ket |/) € #,

a(A Y1) + A2|v2)) = Aralyn) + Asa|yr), YA1,A2 € C, Vyn),|¥2) € ¥,

and the mapping ) — «(|¥)) depends continuously® on |/} € #€. Let us denote by #€* the set of all
continuous linear functionals « : #€ € C. The space #* is called the dual of #(, and it can be shown
that it is itself a Hilbert space?. Each vector |) € # gives rise to a linear functional, which following
Dirac we shall denote by (|, through the formula

(VI(o) = (b.¢).  Vip) € #.

Indeed,

(V(A1]p1) + A2|d2) = (U, A1ld1) + A2|d2)) = A1 (¥, [@1)) + A2(|¥), |$2))
= A (¥ 1([p1) + A2(¥|(|2)).

The continuity of (/| is also easily established, since if {¢, },eN is a sequence such that lim, o ¢, = 0
then

n—>oo

The symbol (| is called a bra vector (or, for short, a bra). At this point, it is very natural to introduce
the Dirac notation (1 |¢) to denote the scalar product of the kets |/) and |¢) or, what is the same, the
image of |¢) under the bra (linear functional) (| associated to the ket vector |y). In other words,

(¥lp) = (1), 18) = (¥1(P).

In fact, according to the Riesz—Frechet representation theorem in functional analysis, any continuous
linear functional & : #{ — C is of this form. Moreover, the application

V) e H — (Y| e #H*

is a canonical antilinear’ isomorphism (actually, an isometry) between #€ and its dual #€*. In fact, it can
be proved that a Hilbert space and its dual are actually isomorphic.

2]t is essential to bear in mind that in infinite dimension not all linear maps are continuous.

31t can be easily shown that a linear functional (or, in general, a linear map) is continuous everywhere if and only if it is
continuous at 0.

4The vector space operations in #€* are the natural ones, namely

(Aray + Az2a2) ) = Ao (J¥) + Az (|¥)), YA1.,A2€C, Vy)ed.

> An mapping A : X — Y between two complex vector spaces X and Y is antilinear if A(Au + pv) = A*Au + p* Av
forallu,v € X.

© Artemio Gonzdlez Lépez 102



4.1 Quantum states

Remark. There are many discontinuous linear functionals that cannot be represented by a bra vector.
One such functional is the Dirac delta 6, defined by the formula

8ro (W) = 1ﬂ(rO)

in the linear subspace C°(R?) N L2(R3) of continuous functions ¥ € L?(R3). Indeed, if §;, = (¢| for
some function ¢ € LZ(R) we would have

8o (V) = V(o) = (9. ¥) = [ Erom*yr),  Vy e COR?) N LAR?),

which as we know cannot be satisfied by any ordinary function ¢. This does not contradict the Riesz—
Frechet representation theorem, since it is easy to see that this functional is discontinuous®. However,
it is very convenient for calculations to represent &y, as the bra (ro| of a fictitious (non-existent, in the
sense that it is not an element of #€ = L?(R3), or even a function) ket vector (function) [ro). This vector
would satisfy

(rol¥) = by () = ¥ (r0) = [ &8 = ro)p () = (3= r0). ). VI,
and hence
Iro) = &(r — ro).
In other words, the fictitious ket associated to the linear functional dy, is not a function, but rather the
distribution (also called generalized function) §(r — ry).

A similar example of a (discontinuous) linear functional F, which is not the bra of any ket vector is
given by

U > Fo () = U (po) = (k)2 / &r e kPory ()

defined in L1(R3) N L2(R3). Again, if Fp, = (¢p, | for some ket vector ¢p, € L2(R>) we would have

Woult) = T () = @)1 [ @remivomye) = [ &g, mpee. viv)
= Ppo(r) = (2nh)_3/2e%Po~r ¢ L2(R).

We thus see that the fictitious ket associated to the linear functional F, is in this case an ordinary

function, namely the (normalized) plane wave ¢, (r) = (2nh)~3/ ze%PO'r, although it is not an element
of # = L*(R3). [ |

Given a linear operator A : # — # and two ket vectors |/), |¢), we define

(v]4]g):= (v. 49).

where (as we shall often do in the sequel when no confusion can arise) we are using the abbreviated
notation (v, A¢) for (|y), A|¢)). Note that

(v|Alg)" = (v, Ap)* = (4. ¥) = (¢ ATy) = (¢]AT[y).

6That 8y is discontinuous can be proved as follows. For any n € N, let ¢, (r) be a continuous function such that
¢n(ro) = 1, |¢pn(r)| < 1 inside the ball of radius 1/n centered at rg and ¢, (r) = O for [r—rg| > 1/n. The sequence {¢p }neN

tends to 0 in L2(R3), since
47

2
lenl”™ < 35 /=20

However,
8ro (Pn) = Pn(ro) =1, Vn e N,
and thus Jy, (¢) does not converge to 0.
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Exercise 4.1. If A : # — # is a continuous linear operator and (/| a bra vector, show that (|4 is a
bra vector. What is the ket vector associated to it?

Solution. The product (¥ |A is the composition of the continuous linear operators A : H — H
and (Y| : # — C), and thus is itself a continuous linear functional (the composition of continuous
mappings is continuous), i.e., a bra vector. Moreover, since

(w14)lg) = (wI(Alp) = (I¥), Alp)) = (AT|y).¢), Vo e#,

we have
(wl4 = (a’|y)|.
which we shall usually abbreviate as (ATW !

Example 4.1. Given two ket vectors |1) and |¢), the product |y ){¢| can be naturally interpreted as
the linear operator from # to #t defined by

(Iv)@D)lx) = Bl)lv),  Yix) e .

Indeed, the RHS is clearly linear in | y), by the linearity of the second argument of the complex scalar
product. It is also straightforward to prove that |)(¢| is continuous (exercise). Clearly the range of
|¥) (] is the one-dimensional subspace generated by the vector |v/), while its kernel is the orthogonal
complement of the subspace spanned by the vector |¢). It is easy to check that

() 9)) = I1g) v
in particular, |y) (| is self-adjoint. Indeed, for all |a), |8) € # we have
(120 (9)81)18)) = (). (@IB) W) = (¥} (@IB) = (|} (@IB) = ((V])[#).18)
= ((9) D). 18)).

An orthogonal projector is a self-adjoint operator P : ¢ — € thatis also idempotent, i.e., P> = P.
The reason for this terminology is that if P is an orthogonal projector and |) € # then P|y) is the
orthogonal projection of |¢) onto the range of P. Indeed, P|y) obviously belongs to the range of P,
and |y) — P|y) is orthogonal to the range of P, since

(Plg). l¥) = Pl¥) = (I9). Ply) — P?|y)) = 0.

If |) is a unit vector (and, thus, a quantum state) then |) (/| is self-adjoint and idempotent: indeed,

(V) WD2 = (VDA = (Wil = vl = vl

where we are again using the abbreviated notation H W H instead of H [v) “ Thus |y ) (| is the orthogonal
projector onto the one-dimensional subspace spanned by [v/).

4.2 Observables

In classical (Hamiltonian) mechanics, a dynamical variable is any function f(q,p) defined in phase
space (a 6N -dimensional Euclidean space, where N is the number of particles in the system).

Axiom 2. A dynamical variable or observable of a quantum system is a self-adjoint linear operator
A:D(A) C #H — F, where # is the system’s Hilbert space of states and the domain XD (A) of A4 is
a dense subspace of #.
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Remark. The precise domain of a linear operator A in an infinite-dimensional linear space is a non-
trivial and crucial matter. Indeed, by the Hellinger—Toeplitz theorem in functional analysis, a self-adjoint
operator whose domain is the whole Hilbert space is automatically continuous, which for linear operators
is the same as bounded’. On the other hand, many important operators in quantum mechanics like
position, momentum, angular momentum or energy are defined only in proper (dense) subspaces of the
system’s Hilbert space #{, and are unbounded. To simplify matters, we shall write A : # — # even
if 2 (A) may be a proper subspace of #€, and unless otherwise stated shall tacitly assume in the sequel
that all operators involved are bounded. |

In the case of a single particle, we saw in Section 2.11 that if the state of the system at a certain instant
is described by the ket vector |1/), and we measure an observable A, the average value obtained is the
expectation value

avy(d) = (4),, = (v. 4y) = (v|4]v).

We also proved that the only possible outcome in a measurement of an observable A is one of its eigenval-
ues. We shall accept that this is also the case for an arbitrary quantum system. Note that the self-adjoint
character of observables guarantees that both its expectation value and any of its eigenvalues are real. We
now ask ourselves what is the probability of obtaining a certain value ¢ when measuring an observable
A, where a is one of the eigenvalues of A, if the system is in a state |i). To answer this question, we
shall suppose for simplicity (as is the case in many practical problems) that A has only point spectrum®

op(A) = {an n = 1,2,...},
and, moreover, that all of its eigenvalues are simple (i.e., non-degenerate). In other words, the eigenspace
ker(A — ap) = ker(4A — ay1)

of each eigenvalue a, is one-dimensional. Let us choose an arbitrary unit vector |n) in each eigenspace
ker(A — ap) (which is obviously defined up to a phase). It is easy to show that the set

{ln):n=12,..} 4.1)

is an orthonormal set. Indeed, all its elements are by construction unit vectors, and if n # m the eigenkets
|n) and |m) are automatically orthogonal:

(n|Alm) = (In), Alm)) = am(nlm) = (Aln), |m))

= an(n|m)
= (ap —am){nim) =0 = (njm) =0.

Moreover, it can be shown (using the spectral theorem for self-adjoint operators in functional analysis)
that in this case the set (4.1) is an orthonormal basis of #. Suppose that the system is in the state |y/)
at a certain time #o9. Expanding |¥) in terms of the previous basis of eigenstates of the observable A we

have’
lY) = ch|n>,

where the coefficients ¢, can be obtained by taking the scalar product of the latter expansion with any
eigenfunction |k):

cn = (n|y).

7 A linear operator A is bounded if there exists a constant ¢ € R such that ||A1// H < C“l// H for all |) € D(A).

81t can be shown that the spectrum of a self-adjoint operator in a separable Hilbert space is at most countable. Indeed, if
it were not so we would be able to construct an uncountable set of mutually orthogonal vectors (choosing one eigenvector for
each eigenvalue), which is not possible in a separable Hilbert space.

9n what follows the all sums range from 1 to dim #, which can be either finite or infinite.
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Thus we can write

Zm (nly) = (Zm n|) v):

since |v) is an arbitrary (unit) vector, it follows that

> lny(n| = 1. 4.2)

Equation (4.2) is the so called completeness (or closure) relation satisfied by the orthonormal ba-
sis (4.1). Multiplying this relation on the right by the ket |[1/) an on the left by a bra (¢| we obtain

> (ln)nly) = (plv):

n

in particular,

Iy > = (vly) = Z\ (nly)|?

It follows that the numbers 5
{|c,,|251<n|¢>| :n:1,2,...} 4.3)

define a probability distribution, since they are nonnegative and verify

> enl? = (wly) = 1.

n

Since a probability distribution is determined by its moments (i.e., the averages of the powers of the
random variable), the probability distribution {py (an) : n = 1,2,...} of the eigenvalues {a, : n =
1,2,...} of Ain the state |i) is uniquely determined by the equalities

avl/,(Ak) = pr (an)a,]j, k € N. 4.4)

On the other hand, if we assume that (as in the case of a single particle studied in Section 2.5), the average
of an observable in a state |/) is the expectation value of the observable in that state, we have

avy(A4%) :(Ak) MAkW (chm Zcmam|m) Zc cmak (njm) = Z|C”|2 k

for all k € N. Comparing with Eq. (4.4) we conclude that the probablhty Py (ap) of finding the value
a, when measuring the observable A if the system is in the state |1} is given by

py(an) = |Cn|2 = |<n|w)|2

Note that

py(@n) = [y)> = [In)(ay)|* = [(m) v |*
is the square of the norm of the projection of the vector |i) onto the eigenspace ker(A4 — a,). In fact,
a calculation totally analogous to the previous one shows that when the eigenvalues of A are degenerate
the probability of finding an eigenvalue a, is still given by the formula

4.5)

py(an) = |}@an

where P, denotes the orthogonal projector onto the eigenspace ker(A — a,) of the eigenvalue a, (no
longer one-dimensional). This motivates the following axiom:
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4.2 Observables

Axiom 3. If the observable A has only point spectrum, a measurement of A when the system is in a
state |Y) can only yield as result an eigenvalue a, of A with probability H P, V) H 2,

Remarks.

e From Axiom 3 it immediately follows that the average value of the observable A is its expectation
value (¥ |A|y). Indeed (assuming again, for the sake of simplicity, that the eigenvalues of A are
non-degenerate, and denoting by |n) a normalized eigenvector of A with eigenvalue a,) we have

(v|Aly) = (v, 4y) = (ch|n),2cmA|m ) Zc Cmam(n|m) = Z|cn|2an
= Zplﬁ(an)an,

which by definition is the average of the a,’s with respect to the probability distribution { py(a n)}.

e Another immediate consequence of Axiom 3 is that if an observable A is measured when the system
is in an eigenstate | V) of A with eigenvalue a then the result obtained will be a. Indeed,

Aly) =aly) =  Paly) = y),
since |y) belongs to the eigenspace ker(A — a) onto which &, projects, and hence

py(@ = |Fa)|” = v]*=1.

(This result could also have been proved by showing that Ay A = 0, as in Section 2.5.)

Exercise 4.2. Suppose that an eigenvalue a, of an observable A4 is d, times degenerate (where dj,
could be finite or infinite). Show that the projector P, is given by

dn
Py = Y lux) url,
k=1

where {|ug) : k = 1,...,dp} is any orthonormal basis of the eigenspace ker(4 — a,). (In particular,
the RHS of the previous formula is independent of the basis chosen.)

Solution. All we have to show is that the operator #,, defined by the above formula is a projector, and
that its range is ker(A — a,). That ,, is a projector is straightforward to prove, since it is obviously
self-adjoint (each operator |uy ) (uy| is self-adjoint), and

dy, dy
P2o= 3" fup) | fug) gl = > (ujlug) - fuj) (ug| = Z 8|y ) (ul

j.k=1 j.k=1 j.k=1
dn

= Ju)ug| = P
k=1

It is also clear that the range of &, is contained in ker(4 — a,), since

dn

Payl¥) =D (ur|¥)ug) € lin{lug) 1k = 1,....dyn} = ker(4d — ap).

n=1
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Finally, if |) € ker(A — a,) then

dn dn d’l
W) =D alur) = Pa,l¥) = Y crlui)ujl-[ug) = D crujlug) u))
k=1 jk=1 Jk=1
dn dn
= > abiiluj) = crlur) = |¥),
Jk=1 k=1

so that |y/) = P, |¥) is in the range of P, . Thus ker(A, — a) is also contained in the range of %, ,
which completes the proof.

What happens if the observable A does not possess an orthonormal basis of (genuine) eigenvectors?
This is the case, for instance, with important observables like the position and momentum of a particle,
and in general with observables part of whose spectrum is continuous. To answer this question, we must
introduce the concept of generalized orthonormal set. By definition, this is a set {|«) : « € I}, where
I is an index set (usually an interval 1, 2], or more generally a (connected open) subset of R¥ for an
appropriate k) and |«) is a generalized ket (a distribution like §(x — o), or a non-normalizable ordinary
function like e'®¥), satisfying the Dirac normalization condition

(@) =8(@—p), Va,pel.

Although |&) is not an ordinary vector, we shall suppose that the formal scalar product {«|y) is defined
for all @ € I and any ordinary ket |v/) in the space of physical states #p. For instance,

(S(x —a),y) = /dx §(x —a)¥(x) = ¥(a), (e, y) = /dx ey (x).

This implies that the operator |«){«| —i.e., the formal projector onto the one-dimensional space gener-
ated by |a)— is well defined (as a generalized ket), since

() {aDly) = {aly)la).

A generalized orthonormal basis of # is the union of an orthonormal set {|u,) :n = 1,2,...} C #
and a generalized orthonormal set {|&) : o € I} such that

(auy) =0, Yael, Vn=1,2,...,

and the following generalized completeness relation is verified:

> lun)ua| + [ derfodo] = 1 4.6)

(the identity in #€). Applying both sides of this relation to an ordinary ket |1) we deduce that any such
ket can be represented as

W)ZZCnlun)-i-/IdOlC(Ol)W), with ¢ = (nly).  c(@) = (alp).
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Example 4.2. Position and momentum bases.

The set
{|Ix) =8(r—x):x e R?} 4.7

is a generalized orthonormal basis of # = L?(IR?) (here the vector x plays the role of the parameter
o, and the index set / is R3). Indeed, to begin with

(x|x') = / drér—x)8r—x) = §(x—x),
by the defining property of Dirac’s delta (cf. Eq. (2.22)). Secondly, if ¥ (r) is an ordinary (continuous)

function we have
(x|y) = /d3r8(r—x)1/f(r) = ¥ (x), (4.8)

and therefore
v = [@xse—xve = [@xpiv) = ( / d3x|x><x|)|w> = [exmu=t

Note that |x) is a formal eigenfunction of the position operator R with eigenvalue x. For this reason,
the basis (4.7) is called the position basis.

Likewise, the set _
{Igp) = Cr)3/2eivT p e B2) @9)

is another generalized orthonormal basis of #{ = L?(R3). This follows immediately from the equali-
ties

(¢D‘¢P’) = (2Tfh)_3 / d3r ehi(P/_P)'r =8 —p)
and

oly) = @ty 2 [ e trry@ = o) (4.10)
since
Y(r) = 2nh) /2 / &> p Py (p) = [ & p |gp)(dp|v) = ( / d3x|¢p><¢p|) ¥)
— [ ol =1
where we have used the Fourier transform identities (2.30) and (2.32). The basis (4.9) is called the
momentum basis, since each |¢p) is a formal eigenfunction of the momentum operator P with eigen-

value p. Note, finally, that from Eqs. (4.8) and (4.10) it follows that the position and momentum wave
functions ¥ (r) and v (p) are related to the abstract state vector |i) by the formulas

v =(rly),  ¥® = (p|v).

The following fundamental result is proved in advanced courses in functional analysis'’:

Any observable A possesses a generalized orthonormal basis of (genuine and/or formal) eigenfunc-
tions.

Assuming, for the sake of simplicity, that both the point spectrum

op={an:n=12,..}

10gee, e.g.,I. M. Gel’fand and N. Ya. Vilenkin, Generalized Functions, vol. 4. Applications of Harmonic Analysis, Academic
Press, New York (1964).
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and the continuous spectrum
Oc = {oc o el }

of the observable A are non-empty and non-degenerate, we can write

> lan)an + [ dafodal =1, (@.11)

where |a,) € # is a genuine eigenfunction of A with eigenvalue ay, |a) is a formal eigenfunction of the
latter operator with eigenvalue o, and

(anlam) = Sum, (alad’) =8(a—a'), (ay|a)=0. 4.12)
Applying the operator A to the completeness relation (4.6) and taking into account that by construction
Alan) = anlan), Ala) = ala)

we immediately obtain the spectral decomposition of the self-adjoint operator A:

A=Y anlan)an] + [ darala)la

It also follows from Eq. (4.11) that any ordinary ket |) admits the expansion

|w>=ch|an>+/,dac<a)la>, with ¢ = {anl¥). c(e) = {aly). (4.13)

Note that using the completeness relations it is straightforward to show that

lv|? =1 =;|cn|2+/lda (@) z;|<an|w>|2+/lda\<a|w>>}2.

Thus (under the assumption that both the point and the continuous spectrum are non-degenerate) the
numbers |c,|? = }(anhﬂ)}z (n = 1,2,...) and |c(@)]? = |(a|lﬁ))‘2 (¢ € I) define a probability
distribution (in part discrete and in part continuous). We then have the following generalization of
Axiom 3:

Axiom 3’. Suppose that an observable A possesses a generalized orthonormal basis of eigenfunctions
as in Egs. (4.11)-(4.13). If we measure the observable A when the system is in a state |y}, then we can
obtain as a result of the measurement either an eigenvalue a, with probability ‘ {(an|¥) ‘2 or a number
in the range [o, & + der] with probability |(e|y)|? da, where o € 1 is a generalized eigenvalue.

Remarks.

o In particular, when an observable A has only point spectrum (i.e., when o, = @), the possible results
of a measurement of A are quantized'".

TRecall that the point spectrum of a self-adjoint operator A in a (separable) Hilbert space is a finite or at most countable
set. Moreover, for the self-adjoint operators normally occurring in quantum mechanics the accumulation points of the point
spectrum belong to the continuous spectrum. Under this assumption (which we shall implicitly make in what follows), if
o¢(A) = @ the point spectrum is a finite or at most countable set without accumulation points. Furthermore, when there is only
point spectrum the set of eigenvectors of a self-adjoint operators is complete, i.e., its closure is the whole Hilbert space (or,
equivalently, there is an orthonormal basis of eigenvectors of A). Hence when o¢(A) = @ and dim # = oo the point spectrum
is an infinite set without accumulation points. By the Bolzano—Weierstrass theorem, in this case 0p(A4) must be unbounded
(from above, from below or from both ends).
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e From Axiom 3’ applied to the position or momentum bases (4.7)-(4.9) it follows that (as we had seen
in Chapter 2) W(r) ‘2 d3r and }1/7(p) |2 d3 p are respectively the probabilities of finding the particle in
an infinitesimal volume d3r about r or with momentum lying in an infinitesimal volume d3 p about p.

e Axiom 3’ is easily generalized to more complex situations in which either the point or the continuous
spectrum (or both) are degenerate. For example, if the point spectrum is degenerate the probability to
obtain the eigenvalue a,, when measuring A in the state |) is given by Eq. (4.5). |

An important consequence of Axiom 3 (or 3’), already anticipated above, is that the kets |) and
|W') = e|y), where a is an arbitrary real constant, determine the same physical state. Indeed, the
probability distributions of any observables are the same for |) as for |y)’, since for any (genuine or
generalized) ket |¢) we have

@1y = | @1v)]* = [(plv) [

Thus we can multiply a given ket by an overall constant phase without changing the quantum state. It is
important to note, however, that when we take linear combinations of two or more states relative phases
are relevant, and are in fact essential to explain interference phenomena. This fact is illustrated in the
following simple example:

Example 4.3. Given two states |{1) and |y»), consider the linear combination

1

) = = (€1 Y1) + €2 [y))

where U
N = [ [y1) + e |yn)| = V2 (1 + Re (ei(“z—“l)(wlwz)))
(exercise). Since we can write
i

) = = (Iv1) + @7 jya)).

|) describes the same physical state as

19 = 3 (1) + =Dl

However, the relative phase eil@a—an) g obviously essential and hence cannot be dropped. For instance,
let us suppose for the sake of simplicity that 1) and |,) are orthogonal, so that

1
/2

If |a) is a (normalized) eigenvector of an observable A with non-degenerate eigenvalue a, the prob-
ability of obtaining a as the result of a measurement of A when the system is in the state |¢) —or,
equivalently, |y¥')—is

') = —= (Iy1) + @70y) ).

=3

pu(@ = |(alv[* = 3|
= % (Italy) > + [(@ly2) ) + Re (€270 (g a)alyn) ).

) 2
(alyr) + @~ (alyy)|
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This probability is clearly an oscillating function of the relative phase difference «, —«;. For instance,
if both (a|y1) and (a|y,) are real we have

Pyl@) = = ({a] ) = (al2)2) - (el ialahcosen — )
2

which oscillates between the values

S(lalyn) + (aly2)?

for ap — a1 = 2k (with k € Z) and

> ((alyn) — (aly2)?

for oy — a1 = (2k + 1) (with k € Z). If (a|y1) and (a|y,) have the same sign the probability is
maximum when @y — o1 = 2k and minimum when a, — o1 = 2k + 1) (with k € Z), whereas
if they have opposite signs the probability is maximum when oy — @y = (2k + 1)7 and minimum
when o — o1 = 2k . In either case, the probability varies between (‘ (alyn) ‘2 — }(ahﬁz) |)2 /2 and

([(alyn)|* + |(alw2)])? /2.

4.3 Measurements

For the case of a single particle, we have already proved in Section 2.11 (cf. result viii)) that the state
of the particle immediately after the measurement of an observable A has produced a definite result a
(where a is one of the eigenvalues of A) must be an eigenfunction of A with eigenvalue a. We shall
admit that this will also be the case for a general quantum system. If (as is the case in many practical
problems, especially in one dimension) A has only point spectrum and the eigenvalues of A are non-
degenerate, the state of the system after a measurement of A yields as a result an eigenvalue a € 0,(A)
is the corresponding eigenstate |a), which is determined up to an irrelevant phase (since by hypothesis
ker(A — a) is one-dimensional). If, on the other hand, the point spectrum of the observable A contains a
degenerate eigenvalue a, stating that the state |1) of the system is an eigenstate of A with eigenvalue a
does not determine |1) unambiguously (up to a phase). Since by Axiom 3 the probability of obtaining
the value @ when measuring the observable A is determined by the orthogonal projection P, |v) of )
onto the eigenspace ker(A4 —a), we shall postulate that if a measurement of A has yielded the value a the

. . . . . /
(normalized) state of the system immediately after this measurement is H ;“ :K; H . In other words:
a

Axiom 4. The state of the system immediately after a measurement of an observable A has yielded
the value a € 0,(A) is

Pal¥) _ Pal¥) (4.14)

|Zal)]| iy (@)

Note that the state (4.14) is always an eigenket of A with eigenvalue a, since by construction &, projects
onto the eigenspace ker(A — a) of this eigenvalue.

Similar considerations apply if part of the spectrum of an observable A is continuous. For instance,
the state of the system immediately after a measurement of the observable A has yielded a value in the
interval [o, @ 4+ da], where o € o.(A) is a formal non-degenerate eigenvalue of A, is the generalized
state |or). Since |«) is not a physical state if @ € o.(A), what the latter statement actually means is that
the state of the system immediately after the measurement of A is a wave packet

a—+da
) = / do g(B)|B).
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with g(B) narrowly concentrated about o and

a+do 5
[ aplg ) = 1.

