
Classical Mechanics - Final exam - January 17th, 2024
(Time: 3 hours)

1 [3 points]. A particle of mass m and charge q moves in an EM field described by the electric
and magnetic potentials

Φ = 0 , A =
B

2
(ye1 − xe2) .

Write the Lagrangian. Derive and solve the Euler-Lagrange equations assuming that the particle
is initially at the origin with velocity v0 along the x-direction. Consider the change of generalized
coordinates

x → x′ = x+ y δθ , y → y′ = y − x δθ , z → z′ = z (2)

with δθ ≪ 1. Is it a symmetry of the system? If so, identify the associated conserved quantity.

(See problem 3.11 solved in the lectures) The Lagrangian of a particle in an EM (Φ, A) is

L =
1

2
ẋ2 − qΦ+ q ẋ·A .

In the case at hand, this takes the form (0.5)

L =
1

2



ẋ2 + ẏ2 + ż2
�

+
qB

2



ẋy − ẏx
�

. (3)

To find the form of the Euler-Lagrange equations

d

dt

� ∂L

∂q̇i

�

−
∂L

∂qi
= 0 , qi = x, y, z , (4)

compute the partial derivatives in them,

px =
∂L

∂ẋ
= mẋ+

qB

2
y ,

∂L

∂x
= −

qB

2
ẏ ,

py =
∂L

∂ẋ
= mẏ −

qB

2
x ,

∂L

∂y
=

qB

2
ẋ ,

pz =
∂L

∂ẋ
= mż ,

∂L

∂z
= 0 ⇒ pz = conserved .

Upon substitution in eqs. (4), this gives (0.5)

mẍ+ qB ẏ = 0 ,

mÿ − qB ẋ = 0 ,

z̈ = 0 ⇒ z(t) = z1t+ z0, z0, z1 = integration constants

The initial conditions for the position and the velocity in the z-direction z(0) = ż(0) = 0 imply z0, z1 = 0,
so that z(t) = 0. To solve the equations for x and y, consider u(t) = x(t)+ iy(t). It satisfies the equation

mü = m (ẍ+ iÿ) = qB (−ẏ + iẋ) = iqBu̇ ⇔ ü = iωu̇ , ω :=
qB

m
.
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Its solution is u̇ = C0e
iωt, with C0 a complex integration constant. To determine C0, use the initial

conditions for the velocity in the x and y-directions

C0 = u̇(0) = ẋ(0) + iẏ(0) = v0 .

It follows that

u̇(t) = ẋ(t) + iẏ(t) = v0e
iωt











ẋ(t) = v0 cosωt ⇒ x(t) =
v0
ω

sinωt+ k1 ,

ẏ(t) = v0 sinωt ⇒ y(t) = −
v0
ω

cosωt+ k2 ,

with k1 and k2 integration constants. To determine them, impose the initial conditions for the position
in the x and y-directions,

x(0) = y(0) = 0 ⇒ k1 = 0, k2 =
v0
ω

.

All in all, the solution is (0.