(Note that
vl = twivy = [ g [ T e BB
-/ s [ B B B8 - B = [ " aple =1,
so that the state |) is normalized.)

Remark. Axiom 4 implies that when a measurement is performed on a quantum system the state of
the system stops evolving continuously (through the time-dependent Schrédinger equation, as we shall
see below) and abruptly “jumps” to an eigenstate of the observable that is being measured. This phe-
nomenon, usually called the collapse of the wave function'?, is one of the most controversial and least
understood features of quantum mechanics. Of course, immediately after this sudden jump caused by the
measurement process the quantum state starts evolving continuously again until another measurement is
performed, and so on.

Example 4.4. Consider a quantum system whose Hilbert space is the finite-dimensional space # =
C3. In this case ket vectors can be represented by column vectors

U1
[v) = va ), v; € C,
v3

which can also be written as 5
v) =" vile:)
i=1

in terms of the canonical basis of C3
1 0
le1) =10, lea)=1|1], J|es)=1]0
0 0 1

The bra (v| corresponding to the ket |v) is then represented by the row matrix
U1 T
v2 | = F vf v}) = viler] + vi{eal + vilesl,
v3

where
(e1l=(100), (e2/=(010), (e3=(001)

12The reason for this terminology is that in the case of a single particle whose position is being measured the wave function,
which is usually a wave packet with a certain spread, collapses to a delta function or, more precisely, a “spike” of unit norm
peaked at the point obtained as a result of the position measurement.
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is the canonical basis of the dual space of C3. The reason for this is that, if [u) = uy|e1) + uz|es) +
usles) is an arbitrary ket vector, then (v| is defined by

3 Ui
(Wl(l)) = (whe) = Y vfui = (] v3 v3) [uz | = ©F v; v3)- ),
i=1 us

where the last dot denotes matrix multiplication.
Let A : C3 — C3 be the operator represented by the matrix (in the canonical basis of C3 and in
appropriate units)
310
A=|—-1 3 0
0 0 2

El

which, with a slight abuse of notation, we shall also denote by A. Since the matrix elements a;; of a
matrix A are given by
ajj = (ei, Aej) = (ej|Alej),

we have
3

A=) aijlei)ejl:
i,j=1

or in this case,
A =3(le1)(e1| + lea)(eal) +i(le1) (ea] — le2)(e1]) + 2les){es].

Since A is clearly self-adjoint (i.e., AT = (AT)* = A), it can be one of the system’s observables. The
characteristic polynomial of A4 is

i

det(A—1) = (2—1) ‘3:11 il

‘ = (2-V)[B-1?=1] = 2-1)(E-1)(2-1) = (2—1)*(4-1).
Thus the eigenvalues of A are a; = 2 (twice degenerate) and a, = 4 (non-degenerate). In particular,
if we measure the observable A the only possible outcomes are 2 and 4. Suppose that at a certain time
t the system is in the state

1

1 1
ly) = §(|€1) + 2ilez) + 2les)) = 313
2

note that ;
(W) = g0 +4+4 =1,

so that |) is properly normalized. To find the probability of obtaining the values 2 and 4 when the
observable A is measured at the time ¢, we note that the eigenspace ker(A4—4) is one-dimensional (since
this eigenvalue is simple). Thus the probability of obtaining the value 4 as a result of a measurement
of the observable A is simply

Py = |(4v)|°,
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where |4) is a normalized eigenvector of A with eigenvalue 4. To find this eigenvector we must solve
the eigenvalue equation (A — 4)|v) = 0, i.e.,

—1 1 0 V1
-1 -1 0 vy | =0.
0O 0 -2 V3

Solving this system and normalizing the solution we obtain

1 1
4) = —(1 —i 0)" = —(le1) —ile2)).
|4) 7 ﬁ(l ) —ile2)
up to an inessential phase. Thus the probability of finding the value 4 when we measure A and the
system is in the state |y) is

1 1 2 11 |
4) = |—(1,-1.0) - =(1,2i.2)| = = —|(1.=1,0)- (1,2i.2)|" = — ~ 0.0555556.
Py (4) ﬁ( i,0) 3( i,2) 29|( i,0)-(1,2i,2)] —

Consequently, the probability of obtaining the value 2 is

1 17
= — ~ (.944444.

N=1—— =
py(2) 8= 13

Itis also instructive to derive the latter result using equation (4.5). To this end, we must first construct
the projector P, onto the two-dimensional eigenspace ker(A4 — 2). This can be done, for instance, by
finding two orthogonal normalized eigenvectors |u1) and |uz) with eigenvalue 2 and using the formula

of Exercise 4.2, namely
Po = [ur) (] + |uz){uzl.

The eigenvalue equation (4 — 2)|v) = Ois

1 1 0 U1
-1 1 0 | =0 < wvi+ivy =0,
0 00 V3

and hence
(v1,v2,v3) = (a,ia,b) = |v)= a(|el) +1i |62)) + bles),

with a, b arbitrary complex constants. In this case it is straightforward to find an orthonormal basis of
ker(A — 2) by inspection, namely

1) = ——(er) +ilea)) = —=(1 i OT,  [uz) =les) = (0 0 )7

V2 V2

(in more general situations, one can always use the standard Gram—Schmidt orthonormalization proce-
dure taught in linear algebra courses). We thus find

L (! 0 L1 -0 000 %—%0
@zzii(l—i0)+0(001):§i 1 ol+{oo o= I o]l
0 1 0 0 0 0 0 1 0 0 1
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and therefore

3 -3 0\ (1) (3
INE ] . » 1 1 4 17
@2|W>:§ oL ooflf2|=]32 = py(@ = |Plv)| :Z+Z+§:§'
0 0 1 2 %

Since the eigenvalue 4 is simple, if we measure A and obtain 4 as a result the state of the system
immediately after this measurement will be simply the eigenket |4) above (up to an inessential phase).
If, on the other hand, the result is 2, immediately after the measurement is performed the system will
jump to the state

@2|W> _ ‘@th) _ 18 /1 1 2 _L .
[200] ~ ey V17 (5'81) gl §|€3>) = 7 Gle) + 3ilea) + 4les))

(again up to a trivial phase).

4.4 Time evolution. Conserved quantities

We saw in Chapter 2 that the continuous (i.e., in-between two measurements) time evolution of the wave
function of a single particle ¥ (r, t) is governed by the time-dependent Schrodinger equation (3.1). For
a general quantum system, we shall accept that the time evolution of the system’s state, which we shall
denote by W(Z)) to stress its time dependence, is a linear process. In other words, the time evolution
must be compatible with the linear superposition of states. If, for example, initially W(O)) is the sum of
two kets |11 (0)) and |¥2(0)), then the time-evolved state |1ﬁ(t)) must be the sum of the corresponding
time-evolved states |1 (¢)) and |y, (¢)) for all subsequent (or previous) times ¢. This entails that the
mapping W(O)) > W(Z)) must be linear. In other words, we must have

[ (1)) = U@0) | (0)). (4.15)

where'® U(t) : 3 — ¢ is a linear operator called the system’s time evolution operator. Since the
state’s norm must be preserved by the time evolution, if initially (W(O) ‘ 1//(())) = 1 we must have

(v O]y ) = {UOVOUOY0) = (v OUTOUO[Y0) = 1 = (¥ ©O)]y©)
Since ‘w(O)) is an arbitrary state this implies that
@lUTOUM)|g) = (#]9)

for all states |¢) € & of unit norm, and hence for all states in #€ (just multiply both sides by |A|?, where
A is any complex number). From the previous equality it easily follows that

(o1 |[UT U@ p2) = (p1|¢2) = 0. Vig1).|¢2) € H

(exercise), and hence that

Utu@) =1

In other words, the time evolution operator U(t) must be a unitary operator. Moreover, if (as we shall
usually assume to be the case) the system is invariant under time translations the time evolution operator
must satisfy the identity

W +9)=U0)|v(s))

131n what follows we shall usually simplify matters by assuming that the domains of all operators involved is all of # even
if, as we know, this need not always be the case.
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for all s € R, and therefore
Ut + )|y (0)) = UOU(s)|y(0))
for all kets ‘w(O)) of unit norm, and hence for all kets in #{. This shows that

Ut +s)=U@)U(s),

ie. that {U(t) : t € R} is a one-parameter group of unitary transformations; in particular,
U@ =1, U@)™! = U(-1).

By Stone’s theorem in functional analysis, there is a self-adjoint time-independent linear operator H :
H — FH satisfying

Ut) = e #'H (4.16)

where the sign is conventional and the factor # is introduced so that H has dimensions of energy. By
analogy with the case of a single particle studied in Chapter 2, the operator H is called the system’s
Hamiltonian. We thus have

v (1) = e 42 |y (0)). 4.17)

and differentiating both sides of the previous equation we easily obtain the time-dependent Schrodinger
equation

ihd [y (1)) = H|y(1)). (4.18)

Note that Egs. (4.16) and (4.18) are actually equivalent, since integrating Eq. (4.18) we get (4.15) with
U(¢) given by Eq. (4.16). Observe also that from (4.17) we easily obtain the more general equation

i

(1)) = e H |y (0)) = e # H e oH |y (9)) = e HEOH |y (1)),

The above considerations motivate the following axiom:

Axiom 5. In the time interval between two measurements, the time evolution of the state ‘w(t)) of a
quantum system invariant under time translations is governed by the Schrodinger equation

ihde |y (1)) = H|y (),

where the Hamiltonian H is a self-adjoint and time-independent operator.

Remark. If the system is not invariant under time translations, the evolution of the state vector is still
governed by Schrddinger’s equation

ihde |y (1)) = H@O)|y (1)),
where the Hamiltonian H can now depend explicitly on time. |

If H has onlypoint spectrum, we know that there is an orthonormal basis of the Hilbert space #(,
which we shall denote by
{ln) :n=12,..}, (4.19)

whose elements are eigenkets of H. We thus can write

Hln) = Eq|n),
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where E, € R is the eigenvalue (i.e., energy) of the state |n). Note that E,, is real, as H is self-adjoint,
and that we are not assuming that the spectrum is non-degenerate, so that £, might be equal to £, for
m # n. Expanding the initial state W(O)) in the energy basis (4.19) we obtain

W)= caln).,  with ¢, = (n|y).

By Eq. (4.17), if no measurement is performed on the system in the interval [0, 7] the state W(t)) at a
later time ¢ will be given by

V)= ene™# |n) = 3 cue™HE ).

This solution of the Schrodinger equation can be generalized to the case in which the continuous spec-
trum of H is non-empty. In this case H possesses a generalized orthonormal basis of eigenvectors

{ln)y:n=1.2,...} U{la):ael},
with I a suitable index set and
H|n) = Epln), Hl|a) = E(a)|a)

(again, we are not assuming that £(«x) # E(B) for o # B to allow for a degenerate continuous spec-
trum). Multiplying the generalized completeness relation

S ln)n] + [ dorfegfa) el = 1

from the right by }w(O)) we then obtain the expansion

Y O) = L anln) + [ dacpo,

with
cn = (n|y(0)), c(a) = {a|y(0)),

from which it follows (if no measurements are performed on the system in the interval [0, ¢]) that
O} = Y cne HE ) + [ dac@e HE@ ).
I
n

Ehrenfest’s general formula (2.25) for the time derivative of the expectation value (average) of an
observable is valid in this more general setting, with the same proof as in Section (2.5). In particular, if
an observable A commutes with H its expectation value is time-independent.

Definition 4.5. A (time-independent) observable A4 is a constant of motion (or conserved quantity)
if it commutes with the Hamiltonian H .

Thus the expectation value of a constant of motion is time-independent. This is the quantum analogue
of the classical result according to which a dynamical variable whose Poisson bracket with the system’s
Hamiltonian vanishes is conserved, i.e., does not change with time along a trajectory.

© Artemio Gonzdlez Lépez 118



4.4 Time evolution. Conserved quantities

Remark. If an observable A is a constant of motion, the operator e ¢4

commutes with H (since it is a function of A). The unitary mapping

1Y) € H 1> |e) == e ¥4 y)

is then a symmetry transformation whose generator is the observable A, in the sense that

is unitary for all real ¢, and it

a=id] e
de e=0

For instance, if |1/) is an eigenket of H with energy E so is |,) for all ¢ € R, since
Hlye) = He™4|y) = e Hly) = Ee™*|y) = E|y).

Conversely, if R(¢) (with ¢ € R) is a one-parameter group of symmetry transformations, i.e., of unitary
operators commuting with the system’s Hamiltonian H satisfying

R(e1)R(e2) = R(e1 + €2),

by Stone’s theorem .
R(E) — e—lé‘A

with A self-adjoint. The operator A is obviously the generator of the symmetry group {R(¢) : ¢ € R},
and it commutes with H, since differentiating the equality

R(e)H = HR(¢)
with respect to ¢ and setting ¢ = 0 we obtain
AH = HA.

Thus the generator of a one-parameter group of symmetry transformations is a constant of the motion.
This result can be considered as the quantum-mechanical analogue of Noether’s theorem in classical
Hamiltonian mechanics.

Consider, for instance, the space translations

Y(x) = Ye(x) =y (x—g), e€eR,

in the Hilbert space #{ = L?(R) of a (spinless) particle moving in one-dimension. In other words, /¢ (x)
is the particle’s wave function for an observer whose origin is displaced by ¢ with respect to the original
observer. If the motion is free, i.e., if

this one-parameter group of transformations is a symmetry, since clearly

8§[W(x — 8)] = (chW)(x — &), Ve € R.

The generator of this one-parameter of transformations is the operator A defined by

(AY)(x) = 0, L Y—e) = —iy(x) = A=-idy= g. ]

L Ve) = e

Exercise 4.3. If )
P

H=_—+V(®), R:= VX2 + X2+ X2,
m

show that the angular momentum L. = R x P is conserved.
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Solution. Using the canonical commutation relations and the properties of the commutator we have

3 3 3
[Li,P?] = Z[Xi P, —X;P;, P = Z (IXi, PA1P; — [Xj, PA1P;) = Z (28;; P Pj — 25, P P;)
=1 =1 =1
= 2(PiP; — P P;) =0,

where (i, j, k) is a cyclic permutation of (1,2, 3). In the same way one shows that
[Li. R?] =0,
and since V(R) is a function of R? this implies that [Ly, V(R)] = 0.
Alternatively, using the explicit representation of the angular momentum components we have

aV(r) . BV(r))

—x
0x; T dx;

[Li, V(R)] = —ihi[x;dx, — X0, V()] = —ih (x,-

= —ihV'(r) (x,-? —)q?) =0.

4.5 Canonical quantization

The final postulate of quantum mechanics deals with the passage from classical dynamical variables (in
particular, the system’s Hamiltonian) to quantum observables, and is basically a generalization of the
canonical quantization procedure outlined in Section 2.2:

Axiom 6. For a physical system with Cartesian coordinates q = (¢1,...,¢nx) and corresponding
canonically conjugate momenta p = (pi, ..., pn), the quantum observables Q; and P; representing
respectively the coordinate ¢; and its conjugate momentum p; must satisfy the canonical commutation
relations

[0;. 0kl =[P;j. Pr] =0,  [Qj. P]=ihds.  jk=1....N. (4.20)
Moreover, the quantum observable representing a classical dynamical variable f(q, p) is obtained from
f(q, p) through the replacement
gi = Oi, ri — Pi,

with an appropriate ordering of the products of position and momentum operators involved.

Remark. The standard representation of the canonical commutation relations (CCR) (4.20) is the posi-
tion space representation

Qj =qj, Pj = —ih—, j=1,...,N.

This representation is certainly not unique. For instance, an alternative representation of the CCR is the
momentum space representation

Q; =ihdy,,  Pi=p;, j=1..,N m

Example 4.6. Hamiltonian of a charged spinless particle in an external electromagnetic field.
In the classical case, the Hamiltonian (in Cartesian coordinates) of a particle of charge e and mass
m moving in an external electromagnetic field with potentials ¢ (r, ) and A(r, ¢) is given by

H = ﬁ(p — eA(r,1))* + e (r,1).
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4.5 Canonical quantization

Hamilton’s equation of motion for the Cartesian position vector r is
F=—— = —(p—eA(r,1)),
m
so that the canonical momentum

p = mr + eA(r,?)

in this case does not coincide with the particle’s linear momentum mr. The canonical quantization
procedure applied to the classical Hamiltonian yields the quantum operator

H = ﬁ(P— eA(R, r))2 +ep(R, 1),

with R = (X1, X3, X3). Note that in this case no ambiguities arise from the ordering of the operators,
since ¢ depends only on position operators (which commute with one another) and P; — eA; (R, 1)
commutes with itself. It is also clear that H is self-adjoint if R and P are themselves self-adjoint and
the potentials ¢ and A are real-valued, since

RN =¢"R".1). AR = AR
(exercise). Choosing the standard representation of the canonical commutation relations

Ry (r,t) =ry(r,t), Py (r,t) = —ihVy (r,1),

we obtain the more explicit formula
1
H = —(ihV + eA(r, 1)) + ed(r, 7).
2m
Expanding the square in the first term and using the canonical commutation relations we obtain®

(ihV + eA)® = (ihV + eA) - (ihV + eA) = —#>V2 + ¢?A% + (iheV) - A + ihieA - V
= —h2V? + ¢2A? 4 2iheA - V + ihe(V - A).

For example, in a constant magnetic field B we can take

1
A=-Bxr,
2

and the electric potential ¢ must be time independent by Maxwell’s field eeuation for V x B. Setting
(x,y,2) = (x1, X2, x3) we then have

2V -A = ax(Bzz = B3y) + 8y(B3x = Blz) + 8Z(Bly = Bzx) =0,
2A -V = (B2z — B3y)dx + (B3x — B12)dy + (B1y — B2x)d;
= B1(y9z — 2dy) + B2(20x —x9z) + B3(xdy — ydx) =B-(rx V),
and therefore 2 )
el e 2 2 5
> B S T o (B*r* — (B-1)?) + eg(r).

where
L=RxP=—iAirxV
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is the particle’s angular momentum. Note that
B?r? — (B -r)?> = B*r?sin® 6 = Berz_,

where 6 and r respectively denote the angle between the vectors r and B and the component of r
along the plane perpendicular to B. In the case of a weak magnetic field we can drop the term quadratic
in B, thus arriving at the simpler expression
h? L
H=—"—V2_B-Z 4 ep().
2m 2m
From this formula it follows that in quantum mechanics a spinless charged particle must have a mag-

netic moment
el

= om
due to its orbital motion. We stress that the above formula is only valid for a spinless particle, since
it does not take into account the contribution of the particle’s spin angular momentum to the magnetic

moment.

“In the following formula (i%eV) - A denotes the composition of the multiplication operator by A with the operator
iheV, whereas ifie(V - A) denotes the multiplication operator by iheV - A (where V - A is the divergence of the function A).
In other words, given a wave function ¥ (r, #) we have

[(iheV) - Al = iheV - (Ay),  [ihe(V-A)] ¢ = ihe(V - A)y.

4.6 Compatible observables. Complete sets of commuting
observables

As mentioned in Section 2.9, two observables A and B are compatible if their commutator [A, B] van-
ishes identically. In fact, the discussion on Section (2.9) is valid without changes in the present, more
general, setting. In particular, the general uncertainty relation (2.48) and the time-energy uncertainty
relation (2.58)-(2.59), still hold, since they were established using operator methods. In particular, the
uncertainty relation (2.48) implies that in general two incompatible observables cannot be measured si-
multaneously with unlimited precision. In this section we shall examine in more detail the properties of
compatible observables, and explain how they can be used to label the (basis) states of a quantum system
in a convenient way.

In the finite-dimensional case, a self-adjoint operator is always diagonalizable through a real orthog-
onal transformation. Moreover, if two self-adjoint operators commute it is always possible to find an
orthonormal basis of eigenvectors common to both operators. Neither of these two results is true in gen-
eral in infinite dimension unless we impose some additional requirements. For example, a self-adjoint
operator is not diagonalizable unless it has no continuous spectrum. For this reason, in this section we
shall implicitly assume (unless otherwise stated) that the (self-adjoint) operators involved have only point
spectrum.

To begin with, let us suppose that two self-adjoint operators A and B commute. It is then easy to show
that the eigenspaces of A are invariant under B (and vice versa). Indeed, suppose that ) € ker(4 —a),
ie.,

Aly) = aly).

Applying the operator B to both sides of this equality and taking into account that AB = BA we obtain
aBly) = B(4]y)) = A(B|y)) = Bly)eker(d-a)

as claimed.
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Suppose next that two commuting self-adjoint operators A and B have only point spectrum, and let
op(A) ={an:n=1.2,...}.

As we have just shown, each eigenspace ker(A — a,) of A is invariant under B. The restriction of B to
ker(A — ay) is then a self-adjoint operator from ker(A — a,) into itself with only point spectrum. Thus
there exists an orthonormal basis

{‘unm) tm = 1,2,...,d,,}

of ker(A — ap) (where d,, = dimker(A — a,) can be finite or infinite) whose elements are eigenkets of
B,ie,
Blupl) =bit|luy).  m=1.2,....dy. 4.21)

Note that we also have
Ay = anluyt),  m=1.2.....dy. (4.22)

since by construction }un’") € ker(A — ay,) for all m. The set
) sm =12, dy, m=1,2,...} 4.23)

is then an orthonormal basis of #€. Indeed, this set is complete (since 4 has only point spectrum).
Moreover, two of its elements !u;’f) and ‘ug) with p # n are automatically orthogonal (since they are
eigenvectors of A with different eigenvalues a, # ap), while if p = n we have

(' [145) = 8ma

as |uZ’) and !uZ) belong by construction to an orthonormal basis of ker(A — a,). By Egs. (4.21) and
(4.22), each basis vector ‘unm) is a simultaneous eigenket of both 4 and B with eigenvalues a, and b}",
respectively. Thus the set (4.23) is an orthonormal basis of # whose elements are common eigenvectors
of the commuting operators A and B. We have thus proved the following important result:

If A and B are two compatible observables having only point spectrum, there is an orthonormal basis
of # whose elements are common eigenvectors of A and B.

Note that we can relabel the elements of the basis (4.23) as
|lab: ) (4.24)

where a € 0,(A), b € 0,(B),
ker(A — a) Nker(B — b) # {0}

(i.e., there are common eigenkets of A and B with respective eigenvalues a and b) and the additional
quantum number A ranges from 1 to the number of linearly independent simultaneous eigenvectors of A
and B with respective eigenvalues a and b.

The above result is easily generalized by induction to any finite number of compatible observables
Aq,...,Apn (e, suchthat [4;, A;] =0fori = 1,j = 1,..., N) having only point spectrum. In other
words:

If Ay, ..., Ay are N compatible observables having only point spectrum, there is an orthonormal basis
of # whose elements are common eigenvectors of the latter operators.

As in the case of two commuting operators, the elements of the orthonormal basis of common eigen-
vectors of the compatible observables {41, ..., Ay} can be labeled as

lay---an:A),
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where
Ailay...an;A) =ailay...an; A), i=1,....N
and the quantum number A runs from 1 to the dimension of the common eigenspace

N
ker(A; —aq) Nker(Az —az) N---Nker(Ay —ay) = m ker(A; — a;).

i=1

The previous considerations motivate the following definition:

Definition 4.7. A complete set of commuting observables (or CSCO for short) is a set of N compat-
ible (i.e., mutually commuting) observables having only point spectrum whose common eigenspaces
are all one-dimensional.

Remark. It is usually understood that a CSCO is actually a minimal set {A, B, ...} of compatible ob-
servables satisfying the previous definition, in the sense that if we remove one operator from the set the

resulting set is no longer a CSCO. |
If {A1,..., Ay} is a CSCO, there is a basis of the Hilbert space # whose elements are uniquely deter-
mined (up to a trivial phase factor) by the common eigenvalues ay, ..., ay of the observables A; in the

set. In other words, the basis elements (4.25) can be labeled simply as

la---an), (4.25)

where no degeneracy label A is needed since the common eigenspaces of the operators Aq,..., An
in the CSCO are by hypothesis one-dimensional. It is also clear that the converse of this statement is
also true (if the given set of compatible observables is also minimal). Recall that the spectrum of a
self-adjoint operator is finite or countable, and hence the common eigenvalues ay, ..., ay labeling the
basis states (4.25), usually called quantum numbers,, also make up a countable (usually discrete) set.
Moreover, by the very definition of a CSCO, these quantum numbers uniquely determine the basis state.
In other words, if {41,..., Ay} is a CSCO then there is a unique basis (up to trivial phase factors) of
common eigenvectors of the latter operators.

Example 4.8. Consider a (spinless) particle moving in one dimension subject to a (smooth) potential
V(x) such that
lim V(x) = +o0,

x—+o0

whose Hilbert space is # = L?(R). In this case the Hamiltonian

h?
H = —%ax + V(X)

is a self-adjoint operator having no continuous spectrum (see the discussion in Section 3.5). Hence
there exists an orthonormal basis of eigenvectors of H , i.e., of energy eigenstates. Since #{ is infinite-
dimensional, the spectrum of H is an infinite (countable) set. The spectrum is bounded below by
min V(x), and it has no accumulation points (since any such point would belong to the continuous spec-
trum, which we know to be empty). By the Bolzano—Weierstrass theorem, o (H) cannot be bounded
above (since otherwise it would have an accumulation point). Thus o(H) is an infinite increasing
succession of energies
Ei1<Ey<---<E;<---,

with £; > min V(x) and

lim E, = +o0.
n—>oo
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Moreover, since the eigenvalues of a one-dimensional Hamiltonian are non-degenerate, for each energy
E}, there is only one eigenstate | E;) satisfying

H|En) = En|En). (En|En) =1,
up to an irrelevant phase factor. Hence the set
{lEn):n=0,1,...}
is an orthonormal basis of #{, and thus { H } is in this case a CSCO. Note that if either limit

lim V(x)
x—+oo
(or both) is finite the continuous spectrum of H is non-empty, and therefore { H } is no longer a CSCO.
In fact, in this case even if the point spectrum is also non-empty the set of genuine eigenfunctions of H
is not complete in #{, and thus there is no orthonormal basis of #€ all of whose elements are genuine
eigenfunctions of H.

Remark. It is sometimes convenient to relax the definition of CSCO, allowing for the commuting op-
erators involved to have a non-empty continuous spectrum. In this case, however, it is necessary to
use generalized orthonormal bases. For instance, with this more general definition the set { Py, Py, P}
is a CSCO for a particle moving in three-dimensional space, since the operators Py, Py, P, commute
with one another, and there is a generalized orthonormal basis labeled unambiguously by the common
eigenvalues py, py, p; of these operators, namely the momentum basis

{|Pxpype) i= @) ™2ekP™ : p = (pr. py. po) € RO} =

Exercise 4.4. If H = P?/(2m), is the set { H, Py, Py} a (generalized) CSCO for a particle moving in
three-dimensional space?

Solution. To begin with, the three operators H, Py, Py commute with one another. Secondly, a state
Wf) is a common (generalized) eigenvector of H, Py, P, with eigenvalues E, pyx , and p, provided
that

Hly) = E[v).  Px[y)=p:ly)  BlY)=py|¥).

Solving the last two equations we easily obtain

W) = f(2) e%(xpx—i—ypy)’

with f(z) an arbitrary (smooth) function of the z variable only. Imposing that ‘1//) be an eigenfunction
of H with eigenvalue E we obtain

1 i i
eg(pr-lryPy)[(p?C + pf,)f(z) _ hzf”(z)] — Ef(z)eg(xpx-wpy),

HW)Zﬂ

or equivalently
1
F"(z) + 3 (2mE — p} — p2) f(z) = 0.

For this equation to have a bounded solution the factor multiplying f(z) must be a non-negative num-
ber pg /h?, with

pe = /2mE — p2 - p},

in which case . ,
f(z) = aer?Pz 4 pe” n2Pz,
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Thus W) is a linear combination of the two linearly independent functions

ot Px+ypyEzp:).

Since the common eigenspaces of H, Py, and P) are two-dimensional, the set {H, Py, Py} is not a
(generalized) CSCO.

Exercise 4.5. Let A be a constant of motion, and suppose that W(O)) is an eigenstate of A. Examine
under what conditions [ (z)) = | (0)) for all ¢ (up to a trivial phase).

Solution. Since by hypothesis A commutes with the Hamiltonian H, H leaves invariant ker(4 — a),
where AW(O)) = a‘l/f(())). We can therefore construct an orthonormal basis of ker(4 — a) with
elements

‘ En;k ),

where E,, # Ep, if n # m,
H|Ep:k) = Ep|En: k)

and the index k ranges from 1 to the dimension of the common eigenspace of H and A with respective
eigenvalues E, and a. Since, by hypothesis,

W (©) = cnk| En:k),
n,k

applying the time evolution operator e wiH (o WI(O)) we obtain

W(l)) = chke_%tEn En;k) = Ze_%tEn chk‘Enik)-

n,k n k

Since by construction E,, # E,, for n # m, the state |w(t)) will be time dependent unless the above
sum contains only a single energy, say Ey,, i.e., if H = E,, on ker(A — a). Indeed, if this is the case

VO) =Y cklEmik) = [p©)) = HEn Y e |Emik) = e HEm |y 0)
k k

which as we know represents the same quantum state as W(O)). In particular, this will trivially occur
if the eigenvalue a of A is non-degenerate, since in this case ker(A — @) is one-dimensional.

Remark. Another useful relaxation of the requirements for a set {A1, ..., Ay} of mutually commuting
observables to be a CSCO arises if we drop the condition that there be an orthonormal basis of the
system’s Hilbert space #€ of joint eigenvectors of the operators A;, demanding only that the common
eigenspaces to all of these operators be one-dimensional. In this way we can still label unambiguously
the common eigenvectors of the operators in the set using their eigenvalues (and no additional quantum
numbers), as in Eq. (4.25). Moreover, the set of common eigenvectors of the operators Ay, ..., Ay is an
orthonormal set. Indeed, two elements |a1 ---ay) and |a} ---a’y ) of this set differ at least in one of the
quantum numbers, say a; # a;, which implies that

(al...aN|a,1...a;V> = 0’

as|ay---ay) and |a} ---ay) are eigenvectors of the self-adjoint operator 4; with different eigenvalues.
Thus the set of common eigenvectors |aj ---apy) of the compatible observables {A41,..., Ay} is an
orthonormal basis of the (closure of) the linear subspace #{ spanned by the common eigenvectors of the
latter operators. Since the elements of this basis are uniquely labeled by the eigenvalues of the operators
in the set {Aq, ..., Ay}, this set is a CSCO for the Hilbert space #y. [ |
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4.6 Compatible observables. Complete sets of commuting observables

Example 4.9. Consider the Hamiltonian of the hydrogen atom

P2 q2
H = = + )
2m  4meoR

where ¢ > 0 is the proton’s charge and m is the electron’s mass. As we saw in Exercise 4.3, H
commutes with the three components L; of the angular momentum L. These components, however,
do not commute with each other. For instance,

[L1,L2] = [X2P3 — X3P>, X3Py — X1 P3] = [X2P3, X3P1] + [X3 P2, X1 P3]
= X3[P3, X3]P1 + X1[X3, P3] P, = in(X1 P> — X2 P1) = ihL3,

and in general
3
[Lj, Lg]l =i ) &jknLn, (4.26)
=1
where ;5 is the Levi-Civita antisymmetric symbol defined by

1, (i, j, k) even (cyclic) permutation of (1,2, 3)
gijk = y—1, (i, j, k) odd permutation of (1,2, 3)
0, otherwise.

On the other hand, each component L; of L commutes with L? = L% + L3 + L3. For instance,

[L1.L%] = [L1. L3 + L3] = La[L1. La] + [L1, La]L2 + L3[L1, L3] + [L1, L3]L3
=ih(LaL3 + L3La — L3Ly — LaL3) = 0.

Thus H, L2, and any component L; of L are a set of mutually commuting observables. We shall
show in Section 6.8 that the joint eigenspaces of these operators are one-dimensional. However, the set
{H,L2, L;}is not a CSCO, since the (closure of the) span of the common eigenvectors of the operators
H,L? and L; is a proper subspace of the whole Hilbert space &€. In fact, this subspace is the (closure
of the) subspace spanned by the bound states of the Hamiltonian H. It is properly contained in &€,

since the spectrum of the hydrogen atom has also a continuous part [0, 00).
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5 The harmonic oscillator

5.1 Power series solution

Consider a particle of mass m moving in one dimension subject to the potential V(x), and suppose that x¢
is a stable equilibrium with V" (x¢) # 0. Since the equilibrium x is stable it must be a local minimum
of the potential, and thus V" (x¢) > 0. Assuming, w.1.0.g., that xo = 0 and V(0) = 0, we can the write'

1
V(x) = 3 kx? + o(x?), k:=V"(0) > 0.

Thus in a sufficiently small neighborhood of the origin the classical Hamiltonian (in Cartesian coordi-
nates) is
2
P 1. >
H=—+ —kx~, 5.1

om T2 G-

and Hamilton’s canonical equations read
. oH P . oH _

Sl

—kx,

which yield the following linear homogeneous second-order differential equation for the coordinate x:
mx 4+ kx = 0.

As is well known, the general solution of this equation is

x = acos(wx) + bsin(wx),

with a, b arbitrary constants and

k
= 4/—. (5.2)
m

The motion is thus oscillatory, with circular frequency w given by the previous equation.
Let us now study the quantum version of the previous problem, i.e., let us determine the energy spec-
trum of the one-dimensional quantum harmonic oscillator Hamiltonian

P2 1 P2 1
H="—+-kX?>= — + —mw?*X?. 5.3
m T2 om T2 (5-3)

Note that, by the previous discussion, this Hamiltonian will approximately describe the qualitative be-
havior of a particle subject to a potential with a stable equilibrium position if the particle’s energy is close
to the value of the potential at the equilibrium.

Since, in the notation of Section 3.5, the harmonic oscillator potential

V(x) = %ma)zx2 54

By o(s) we mean any function of the variable s such that o(s)/s tends to 0 as s — 0. Intuitively, |o(s)| is “much smaller”
than |s| when s tends to zero.
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has limits V3 = oo at oo, from Example 3.3 we know that there is only point spectrum. Moreover,
0p(H) is a countably infinite, discrete set strictly bounded below by min V'(x) = 0. In other words, we
can write

op(H) ={E,:n=0,1,...},

with

O<FEo<Ei<---<E,<--, with lim E, = oc.
n—00

The allowed energies E, can be determined from the Schrodinger equation

h? 1
—— " (x) + = mw?*x%y(x) = Ey(x), (5.5)
2m 2
which we can also write as
x2 2mE
-y (x) + AV =e¥(x),  ei= (5.6)
with
h
=1 —
mo

a constant with length dimensions. In order to further simplify Eq. (5.6), it is convenient to introduce the
dimensionless variable

X
§i=—
14
and, with a slight abuse of notation, regard ¥ as a function of s. Since
1
Oy = Z Js.,
the function v (s) satisfies the differential equation
Y(s) + (A= sHY(s) =0, (5.7)

where the prime now denotes differentiation with respect to s and

Ai=0Pe=—""FE="">0 (5.8)

a dimensionless parameter. For £ to be in the spectrum of H, we need 1 (s) to be square integrable on
the real line R (with respect to s, since x and s are proportional); in particular, we must have

lim y(s) =0. 5.9

s—+o0

To determine the behavior of the solutions of Eq. (5.7) at s = 400, we note that for |s| — oo the term
A is negligible compared to s21. Hence for |s| — oo we must have

v (s) >~ 5% (s), (5.10)

which suggests that (up to an irrelevant multiplicative constant)

2

Y(s) ~ e @

|s]—o00
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for suitable a € R. Since

—a¢2 —ge2 —g¢2 a2 g2
dse” 4" = —2ase™ ", 2e™" = (4a*s* —2a)e™™ ~ da’s?e I,

substituting e~ into Eq. (5.10) we obtain
2 2 1
4025274 ~ 5% — g = :i:z.

This suggests that for |s| — oo the solutions of Eq. (5.7) behave as

N

W ()| ~ etz

or, more generally, as
2
V()] ~ Is[fet >
2

with k a nonnegative integer, since ske®T is also an approximate solution of Eq. (5.10):

32 52
32 (skeiZ) = (s2 4 o(s?))sket =

as |s| — oo. From the boundary condition (5.9) we deduce that for ¥ (s) to be an eigenstate of the
2

k

harmonic oscillator Hamiltonian it must behave as se~"z for some nonnegative integer k. This suggests

performing the change of variable

V(s) = e_%u(S), (5.11)

under which Eq. (5.7) transforms into

[u"(s) = 250/ (s) + (A — Du(s) = 0. (5.12)

Since the coefficients of this linear differential equation are polynomials, from the theory of such equa-
tions it follows that its solutions are analytic functions on the whole real line, i.e., that u(s) admits a
power series expansion

u(s) = Y as (5.13)
k=0

with an infinite radius of convergence. The coefficients a, can be computed (up to an overall irrelevant
multiplicative constant) by differentiating term by term the previous expansion and substituting into
Eq. (5.12). Proceeding in this way we obtain

o o0 o0
D k(e = Dags*2 + > (A —1=2k)ags® =Y [k + Dk + Dago + (2 — 1 = 2k)ag] s* = 0.
k=2 k=0 k=0

which yields the following recursion relation for the coefficients ay:

2k +1-4

= k=0,1,.... 5.14
Af+2 *k+ Dk 12 ag, .1, (5.14)

Since the latter equation relates ay 4+, with ag, the series of the even and odd coefficients

o0 o0
uo(s) = ZaszZk, ui(s) = Zazk+152k+l (5.15)

are each of them a solution of the differential equation (5.12), respectively even and odd in s. This is as
expected, since the harmonic oscillator potential is an even function of its variable, and thus it has a basis
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of solutions with well-defined parity (see Example 3.3). The recursion relations satisfied by the even and
odd coefficients can be easily obtained from Eq. (5.14). Indeed, calling

b]lc = Aok +i» with 7 =0,1,
we have
w . . .
ui(S) — Z b;s2]+l
k=0
and
4k +2i +1—-A 4k +2i +1—-A

b = . = bi . 5.16
kbt T k2 = o 0k i +2) R T 2k )k 2i + 1) K (10

From Eq. (5.14) (or the previous equation) it also follows that if A is not an odd positive integer neither
series (5.15) terminates. In this case we have

beyr _ 4k+2i+1-2 1
b 2k + 12k +2i + 1) k>oo k

(5.17)

On the other hand, if

then
Ck+1 _ 1 «\, 1
Ck - k +1 k—_>oo k '
It is thus to be expected that when A is not an odd positive integer the solutions of Eq. (5.12) behave as
s2

lui(s)] ~ e,
|s]—>o00

and therefore

S

D) ~ ez,
|s]—o00

where
. $2
w(’)(s) =u;(s)e” 2

is the solution of the Schrédinger equation (5.7) with parity (—1). More rigorously, it can be shown that
in this case for sufficiently large |s| we have

. . $2
s) > Cls|'ed, 1 =0,1; .
@) Cls|t i = 0,1 (5.18)

see Exercise 5.1 for details. Hence when A is not an odd positive integer neither ¥ © nor @ are
normalizable. We thus conclude that when A is not an odd positive integer Eq. (5.5) has no square
integrable solutions.

Suppose, on the other hand, that

A=2n+1, with n=0,1,...,

is a positive odd integer. If n = 2m (withm = 0,1,...) is even, then A = 4m + 1, and the recursion
relation (5.16) reads
i 2k —m) + i ;
17k + DRk +2i +1) %

i=0,1.
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Thus in this case the series for the odd solution u; does not terminate, whence it follows (reasoning
as above) that this solution is not normalizable. On the other hand, the even solution ug reduces to a
polynomial of degree 2m, since from the recursion relation with k = m we obtain

b31+1 =0,
which in turn implies that b) = 0 for all k = m + 1. In this case

bO - _ 2(1’)’1 _k) b()
k+1 Qk 4+ Dk +1) %

and therefore (taking bg =1)

o oml (=172 oml  (=1)/2% L
T =@ =Dy m— ) @) <jsm,
whence
& om ¥
uo(s) = )= s (o = Pams). (5.19)

J=0

Hence the corresponding solution
—s2 g2
VOs) = uo()e™ 2 = Pap(s)e™ 2

of the Schrodinger equation (5.7) is normalizable, and A = 4m + 1 is therefore an eigenvalue of the
latter equation. From Eq. (5.8) we then conclude that the numbers

1
E2m2(2m+§)ha), m=0,1,...,

are eigenvalues of the original Schrodinger equation (5.5), with corresponding (unnormalized) eigen-

functions

Likewise, when A =2n +1andn =2m + 1 withm =0, 1, ... is odd, we have A = 4m + 3 and the
recursion relation (5.16) becomes
2m—k)+1—i

bt . =— b, i =0,1.
LT T D@k +2i+ ) ]

In this case the even solution u is an infinite series, and therefore is not normalizable, while the odd one
u1 reduces to a polynomial of degree 2m + 1. Indeed, since
pl 2(m —k) ;
k+1 k + )2k +3) %

we have b} = 0 for j > m, and (taking b} = 1)

. m! (=1)727 m!  (=1)72% ,
bj = - - o= - - , <j<m.
(m—j)H)Eej+ DHNj! (m—j)Hej+ D!
Hence m .
. om! (25)%/ 1
= 1)/ =P , 5.20
1 (s) ,;o( Vi@ s = P ©® (5.20)
so that

v (s) = Ml(S)e_sz/2 = P2m+1(S)e_s2/2
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is a normalizable solution of the Schrddinger equation (5.7) with eigenvalue A = 4m + 3. By Eq. (5.8),
the numbers

E2m+1=(2m+ )ha) m=0,1,...,

are eigenvalues of the original Schrodinger equation (5.5), with corresponding (unnormalized) eigen-

functions
) mo
Qam+1(x) = Pamy1(s)e™5 /2, §=,/—x.

We have thus established the following important result:

The eigenvalues of the Schrodinger equation (5.5) are the numbers

1
Enz(n—l—i)hw, n=0,1,..., (5.21)

with corresponding (unnormalized) eigenfunctions

on(x) = Pn(s)e_sz/z, s = ”mh_a)x’

where P, (s) is the n-th degree polynomial defined by Egs. (5.19)-(5.20).

Exercise 5.1. Prove Eq. (5.18).

Solution. Indeed, suppose that A is not an odd positive integer, so neither solution u; (x) (withi = 0, 1)
reduces to a polynomial. From Eq. (5.17) we then deduce that

b: e 22k +2i +1) ’ B '
Since
4k +2i +1—A

1 =
koo 2(2k +2i 1 1)
if o € (0, 1) there exists an integer N > 0 such that

4k +2i +1-2
2(2k +2i + 1)

> «, Vk = N.

It follows that

bl
At oSkt o Wk =N,
b]lC Ck

and since by, /by is positive for sufficiently large k we can assume that

bl bt bi aci oo ,
1 i—N € .
J _ J .. N+1> J S N+ :a] N—J VJ>N

bﬁ'\, bj._l b’ Cj—1 CN CN

This implies that

1 > 1 §2J —i oV & 2\J o N as?
by, 2 = O - pe) > S Y glasd) = (e = q0)
N =N+ N ¢ i=N+1 CN
J
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5.2 Hermite polynomials

with p; (s) and ¢ (s) polynomials of degree up to 2N in s. We can rewrite the previous relation as

I N
e s uj i " (e‘“2 — hi(s)),
N

where again /; is a polynomial of degree up to 2N in 5. On the other hand, since & > 0 for sufficiently
large |s| we have

1
B < e Isl> 1,
and therefore N
1 . o
5T ui(e) > =7, s> 1,
bl 2cnN

which is easily seen to imply (since the RHS is positive) that

i
ui (s)] > ch| IsI7e% = Cols['e™”,
with
Co = lb | > 0.
20N ey
It follows that )
WD (s)| = [ui(s)le™ > Cals|e@ >,

from which Eq. (5.18) follows taking o« = 3/4.

5.2 Hermite polynomials

The polynomials Py (s) defined by Egs. (5.19)-(5.20) are proportional to the classical Hermite polyno-
mials® Hy(s), defined by

i [n/2] (— l)k ok <23
n(s) = Zk TG (5.23)

where | x | denotes the integer part of the real number x (i.e., the largest integer less than or equal to x).
Indeed, if n = 2m + i withi = 0, 1 we have

P 3 1)/ m! (292" 9—i - 1ym—k m! 9 g)2m+i—2k
n(s) _Jg(_ e Ty T k;)(_ i =2 @
_ A—i m k m! n—2k m_
=27(-1) Z( D e @ =T D" His).
Hence for alln = 0,1, ... the unnormalized eigenfunction of the harmonic oscillator Hamiltonian (5.3)

with eigenvalue (n + 3)A® can be taken as

gn(x) = Hy(s)e ™2, 5= V mh_wx‘

The functions ¢, (x) withn = 0,1, ... are orthogonal to each other (since they are eigenfunctions with
different eigenvalues of the self-adjoint operator H ), but they are not normalized. In fact, from Eq. (5.25)

2See exercises 5.2-5.4 for the main properties of the Hermite polynomials.
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in Exercise 5.25 we easily obtain

o0 o0 o0
/ dx {(pn(x)‘z = / dx e_sanz(s) = E/ ds e_sanz(s) =2"nl/nd.
-0 ) )

It follows that the functions

1/4
Ua) = (52) 7 @) P a2 5= [P (5.24)

make up an orthonormal set of eigenfunctions of H, with

Hvy, = (n “F %) hoyy.

From the general discussion in Section 3.5 it then follows that the eigenfunctions (5.24) are an orthonor-
mal basis of the Hilbert space L?(R).
The generating function of the Hermite polynomials is defined by

F(x,t):= Z Hn(x);—'.
n=0 ’

This function can be easily evaluated using the definition (5.23) of the Hermite polynomials. Indeed,

oo |n/2] k m 5
1 2 2
Foen =22, S Z o kZ_O( L e,

where in the second equality we have changed the summation indices (1, k) to (m, k) withm = n — 2k.
We thus have

2
F(x,t) = e3> 1",

The main properties of Hermite polynomials can be readily established with the help of the generating
function, as we shall show in the following exercises.

Exercise 5.2. Show that

o
/ dx €™ Hy (x) Hpy (x) = 201/ S (5.25)

—o0
Solution. Let us compute the integral

S tm (o)

I(s, 1) :=/ dxe™ F(x,s)F(x,t) = Z dxe_szn(x)Hm(x)

using the previous explicit formula for the generating function:

o0 )
—x2 2 _ 42 (2 2 .2
I(S,Z) =/ dxe ™™ est s 62”‘7 = — e (s=+t )/ dxe™* +2(s+1)x
—OoQ

—00

_ e—(s2+t2) /oo e e—(x—s—t)ze(s+t)2 _ 25t /00 by e—(x—s—t)2
—00

—00

€e n ee n
B e @2st)" _ 2"/ n.m
= ﬁe = «/Engzo PR E il Snms"t™.

m,n=0

Equating the coefficient of s”¢™ in both expressions for /(s, ) we immediately obtain Eq. (5.25).
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Exercise 5.3. Prove Rodrigues’ formula
Ha(x) = (—1)"e* 9" (™). (5.26)
Solution. From the definition of the generating function it follows that

2 = J7 (exze_(x_t)z)
t=0

_ (—1)”ex28’ge_§2‘$=x = (=1)"e** 3 (7).

Ha(x) = 91 F(x,0)| _ = e _ e’
=

t=0

t=0

Exercise 5.4. By differentiating the generating function with respect to x and #, prove the identities
H;(x) =2nHy—1, H,1(x) =2xH,(x) —2nH,_1(x) (m=0,1,...). (5.27)

Combine these identities to deduce the second-order differential equation satisfied by Hj(x).

Solution. Differentiating the explicit formula for the generating function with respect to x we obtain

0y F(x.1) = 9 2%~ —t2 = 2%F(x, t)—2ZH n(x) g+l _22 (:_1§))C')t
n=0

On the other hand,
o0
H/
0xF(x,1) = Z ﬁ ",

n!
n=0

where the prime denotes differentiation with respect to x. Equating the coefficient of ¢ in both ex-
pressions for d F(x, ) we easily obtain the first recursion relation (5.27).
Likewise, differentiating now with respect to ¢ we obtain

8, F(x,1) = 9,62 = 2(x — 1) F(x,1) = 2xz Hy (x) 22 Hy (X) 1

-y 2 (xHn ()~ nHa e () 7
n=0

and

1)' n! ’

The second recursion relation in Eq. (5.27) follows immediately imposing the equality of the coefficient
of " in both expressions for d; F(x, t).
Using the second relation (5.27) to express H,_; in terms of H, and H,; we obtain

9, F(x,1) = Z Hp (x) _ Z Hn+1(x)ln
n=1 n=0

Hy(x) = 2xHp(x) = Hpt1(x)
— H,/(x) = 2xH,,(x) + 2H,(x) — H, 1 (x) = 2xH, (x) + 2Hu(x) — 2(n + 1) Hp(x)
= 2xH, (x) — 2nHpu(x),
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where in the penultimate equality we have used the first relation (5.27) with n + 1 instead of n. Thus
the sought-for differential equation is

H,)/(x) —2xH, (x) + 2nHy,(x) = 0.

As expected, this is just Eq. (5.12) with A = 2n + 1.

5.3 Creation and annihilation operators. Algebraic solution

In this section we shall rederive the spectrum of the harmonic oscillator Hamiltonian (5.3) using an
abstract, algebraic method that is in fact of interest in itself as it is applicable in many other important
physical problems. To begin with, let us use the dimensionless observables

X mw LP P

in terms of which the Hamiltonian reads

The commutator of the operators X and P follows easily from the canonical commutation relation for
X and P:

| .
[X.P]=-[X.P] =i (5.29)

With a view of factoring the dimensionless Hamiltonian H, we next define the operators

1~ .
— (X +iP), at =
ﬁ( )

(X —iP), (5.30)

a =

which obey the commutation relation

[a.a') = JIX +iP. X —iP] = % (—[X,P] + [P,X]) — —i[X,P] = 1. (5.31)

The operators a and a are respectively called the harmonic oscillator’s annihilation and creation oper-
ators. The dimensionless Hamiltonian H is easily expressed in terms of the latter operators. Indeed,

1 ~ A A A l A A A A
afa = S(X —iP)(X +iP) = (X2 + P2 1ilX, P]) -

1 X2 132—1),
> (%2 +

1
2
and similarly
1 /4 N
aaT=aTa+[a,aT]=aTa+1 =§(X2+P2+1),

whence

1 1

v ot L _ L
H—aa+2—aa 5 (5.32)
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In particular, since the operator aa is positive semidefinite, from the last equation it follows® that rhe
spectrum of H is contained in the half line [1/2, o0).

The determination of o (H) is based on the commutation relations of this operator —or, equivalently,
its dimensionless counterpart H— with the operators a and a', namely

[a,H] = [a,aTd] = [a,a ]a = a, [af, H] = —[a, AT = —a. (5.33)

Let us further assume that H has at least an eigenvalue, since in the present context (i.e., when the
operators X and P are defined in the usual way as multiplication by x and —i%d,) we know this is
indeed the case. Denoting by A this eigenvalue and by |¥) any of its corresponding (not necessarily
normalized) eigenvectors, from the first commutation relation in Eq. (5.33) we have

la. HllY) = a(A|y)) — H(aly)) = A — Haly) =aly) == H(aly)) = (A - D@ly)).

Hence either a|y) = 0, or a|y) is an eigenvector of H with eigenvalue A — 1. In other words:

Acting with @ on an eigenvector of H either lowers the eigenvalue by 1 or produces the zero vector.

Note also that

Jatv) * = fawfav) = (wla"aly) = (] = 5J) = (2 3)

so that

alyy) =0 — A= % (5.34)

Thus if A is not a half integer (i.e., one half of an odd integer) then the vectors
a|y), n=01,...,

are all eigenvectors of H with arbitrarily low eigenvalues A — n. Since, as we saw above, the spectrum
of H is bounded below by 1/2, this is impossible. We conclude that A = n + % for some nonnegative
integer n, and that the vector

[¥o) := a"[¥)

is an eigenvector of H with eigenvalue 1/2. In particular, the the only possible eigenvalues of H are the
positive half integers n + % withn =0,1,....

Let us next prove that all positive half integers are eigenvalues of H . To this end, consider the action
of the operator a on an eigenvector |) of H with eigenvalue A. Using now the second equation (5.33)
we obtain

lat, Aly) = a¥(H|y))-A(a |y)) = 0-A)aTly) = —aTly) = H(aT|y)) = A+D@'y)).

On the other hand,

o 10317 = et o) = (ylaa ) = (| A+ 5 w) =t 5> 1,

3Indeed, if [y) is any state then

A 1 1
fata), = lalp)|*z0 = (), ={a’a), + 377

Applying this inequality to an eigenstate |{) of H with eigenvalue A we immediately obtain the inequality A > 1/2.
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since the spectrum of H is bounded below by 1/2. We conclude that the vector a|y) is an eigenvector
of H with eigenvalue A + 1. In other words,

Acting with a’ onan eigenvector of H raises the eigenvalue by 1.

It immediately follows from this statement (applied to the eigenvector |/¢)) that the vectors

) i= (aT)" o), n=01,.... (5.35)

are eigenvectors of H with corresponding eigenvalues
An=n+ —, n=0,1,....
Hence the point spectrum of H is the infinite discrete set

1
b gn=oa. . (536)

Summarizing:

Theorem 5.1. If the point spectrum o (I-} ) of H is nonempty, then
N 1
op(H) = {n—i—i in :O,l,...}.

Moreover, if | Vo) is a (not necessarily normalized) eigenvector of H with eigenvalue Ao = 1/2, then

lYm) = (@) o),  n=01,...,

is an eigenvector with eigenvalue A, = n + %

In particular, since the harmonic oscillator Hamiltonian H is equal to hwH , from the latter theorem it
immediately follows that the spectrum of H is given by Eq. (5.21).

Remark. In view of the above, it is natural to interpret the spectrum of the harmonic oscillator in the
following intuitive way. The eigenstate |n) contains n quanta of energy hw, so that the ground state |0)
is regarded as the vacuum (i.e., it does not contain any energy quanta, although it has a nonzero vacuum
energy hw/2). The annihilation operator then destroys (i.e., “annihilates”) one of these energy quanta,
thus lowering the system’s energy by Aw. On the other hand, the creation operator adds an energy
quantum to the system, i.e., it “creates” a quantum of energy Aw. In fact, this interpretation of the
spectrum of the harmonic oscillator operator is largely adopted in quantum field theory, where the energy
quanta are regarded as particles (that, according to the principles of special relativity, can be created or
destroyed). |

The sequence of eigenvectors (5.35) generated by an eigenket |¢) of H with eigenvalue 1/2 —i.e.,
by one of the ground states of H— is not normalized, even if |{) is. It can be easily normalized by
taking into account that if |{) is a normalized eigenvector of H with eigenvalue A,—1 = n — % (with
n=1,2,...)then

(@' law) = (wlaa'[9) = (v| 1 + 3|0} = (ot + 3 ) 0190 =t =,
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and thus

%aw

is a normalized eigenvector with eigenvalue A,, = n + % Therefore if |¢) = |0) is normalized so are

1
(a")?|0), 13) = ia*p) = ﬁ(a?“)3|0),

1) :=d'0),  |2) = 7

Aoy = &
AYN=5

with respective eigenvalues

It follows that the vectors

In) := \/% @hHoy, n=01,..., (5.37)

where |0) is a normalized eigenvector of H with eigenvalue 1/2, are normalized and satisfy

H|n) = (n + %) |n).

Although it is not possible to determine the degeneracy of the eigenvalues of H from the commutation
relation (5.31) alone, it is straightforward to prove the following general result:

The degeneracy (finite or infinite) of all the eigenvalues (5.36) of H is the same. In other words,

dimker(H — A,) = dimker(H — An),  VYn,m=0,1,....

Proof. Obviously, it suffices to show that
dim ker(ﬁ — An) = dim ker(ﬁ — o), Vn € N.

To this end, note that the operator (a™)" maps ker(4 — A¢) injectively into ker(A — A,), since applying
a’ to an eigenvector |i) of H with eigenvalue A produces an eigenvector with eigenvalue A + 1 (in
particular, a non-zero vector). This shows that

dimker(H — A,,) < dimker(H — A,,).

Likewise, a” maps ker(A — A,) injectively into ker(A — Ag), since applying « to an eigenvector |y) of
H with eigenvalue A > 1/2 produces an eigenvector with eigenvalue A — 1. (Recall that if |1} is an
eigenvector of H with eigenvalue A then a|y) cannot vanish unless A = 1/2.) Thus

dimker(H — A,) < dimker(H — Ao).
which together with the previous inequality completes the proof. |

The action of the creation and annihilation operators on the normalized eigenvectors |n) is also
straightforward to determine. To begin with, we have

afln) = — (@ 10) = Vn + 1|n + 1), n=01,....

1
V!
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To compute a|n), note that applying a to the previous equality we obtain
A1
aaT|n) = (H + 5) |n) =+ Dn) =~/n+1laln+ 1), n=20,1,...,

whence

aln + 1) = ~/n+ 1|n), n=0,1,...,

or equivalently
aln) = /n|n —1), n=12,....

We have thus shown that

aflny =vn+1n+1), an)=Vnln—=1), n=01,.... (5.38)

(Note that, although | — 1) is not defined, the term /7 /2 |n — 1) in the previous equations vanishes when
n = 0 due to the factor v/n/2.) From these equations and the definition (5.30) of the operators ¢ and a '
it is immediate to deduce the action of X and P on the eigenvector |n):

X|n) = —=(a +a")n) = \/§|n — 1)+ /2L |+ 1), (5.39a)

=
NG
13|n):%(aT—a)|n):i(,/%|n+l)—\/§|n—1)). (5.39b)

Hence the matrix elements of the position and momentum representation with respect to the orthonormal

basis (5.37) are given by
h n n—+1
n) =y ps <\/§5j,n—1 V5 5j,n+1) :

A

X

Xin = (10 =

N 1
Pjn = (j|P|n) = Vhmo (j|P|n) =ivhmw (—\/g(Sj,nﬂ +/ n—2|- 5j,n+1) :

The previous formulas were at the basis of Heisenberg’s early formulation of quantum mechanics known
as matrix mechanics.

Exercise 5.5. Compute the average value and the uncertainty of the position and momentum of a
harmonic oscillator in the energy eigenstate |n).

Solution. To begin with, from Eqgs. (5.39) it immediately follows that the average values of X and P
vanish in the state |n): A A X A
(X) = (n[X[n) =0, {P) = (n|P|n) = 0.

Since X and P are respectively proportional to X and P, we also have

It follows that

A%y = (R = |Xim)|* = 5 + — + 5

since the states |n — 1) and |n + 1) are orthogonal and of unit norm. Similarly,

n+n+1 +1
= — =n =o
2 2 2

(AP) = (P?) = | B[’
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From Eq. (5.28) we then obtain

A / 1
AX =LAX = n—l—zﬁ, AP =

In particular, the uncertainty product AX AP in the eigenstate |n) is given by

| SH
DN
~>
Il
S
+
N =
ew,_l Sk

1
AXAP=(H+E)h,

in agreement with Heisenberg’s uncertainty principle. Note also that for n = 0 the uncertainty product
is exactly #/2, and thus the lowest energy eigenstate |0) is a minimum uncertainty wave function.

All the results proved so far in this section did not rely on any particular realization of the annihilation
and creation operators, but only on the commutation relation (5.31) and Eq. (5.32) for the Hamiltonian.
The results that we shall derive next combine the general algebraic approach outlined above with the
standard realization of the operators X and P, namely

n X X ~ 14

Xy = Tw =V =5y Py =Py =-ildey = —idsy,
where s is again the dimensionless variable x /£ and v (s) is an arbitrary wave function. In other words,
we are dealing with the specific realization

X =5, P =—id,. (5.40)

To begin with, let us find all ground states of the system, namely all solutions o (s) of the eigenvalue
equation

A 1
Hyg(s) = EWO(S)-

From the previous discussion (cf., in particular, Eq. (5.34)), we know that 1/¢(s) must be annihilated by
the operator a, i.e., must satisfy the equation

ayo(s) = 0.

By Egs. (5.30) and (5.40), this is equivalent to the first-order linear differential equation

Yo(s) + syo(s) =0,
whose general solution is
Yo(s) = Ne~=.
where N is a nonzero complex constant. Imposing that g be normalized we obtain
mwy1/4
)

o0 o0
/ dx\wo<s)\2=€/ ds [po@)]* = INPLVa=1 = N=¢a—(
(e @] —oQ

up to a trivial global phase. We conclude that the ground state

k]

vo(s) = (22) " e

is non-degenerate, from which it follows by the previous framed result that all energy levels are non-
degenerate. This is of course consistent with the result we obtained in Section 3.5 for a general one-
dimensional potential with V3 = oo.
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THE HARMONIC OSCILLATOR

Once the ground state Y9 = |0) is known, the n-th excited state ¥, = |n) can be computed from

Eq. (5.37), which in the representation (5.40) for the position and momentum operators reads:

Un(s) = @)~ V2(s — 35)"Yols) = Nl V(s — dy)e™>

Taking into account that

e2 dge 2 =05 —3s,
and hence
$2 )
(0s—s)"=eZ2 dye 2,
we obtain
) 1/4 $2
Un(s) = N(=1)"(@2"nl)" V2T g <e_s2) — (%) Q" )" V2 H,(s)e™ T,

where we have used Rodrigues’ formula (5.26) for the n-th Hermite polynomial H,, (s). This is exactly
Eq. (5.24) for the n-th normalized eigenstate obtained in the previous section through the power series

method.

In fact, one can easily establish most of the identities satisfied by the classical Hermite polynomi-
als proved in the previous section using the operator techniques developed above. For instance, from

Eq. (5.38) it easily follows that
N _ _2 N _ _2
ay, = E(Z”n!) Y2(s + 85) (Hpe™/?) = E(znng) 12 =572

N _
= ViVt = =2 V@ — 1)) ?H,1e? =  H! =2nH, .

V2

Likewise,
N _ 2 N _ 2
aty, = E(2";1!) V2(s — d5) (Hpe™ /%) = E(2"n!) 12(25H, — H))e™ /2

N _
= Vit i1 = =0 D@+ DY) P Hye™ = —Hj +25Hy = Hup

V2

Combining both equations we obtain
H, ,=2mn+1)H, = —H, +2sH, +2H, = H, —2sH, +2nH, =0,

which is the differential equation satisfied by the Hermite polynomials (cf. Exercise 5.4).
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6 Three-dimensional problems

The Hamiltonian of a particle of mass m moving in ordinary three-dimensional space R? is

P2
H = — +V(R), 6.1)
2m
where V(r) is the classical potential. In the position representation the position and momentum operators
are explicitly given by
R=r, P = —ihV,

and the time-independent Schrédinger equation therefore reads

h2
—3 VAU + VY () = EV (), (62)

where £ € R is the particle’s energy and ¥ (r) is its wave function. We seek solutions of the latter
equation which are either square integrable over R3 (for bound states) or bounded but not square in-
tegrable (for scattering states). The Schrodinger equation (6.2) is a second-order linear homogeneous
partial differential equation which can be solved by the standard mathematical technique of separation
of variables in several coordinate systems, depending on the structure of the potential V(r). In this chap-
ter we shall examine some of the simplest examples of this method, in which the Schrodinger equation
separates either in Cartesian or in spherical coordinates.

6.1 Separation of variables in Cartesian coordinates

Suppose, to begin with, that the potential V(r) is the sum of three functions each of which depends on
only one of the Cartesian coordinates, i.e.,

V(r) = Vi(x1) + Va(x2) + V3(x3). (6.3)

The Hamiltonian H is then itself the sum of three one-dimensional Hamiltonians H; (i = 1, 2, 3), where
each H; depends only on the x; coordinate:

2

h
H=H +Hy+ Hs,  Hii=——-0% + Vi(x). (64)

Since obviously
[Hi9Hj]=0’ Vi’j=1’2’3’

it follows that there is a (generalized) orthonormal basis made up of common eigenvectors of each Hamil-
tonian H;. To see how this works in practice, let us follow the method of separation of variables and
seek eigenfunctions of H which factorize as the product of three functions v; (x;), each of which depends
only on the corresponding coordinate x;:

V(r) = ¥1(x1)¥2(x2)¥3(x3). (6.5)
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THREE-DIMENSIONAL PROBLEMS

Substituting into the Schrodinger equation and dividing by v (r) (at points r where v; (x;) # 0 for all i)
we obtain the equation

3
3 e () _
= V()
Taking the partial derivative of both sides of the previous equation with respect to a coordinate x; we
obtain 3 H
_Mzo’ i =123,
Oxi Yi(xi)
whence H
Min’ i =1,2.3,
Vi (xi)
or equivalently
Hiyi(xi) = Eivyi(xi), i =123, (6.6)
where E; is a constant and
Ei+E,+ E; =E. (6.7)

In other words:

The function (6.5) is a solution of the Schrodinger equation (6.2) with an energy E if and only if each
Y; is a solution of the one-dimensional Schrodinger equation (6.6), with £ equal to the sum of the
three energies E;.

The energies E; are called in the mathematics literature separation constants. Note also that the bound-
ary conditions for the one-dimensional eigenvalue problems (6.6) (an example of what in mathematics
is called a Sturm—Liouville problem) are similar to the boundary conditions for the three-dimensional
problem (6.2), i.e., each ; must be square integrable for ¥ to be square integrable, or all the v; must be
bounded (and at least one not square integrable) for the three—dimensional solution ¥ to be a scattering
state.

Of course, not every solution of Eq. (6.2) is of the form (6.5), since the sum of two or more such
solutions with the same energy E is still an eigenfunction with energy E (by linearity) which is not of
the form (6.5). Suppose, however, that each one-dimensional problem (6.6) has only point spectrum. In
this case, for each of these problems there is an orthonormal basis of LZ(R)

{Yi(xj):neN}, i=1723,
whose elements are eigenfunctions of the corresponding Hamiltonian H;, i.e.,
Hiyn(xi) = Eyyp(vi).  neN, i=123
Here we are denoting the (point) spectrum of H; by
{E,’1 :n € N},

with E ,’c # E;l for k # n (since, as shown in Section (3.5), the point spectrum of one-dimensional
potentials is non-degenerate). It can then be shown that the set

{Wkin (0) := Y (x) Y7 (x2) ¥ (x3) s k,I,n € N} (6.8)

is an orthonormal basis of the Hilbert space # = L?(R?) of the three-dimensional problem (6.2), with

HYkin = ExinYkin, Exin = E{+E} +E;, kiln=12,.... (6.9)
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6.1 Separation of variables in Cartesian coordinates

Thus in this case the (point) spectrum of the three-dimensional Hamiltonian (6.1) is the set

{Exin=E, + Ef + E; :k.l.n € N}

with corresponding eigenfunctions

Yiin () = YR (x) Y2 (x2) Y2 (x3).

Note that the orthonormality of the set (6.8) is straightforward to check:

(Vikin: Vierrn) = /d3r Vi @ Vi1 (1)
= (/ & [y (xl)]*wll/(xl)) (/ d3x2[1ﬁ12(x2)]*1/f,2,(x2)) (/ d3x3[w3(x3)]*w,f,(x3))
= (Vi V) W75 (W Vi) = SkrS11 8.

It follows from the discussion in Section 3.1 that the general solution ¥(r, ¢) of the time-dependent
Schrodinger equation with initial condition ¥ (r, 0) = ¥ (r) is given by

o0 o0
-iE _ —L(E}MEP+ENL 1 2 3
W)= Y k€ PR () = Y cpane” B ERTEITED Yl (e )R (x2) ¥ (x3),
kalsn=1 k,l,n=1

where the coefficients ¢y, are computed from the equation

ckin = (Vkin. V) = /d3r Vpin Y (r).

Remarks.

e In the language of Section 4.6, the set { H1, H», H3} is a CSCO for the Hilbert space #{ = L?(R3).

e The Hamiltonian H in Eq. (6.4) can be interpreted as describing the motion of three one-dimensional
effective particles of the same mass m each of which is subject to its corresponding potential V; (x;),
but which do not interact with each other (since there is no term involving two or more coordinates).

e In general, the spectrum (6.9) is degenerate. The degeneracy of an energy E € 0, (H ) is the cardinal
of the set

{(k.l,n) e N* . E} + E} + E; = E}. |

Exercise 6.1. If each of the Hamiltonians H; has only point spectrum, show that the ground state of
the Hamiltonian (6.4) is non-degenerate.

Solution. If the Hamiltonian H; has only point spectrum, its energy levels are non-degenerate. By
Eq. (6.9) for the energy, the minimum energy is obtained by adding the minimum energy of each
Hamiltonian H;. Thus the ground state is the state 1111, with energy E11; = E 11 + E 12 + E 13 .
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6.1.1 The infinite well

As our first example of problem that can be solved separating variables in Cartesian coordinates, consider
the infinite potential well

Vi) = {0, re(0,L1) x (0, Ly) x (0, L3) 6.10)

00, otherwise.

This potential describes the free motion of a quantum particle confined inside a rectangular box with
impenetrable walls. Since we can formally write

V(r) = Vi(x1) + Va(x2) + V3(x3),
where V; (x;) is the infinite square well potential

0, 0<x; <Lj,

Vi(xi) = :
00, otherwise,

the time-independent Schrodinger equation (6.2) is separable in Cartesian coordinates. As we saw in

Section 3.4.1, the potential V; has only point spectrum, with eigenvalues and corresponding normalized
eigenfunctions given by

g _ n>n?h?

n 2

2mL;

. |2 .
Yy (xi) = L—isin(nzcl), neN, i=1,23.

From the above discussion it follows that the energies of the three-dimensional infinite well poten-
tial (6.10) are

neN,

and

2h? [ k? 2 n?
Ean =22 L2 2 ) klnen,
Mn = om \Z T2 12 "

with corresponding (normalized) eigenfunctions

2 k /
Yiin(r) = 2\/gsin ( ZTI) sin ( 222) sin (nz;@) .

where v = L1L,L3 is the volume of the box. Note that, in contrast to the one-dimensional case, the
spectrum is in general degenerate. For instance, for a cubic well L; = L, = L3 = L and hence

n2H2

Ekln = m(k2+12+n2)'

The degeneracy of an energy E € 0,(H) is in this case the number of triplets (n1,72,n3) € N2 such
that 5
2mEL
2, .2 2
ni + ny + nz = W
For instance, the ground state has energy
3n2h?
Einl=——
=5 0
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6.1 Separation of variables in Cartesian coordinates

and (as we know from Exercise 6.1) is non-degenerate, since (for k,/,n € N)
Exin=Em & kK +1*+n*=3 & k=Il=n=1.

The ground state wave function is therefore

Vi) = ¥{ )Y )Y (x3) = 2\/% sin (%) sin (HL—?) sin (TEL_X:) ’

which (as in the one-dimensional case) does not vanish (is strictly positive) inside the box. The first
excited state has energy by
3nch
Ezi1 = E121 = Eii2 = R
and is three times degenerate, etc.

When E is very large compared to #2/(mL?), or equivalently k2 4/% 412 > 1, the energy difference
between two consecutive levels is very small (compared to E), and the spectrum is almost continuous.
In this limit, it is possible to estimate the number p(E) of energy eigenstates with energy less than or
equal to a certain energy E (taking into account the degeneracy of each level) by noting that this number

is equal to the number of points (121, 12, n3) with positive integer coordinates such that

2mL*E
2 2 2
ny+n;+n3< W

When E is very large, this number is approximately equal to the volume of an octant of a sphere of radius

~2mE L/(mh), namely

4t v

1 v
8 3 w343

QmE)*? = 2mE)*?—

E) ~ .

The the number v(E) dE of energy eigenstates with energy between E and E + dE is therefore given
by
(2m)3/%y

1/2
v EVdE.

W(E)dE = p(E + dE) — p(E) ~ p/(E)dE ~

The quantity i
VE) =

is called the density of states, and it plays an important role in statistical mechanics.

6.1.2 The three-dimensional harmonic oscillator

Consider a smooth classical three-dimensional potential V' (r) having a stable equilibrium, which can be
assumed w.l.o.g. to be located at the origin. Thus VV(0) = 0, and we can also take w.l.o.g. V(0) = 0,
since in (non-relativistic) classical mechanics the potential is defined up to a constant. Taylor expanding
V(r) about the equilibrium r = 0 we can write

3
1
V) =5 .Zl aijxixj + 0(r?),
L,]=

where A = (a; f)z'3 =1 is a symmetric matrix. If A is assumed to be non-degenerate it must be positive
definite, as the origin is a stable equilibrium by hypothesis. Hence there is an orthogonal transformation
(i.e., a rotation of the axes)

3
X; = ZRUEJ" i =1,2,3,
j=1
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such that
3 3
> aijxixj =) kiEl,
ij=1 i=1
with k; > Oforalli = 1,2, 3. Hence

3
V(r) = % > kig? + o). (6.11)

i=1

We thus see that the three-dimensional harmonic oscillator (HO) potential

3
1 . :
V(r) = 3 § kix?, with k; >0, Vi=1,2,3, (6.12)

i=1

approximately describes in appropriate coordinates the motion of a particle in the neighborhood of a
(non-degenerate) stable equilibrium of an arbitrary (smooth) potential. Evidently V is of the form (6.3),
with .

Vi) = Skixf,  i=123,
a one-dimensional HO potential in the variable x;. Since the latter potential has only point spectrum,

from the general discussion of Section (6.1) we conclude that the normalized eigenfunctions of the three-
dimensional harmonic oscillator Hamiltonian

P2 1L
— .y 2
H—%—i-ii_zlk,Xi (6.13)
are given by
> Bi 152,2 mo;
Vninans (r) = l_[ no /4 2?;1' e 2P Hy, (Bixi) (,Bz = 7 l) , (6.14)
i=1 b
with energies
1 1 1
Eninonsy = (I’ll + 5) hwy + (n2 + 5) hwy + (I’l3 + 5) hws, n; =0,1,..., (6.15)

where

w; = ,/]2, i =1,2,3. (6.16)
m

Formally, the Hamiltonian (6.13) describes three one-dimensional oscillators with the same mass 1 and
circular frequencies wi, @, , w3 which do not interact with each other. The system’s energy is thus the
sum of the individual energies of each oscillator, and its wave function is the product of each of the
one-dimensional oscillators’ wave functions.

As in the case of the infinite well potential, the energy levels above the ground state of the three-
dimensional HO can be degenerate, depending on the three frequencies w;. Indeed, the degeneracy of
the energy Ep,nons is the number of solutions (I1, l2,/3) € (N U {0})3 of the equation

E111213 = En1n2n3 <— (1 —npwy+ (2 —nz)wy + (Iz —n3)wz = 0.
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We thus see that when the three frequencies are rationally independent, i.e., when
(kiw1 + koo + kzws =0, kip3€Z) = ki =ka=k3z=0,

all the energy levels are non-degenerate, while if the three frequencies are rationally dependent (i.e., if
one of the frequencies is a linear combination of the other two with rational coefficients; for example, if
they are all rational numbers) the energy levels above the ground state may be degenerate.

The degeneracy of the levels can be easily evaluated for the isotropic oscillator, whose three frequen-
cies are equal. Calling w the common value of these frequencies, the Hamiltonian becomes

H = — + —mw?R>.
om 2"

The energies of the three-dimensional isotropic HO are given by

3
En1n2n3:(nl+n2+n3+§)hw, ni:0717"'5

and thus the energy spectrum is in this case the set

3
{EN = (N—i—i)ha):N:O,l,...}.

The degeneracy of the energy En is the number of ways in which the non-negative integer N can
be written as the sum of three non-negative integers n12 3. To compute this value, note that given
N = 0,1,... the sum nq{ + n, can take the valuesn = 0,1,..., N, and to each of these values there
corresponds a unique value of n3 (n3 = N — n). Thus the degeneracy of the level E is given by

N N+1
1
dy =) (1+1)=3 n=(N+1DN+2). 6.17)

since n + 1 is the number of non-negative integer pairs (n1,7n2) with n; + np = n. We thus see that
dy ~ N?/2 becomes very large when N is large, i.e., for highly excited states.

Exercise 6.2. Compute the density of states for the three-dimensional isotropic harmonic oscillator.
Solution. When N is very large, the number of levels with energy less than or equal to E = (N +
%)ha) ~ Nhw is given by
N N 1
,O(E)=%Z(n+l)(n+2)=%3'%2(%+%) (%+%) :N;/O Py = 1y
n=0 n=0
E3
R P,
The density of states is thus X
V(E) = p'(E) = 303

Notelt/hzat for the isotropic HO v(E) is proportional to 2, while for the infinite well it was proportional
to E/~.

6.2 Separation of variables in spherical coordinates. Central

potentials
sec.centpot

Spherical coordinates (7, 6, ¢) are defined by the equations

X1 = rsin6 cos @, Xy = rsinfsing, X3 = rcosb,
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with
r=0, 0<6 <m, 0< ¢ <2m.

Note that at the origin (» = 0) the angles 6 and ¢ are undefined, and that on the x3 axis the azimuthal
angle ¢ is undefined. In fact, the mapping (r, 8, ¢) — (x1, X2, x3) is a true change of coordinates (i.e., it
is smooth, bijective and with a smooth inverse) only for 7 > 0,0 < 8 < wand 0 < ¢ < 2m, i.e., outside

the half plane {x, = 0, x; = 0}. The Laplacian in spherical coordinates is given by

1 2

— 92,
r2sin?6 ¢

VZ = iar(ﬂa,) +

) 39(Sin939) ar

1
r2sin

so that the Schrodinger equation with a potential V(r, 8, ¢) reads

2m r2sin29 ¢

n2 [l 1 , 1
—— |:r—28r(r23r1/f) a4 mag(ﬂneaglp') + 2—82w:| =+ VW = El/f

Classically, the kinetic energy in spherical coordinates is given by

1 . 2 .
T =-m (,-,2 + 7262 + r2sin? ngz) = Lfr + —mr? <92 + sin? 0¢2) ,
2 2m = 2
since
oT .
= — = mr.
Pr="5;

The last term in brackets can be expressed in terms of the angular momentum

L =mrxt=mre, x (e, +rleg+rsinfge,) =mr’(0e, —sinfgeg),

where

or r ) . .

e, = — = — = (sin 6 cos ¢, sin 0 sin ¢, cos ),
or r
10

ey = LI (cos 8 cos ¢, cos 6 sin g, —sin 8),
r 06

1 or (—si 0)
e, = — = (—sing, cos ¢,
¢ rsind g ¢ ¢

are the unit coordinate vectors in spherical coordinates, as

L2
2mr2’

Lo a(s2, w2ps2) _
S (9 + sin 6(,0)—

Thus classically we have

T = o, L2
2m  2mr?’
Since in quantum mechanics
p? h?
7T=—=——V2
2m 2m

comparison with Eq. (6.18) suggests that

1 1
L? = —h? | ——0g(sinf d ——032
|:sin9 o(sin69g) + sin” 0 (p]’
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6.2 Separation of variables in spherical coordinates. Central potentials

where L is the quantum mechanical angular momentum
L=RxP=—iAirxV.

In fact, it can be proved by direct calculation that Eq. (6.21) is indeed true (see Exercise 6.4). We can
thus write the Schrodinger equation in spherical coordinates as

h? L?
S5 0r (r?0,v) +

v+ Vy = Ey. (6.22)

2mr?

Note that we can unambiguously write L2/ (2mr?), instead of using the more precise notations

1 2 o 5 1
2mr? omr2’

since by Eq. (6.21) the operator L? commutes with r.

Exercise 6.3. Show that 5 5
2 P2

;
— P =
2mr? 2m

9’

where ;
Pr = _ih - ar r
r

is the radial momentum operator®. Thus the kinetic energy operator 7" can be written in spherical

coordinates as
P2  L?
T=—+4+——,
2m + 2mr?
which is the quantum analogue of Eq. (6.20).

Solution. Indeed,
2 21 1 21 . 2(q2 , L2 202, 1 1
Pf=—h"—0,r-—0,r = —h"—0;r =—h~ |0, + —[0;,r] | = —h~ | 07 + —0,[0,,7] + —[0r,7]0r
r r r r r r
2 1
= —h? (a% + —a,) = —h?=3,r%.
r r

It is also straightforward to show that the operator P, is Hermitian (exercise), and is thus an observable.

“Do not confuse P, with the radial component of the momentum operator P = —iAV, namely e, - P = —i%d,, which is
not an observable (i.e., is not self-adjoint).

Since the operator L2 is independent of the r coordinate, we try to separate the variable r from the
angular variables (6, ¢) by looking for solutions of the Schrédinger equation (6.22) of the form

V(r,0,9) = R(r)Y(0,¢). (6.23)

Inserting this solution into Eq. (6.22) and dividing by i we obtain

L2Y 1

oy = R (r*9,R) + r(e — v), (6.24)
where we have used the notation
_ 2mV _ 2mE
VST T

Since the LHS of Eq. (6.24) depends only on the angle variables (6, ¢), we conclude that:
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The Schrodinger equation (6.19) is separable in spherical coordinates if and only if the potential V' is
central, i.e., depends only on the radial coordinate r.

For a central potential V' (r), the equation (6.24) separates into the two equations

L2Y (8, ¢) = AR2Y (0, ¢) (6.25)

and

—riza, (r*9-R(r)) + %R(r) = (e —v(r))R(), (6.26)

where A > 0 is a (dimensionless) separation constant!. The first of these equations is the eigenvalue
equation for the operator L2, AA?2 being the eigenvalue. In fact, since

Ly = L*(R(r)Y(0,9)) = R(r)L?Y(0,¢) = M?R(r)Y (0, ¢) = AWV,

the wave function R(r)Y (6, ¢), with R and Y satisfying Egs. (6.25)-(6.26), is a common eigenfunction
of the commuting observables> H and L2, with respective eigenvalues E and A#A2.

Exercise 6.4. Derive Eq. (6.21) using the following expression for the gradient in spherical coordinates:

1

rsin @

Solution. We have

eea(p.

L 1 e 1
— =rxV= dr + —egd Y 3y) =epdg — —
Sh rerx(er r+ree 9+rsin0 (p) %%~ Sino

Taking into account the explicit expressions of the unit vectors ey and e, given above we obtain

Ly =ih (singdg + cotf cos pdy) ., Lo = ih (—cospdg + cotfsingdy), Lz = —ihd,.
(6.27)

Hence
—# = (sinpdg + cot 6 cos <p8¢,)2 + (—cos @dg + cot 6 sin<p8¢)2
= sinpdy sindg + cot 6 cos ¢a, cot 6 cos ¢y,

+ cot 0 cos @dy sin pdg — cot O sin ¢, cos pdg

+ cos @dg cos @dg + cot B sinpdy, cot 6 sin @dy,
= sin® ¢ 85 + cot” 6 cos ¢( cos ¢ 0, — sin @, ) + cot 6 cos ¢ (sin g g + cos ¢ dg)

— cotfsing(cos ¢ 3,0 — sing dg) + cos® ¢ I + cot® O sin¢(sin @ 8, + cos ¢, )

= 95 + cotf dg + cot® 92,
and therefore
L2

1
_ 2 20)9; = 03 v
—32 = 9 +cotf g + (1 + cot™0)d, = 0y + cotf 9 + ——7 .

I'See Exercise 6.5 for the proof that A must be non-negative.
2In fact, it was shown in Exercise 4.3 that when V is a central potential each component L; of L commutes with H .
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This is clearly equal to Eq. (6.21), since

1
——0g(sin 6 dg) = 95 + cot§ dy.
sin 6

Exercise 6.5. Show that L2, considered as a linear operator acting on the Hilbert space L?([0, 1t] x
[0, 27]; d§2), is positive semidefinite. Deduce from this fact that the separation constant A in Eq. (6.25)
is non-negative.

Solution. Indeed, given a function f(6, ¢) in the domain of L? we have

(f, —Siﬁag(sineagf)) - —/Ozn do /On do f*ag(sinQEigf)
27 ) . O=m 27 T ) .
- —/0 do sinf f 39f|0:0 +/O d(p/o d6 sin 0(3g f*)(3p f)

1967 = 0.

Similarly,

(f’ 31n19 ¢ ) /znd(p/
— [T Smg (,)f(“’ - /hdgo/ 48 L3 )00, 1)

20,

sin 0
where we have taken into account that

£0.2m) = £(6.0), 3, f(0.2m) = d, £(6,0). (6.28)

From Eq. (6.21) it then follows that
(LL?f)=0

for any function f(6, ¢), so that L? is indeed positive semidefinite. Taking the scalar product of both
sides of the equation
L?Y(0,¢) = AW*Y (0, ¢)

with the function Y (6, ¢) we then obtain
Y|P = (r12Y) 20 = Az=0,

as claimed.

Alternative proof. The operators L;, considered as linear operators from the Hilbert space L2 ([0, 7] x
[0,27]; d£2) into itself, are still self-adjoint. This can be proved by integrating by parts, taking into
account the boundary conditions (6.28) above (exercise). Once this fact is established the claim follows
immediately, since

3 3

(LL2f) =3 (FLEf) =Y (LifLif) = ZHLJ’H > 0.

i=1 i=1 i=1
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6.3 Spectrum of L?

Let us next determine the eigenvalues of the operator L2, or equivalently the allowed values of the
separation constant A in Eq. (6.25). To this end, we note that a function Y (6, ¢) of the angles 6 and ¢ can
be regarded as a function of the components (X1, X2, X3) of the unit vector r/r. Let us Taylor expand Y
in powers of the latter variables as
Y =) pi(Gr. %2, £3). (6.29)
=0

where p; (%1, X2, X3) is a homogeneous polynomial® in (X;, X2, £3) of degree [ (or possibly zero). It
follows that
ripi(e/r) = Pi(r).

where P;(r) is a homogeneous polynomial of degree [ inr = (x1, x2, x3) (or possibly zero). Moreover,
since the components x;dx; — x;dx; of L applied to a homogeneous polynomial in r do not lower the
degree, L? P; is another homogeneous polynomial in r of degree / (or possibly zero). Since L? f(r) =
f(rL?,

Lp =120~ P = L2 ()

is then a homogeneous polynomial in r/r of degree / (or possibly zero). We thus have

LY =) L2p; =A0’Y =2n*) p < L’p =An’p;. VI 20.
=0 =0

In other words, each non-zero polynomial p; in the expansion (6.29) is an eigenfunction of L2 with the
same eigenvalue A%2 as Y. We can thus assume w.l.0.g. that Y (6, ¢) is a homogeneous polynomial in
r/r of degree .

We next note that from Eqgs. (6.18) and (6.21) it follows that

1 |
V2 = = (a,rza, — ﬁ) ) (6.30)

Applying both sides of this equality to the function rly (o, @), which by hypothesis is a homogeneous
polynomial in r of degree / satisfying the eigenvalue equation (6.25), we obtain:

2
V2(rly) = 1(z+1)r’—2Y—LL2(r’Y) — I+ )2y - 12y = [0+ 1)-A]r "2y, (6.31)
h2r2 h2

Since V? lowers the degree by two, the LHS of the previous equation is a homogeneous polynomial
of degree [ — 2 in r, including the zero polynomial. Hence either [(I + 1) — A = 0 or r'=2p; is a
homogeneous polynomial of degree /[ — 2 in r. However, the latter possibility cannot occur. Indeed, if
ri=2y = r=2(+'Y) were a homogeneous polynomial of degree / —2 in r then the polynomial /Y would
contain the factor r2. But this is not possible, since in that case ¥ would contain the factor )Acf + )?% + )?%,
which we had agreed to eliminate beforehand (cf. the previous footnote). This shows that the LHS of the
previous displayed equation must vanish, i.e., we must have A = /(I + 1) and V2(r'Y) = 0. In other

3In other words,
SN2 N3

- ani
P = Z Cningnz Xy Xp"X37,
ni,n2,n3
ni+na+nz=I
with ¢ n,n5 € C. Since fc% + fc% + )%% = 1, it is understood that any factor of (fcf + )%% + fc%)k has been removed from p;.
For example, a homogeneous polynomial of degree zero is a constant, of degree 1 a linear combination of X1, X2, and X3, of
degree 2 a linear combination of )%12 and X;X; with 1 <i < j <3, etc.
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6.4 The radial equation

words, if Y is a (nonzero) homogeneous polynomial of degree / in r/r then Y is an eigenfunction of L2
with eigenvalue /(I 4 1)%? provided that

V2(r'Y(0,9)) = 0. (6.32)

In other words, Y is the restriction to the unit sphere (r = 1) of a harmonic homogeneous polynomial of
degree [ in r, namely r!Y . For this reason, the homogeneous polynomials in r/r solving Eq. (6.25) are
called spherical harmonics. Since an arbitrary eigenfunction Y (6, ¢) of L? must be a sum of homoge-
neous polynomials in r/r all having the same eigenvalue as Y, i.e., the same degree, it follows that the
eigenvalues of L? are the numbers

I(l + D)A?, I=01,...,

and its eigenfunctions are the spherical harmonics. We have thus proved the following fundamental
result:

The eigenvalues of the operator L? are the numbers /(I + 1)A2, with [ a non-negative integer. The
solutions Y (6, ¢) of Eq. (6.25) with A = [(/ + 1) are the spherical harmonics of degree [, i.e., the
homogeneous polynomials of degree [ in r/r satisfying Eq. (6.32).

Remark. Since L? commutes with f(r), if Y (0, ¢) satisfies Eq. (6.25) with A = [(I4-1) then f(r)Y (6, ¢)
is also an eigenfunction of L? with eigenvalue /(I + 1)A2. |

We shall next study Eqgs. (6.25) and (6.26). Before doing so, note that since the volume element in
spherical coordinates is d3r = r? dr d§2, where

d$2 :=sinf df de

is the surface element on the unit sphere r = 1, the normalization condition for the product (6.23) reads

oo} 21 it
lv|® = /d3r|w|2 = (/0 dr r2 \R(r)\z) (/O dgo/o do sin 6 |Y(e,¢)\2) —1,

It is convenient to require that both the radial and the angular parts of the wave function be normalized
separately, namely that

00 27 b
/ dr r? !R(;’)!2 = / d(p/ df sin 6 !Y(@,(p)‘z =1 (6.33)
0 0 0

We can thus regard R(r) and Y (6, ¢) as unit vectors in the Hilbert spaces L2 ([0, 00); 72 dr) and L2 ([0, 7] x
[0, 27]; d§2), with respective inner products

00 27 T
(Rl,Rz)z/ dr r? R¥(r)Ra(r), (Y1,Y2)=[ dgo/ do sin6 Y,* (6, ¢)Y2(6, ¢).
0 0 0

6.4 The radial equation

We shall next study the radial equation (6.26) with A = [(/ + 1), where [ is a non-negative integer. From
the identity
Orr =r10r +1

it follows that

1 1 1 1 1 1 1 1
— 0,720, = 0,7 10y = — 0,10y + -0, = — 021 — =0y + —0, = — *7. (6.34)
r2 r2 r r r r r r
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Setting

u(r) = rR(r), (6.35)

the radial equation (6.26) (multiplied by r) can be written as

—u"(r) + (l(l:z_ D + v(r)) u(r) = eu(r), (6.36)

where the prime denotes derivative with respect to r. Multiplying throughout by the factor #2/(2m) we
obtain the equivalent equation

2
—;—mu”(r) + Vi(r)u(r) = Eu(r), (6.37)

where the effective potential Vi (r) (which depends on the angular momentum quantum number /) is
given by

I(I + 1)h?

V) = V) + =5 —

(6.38)

Since I(I 4+ 1)%? is the eigenvalue of the square of the angular momentum L? for the angular part of the
wave function, the latter equation is the analogue of the classical formula

2

Vi) = V() + 5.

Note that if we are looking for the bound states of the central potential V(r) the wave function (6.23)
must be normalizable, so that —using the normalization convention in Eq. (6.33)— the radial wave
function u(r) must satisfy

/Oo drlu(r)®> = 1. (6.39)
0

Thus the radial equation (6.37) for u(r) is formally the Schriodinger equation for a one-dimensional par-
ticle moving on the half-line [0, 0co) under the potential V;(r). We must, however, impose an appropriate
boundary condition to the wave function u(r) at the origin. To find this condition we shall assume that
the potential V(r) is either finite at the origin, or diverges there slower than 1/72. In other words,

lim r2V(r) = 0. 4
r_l)r(r)1+r V(r)=0 (6.40)

If this condition is satisfied then the radial equation (6.36) implies that

"

_2t 2
Il+1)—r =T (e v(r))r:0>+0.

If

1

u@) ~ " = W+ -2 i+ ) —nm—1) =0,
u

r—>0+

© Artemio Gonzélez Lopez 158

radequunits

normurad



6.4 The radial equation

eithern = [ + 1 or n = —/. The latter possibility should be ruled out, since u(r) ~ r~! at the origin
would imply that [u(r)|? ~ r~2! would not be integrable at the origin unless / = 0, while for / = 0 the
condition u(r) ~ 1 for r — 0+ would imply that R(r) ~ 1/r, which is not acceptable®.

We thus conclude that the radial equation (6.36) should be supplemented by the boundary condition

1+1 6
~ .41
u(r)r 0 r ’ ( )

or equivalently (since r~! does not tend to zero as r — 0+ for/ =0,1,...)

li =0. 42
r_1>1(1)1+u(r) 0 (6.42)

Note that in terms of the radial part of the wave function R(r) the previous relation becomes

R(r) ~ !, (6.43)

so that the full wave function ¥ (r) in Eq. (6.23) satisfies
y(r) ~ r'y, o). (6.44)
r—>0+

In other words, 1 (r) approaches a harmonic polynomial of degree / near the origin.
Since we are assuming that the potential V' (r) satisfies condition (6.40),for [ > 0 the effective potential
in the Schrédinger equation (6.36) verifies

Il I
vi(ry=v() + (:2_1) ~ (+1)—>oo

r—>_0+ 7‘2

For [ = 0 the centrifugal barrier term [(/ + 1)/r? disappears, but the boundary condition (6.41) on
u(r) is equivalent to placing an infinite potential barrier at r = 0. Thus the radial equation (6.37) with
the boundary condition (6.41) is equivalent to solving a one-dimensional Schrodinger equation with a
potential

00, r<0
WEDE | y(r), > 0.
Since, in the notation of Section 3.5, V_ = oo, from the discussion in the latter section it then follows
that:
Forall/ =0, 1,..., all the energy levels of the radial Schrodinger equation (6.37) (genuine or gener-

alized) are non-degenerate.

If we further assumes that the limit
Voo := lim V(r) = lim Vj(r)
r—>00 r—>00

exists (or is infinite), for any / = 0, 1,... the energy spectrum of the effective Schrodinger equa-
tion (6.37)-(6.38) verifies:

“4Indeed, when | = 0 the angular part of the wave function Y (6, ¢) is a constant, and hence ¥ (r) = R(r) ~ 1/r. However,
1/r cannot be a solution of the Schrodinger equation unless the potential V' (r) contains a delta function term, since

V2 G) = —478(r).

159 © Artemio Gonzélez Lépez

bcrad

bcradlim

Rrorig

psiorig
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1) Voo = —0
In this case there is no point spectrum, and the continuous spectrum is the whole real line. This case
is actually unphysical, since the particle would cascade indefinitely to states of increasingly lower
energy, radiating in the process an infinite amount of energy.

2) Voo < 0
The point spectrum is contained in the interval (min V;(r), Vo). In particular, there is no point
spectrum if V;(r) = V for all r. The point spectrum (when it exists) is either finite, or countably
infinite with an accumulation point at Vs (and in the latter case Vo belongs to the spectrum, usually
to its continuous part). The half-line (V, 00) belongs to the continuous spectrum.
A potential of this form is the Coulomb potential V(r) = «/r, with continuous spectrum (0, co) (with
or without the point 0) and no point spectrum in the repulsive case (o > 0), while in the attractive case

(o < 0) there is both point spectrum contained in the interval ( as well as continuous

2
BRI
spectrum including the half-line (0, 0o). (In fact, we shall see in the sequel that when « < O the point
spectrum is countably infinite and accumulates at zero, which belongs to the continuous spectrum.)
3) Voo = 0
In this case there is no continuous spectrum, and the point spectrum is a countably infinite set with no
accumulation points, unbounded above and strictly bounded below by min V;(r). A potential of this

type is the isotropic harmonic oscillator potential V(r) = %kr2 with k > 0.

Notation. As in Section (3.3), we shall denote by
Ey<Ey<---<Ey<--

the point spectrum of the radial equation (6.37) (i.e., the values of E for which the latter equation
admits a square integrable solution) for a given / = 0, 1, .... We shall accordingly denote by u,,;(r) a
(normalized) eigenfunction with energy E,; (usually chosen so that u,,; () is real for r > 0), and set

Ry (r) = r_l“nl(r)-

Note that the above notation for the eigenfunctions R,,; or u,; is unambiguous (up to a trivial constant
phase), since by the previous framed remark the spectrum of the radial Schrodinger equation (6.37) is
non-degenerate.

The point spectrum of the Hamiltonian

P2
H=—+V(R) (6.45)
2m

is the union of the point spectra of all the radial Schrodinger equations (6.37), namely (using the previous
notation)

op(H)={Ey :n=12,..., 1=01,...}.

By construction,
n<m = L, <E,.

It can also be shown [GP90, p. 231] that

I <l! = E, <E,. (6.46)

An immediate consequence of Eq. (6.46) is the following:

The ground state of the Hamiltonian A has angular momentum / = 0 and energy E1¢.
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6.5 The angular equation. Spherical harmonics

The angular equation

L2Y(6,¢) = I(I + DK%Y (8, ¢) (6.47)

is simply the eigenvalue equation for the operator L2. Since this operator commutes with any of the
components L; of L, without loss of generality we can look for common eigenvalues of L? and one of
the operators L;. From Exercise 6.4 we see that in spherical coordinates the simplest of these operators
is

We thus shall look for solutions of the angular equation (6.47) that satisfy the eigenvalue equation
L3Y = —ihdy,Y = puY.
The solution of the latter equation is immediate:
Y(8.9) = y(@)ert?,

where y(0) is an arbitrary function of 6. However, since the azimuthal angles ¢ = 0 and ¢ = 27
actually correspond to the same point in space we must require the boundary condition

Y(6,0) = Y(6,2mn), (6.48)

which implies that  can only take the values m#h with m € Z. In other words, the spectrum of the
operator L3 (in fact, of any component of the angular momentum or, in general, any operator n - L with
n an arbitrary constant unit vector) is the discrete set of numbers

{mh :m e Z}.
For historical reasons, the integer m is called the magnetic quantum number.

Remark. The condition Y (0,2n) = Y(6,0) is also necessary for the operator L3 to be Hermitian.
Indeed,

27 T
(Y1.L3Y2) = / de / do sin 6 Y|" (—ihd,) Y2
0 0

T p=2m 27 bt
= —ih[ df sin6 YI*YZ) —i—/ d(p/ do sin6 (—iha(le)*Yz
0 »=0 0 0

T
_, T (L3 12)

T (7
- —ih/ df sin @ YI*YZ)
0 (%

T T
= (L3Y1.Ys) < / do sin @ YI*Y2| =/ d6 sin0 Y;'Ys
0 =0 0 Q=27
Since Y7 and Y, are arbitrary functions of the variables (6, ¢), the latter condition requires that both
functions satisfy the boundary condition (6.48). |
Substituting

Y(0,9) = y(0)e™?  (withm € Z)

into the angular equation (6.47), and taking into account the explicit expression (6.21) for the operator
L2, we easily arrive at the equation

sin 6 dg( sin 0 agy) +1( + 1)sin? 0y = m?y. (6.49)
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Note that
27 it 5 T 5
/ d(p/ do sin@]Y(Q,tp)} = 211/ do sin@‘y(@) ,
0 0 0
and hence we seek for solutions y () of Eq. (6.49) that are square integrable on the interval [0, 7t]. The
change of independent variable

s =cosf € [—1,1],

so that
ds

e
transforms Eq. (6.49) into the associated Legendre equation

g = — 0y =—sinfdy = sinhdg=—sin®>03ds = —(1 —s52)d;

mZ
05 [(1 — s2)d5w] + (1(1 +1) - _Sz) w =0,

or equivalently

2
(1= 52) 92w — 25 dgw + (1(1+1)— 1"_”S2)w = (6.50)

with w(s) = y(#). Note that the square integrability of y(6) on the interval [0, t] with respect to the
measure sin 6 df is equivalent to the square integrability of w(s) on [—1, 1] with respect to the standard
measure ds. It can be shown that equation (6.50) admits a solution square integrable on the interval
[—1, 1] only for the following values of the magnetic quantum number 1:

m=—l,—1+1,...,1. 6.51)

When m takes on one of these values, the square integrable solutions of the associated Legendre equation
are proportional to the associated Legendre functions

Pl(s) = (—1yml(1 — s2)lml/zglmi py 5), (6.52)
where
1
Pi(s) = o o (52— 1) (6.53)

is the Legendre polynomial of degree [. The latter polynomials are (up to a multiplicative constant) the
polynomial solutions of Eq. (6.50) with m = 0. In fact, it is convenient to define

d—mn

Pl_m(S) = (—1)mm Pl (S), m > 0, (654)
since then we can write
;(s) = i s & ) .

for both positive and negative values of m (cf. Exercise 6.6). The admissible (i.e., square integrable on
[0, 1] x [0, 27| with respect to the measure dS2 = sin 6 df dg) solutions of equation (6.49) —i.e., for the
common eigenfunctions of the operators L? and L3 with respective eigenvalues /(I + 1)A? and mh—
are then proportional to the spherical harmonics ¥;” defined by

2l +1 (I —m)! ;
m _ m ime — ] _
Y"(0,9) = \/ e —(l—i—m)!Pl (cos 0)e™?, m=-l,—l+1,....1, (6.56)
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where the factor multiplying Pl|m|eim¢’ ensures that

1y =1 (6.57)

(see Exercise 6.7 for a proof). The functions Ylm with m = —[, ..., [ are thus a basis of eigenfunctions
of L3 in the eigenspace of L? with eigenvalue /(/ 4+ 1)%2. In other words:

The square integrable solutions of the angular equation (6.47) are linear combinations of the spherical
harmonics Y;" (6, ¢) in Eq. (6.56) withm = —[,—l +1, ..., . The latter functions are normalized on
the domain [0, rt] x [0, 27| with respect to the measure d2 = sin 8 d6 de, and satisfy the eigenvalue
equations

L2Y" = 1( + DA*Y™,  L3Y" = mhY". (6.58)

In particular, note that from Eqs. (6.54) and (6.56) it follows that
Y"(0.9) = (=)™ AY (0. ). (6.59)
Remarks.

o If (I,m) # (I'’,m’) then Y},,, and Y.,y are orthogonal, since they are eigenfunctions of a self-adjoint
operator (L? or L3) with different eigenvalues. Since by construction the spherical harmonics are
normalized, we conclude that the set

Yrmom=—l,~1+1,...,1, [ =0,1,...} (6.60)

is an orthonormal set in L2 ([0, 7] x [0, 27t]; d£2). In other words,

27 k14
NGERAE /0 dg /0 do sin 6 [Y,"(0, )" Y7 (0. 9) = 8118 mm. (6.61)

In fact, it can be shown that the functions spherical harmonics Y;" are also complete, i.e, the set (6.60)
is an orthonormal basis of L?([0, 7] x [0,27];d$2). In other words, every function f(6,¢) €
L2([0, ] x [0, 27]; d£2) can be expanded as

oo I
f(@,@) = Z Z Clelm(07 (.0)»

I=0m=-—I
with

21 T
ctm = (Yim: f) = f dw/o a6 sin [Y/(6.9)]" /(6. ¢).

e From Egs. (6.52)-(6.53), it follows that Pl|m|(cos 0) is a polynomial of degree [ — |m| in cos 8 multi-
plied by sin! . Hence for m even Pllm| can be expressed as a polynomial of degree / in cos 6, while
when m is odd Pl|m‘ is the product of sin 8 times a polynomial of degree [ — 1 in cos 6.

e In spherical coordinates, the parity transformation r — —r corresponds to’

(r’e’(p) = (rﬂn_g’(p:l:n)'

Since cos(mt — ¢) = —cos 6 and P;"(s) has obviously parity (—=1)!*™ under s — —s, under a parity
transformations the spherical harmonics behave as

Y0, 0) = Y- 0,0 £ 1) = (=D!T(=1)"Y™(0,0) = (=D'Y" (6, ¢).

In other words, the spherical harmonics have parity (—l)l (independent of m) under the transforma-
tionr — —r. |

5The = in the following formula is the sign of 7 — ¢.
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Exercise 6.6. Show that

_ |
(1—sH)™m29lm(s2—1)! = (—1)’”%(1—sz)m/23§+m(s2—1)’, m=—l,—l+1,... 1.
m)!

Solution. Since the identity doesn’t change when m goes into —m, we can assume w.l.o.g. that m > 0.
We then have

I—m
i =D =+ D s =D ] =) (l _m) O s+ ks - .

S\ k) U=+ m)!
On the other hand,
l

m m Il +m (“)2 B -

altm(s2 — )l = gltm[(s + Dis — ] = ; ( . )(l_k)!(k_m)!(s+1)l k(s — 1)
I—m
/ 1Al 2
N ];) (kiﬁ)ﬁ(s + l)l—k—m(s _ l)k,

and hence

I—m
(1 _SZ)maé—i-m(SZ _ 1)1 — (_l)m Z (l + I’H) = lﬁl'_)zn/l)'k'(s + l)l—k(s _ l)k-i—m‘

= k+m
L—m\(1+m\ " (—k—m)kl _ (I—m)
k k4+m)] (=k)lk+m) (+m)!

ai—m(SZ _ 1) (— )m ((l +m§'( _S2)maé+m(s2 _ 1)1’

From the identity

it then follows that

from which the proposed identity is obtained multiplying both sides by (1 — G2

Note: the previous identity suggests defining the associated Legendre polynomial P;” (s) by

(=™
211

le(S) — (1 . S2)m/2a§+rn(s2 _ l)l

for both positive and negative values of m between —/ and /. This definition obviously coincides with
Egs. (6.52)-(6.53) for m > 0, and for m < 0 the identity just proved implies that

a=mt

PIM(s) = (D" s

" (5),

which is Eq. (6.54).

Exercise 6.7. Using the identity in the previous exercise, show that

1 2 ( +m)
/_ s [Pre)] = A+1(-m) (6.62)
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Solution. Suppose, to begin with, that m = 0. By the identity in the previous exercise, we have

! [
/ s [le(S)]2 ( )m ( + m)
-1 (I —m)!

B Y ey ey

1 +m) (! @n! (I +m)! [
= S ot L OO = = sy [ w0

d s P (s)P; ™ ()

where we have integrated by parts / —m times taking into account that for m > 0 the term 8§_m_k (52—
1)! vanishes at s = +1fork = 0,...,] —m (exercise). Integrating by parts / times we find

1 1 1
/_ ds (1 — s2)! =/_1 ds(1—9)(1+s5)f = ﬁ/_lds(l—s)l—l(lﬂ)l+1

1
__W-y 1 _ )2 I+2 _
Tr00+2 /), ds(1—s)""(1+s)

)
=@/ as (1 sp = 22“

) (21)'21
We thus have 0 )
m 2 + m)!
[ ool = g

which proves Eq. (6.62) for m = 0. On the other hand, for m < 0 Eq. (6.54) implies that
m (I +m)! pm (!l +m)! 2 (-m! 2 (+m)!
/_ldS[Pl ()] |:(l— )'] / [ ()] [(l—m)!} 2+1(1+m)! 204+1(01-m)!

as was to be shown. Note that from Eq. (6.62) it immediately follows that the spherical harmonic
Y™ (0, ¢) is normalized on the unit sphere:

2 ™ 2A+1d
/ d(p/ df sin@ |Ylm(9,<p)}2 =27 + ﬂ/ d6 sinf [P/"(cos 9)]2
0 0

4t (I +m)!
20+ 1 (I —m)! 2
= — ds [P =
2 (1+m)!/_ s [P6)]
Foreach! = 0, 1, ..., the wave functions
l( )
Vnim(t) := Ry (r)Y;" (0, 9) = in Y™ (6, 9)

satisfy the Schrodinger equation® (6.22) with an energy E,;, and are eigenfunctions of L? and L3 with
respective eigenvalues /(I + 1)42 and m#. In other words,

HWnlm = Enl‘ﬂnlm7 LZWnlm = l(l + l)hZWnlmv L3wnlm = thnlm

In particular, since the eigenvalue E,; of H is independent of the quantum number m, the 2/ + 1
eigenfunctions 7, withm = —I, -1 4+ 1,...,[ have the same energy E,;. It follows that the energy
levels of a central potential are at least 21 + 1 times degenerate. For a generic central potential E,; #

%The constant m appearing in Eq. (6.22), which denotes the particle’s mass, should not be confused with the magnetic
quantum number 1.
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E,;unless n = n’ and [ = [/, so the degeneracy of each level E,; is exactly 21 + 1. We shall show
in Section 6.8 that this degeneracy is a consequence of the symmetry (i.e., invariance) of the potential
under rotations. On the other hand, if the potential V(r) has some additional symmetry (apart from
the symmetry under rotations common to all central potentials), it can happen that E,; = E,/; for
(n,1) # (n',1’). If this is the case some levels could be more than 2/ + 1 time degenerate, a phenomenon
sometimes referred to as accidental degeneracy.

The spherical harmonic Y;" (6, ¢) has parity (=1)! under r — —r, and R,;(r) is obviously even. It

follows that the wave function Vy 1, has parity (=Dt

Ynim(—1) = (=) Y1 (1),

By construction,
/7
(Vnim Vwim) = nt v ) (YY) = 810 8mm (nt un1) = Snnr 810 8mm,

since both u,,; and Y}, are normalized, and for n # n’ the functions u,,;(r) and u,,;(r) are solutions of
the same Schrodinger equation (6.37) with different eigenvalues E,; and E,/;. Hence the set

Wpim :n=12,..., [ =0,1,..., m=—,—1+1,....1 } (6.63)

is orthonormal. It can be shown that this set is complete in the (closed) linear subspace Ezzfpoim of the
Hilbert space # spanned by the genuine eigenfunctions of H. In particular, any eigenfunction of H
with energy E is a (finite or infinite) linear combination of eigenfunctions ¥, ;,, with E,;; = E.

Remark. Since the quantum numbers (n, [, m) obviously determine the common eigenfunction ,,;,,
of the commuting self-adjoint operators H, L2, and L3 up to a global phase, the set {H L2, L3} isa
CSCOin gfpoim. If Voo = oo the Hamiltonian H has no continuous spectrum (since (V) = Vo for all
), and <7€poim is the whole Hilbert space. Thus when Vo, = o0 the set (6.63) is an orthonormal basis of
L?(R3), and {H,L?, L3} is a CSCO. On the other hand, when V is finite (like, e.g., for the Coulomb
potential —a/r with a > 0), the half-line (V, 00) is in the continuous spectrum of H, and the formal
eigenfunctions with energy E > V, are therefore needed to construct a generalized orthonormal basis
of L?(R3). In particular, when Vi is finite the set (6.63) is not an orthonormal basis of LZ(R?3). |

Exercise 6.8. Prove condition (6.51) by counting the number of independent harmonic polynomials of
degree /. Using the fact that the angular equation (6.47) is equivalent to (6.32), compute the spherical
harmonics ¥;" for / = 0, 1,2 up to normalization. (Cf. [Weil5, pp. 36-37].)

Solution. A homogeneous polynomial p; of degree / in the variables (X1, X2, X3) can be written as
sum of monomials

AN An_ AN
x_f’xf e (6.64)
with X4 = X1 £ iX, and
0<n4,n3z<lI, nyg+n_+nz=1. (6.65)
Since
#1 £ £, = sinf e™?, X3 =cosf
we have

LS NN TS R LS NN PN
L3x"x27x3% = (ny —n_)hx T XI0X50.

For p; to be an eigenfunction of L3 with eigenvalue m#h we must therefore have

ny —n_=m.
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Since n4 range from O to /, the difference n4+ — n_ ranges from —/ to /, which shows that
—l<m<l.

We must still prove that for all integer values of m between —/ and / there is exactly one linearly
independent homogeneous polynomial of degree / in r/r which is a simultaneous eigenfunction of L2
and L3 with respective eigenvalues /(I + 1)A2 and m#. To this end, recall that

L%p; =1(l + Dh?p, < V2(rlip) =0,

where r! p; is a homogeneous polynomial in r of degree /. The number N; of independent homo-
geneous polynomials of degree / in r is equal to the number of monomials x1 x22x'313 such that
ny+ny+n3 =1land0 < < [. Thus n3 can take the values 0, 1, ...,/ without restriction.
For each of these values, n, can range between O and / — n3 and n; = [ — np — n3 is determined by

n, and n3. Thus
1 I+1

Ny = Z(l—n3+1)=Zkz%(l+1)(l+2).

n3=0 k=1

On the other hand, since Vz(rl p1) is a homogeneous polynomial of degree / — 2, the number of
independent equations ensuing from the condition Vz(rl p1) is Nj_,. Thus the number of independent
harmonic homogeneous polynomials of degree [ is

1 1
Ni=Nip =30+ DU +2)=Zl0 =) =2+1.

Since this is also the number of harmonic polynomials r! Y™ with =/ < m < [, we conclude that
these polynomials are a basis of the space of harmonic homogeneous polynomials in r of degree /, and
hence {¥;" :m = —[. —1 +1,...,1} is a basis of the space of spherical harmonics of degree /.

As mentioned above, ¥;" must be a linear combination of monomials (6.64) whose exponents satisfy
condition (6.65). The spherlcal harmonic YO must be a constant, since it is of degree 0. For / = 1, the
conditionny —n_ = m € {0, =1} shows that

:|:1¢J

YljEl X X4+ =sinfe Y100<)€3 = cos 6.

For degree [ = 2, from the condition ny —n_ = m € {0, £1, 2} we deduce that

Yj:2 x xi = sin? 0 e*21% Yzj:1 & £4%3 = sin 0 cos @ eF?.

On the other hand, Y20 must be a linear combination of X4+ X_ and fc%, ie.,
0_ .o = 22 2
YY) =aiti-+b32 = r?YQ =a(}+x3)+bx3.
Imposing the condition V2 (r2Y20) = (0 we obtain

V2(r2Y))=4a+2b=0 = b=-2a
= V) o« XX —2%3 =sin?H —2cos?>H = 1 —3cos? 6.

6.6 Algebraic theory of angular momentum

c.algangmom
As we saw in Example 4.9, the components L; of the angular momentum operator L are self-adjoint
operators satisfying the commutation relations (4.26). In this section we shall derive some fundamental
consequences that follow algebraically from these commutation relations, without making use of the
explicit expression of the operators L;. To underscore this fact, we shall make the following definition:
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Definition 6.1. A general angular momentum operator is a vector operator J = (J1, J2, J3) whose
components are self-adjoint operators satisfying the commutation relations

3
[Ji. J] =ih Y ejna i, 1<j,k<3. (6.66)
=1

In other words,

[J1, J2] = ihJ3, [J2, J3] = ihJ1, [J3, J1] = ihJ2,

or equivalently
[J;, Ji| = ihJy, with  (j,k,l) = cyclic permutation of (1,2, 3).
These commutation relations could also be symbolically expressed as
JxJ=ihl.

Note also that from the commutation relations it follows that each operator J; has the same dimension
as #, i.e., angular momentum, and that the operator

3
J? = Z J2

i=1

commutes with all the J;’s:

[, 7i]=0. =123 (6.67)

(the proof is the same as that given in Example 4.9 for the orbital angular momentum L).

Example 6.2. Since in finite dimension
tr[A, B] = 0,

the components J; of an angular momentum operator defined in a finite-dimensional Hilbert space
must be self-adjoint traceless matrices. In two dimensions, the three Pauli matrices

(01 (0 —i (1 0
1= -1 0)0 27\ o) 2T\0 -1

are a basis of the (real) vector space of 2 x 2 self-adjoint traceless (complex) matrices. Moreover, from

the identities
3

UjUk:iZ&“jkth 1<j#k<3,
=1

it follows that
3
loj,0%] = 2i Z £jk10] .-
=1

The vector operator J with components

Ji

—0j
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is therefore an angular momentum operator in #€ = C?, since

A2 in2 &
15 J] = 7 Loy ox] = 17

3
€jk107 = ih Zsjlil.
=1 =1

This is the simplest non-trivial example of an angular momentum operator, since in one dimension all
operators commute. Note also that

o =1, 1<i<3,
and therefore
J2 — E - 0'.2 — ﬁ
4 g 4

is proportional to the identity.

Let us next define the raising and lowering operators J by

Ji = J1 £1iJy;

note that, since the operators J; are self-adjoint by hypothesis, we have

I =z

The commutator of J and J_ is easily computed:
(g, J-] =1 +1iJ2, J1 —iJ2] = =2i[J4, J2] = 24 J3.
We also have
Jids = (1 i1 Fih) = JZ+ JF Fill1, o]l = JE + I3 £ hls,

and therefore

32 = JiJs + J3(Js F h). (6.68)

Since J? commutes with all the components of J, let us look for common eigenvectors of J and one
of the J;’s, for example J3. Suppose, therefore, that Wf ) is a nonzero vector (i.e., an element of the
Hilbert space on which J acts) satisfying

Plyy)=anclyy).  Js|vy) = uhlyy). (6.69)
with A and u two dimensionless real numbers (since J? and J3 are both self-adjoint). Note also that
A = 0, since J? is positive semidefinite:

3

(. 2y) =Y (v J29) = > [Jiy]* = 0.

Consider next the vector J4 ‘wf ), whose norm is easily computed:

|2 [wi)* = w1l elvdy = WilIsdlvl) = WiI? = T3 £ Byl
=1 A —u(p £ DIy |vy). (6.70)
Thus
Je|p)=0 — A=pp=x. (6.71)

Since J? commutes with J, we have

P (=[v3) = 7« P[v3) = Ande|y7),

i.e.:
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J+ Wf ) is either zero or an eigenvector of J? with the same eigenvalue A%? as Wf )

On the other hand, since

[J3, 2] = [J3, J1 £io] = ihJs £ By = LB,

we have
T3 (J£[v3) = T+ (Ja]y5) £ hT£|y7) = (£ DhJYS).

In other words:

Ji ‘wi‘ ) is either zero or an eigenvector of J3 with eigenvalue (u £ 1)%.

Note that from the equality
I3 =3 - P+ T3),

it follows (since J 12 + J22 is positive semidefinite) that
pr <A = |ul < VA
Hence there must exist a positive integer p such that
Tl #£0 for k=0,....p—1.  JZ|y)=o0.
Similarly, there must exist another positive integer g such that
Ty #£0 for k=0,....q—1,  Jelyt)=o0.
Thus the vectors
[WhitRy = gk, k=0,....p—1,
are eigenvectors of J% and J3 with respective eigenvalues A#2 and (u + k)#, and
Ll = a2y = o
From the upper Eq. (6.71) (with u replaced by u + p — 1) it then follows that
A=(p+p-D@+p.

Likewise, the vectors
W)= gk, k=0,...,9—1,

are eigenvectors of J% and J3 with respective eigenvalues A#2 and (. — k)%, and
-l = ) = o
whence (from the lower Eq. (6.71) with u replaced by u — g + 1)
A=p—-g)(r—g+1.
Equating both expressions for A we obtain

m+p—Dp+p)=Ww-—q@mn—-—qg+1),
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from which it follows that’

u+p=p—q+1 or pu+p=qg-—p

The first of these equations, which is equivalent to p + g = 1, is impossible, since both p and g are
positive integers. We conclude that

1
u=5m—m

is integer or half-integer. It then follows from the first equation for A that

A=jG+D,

where
. 1 1
J=u+p—1=§@—pr+p—1=§@+p%4

is a non-negative integer or half-integer. In other words, j can only take the values

07

The vectors
Ly TP 1 S N 7 0 N 7 NPT [ (6.72)

form a sequence (“ladder”) of eigenvectors of J?/A2 with eigenvalue A = j(j + 1) and of J3/A with
respective eigenvalues

u—qg+1, ..., u—=1 wu p+l1, ..., pu+p—1

increasing by 1 from left to right. Taking into account the value of u found above and the definition of
J» we find that the highest and lowest eigenvalues of J3 /% are

1 1 : .
s@—p—q+l=—l@+p+l=—j p+p-1l=j

It follows that the 2j + 1 vectors |jm) defined by

. v o .
lim) = e M= i+l (6.73)
(wi|v)
(with A = j(j + 1)) satisfy (jm|jm) = 1 and
J2|jm) = j(j + DR*|jm),  Ja|jm) = mh|jm). (6.74)

Note that, by the last two framed remarks, J |jm) is proportional to |j, m £ 1) (where |j, j + 1) and
|j,—Jj — 1) should be interpreted as the zero vector). We have thus proved the following fundamental
result:

"Indeed, if s = o + p and t = p — ¢ we have

s=D)—tt+D)=s>—t>—s—t=(+t)s—1t—1)=0 < s=t+1ors=—t.
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Theorem 6.3.

1) The only possible eigenvalues of the operator J? are the numbers j(j +1)h?, with j = 0
a non-negative integer or half-integer.

|

3
> 920 1)

2) If j(j + 1)A? is an eigenvalue of J?, there is as a set of 2j + 1 vectors |jm), withm = —j, —j +
1,...,j, which are common eigenvectors of J* and J3 with respective eigenvalues j(j + 1)h? and
mh.

3) Ji|jm) is proportional to |j,m + 1), and J1|j, =j) = 0.

Remarks.

e With a slight abuse of language, we shall say that the state | jm) has angular momentum j, even if
strictly speaking the value of the angular momentum in such a state is /j(j + 1) A.

e Although the square J? of a general angular momentum operator J can have eigenvalues j(j + 1)A2
with j a half integer, we showed in Section 6.3 that in the case of the orbital angular momentum
operator L the values of j are necessarily (non-negative) integers. This is due to the fact that the 27-
periodicity in ¢ of the eigenfunctions Y (6, ¢) of L3 requires that the eigenvalues of the latter operator
be integer multiples of %. This implies that j must itself be an integer, since the allowed values of m
fora given j are —j,—j + 1,..., j, which are integers if and only of j is an integer.

e The vectors | jm) satisfy the orthonormalization condition
(jm|j'm') = Smm8jj,

since they are normalized by construction, and (j,m) # (j’,m’) implies that | jm) and |j'm’) are
eigenvectors of the same self-adjoint operator (J? or J3, or both) with different eigenvalues. In
particular, the 2j + 1 vectors (6.73) make up an orthonormal basis of their span, which is thus a
(2j + 1)-dimensional subspace of #€ that we shall denote by #;. Note also that, by construction,
FH; C ker[J2 — j(j + DA2].

o In the case of the orbital angular momentum L no additional quantum number « is needed to label the
common eigenstates of L? and L3, since |/m) = Y™ is uniquely determined up to a phase.

e Of course, the set {J?, J3} need not be a CSCO, and thus there will be in general several (perhaps even
an infinite number of) subspaces #{; with the same j that we shall denote by %]‘?‘, where « is an extra
index labeling different instances of #;. The corresponding vectors (6.73) will be accordingly denoted
by |ejm). In many cases the extra index « is the eigenvalue of a third observable A commuting with
both J? and J3, such that {A, J?, J3} is a CSCO. If that is the case (and assuming, for simplicity, that
the index « is discrete) then

(ajmle’ j'm'") = SaaSmmSjjr

since for & # o the vectors |ajm) and |’ j'm’) are eigenvectors of the observable A with different
eigenvalues. |

By parts 2) and 3) of Theorem 6.3, each (2j + 1)-dimensional subspace #{; generated by the vec-
tors (6.73) is invariant under the action of the operators J3 and Ji, and hence of the three compo-
nents of the angular momentum operator J. In other words, the restriction of each J; to #; acts as a
(2j + 1) x (2j 4+ 1) matrix, whose matrix elements we shall determine next. We shall say that these
matrices provide an irreducible® representation of spin j of the commutation relations (6.66), or more
formally of the s0(3) Lie algebra.

8The term “irreducible” means that there is no proper subspace of # ;7 left invariant by all the components J; of J.
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The Lie algebra so0(3).
The Lie algebra s0(3) of the rotation group SO(3) in three-dimensional space is defined by

s0(3) = {X € M3(R) : X7, X =0},

where M3(R) denotes the set of 3 x 3 real matrices. In other words, the elements of s0(3) are by
definition antisymmetric traceless 3 x 3 (real) matrices. The matrices X € so(3) can be regarded as
generators of infinitesimal rotations in three dimensions. For instance, consider the matrix R3(«) of a
rotation around the x3 axis by an angle «, defined by

cosae —sina 0
Ri(@) = | sina cosa O
0 0 1

The matrices R(«) (with « € R) make up a one-parameter group of transformations of R3, since
clearly
R(a1 + a2) = R(a1)R(a2).

The generator of rotations around the x3 axis is the matrix

X3=— R3(a) =

S = O
S O =
S O O

which is clearly in s0(3). By construction
R3(@) = 1+ aX3 + O(a?),

so that 1 4+ a X3 represents a rotation around the x3 axis by an infinitesimal angle . Moreover, it can
be shown that
R3 (0[) = e“X3,

and similarly for rotations around the other axes, whose corresponding generators are

00 O 0 0 1

X1=10 0 —1], X, = 0 00

01 0 -1 0 0
The set s0(3) is a Lie algebra under the commutator, by which is meant that the commutator of two
s0(3) matrices is itself an so(3) matrix. This is a consequence of the fact that the product of two

rotations is a rotation. It can be easily verified that the three generators X; (i = 1,2, 3) of rotations
around the coordinate axes are a basis of $0(3). Moreover, a direct calculation shows that

3
[Xj. Xk] =D ejra Xy, = j ko =3
I=1

Hence the 3 x 3 matrices J;, = iAX} are self-adjoint and traceless, and satisfy the commutation
relations (6.66) characteristic of a general angular momentum operator.

Note: in quantum mechanics, the orbital angular momentum operator L is the generator of rotations

(in the case of a spinless particle). Indeed, a rotation by an angle « around the x3 acts on the wave
function ¥ (r) as

¥ () = Yo (r) = ¥ (R3(@)r),
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which in spherical coordinates reads

W(r’e’(p) = Wa(”,e"/)) = w(",e,fﬂ‘Fa)s

where R3(w) is the rotation matrix defined above. Since

L3 = —ihdy,
by Taylor’s formula we have
o0 . n o0
i 1 (iaL o
e 3y (r,0,¢) = Z — ( > 3) v(r,0,¢9) = Z magw(r,e,@ =y (r.0.¢ + )
n=0 n=0
= w[! (rv 9’ (p)

More generally, if Ry(c) is a rotation around the axis n by an angle o, choosing the x3 axis in the
direction of the unit vector n we deduce that

¥ (R(@)r) = e#*™ Ly (r).
In particular, if « is infinitesimal then

i

¥ (Rale)r) = ¥:(0) + = (- L) ¥ (1) + O(@?).

We shall next determine the matrix elements in the basis (6.73) of the restriction of the operators J;
or, equivalently, of J+ and J3, to each subspace #€;. Obviously, by the last Eq. (6.74) J3 is diagonal,
with matrix elements

(jm|J3|jm’) = mhSmm . (6.75)

Likewise, by the first Eq. (6.74) J? is proportional to the identity in #€ T

=i+ DR in ;.

Consider next the ladder operators J+. By Theorem 6.3, J4|jm) is proportional to |j,m £+ 1). To
determine the proportionality constant note that, by Eq. (6.70) with u = m and A = j(j + 1) we have

|J£lim)|® = W2 (G + 1) —mm £ )] = B2 Fm)(j £m + 1).

Hence

Jxljm) = aph/(j Fm)(j £m+1)|j,m£1), (6.76)
+

where «,,; is a phase (i.e., a complex number of modulus 1). It can be shown (see Exercise 6.9) that these
phases can be eliminated by appropriately redefining the vectors |jm). In other words, we can assume
w.l.o.g. that

Jiljm) =t/ (G Fm)(j £m+1)|j,m £ 1), m=—j,—j+1,...,J (6.77)

(Note that, although in the previous equation formally appear the undefined vectors |j,—j — 1) and
|j, 7 + 1), this is harmless as their respective coefficients vanish.) Thus the matrix elements of the ladder
operators J4 are

(jm|Jx|jm’) = ty/(G £m)G Fm+ 1) Smmar. (6.78)
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The matrix elements of Jp » are then easily computed from the identities

1 1
Ji==-(Jsr+Jo), Jo=—=UJy—J).
2 2i

In particular, note that in this representation the matrix elements of J2, J3, J, and J; are all real, while

those of J, are pure imaginary.

Exercise 6.9. Show that the phases a% in Eq. (6.76) can be eliminated by appropriately redefining the
vectors | jm).

Solution. Indeed, let us set
|jm)" = Bmljm). m=—j—j+1,..../,

where B, is a phase. Obviously the vectors |jm)’ still satisfy both equations in (6.74), and they are
normalized. We shall next show that we can choose the phases 8, so that

Jiljm) =t (G Fm)(G £m+ 1)|j,m+1). (6.79)

Indeed, multiplying both sides of Eq. (6.76) for J|jm) by B, we obtain

r_ O‘jn_,Bm

= Ay Fm)(G £m+1)|j,mE1), m=—j,....j—1.
,Bm+1

Jy|jm)
Thus Eq. (6.79) with the upper sign will be satisfied provided that
Bm+1 = &} Bm, m=—j,....j—1,
which is obviously solved by B_; = 1 and
Bm=catiat, ot . m=—j+1...]

(Note that 8, is a phase, since it is a product of phases.) With this choice of 8, we have

Jeljm) = h/(j —m)(j +m+ D jm+1),  m=—j....j—1

Applying the operator J_ to both sides of the latter equation and taking into account Eq. (6.68) we
obtain

(3 = J3(J3+h) |jm) =8> [j(j + 1) —m@m + D] |jm) = h*(j —m)(j +m + 1)|jm)’
=hyV/( —m)( +m+ 1) J-|j,m+1),

and therefore

J-ljom+1) =0/ —m)(j +m+D|jm),  m=—j....j—1

or equivalently

J_ljm) =h/(G+m(G—m+D|jm=1), m=—j+1,...,j

Thus the set {|jm)’ m=—j,—j+1,..., j} satisfies Eq. (6.79), as was to be shown.

Example 6.4. For j = 0, J> = 0 and hence the three components J; vanish on #y = C. This is the
trivial (scalar) spin zero representation. The first non-trivial case is that of spin j = 1/2, for which
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m=—1/2,1/2 and
3
2 2
= —h*L.
J 1

By Eq. (6.75), ordering (as is customary) the basis | jm) as

33) [2-3)

(k2 0\ _h
J3_(0 —h/2)‘§“3'

Moreover, by Eq. (6.78) the only non-vanishing matrix element of J is

11\ (1 1
(L o\ (2 2) (222 =
(J+)12_<22‘J+’2 2) h\/(f“z)(z 2+1) g
(0 & (00
J+_(0 0)’ J‘_J+_(h 0)’

S0 ) _1 Lo ay_
L=5\n o) =20 275 \-n o) T 2%

Thus the spin 1/2 representation is that of Example 6.2.
Likewise, for spin j = 1 we have m = —1,0,1 and J* = 2421. Ordering the basis vectors in
descending order as

(Sl
N|—=
=
D=

we have

so that

and hence

11), [10), [1-1)
we then obtain
1
J3=h|0
0

e e e

The only non-vanishing matrix elements of J are

(J)12 = (11]J[10) = /(A + D(1 =1 + 1) = V25,
(J4)23 = (10[J4|1=1) = 2/(1 + 0)(1 = 0 + 1) = V2,

so that
01 0 0 0O
Jp=~2nlo 0 1|, J_=Jl=v2n|1 0 0],
0 0 0 010
and therefore
eV o1). nmetfi o
1= — s 2=—=11 —1
\/EOIO \/50 i 0

Exercise 6.10. Show that

j ! JL )/ Em
|jm>=,/% (7*) i F). (6.80)
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Solution. By Eq. (6.77), we have

j—m—2

St j—m—1
(5) "un=va (£) " wi-n=vae-naE (5) T i-a=

= \/21(2] - 1)(] +m+ 1) : (J _”Z)! |J"”> = —(21)'(1 )! |j”l>-
(j +m)!
Likewise,

T j+m J_ jt+m—1 a jt+m—2
(F) v-n=vE (F) lisn=vE@G-DE(F)  l-i+2-..

= V@ =D G —m DG Fm)l|jm) = |GG T
(j —m)!

Example 6.5. Construction of Y|" form = =, +1,...,1 — 1 from Yll .
Equation (6.80) can be used to construct any spherical harmonic ¥;” from Y, ll. Indeed, note first of all
that from Eq. (6.27) it follows that

Ly = heii‘p( + g +icotHdy,).

In particular, writing _
v/ (0.9) = fi(0)e'"?.

from the identity L Yll = 0 we obtain the following differential equation for the function f;(6):
17(0) —lcotf f(0) = 0.
The general solution of this equation is
£1(0) = ¢;sin 6,

where ¢; is a complex constant that can be determined up to a phase imposing that Yll ve normalized,
i.e., that

2% b b
|cl|2/ d(p/ df sinf -sin? 6 = 2n|cl|2/ do sin?*t1 6 = 1.
0 0 0

Since for [ > 0 we have

1 T T
I = / do sin?*! = —/ d(cos 6) sin? 0 = / dd cos 6 -2/ sin? "1 G cos § = 20(1;—1 — Ip),
0 0 0

it follows that
2 20(21 —2) Q! Q! [
I ==l = 12 == o lo =2 =2
20 + 1 Q1+ )2l — 1) Q1 + 1!t Qi+ D! T+ 1)
22[+1(l!)2
RCERE
and hence
w [@[+1)
)=\ —.
2011 4
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where «; is a phase. We thus have

o 2l + 1)

et il i1
oI yp e'“?sin’ 6. (6.81)

Y/ (6, ¢) =

From the previous equation it is straightforward to obtain an explicit formula for the general spherical
harmonic ¥;" withm = —I,—I + 1,..., [ using Eq. (6.80). To this end, note first that

% [£(0)e"?] = - ™19 (35 + ncot8) £(8) = @D sin' ™" g (— ,1 . 89) (sin” 0 £(6)).

sin
(6.82)

Calling

g(0) =sin'™" 0 (— _19 ag) (sin” 0 £(9))

S

and applying L_% again we obtain

2
e e T
. 1 2
_ el(n—2)§0 sin2™ " @ (— - 89) (sin” 0 f(e)),
sin 0

and in general

L_\* i i(n—k k 1 k
(7) [£(0)e"?] = el gink—n g (_sinQ ag) (sin” 0 £(0)), k=12,....

From Eq. (6.81), Eq. (6.80) and the previous equation with k = / — m and n = [ we then obtain

ae™ [0 + 1)! (I +m)! . _ 1 b=m
Y0, ) = N mo(—— 9 6
109 == o e —my " g o) (s 0)

I s \/21 +1( +m)!

2011 4 (I —m)! (1 =522 97" (1 -5, s = cos .

Using Eqgs. (6.54) and (6.55) we can rewrite the last equation as

2+ 1( +m)!

b (ot 10O

Y/"(0,¢) = (—1)l+mal\/

2 +1 (0 —m)! i
= e B e

which indeed coincides with Eq. (6.56) if we take
a; = (=1

As an example, let us construct the three spherical harmonics with / = 2 (and hence ap = 1) starting

from
1 /5! . 1 /30 ,,
Y22 (0, (p) = g H ezw sin2 0 = g ? 621(/’ sin2 0.

© Artemio Gonzélez Lopez 178

Y1l



seq.sphwell

6.7 The infinite spherical well

In practice, it is better to use Eq. (6.77), i.e.,
YU =[( +m)l —m+1 V2 (Zz) ym

together with Eq. (6.82). In this way we obtain

1 (L_ 1 /30 . 1 1 /30 .
Y) = > (7) Y? = E‘/ ;e“p sin"! 4 (_E 89) (sin*9) = _4_1‘, ¥e“p sin 6 cos 6,
1 L_ 1 /5 1 ) 1 /5 )
7= % (7) Y) = —aV = (_sinQ 89) (sin® A cos ) = Z‘/ = (2cos? 6 —sin” )

1 /5
= —/=(3cos?6 —1).
4V

From Eq. (6.59) we then obtain
1 /30 . 1 /30 ]
Y, '=-Y) = /= ¢?sin6 cos b, Y;2=Y7 = -1/ = e 2*sin 0.
4V & 8V =«

6.7 The infinite spherical well

For a quantum particle confined to move inside a sphere of radius a > 0 centered at the origin the
potential can be taken as

0, r<a
V(r) = (6.83)
00, r>a.
We must therefore solve Schrodinger’s equation
h2
VY = Ey
2m

for r < a, with the boundary condition that ¢ vanishes on the boundary of the well, i.e., for r = a
(since ¥ must vanish in the region r > a where the potential is infinite). For zero angular momentum
the solution of this problem is straightforward, since the radial equation for u(r) is simply

hz
———u"(r) = Eu(r), 0<r<a,
2m

where the prime denotes derivative with respect to r, with the boundary conditions
u(0) = u(a) =0.

Thus the solutions of this problem are the eigenfunctions of an infinite one-dimensional well of width a,

namely’
2 . /nmr
Uno(r) = \/;sm <T) X10,a1()s neN,

n?mn’h?
2ma?
Hence the normalized zero angular momentum (sometimes called s-wave) radial wave functions are

given by
21 . /nmr
Ruo(r) =4/ —— sm( )X[o,a](”), n €N,
ar

a

with energies

Eno =

9In the following formula X[0,a](r) denotes the characteristic function of the interval [0,a], equal to 1 for 0 < r < a and
zero otherwise.

179 © Artemio Gonzélez Lépez



THREE-DIMENSIONAL PROBLEMS

Taking into account the angular part Y, 0 — (47)~1/2 we obtain the explicit expression for the full zero
angular momentum wave functions:

Vnoo(r) = (2ma)” 121 Sln (n )X[Oa](r) neN.

For nonzero angular momentum /, it is more convenient to work directly with the differential equa-
tion (6.26) for the radial function R(r), namely

—iz(rzR/(r))/ MR k*R 0<r<a, k:= ,/2mE,
r r2 h

r2R"+2rR + (K> — I + D)R =0, 0<r<a.

or equivalently

Setting s = kr we obtain the spherical Bessel equation'’
s20ZR 4+ 250sR + (s> —I(l + 1))R = 0, 0<r<a, (6.84)
A basis of solutions of this equation consists of the spherical Bessel functions of order [

)l sin § [ COSS

Ji(s) = (=) (s7 1o, s di(s) = —(=s)! (s71ay)

It can be easily shown by induction that
coS s _
yi(s) = =@l = DIt + OGs h,

and thus y; diverges at the origin for all /. On the other hand, it is also straightforward to show by
induction that j;(s) is finite at the origin for all /. More precisely,
s! I+1
i =—F4+0 .
) =Gy T O

From the boundary condition at r = 0 we thus conclude that

R(r) o< ji(s) = jikr).

The eigenvalue equation is then obtained from the boundary condition at r = a, namely

Jika) = 0.

It can be shown that the spherical Bessel function j; (s) is oscillating, with an infinite number of positive
zeros Z,; (n € N), which we shall order as follows:

21 <2 < < Zpp <o

The eigenvalue equation for angular momentum / is thus

22
hnl

ka=z, (meN) — Enl——2
2ma

The radial wave functions with angular momentum / are given by

Ry (r) = Ny (Z )X[o a)(r),

101y these notes we shall follow the standard reference https://dlmf.nist.gov/10.47 for the properties of the spherical
Bessel equation and its solutions, the spherical Bessel functions.
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6.8 Hydrogen-like atoms

where N,,; is a normalization constant''. Note that the previous formulas are also valid for / = 0, since

. sin s
]O(S) = < — in) = NT.

In Table 6.1 we list the zeros of the spherical Bessel functions j;(s) with 0 < / < 6 in the interval

N 2 3 4 5
0 3.14159 6.28319 9.42478 12.5664 15.708
1 4.49341 7.72525 10.9041 14.0662 17.2208
2 5.76346 9.09501 12.3229 15.5146 18.689
3 6.98793 10.4171 13.698 16.9236 .
4 8.18256 11.7049 15.0397 18.3013 _
5 9.35581 12.9665 16.3547 19.6532 .
6 10.5128 14.2074 17.648 .

@ Table 6.1. Zeros in the interval 0 < s < 20 of the spherical Bessel functions j;(s) with 0 </ < 6.

0 < s < 20. Since, as we saw in Section 6.4, E,;; < E,; if | <1’ or n < n’, we can infer from this
table the ten lowest energies of the infinite spherical square well potential (6.83), together with the value
of the angular momentum for each of these levels (see Table 6.2).

nl E,;

ls | 9.8696
1p | 20.1907
1d | 33.2175
2s | 39.4784
1f | 48.8312
2p | 59.6795
lg | 66.9543
2d | 82.7192
1h | 87.5312
3s | 88.82064

Table 6.2. Lowest ten energy levels of the infinite spherical well potential (6.83). Energies are measured
in units of #%/(2ma?), and we use the traditional spectroscopic notation s, p, d, f, g, h to

:|sphwelll evs denote the values / = 0, ..., 5 of the angular momentum.

6.8 Hydrogen-like atoms

A hydrogen-like atom is an ionized atom whose heavy nucleus is made up of Z protons with charge
q > 0 (as well as a certain number N of neutrons, which are electrically neutral), around which orbits a
single electron of charge —g < 0. Since the mass of the nucleus, approximately equal to

(Z + N)m, ~ (Z + N) - 1.67262192369(51) - 10727 kg ~ 938.272(Z + N) MeV
14

11t can be shown that the normalization constant N,,; can be taken as

2 \V2 -
Ny =( 3 ) }Jl:l:l(znl)| 1-

a-Zpl
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Vi(r)

Figure 6.1. Effective potential V;(r) in Eq. (6.85) for several values of the angular momentum quantum
number /.

is much greater than the electron’s mass
me ~ 9.1093837015(28) - 10~3! kg ~ 0.510999 MeV

even for Z + N = 1, we shall assume that the nucleus is fixed at the origin of coordinates and the
electron moves in the electric field created by the nucleus, and is thus subject to a potential

7 2 7 2 2
Viry=-—29_ = _2°%  Gith 2.=-1
4meg r 4meg

The effective potential, which in this case is given by

ze? 10+ 1)A?
+

Vi(r) = —
1r) 2mer?

(6.85)

is plotted in Fig. 6.1 for several values of the angular momentum /. Since Voo = O for all values of /, the
point spectrum is contained in the half-line (—oo, 0) and the continuous spectrum contains all positive
energies. For [ # 0 the effective potential is bounded below by

meZ>2e*

v o me 2t
M= =50+ r?

so that the point spectrum of V; is in fact contained in the open interval (min V;,0). For [ = 0 the
effective potential is not bounded from below, but a heuristic argument based on Heisenberg’s uncertainty
principle shows that the point spectrum must also have a finite lower bound (exercise). Thus for all values
of / the point spectrum is a bounded set. We shall see below that the point spectrum is in fact a countably
infinite set accumulating at £ = 0, which being an accumulation point of the point spectrum must itself
belong to the spectrum. In fact, we shall see that in this case £ = 0 belongs to the continuous spectrum,
which is therefore the closed half-line [0, 00).

In what follows we shall only be interested in determining the point spectrum and the corresponding
bound states of a hydrogen-like atom of charge Zq. Since E < 0, the radial Schrodinger equation is

2
—0%u + (Z(Z D _2meZe )u _ _2melEl, (6.86)

" r2 2 r h?
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6.8 Hydrogen-like atoms

It is convenient to use the dimensionless length variable

p =K,

where

2ma|E
= ”;le|| (6.87)

is an energy-dependent parameter with dimensions of an inverse length. In terms of this variable the
radial Schrodinger equation becomes

A1l +1
af,uz(l——Jr ( J; ))u, (6.88)
o P

kZe? Ze? [2m,
A= = 6.89
E ~ % \ 1B (059)

is a dimensionless parameter. Equation (6.88), which can be written as

where

P> 85u + pp1(p)dput + po(p)u =0
with
pi(p) =0, polp) = —p> +Ap—1(+1),
has a singular regular point at the origin with indicial equation
s(s = 1)+ p1(0)s + po(0) =s(s—=1) =1+ 1) =0.
Since the roots of the indicial equation are
s1=1+1, so = —I,

by Frobenius theorem we know that there is a basis of solutions {u1, u2} of Eq. (6.88) of the form

ur(p) = o' f(p).  ua(p) = p~'g(p) + clog pui(p),

where f and g are analytic functions such that f(0) = g(0) = 1 and c is a real constant (possibly zero).
Since p is proportional to r, in view of the boundary condition (6.41) only the first of these solutions is
acceptable. Moreover, since for p > 1 Eq. (6.88) reduces to

2 —
8pu —u =0,
whose general solution is
u(p) = ae™? + be”

with a, b arbitrary complex constants, the solutions of Eq. (6.88) behave as a linear combination ae™” +
beP of the exponentials e** for p — oo. Thus for u to be square integrable it must behave as e~ for
p — oo. In other words, we seek for solutions of Eq. (6.88) satisfying the boundary conditions

up) ~ Pt u(p) ~ P
p—>0+ pP—>00

For this reason, it is convenient to look for a new dependent variable v(p) defined by

u = pltle Py.
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Since

3/2)74 = ,ol“e_p(')iv + 20, (lee_p) dpv + 8?,(,01“6_")1)

I(I+1)
0

:ple_"’[paf,v—i-Z(l-l—l—p)apv—l-( —2(l+1)+p)v],

in terms of the variable v the radial Schrodinger equation (6.88) becomes

p020+2( +1-p)dpv+ (A =20 + 1))y =0. (6.90)

Again p = 0 is a singular regular point of the latter equation, with indicial equation
ss—1D)+2(0+1)s=0

and roots
s1 =0, sp = —21 +1).

Thus Frobenius’ theorem guarantees the existence of an analytic, non-vanishing solution of Eq. (6.90)

o0
v(p) = Y ap" (6.91)
k=0

with ag = 1. The second linearly independent solution of the latter equation is not physically acceptable,
since it behaves as p—zl ~1 near the origin and thus u(p) ~ p_l for p — 0+4. Since

oo (o,¢]
pigv = D k(k = Dagp ™" =3 k(k + Dag1p",
k=1

k=0

oo oo o0

I+ 1=p)0pv = +1) Y kap*™ =Y kaep® = 3 [0+ Dk + Dagsr —kag]p”.
k=1 k=0 k=0

substituting Eq. (6.91) into (6.90) we obtain

i [(k + D(k + 21 + Dajgqq + (/\ 2 +k+ 1))ak]pk —0,
k=0

which is equivalent to the recursion relation

210 +k+1)— A
= k=0,1,.... .92 -H
Clk+1 (k+1)(2[+k+2) aka s 1y (69 ) rray

Note that the denominator in the RHS never vanishes, since k,/ = 0. It follows from the latter equation
that the infinite series (6.91) reduces to a polynomial of degree j if and only if

A=2(l+j+1)=2n+1), with n=j+1=12,...,. (6.93) |laquant

On the other hand, when A # 2(n + ) withn = 1,2,... (i.e., when A is not an even integer greater
than /) the series (6.91) does not terminate, and the function v(p) defined by it (with ag = 1) satisfies

v(p)| > Ce3” (6.94)

for some constant C > 0 and p large enough (cf. Exercise 6.12). It follows that

lu(p)| > Cp'T1eP/?

for large enough p, so that u is not normalizable and hence is physically unacceptable. Hence:
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6.8 Hydrogen-like atoms

The radial equation (6.86) with angular momentum / has normalizable solutions if and only if A satis-
fies the quantization condition (6.93). When this is the case, the solution u is of the form

u(p) = p'tle P Py_1(p).

n—1

where P,—1(p) = Y arp* is the polynomial of degree n — 1 with coefficients aj satisfying the
k=0

recursion relation (6.92).

From the definition (6.89) it then follows that the energies of the bound states of the radial Schrodinger
equation (6.86) with a given angular momentum / = 0, 1, ... are the numbers
meZ2%e* 1

202 (n+1)%’

E, =— n=12,....

(Clearly, for fixed [ the energy E,; increases with n, so that E,; is indeed the n-th energy level of the
radial Schrodinger equation with angular momentum /.) The number #n € N is usually called the radial
quantum number. Note also that when A = 2(n 4+ [) the energy-dependent constant « in Eq. (6.87)
becomes

_meZer 1 Z
“TTR ayl T mtha
where
h2
ai= (6.95)

is the Bohr radius of the hydrogen atom. The radial eigenfunction u,; corresponding to the energy E,,;
is thus proportional to
I+1 ,—p
p € P n—1 (p )’ ne N ’

where P,_1(p) is the polynomial of degree n — 1 with coefficients determined by Eq. (6.92) with A =
2(n + I). The latter recursion relation is easily solved:

ag _20+k)—2(0+n) 2(n — k)
ak—1  k(k+20+1)  k(k+20+1)
J ; . ;
o ax _ (2)m—-1--m—j) (=2 -1 @2+ 1)
— a]_kljlak_l_j!(21+2)---(21+j+1)_ jl m—j =D+ + 1)

-1 .
_[(n+2] (=2)7 n+ 21
S\2l+1 jv \2l+j+1)
where we have taken into account that ag = 1. Hence

-1 4 . -1
n+2l+1 n+20+ 1\ (-2p)’ n+2l+1 241
n(P) (2l+1> j;o(j+21+1) 1 20 + 1 n (20).

where L,’; is an associated Laguerre polynomial of degree n, defined by

k=Y (” - k)ﬂ. (6.96)

. .|
— j+k] j!

‘We can thus write

Ut (r) = Apip' e LY 20, neN. (6.97)
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where A,,; is a normalization constant. Taking into account the identity
o0 k
/ dx xkH1e> [L’,; (x)] —Qn+k+ 1)L ES (" + )! (6.98)
0

we easily find

””ﬁl” oo 2042 —2p [ 7 21+1 1 [ 2042 —2p [ 7 21+1 2
= [ e e (1t ap)| = a1 o)

|Anl|2
el
_2 @l+3) /°° gy y 2 T2ex [LZHl(x)}
K 0
2~ (l+3) (n +20)! (n +20)!
) | wra) 2—2(l+1) 2
p (n—i—l)(n_l)! ( +1) ( O

We can thus take the normalization constant 4,,; in Eq. (6.97) as

4 2 [ Z(n—1)! 6.99)
" I am + 20 '

Hence
1 Z(n—1)! 14+1 2l+1
= 2 pL 2
un ) = o a0 e L )

and
(r) = unl(r) _ Kini@r 2 Z\*? [ (n—1) 2p)le P L2+ (2p)
e = — D € ’
Rt 1 b (n+l)2 (n+ 201 P n—1 1P

with

Zr
=Kkr =
P (n+l)a

Since the allowed energies of a hydrogen-like atom depend on the radial quantum number z and the
angular momentum / only through the combination n + [, it is convenient in this case to define the
principal quantum number N as

N:=n+l. (6.100)

With this definition the allowed (bound state) energies are

Ey = _MeZiet 1 2o | 136057 20 v, N =12 (6.101)
= _ = — ~ = —F= € = llg4goo00 o .

N 22 N2 2a N2 N2

Note that, since n = 1, for each N the angular momentum / can only take the values/ = 0,1,..., N —1,

and for each of these values of / the radial quantum number 7 is equal to N —/. The corresponding radial
wave functions with energy En and angular momentum /, that we shall denote by Rév to avoid confusion
with the general notation R,,; adopted in Section 6.4, are given by

2 (Z\? [(N=1-1)! _ Zr
Riy(r) = Ry_1,(r) = = (;) N R @p)e LAt (2p). p= o

Multiplying by the spherical harmonic ¥;” (6, ¢) we obtain the following expression for the normalized
eigenfunctions

() = YN—11m(0) = Ry (1) Y1, (0, )
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of a hydrogen-like atom with energy E, which are simultaneous eigenfunctions of L? and L3 with
respective eigenvalues /(I + 1)A? and mh:

Z\? 2 (N =1=1) [25\} _s Zr
Im _ -2 72041 2 m —
V= (Z) N2\ N+ D (ﬁ) e LIyI ()G = a’

(6.102)

where

[=0,1,...,N —1, m=—l,—1+1,...,1.

Since all of the above wave functions have the same energy E y, given by Eq. (6.101), the degeneracy of
the N-th energy level is given by

N-1 N—-1
dy=>Y @ +1)=N+2) k=N+NN-1)=N>
1=0 k=1

Note that the subindex N in wzl\,m denotes the energy level, and that the number of zeros (usually called
nodes in the literature) of the radial part Ré\, = Ry _; of this eigenfunction is therefore N — [ — 1.
Moreover, the parity of wzlvm is that of its angular part ¥”*, namely (—1)":

YA () = (D) yin ().
Remark.

e Asremarked in Section 6.5, the energy E,,; of a state 1,7, in an arbitrary central potential is indepen-
dent of the magnetic quantum number m. This is a direct consequence of the rotational invariance of
the Hamiltonian (6.45), i.e., of the fact that H commutes with the generators L; of the rotation group
SO(3):

[H,L] =0.

To prove this statement, notice that the previous commutation relations obviously imply that
[H,L+] =0.
Suppose that a state ¢ has energy E and also satisfies
L2y =I(l + Dh?*Y, L3y = mhy,

which is possible since the three operators { H,L?, L3} commute. (In other words, v is proportional
to one of the states ,,;,, defined above.) Applying the operators L+ to both sides of the eigenvalue
equation
Hy = EvY,
and taking advantage of the commutativity of H and L1, we thus find
Li(Hy) = H(L+y) = E(L+¥),
and of course (as we saw in Section 6.6)

L2(Lyy) = 1(I + DA% L1y, L3(L+y) = (m £ DAL 4Y.

In other words, the states Ly either vanish or are eigenstates of L3 with eigenvalue (m + 1)#, and
still have energy E and angular momentum /. Proceeding as explained in Section 6.6, by repeatedly
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applying the operators L to the original state ¢ we can construct a “ladder” of 2/ + 1 states with
the same energy E and angular momentum /, which are eigenstates of L3 with eigenvalues —/#,
(=1 + DA, ..., lh. For a generic central potential, E,; = E,; if and only if (n,/) = (n’,1); hence,
as remarked in Section 6.5, the degeneracy of each energy level E,,; in a generic central potential is
20+ 1.

On the other hand, the energy E,; in a hydrogen-like atom depends on n and / only through the sum
n + [, and thus the N levels Eno, EN—1.1...., E1,n—1 have all the same energy. In other words,
the spectrum of a hydrogen-like has an accidental degeneracy not accounted for by the rotational —
SO(3)— invariance of the Hamiltonian. In fact, it can be shown that this accidental degeneracy is
actually a direct consequence of the invariance of the Hamiltonian (6.45) with a 1/r potential under
the group SO(4), generated by the three components of the orbital angular momentum operator and
the Laplace—Runge—Lenz vector operator

1 Ze?
M=—PxL-LxP)——;
2m r

see, e.g., [GP90, Section 6.7]. [ |

Exercise 6.11. Prove that the Laplace—Runge-Lenz vector operator is Hermitian.

Solution. Obviously, it suffices to show that P x L. — L x P is Hermitian. To this end note that, since
P and L are self-adjoint, we have

(P;Lj — P;L)' = Lj P — L; P;,

or in vector form
PxL)"=-LxP.

Hence
PxL—-LxP) =—-LxP+PxL,

as was to be shown.

For instance, the ground state (N = 1) has energy

meZ2e*

Ef = —
! 2h2

and is non-degenerate. Its normalized eigenfunction is a spherically symmetric state (since ] = m = 0
implies that the angular part is YO0 = 1/+/4m), given by

3/2 e—Zr/a

00 _ Z 32 —Zrlayl (2Zr 1 _ Z
V1 (r)—z(z) e LO(T)f—(a) NG

It is straightforward to check that W?O (r) is indeed normalized:

) 00 7Z\3 oo 1 [
[vi®]” = 431/ drr2y{°(r)® = 4 (—) / dr r2e722rla — —/ dss?e™ = 1.
0 a 0 2 0

The next energy level (N = 2) has energy E, = E1/4, and is four-fold degenerate. The four eigenfunc-

© Artemio Gonzélez Lopez 188



oxe.serielag

6.8 Hydrogen-like atoms

tions with this energy are

(0 ) () )
2 a 2ﬁ 1 a 41 a 427 a ’
Z\¥? zr % 1 [3 Z\*? Zr e % -
yll == “re (3)<£> ——4/=—sinfe?’ | =—|— are sin @ e'?,
a a 2.6 € 2V 2x: a a 8w
3/2 _Zr 3/2
1/,10= E /ge 2“[}(&).1 icose:— g /geZa cos 6
Z a a 2.6 v\ @ 2V m a a 4.2z '
v = (5)3/2 zr e % Ly (Q) -~ iSmGe = (5)3/2£ ﬁ sinf e
2 = 0\ a o
a a 26 2V 2 a a 8w

Exercise 6.12. Prove Eq. (6.94).

Solution. Let

_ .20 _ k g -
floy=e =3 bept.  with b=
k=0
We then have
bryr _ 2
by, k+1’
and therefore
ak+1_bk+1: 1 2(l+k+1)—)L_ _ 1 A4+2/+2
ay bx k+1 20 +k+2 k+1k+20+2
Since
A+20+2
— 0,

k+2l4+2 k-0
for any ¢ € (0, 1) there exists a sufficiently large integer N such that

A+20+2
k=N AB L g
k+2l+2
and therefore 5 2 5
k>N — Ak+1 _ Ok+1 28 k+1’
ay by, k+1 by,

or equivalently (taking into account that by 4 1 /by > 0),

b
el o (1 —8)ﬂ > 0.

k=N —
ay by,

Thus

(1 _ 8)j+1_N bj'H

J
. aj+1 l—[ ak+1
2 N ——1 —J = — ’

aN k=N ak

J
(1 —&)br41

k=N
and therefore (multiplying throughout by p/*1 > 0 and summing over j from N to co)

(1—eN
by

(1-—g~V

[/((1=¢)p) —gn(p)] = b

1
o W) = (o)) > (202 —qn (),

189 © Artemio Gonzélez Lépez
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with

N N
N =) _ajp’.  qn(p) =) bi[(1—e)p)
j=0 j=0

polynomials of degree at most N in p. Rearranging terms in the previous inequality we can rewrite it
as

a
v(p) > (1 =) N (2079 4 ry (o).
N
where rp is another polynomial of degree at most N in p. Since

e 2y (p) — 0,
p—>00

if p is large enough so that

1
0Py (o)l < 5

we have
)—N anN e2(1—e)p
2by

As the RHS of the previous inequality is positive so is the LHS, and thus

v(p) > (1 —¢

W@ =) > 1=V LI — (e > €O,
N

with C = (1 — &)™ 2 > 0. Setting £ = 1/4 we obtain Eq. (6.94).

The associated Laguerre polynomials.

The associated Laguerre polynomial Lﬁ (x) is defined by
Li() = (~DFo Ly (),

where L, (x) denotes the Laguerre polynomial of degree n

Ln(x) = %az(x"e—X) = Lo%(x).

From the operator identity
e*le™ = (e¥dxe )" = (3x — )",

we obtain
1 1 & N 1 & gl
Lp(x) = =(0x = D)"(x") = = Z (n.)(—l)] 0 Tx" = — Z (n.)(—l)]n,—'xf
n! n! j n! p= j j!

j=0
_ Z (n) (—x)/

|
=\i)

and therefore

n+k &\ (—x)/ n+k K\ (—1)i+k ' .

!
=\ = J!
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which is Eq. (6.96).
A useful tool for establishing the properties of the associated Laguerre polynomials is their generat-
ing function, defined by

Fr(x,s) = Z L¥(x)s™.
n=0

This function can be easily evaluated from Eq. (6.96). Indeed, for k = 0 we have

Fo(x,s)=n§Ln(x)s ZZ()(W i i()

n=0;=0

-SSR S (M e

|
j=0 J: n=0

On the other hand, differentiating j times the equality

(1—s5)"" Zs"

we obtain
o0 > |
. o n+ | s n +
pamo = Y At SO g = 3 ("
= - ]) =\ /
_] "
and therefore
00 j s ] —155
_ (—sx)’ i1 _1 l —sx\J e =
Fo(x,s)—;) i (1—s) =(1—y) ;}ﬁ<l—s> o 1—s

Applying the operator (1) 3]§ to both sides of this equality we thus obtain

Fe(x,s) = ) (=D 0 Lysr (0)s" = (=D 740 Y Ln(x)s”

n=0 n=k
= (D) s7*5 Fo(x),

where we have taken into account that
*Ly(x)=0, n=0,... k-1

(since Ly (x) is a polynomial of degree n in x). Using the previous expression for F(x) we obtain the

explicit formula
SX

e 1—s
(1— s)k+l ’

With the help of the previous formula for the generating function, it is straightforward to establish
Eq. (6.98). Indeed, from the definition of the generating function we have

Fr(x,s) =

00 o fe'e)
/(; dx x*T1e™ Fr(x, 8) Fr (x, 1) = Z s"tm/O dxxk+le_xL£‘l(x)L§1(x). (6.103)

n.m=0
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On the other hand, using the explicit formula for the generating function we obtain

o0 o0
/ dx xK e ™ F(x, ) Fre(x, 1) = (1 —s) %7 1(1 —t)_k_I/ dx xKtle~¥e~ 15517,
0 0
Taking into account the identity
1+ s i o (=90 -+s(l—1)+1(1—s) 1 —st
l—s 1—t (1—s)(1—1) BTEDTED)
and the value of the integral
o0
/ dx xMe ™ =mlag ™1, m=0,1,..., a>0,
0

we can rewrite the previous formula as

00 00 »
/ dx xk+1e_ka(X,s)Fk(x,t) =( —s)_k_l(l - t)_k_1 / dx xk“e_(l—lﬂﬁx
0 0

S V] Gt ) et VRS NP el e OS]

_ gt )k+2 ]
(1 —st) — n!
The coefficient of s”¢" in the RHS of previous expression is
k+ 1)! k)! k)! k)!
rk+r D! @D @Ol viem =itk + DD 610
n! (n—1)! n! n!
for n > 0 and T
( ;F' LN

for n = 0, which coincides with (6.104) with n = 0. Thus Eq. (6.104) is valid for all n. Equating the
latter equation to the coefficient of s”¢" in Eq. (6.103) we obtain Eq. (6.98).

[ —

Exercise 6.13. Prove Rodrigues’ formula for the associated Laguerre polynomials:

—kox
Lr(x) = %8’;()6”%6_’6).

Solution. From the definition of the generating function F (x, s) it follows that

SX

1 L[ Fr(x,s) 1 Sl
L b _ kA - —_—
Ln(x) = n! s Fk(x,s)‘s=0 © 2mi sntl ds = 2mi J snt1(1 — s)k+1

ds,

where the integral is extended (for instance) along the (positively oriented) circle |s| = e with & < 1.
Performing the change of variables

S ; 1 1 t d dr
= :} —S:—’ S:—, S = —
1—s 1+¢ 1+¢ (1+1)2

we obtain :
Lﬁ(X) = — ¢ l_n_l(l + [)n—i—ke—tx dt,
27

where for small enough ¢ the integral is extended along a positively oriented simple closed curve
encircling the origin (indeed, s = ee'? implies that ¢t = ee'? + O(g?)). The last integral can be easily
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computed with the help of the residue theorem, namely

1

_(aprtke) = —

' (un—l-ke(l—u)x) — i Py
n:

1
k _ _ an
Ln(x)_n!at n' &

(un—i-ke—ux) ]
u=1 u=1

Performing the change of variable
E=xu = Oy=x ag

we finally obtain

—k .x
—n—ken+k —£\ _ X 7€ n
(x g e ) = 85

—k x
(g_-n-l—ke—f) = X n'e az(xn-f—ke—x).

LE(x) = g)6”8"
T ! £

E=x

=x

Exercise 6.14.
i) Determine the probability density of finding the electron in a hydrogen-like atom at a distance r
from the origin when it is in the energy eigenstate W]lvm-

ii) Find the most likely and the mean distance of the electron to the origin when / = N — 1 (which
in Bohr’s atomic model corresponds to a circular orbit).

iii) Again for/ = N — 1, find the uncertainty in the electron’s distance to the origin, and comment
on the result obtained.

Solution.
i) The probability of finding the electron at a distance in the range [r, r 4+ dr] from the origin is found
integrating the probability density

2 2
Wi (r,6,0) > dr = |Ry (1) Y6, 9)[r2 dr d2
over 6 € [0, t] and ¢ € [0, 27], namely
2 2 2
Re@)Prer 10,0 = |Ry ([ r2ar,
[0,7]x[0,27]

since the spherical harmonics are normalized over the unit sphere (cf. Eq. (6.57)). Thus the sought-for
probability density is
pﬁv(r) = ‘Ré\,(r)‘zrz.
which is obviously independent of the magnetic quantum number 1.
ii) When!/ = N — 1 we have

N1y = (Z)3r2(2p)2<N—”e—2f’ _ Z @pNe? Zr
N1y —

AW QN—-1)! N2 eN-1)" PTNa

as ng (s) = 1. Since pjl\\,' ~1 is proportional to p2Ne=2P  the most likely distance of the electron to the
origin is found setting the derivative of the latter function equal to zero, namely

0=29, (pZNe_z") = (2N —2p)p*N1e™2° «— p=0,N.

Clearly p = 0 is a minimum of p>"e=2” and p = N is a maximum. Thus the most likely distance of
the electron to the origin is obtained when p = N, i.e.,

Zr N2a
— =N & r=——.
Na ’ Z
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(This is, coincidentally, the radius of the N-th electron orbit in Bohr’s atomic model.) To determine
the average value of the distance of the electron to the origin we must evaluate the integral

(r) = /00 dr rpN =1 (r) = .z /00 dr r(2p)*Ve2°
0 2N —1)! N2a J,

2
__ !z (Na /°°dSS2N+le_s _a@N+DOr_ 1Y a
2N —1)!'N2a \2Z 0 4Z 2N —1)! 2) Z
In particular, notice that the mean distance to the origin is slightly larger than the most probable dis-

tance.
iii) The expectation value of 2 in an orbital with/ = N — 1 is computed similarly:
1 V4

o0 o0
2 2 _N-—1 2 2N ,—2
= d = — d 2 Y
<r ) /0 TT PN (r) (2N — 1)' N2ag [) nr ( p) ¢

1 Z (Na\> [*® Na? 2N + 2)! 1\ a2
= ot (M) [Tasewire S NEON DL ey (w4 1) 5
QN —-1)'N2a\2z) J, 8Z2 (2N —1)! 2

Thus the square of the uncertainty in the electron’s distance to the origin is given by

2
ar? = ) = 2o (N + %) .

In particular, the relative uncertainty

A
T o@eN+D)TV2 s o,
N—o0

(r)

in agreement with Bohr’s correspondence principle.

6.9 The three-dimensional isotropic oscillator

In Section 6.1.2 we solved the Schrédinger equation for the three-dimensional harmonic oscillator po-
tential (6.12) by separation of variables in Cartesian coordinates. In the isotropic case, i.e., when the

three constants k; are equal:
1
k] =k2=k3zk:§ma)2,

the oscillator potential reduces to the central potential

1
V(r) = Ema)zrz. (6.105)

Thus the Schrodinger equation for the isotropic harmonic oscillator can also be solved by separating
variables in spherical coordinates, using the method outlined in Section 6.2.

Remark. The fact that the Schrodinger equation for a potential V(r) can be solved by separating vari-
ables in more than one coordinate system always indicates that the potential in question possesses a
certain symmetry. In the case of the isotropic harmonic oscillator, this symmetry is known to be related
to the U(3) group. Likewise, the Schridinger equation for the Coulomb potential can be solved by sep-
arating variables both in spherical and parabolic coordinates. In this case, the corresponding symmetry
group is SO(4). |

The radial equation for the isotropic three-dimensional oscillator is

h? 1 5, I+
—%8ru+(§ma)r+ 2

E) u(r) =0.
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Vi(r)

> r

Figure 6.2. Effective potential V;(r) for the three-dimensional isotropic harmonic oscillator for several

fig.VIHO values of the angular momentum quantum number /.

It is convenient to use the dimensionless length variable

s =ar, o = J/mwh,
in terms of which the radial equation becomes

I(1+ 1)

2 _ -
u(s) — (s +—— )u +2\u =0, A= e (6.106)

where the prime denotes differentiation with respect to s. We seek for square integrable solutions u(s)
of the latter equation satisfying the boundary condition at the origin

I+1
us ~ 8 .
()s—>0+

Moreover, for s — oo we have
u’(s) ~ s2u(s),
S—>00

an approximate solution of which is

2
u(s) = etT,

Thus for |s|] — oo the solutions of Eq. (6.106) should behave as e*5%/2 Since e5?/2 is not square
integrable, we conclude that the square-integrable solutions of Eq. (6.106) must behave as e™s%/2 at
infinity. The asymptotic behavior of the normalizable solutions of the latter equation suggests the change
of dependent variable

u(s) = sl+le_s2/2v(s).

The differential equation satisfied by the function v(s) is easily found:
u'(s) = sle_sz/z[(l + 1 —s)v(s) + sv'(s)],
u’(s) = sl_le_sz/z{(l — sz)[(l +1—5®)v(s) + sv'(s)] + s20"(s) + (I + 2 —s?)sv/(s) — 2s2v(s)}
= sl_le_sz/z{szv”(s) + 250+ 1= s2'(s) + [10 + 1) = 21 +3)5? + s* o)},
and thus
2" (s) + (2482 —s* = 1(1 + 1))u(s) = sl+ze_s2/2[sv”(s) 120+ 1—s2)'(s) + (21 =21 —3)sv(s)],

whence

sv”(s) +2(1 + 1 —s2)v'(s) + (21 — 21 — 3)sv(s) = 0. (6.107)
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The latter equation has a singular regular point at the origin, with indicial equation
c(c—1)4+2(+1)0=0

and roots
O'1=0, O'2=—21—1.

By Frobenius’s theorem, Eq. (6.107) has a fundamental systems of solutions of the form

o0 o0
v1(s) = Z ans”, va(s) = s721 Z bus"™ + clogs vi(s),
n=0

n=0

with ag, bg # 0 and ¢ a (possibly vanishing) constant. However, for u(s) to behave as sit1 fors — 0+
we need v(s) to tend to a non-zero constant in this limit. It follows that the only acceptable solutions of
Eq. (6.107) are proportional to the power series v;. Substituting this series into the latter equation we
obtain

D =1 420 + Dans" + > (24 =21 =3 = 2n) aps" !

n=0 n=0

o0 o0
=2(/ + Da; + Z n(n 420 + Daps" ! + Z QA =21 —3 —2n) a,s" !

n=2 n=0
o

=2(I+ Day + Y _[(n +2)(n + 21 + 3)any2 + (24 =21 =3 = 2n)a,]s" "' = 0.
n=0

Equating to zero the coefficients of the powers of s in the previous equation we obtain
ay) = 0

and
2n + 21 +3—2A

= an,
(n+2)(m+20+3) "

From the recursion relation and the vanishing of a; we deduce that the odd coefficients vanish:

=0,1,....

an+2

azk+1=0, Vk=0,1,
Calling by = ay, we can write the recursion relation for the even coefficients a,j as

b 2kH143/2-h
L=k + D@k +20+3) ©

Moreover, since the quotient

k=0,1,....

bgtr 1
bk k—oo k

. . . 2 . . .
is asymptotically the same as for the series of ¢, reasoning as in Sections 5.1 and 6.8 we conclude that
. . . 2 ..
the if the power series v1(s) does not terminate then vy (s) ~ e for s — oo. But this is unacceptable,
o ) 2/5 . . .
since it implies that u(s) = stH1e=5"/2y,(s) ~ 5 /% isnot square integrable. Hence the series for vy (s)

must terminate. In view of the recursion relation, this is only possible if

3
A=2n,+1+ 2 (6.108)

for some nonnegative integer n,. From the latter equation we obtain the following formula for the
energies of the bound states of the three-dimensional isotropic harmonic oscillator:

3
Enrl=(2nr+l+§)ha), I,n,=0,1,2,....
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The nonnegative integer n, appearing in the latter formula is called the radial quantum number. It is
apparent that the energy depends on n, and / through the combination N := 2n, + [. It follows that, for
a given N, the angular momentum quantum number / must have the same parity as N. We can therefore
label the energy levels as

3
EY = Ew_nj21 = (N + E) hw, [=7(N),n(N)+2,...,N,

where 1t(N) denotes the parity of N (i.e., m(N) = 0 for even N, t(N) = 1 for odd N). Note that
we obtain the same numerical value of the energies of the bound states that we derived in Section 6.1.2
solving the Schrodinger equation in Cartesian coordinates, as expected. As to the degeneracy of the
energy levels, for N even we have

N
l1=02,.... N = [=2p, p:0,1,...,?.

Since the energy is independent of the azimuthal quantum number m, which for a given / can take
2] + 1 = 4p + 1 values, the degeneracy dy of the energy (N + %)hw is in this case

N/2
N (N N 1
dy = 4 D=2—(—+1 —+1==(N+1)(N +2).
N I;(H) 2(2+)+2+ SN+ DN +2)

Likewise, for odd N we have

N —1
[=13....N = I[=2p+1, p=0,1,...,T,
and ( y
N—-1)/2
N—-1N+1 3 1
dy = 4 ) =2———— +—(N+1)==(N + 1)(N +2).
N pX:;)(p+) 5 SV D =SV + (N +2)

We thus see that the degeneracy of the energy (N + %)hw is in all cases

dy = %(N + 1)(N +2),

again in agreement with the result obtained in Section 6.1.2 (cf. Eq. (6.17)).
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A Some useful integrals

Euler’s gamma function I"(z) is defined by

oo
F@y:/ t*"'e7*dr,  Rez>0. (A1)
0
Note that the integral is indeed convergent for all complex z with Rez > 0. Integrating by parts we
obtain
o0 =00 o0
Fz+1)= / tfe ! dt = —tze_t‘ + z/ 1 le™ dr = z2I1(2),
0 1=0 0
so that
r@+1)=2r). (A.2)

When n € N, applying the previous identity n times we obtain

T +1) =n!] (A.3)

Note that this equality is obviously valid for » = 0. From Eq. (A.3) we easily obtain

a> 0. (A4)

o0
/ e ¥ dx =a "' M(n+1) =
0

aht1’

This identity can be more directly proved differentiating the integral for n = 0 with respect to the
parameter a:

o0 _ a n o0 _ a n . Cne1 I’L'
/(; x"e axdx:(—a) [) eaxdxz(—g) al=1.2.....na™ ZW'

Consider next the Gaussian integral
oo
—ax2
/ e ¥ dx.
—00

The integral is obviously convergent when Rea > 0, and it can be shown to be also convergent for all
nonzero a with Rea = 0. By suitably deforming the integration contour, it is shown that

e 2 [Tt
/ e ¥ dx =,/ —, a#0 and Rea >0, (A5
a

—00

with the following choice of square root:
ﬁ = |a|1/2 e%Arga,

where Arga € (—m, t] is the principal value of the argument of a. For instance,

IN=y

o
2
/ e dx = e+,

—00

/00 cos(x?)dx = /00 sin(x?) dx = \/g (A.6)
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The more general integral
/oo e—(ax2+bx+c) dx,
—00

where b, ¢ are arbitrary complex constants, is computed completing the square:

b \? b? o [T b2—sac
ax’+bx+c=alx+—) +¢c-— = / e—(@x?+bx+e) g, — Tt | (A
2a 4a o0 a

where we have used the fact (easily proved by deforming the integration contour) that

o 2 o 2
/ e~ 20" gx =/ e 4* dx
—00 —00

for arbitrary complex z¢. Equation (A.7) admits a straightforward three-dimensional generalization that
is often used in quantum mechanics, namely

2 .
/d3re—(ar2+b-r+c‘) = (3)3/2 eTae
a

where a and ¢ are as above and b € C3 is a constant vector. Indeed, completing the square we obtain

b\’ b?

2 —
ar+b-r+c=alr+—) +c——
( Za) 4a

and therefore

3 0 2
2_44c 2 2_4qc bj 3/2 p2_
/d3r e~(@rttbrie) _ o PTge /d3r ema(rt3a)” = " aa™ | | / dx; e_a(xiJrﬁ) = (—Tc) / e aa

_ a
j=1v"®

A related integral that frequently appears in quantum mechanics is

o0
I(a) ;= / x2neax? gy = a_("+%)ln(l),

—0o0

where a > 0andn = 0, 1, .... This integral can be easily evaluated by differentiating

o0
Io(a) = [ e dy = \/g
—00

with respect to the parameter a:

a\" [>® 2 a\" 1 3 2n —1 1
I N e —ax dx = _ —1/2: - . —n’
(@) ( Ba) /0 e x ﬁ( E)a) a ﬁz 3 5 d
whence
oo 2n — D! _ 1
/ xzne_axzz%ﬁa (”+%) a>0 and n=0,1,2,.... (A.8)
—00

In fact. the integral /,,(1) could also have been evaluated through the change of variable x? = s:
o0 5 o0 1
I,(1) = 2/ x2Me ™ dx = / s"2efds =T (n+ %)
0 0

using the fundamental identity (A.2) for the gamma function:

Fa ) =-Hr - =0-HE-Hra-H=-=@-H@-P-irQ
2n— 1!
=TI
which coincides with the previous result since
r(3)=1I(1) = V. (A.9)
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accidental degeneracy, 166, 188
adjoint, 39
annihilation operator, 138
associated Legendre

equation, 162

functions, 162

Balmer series, 9
black body, 1
radiation, 1
Bohr
frequency, 73
radius, 10, 13, 185
Boltzmann’s constant, 3
Born’s rule, 33
bra, 102

canonical
commutation relations, 41, 120
quantization, 39, 120
Cauchy-Schwarz inequality, 61
central potential, 154
closure relation, see completeness relation
coefficient
reflection, 90
transmission, 90
compatible observables, 61, 122
complete set of commuting observables, 124
completeness relation, 106
Compton scattering, 8
conserved quantity, see constant of motion
constant of motion, 118
continuity equation, 45
correspondence principle, 12
creation operator, 138
CSCO, see complete set of commuting observ-
ables

de Broglie wavelength, 18

Dirac
delta function, 47
normalization, 57
notation, 102

double slit experiment, 24

dual, 102
dynamical variable, 105

effective potential, 158
Ehrenfest’s theorem, 51
eigenfunction, 40

formal, 46
eigenvalue, 40
Einstein—de Broglie relations, 27, 35
expectation value, 49

fine structure constant, 14
Fourier transform, 53

generalized
completeness relation, 108
orthonormal basis, 108
orthonormal set, 108

Green function, 59

group velocity, 19

Hamiltonian, 30, 38, 117
harmonic oscillator, 129

three-dimensional, 149, 150
Hermite polynomial, 135
Hilbert space, 39, 101

ket, 101
generalized, 108

Lagrangian, 30
Laplacian, 36
Larmor’s formula, 10
linear functional, 102

matter wave, 18
momentum
angular, 153
general, 168
linear, 38
radial, 153
representation, 53, 56

norm, 33

observable, 50, 105
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Pauli matrices, 168
phase velocity, 18
photoelectric effect, 6

ultraviolet catastrophe, 3
uncertainty, 60
principle, 29

photon, 7 relation, 61
Planck general, 61
constant, 3 time-energy, 65
reduced, 12
formula, 3 variables
position compatible, 61
operator, 38 incompatible, 61

representation, 56 .
P wave function, 28, 33

probability
amplitude, 26, 28, 34 collapse, 35, 113
current. 45 wave packet, 19

Wien’s law, 6

density, 34 work function, 7

projector, 104
quantum number, 124

Rayleigh-Jeans formula, 3
resonance, 94
Rydberg constant, 9, 13

Schrodinger equation

free particle, 36

time independent, 70

time-dependent, 37, 117
self-adjoint operator, 40

spectral decomposition, 110
separation constant, 146
Sommerfeld—Wilson—Ishiwara quantization, 14
spectrum, 75, 76

continuous, 74, 75

discrete, see point spectrum

point, 70
spherical harmonic, 162
spherical harmonic, 157
standard deviation, 60
state, 101

bound, 73

physical, 101

scattering, 72, 74, 89

stationary, 65, 72
stationary phase, principle of, 21
Stefan’s law, 4
Stefan—Boltzmann constant, 4
superposition principle, 101
SWI quantization rule, see Sommerfeld—Wilson—

Ishiwara quantization

test function, 47
time evolution operator, 116
tunnel effect, 96
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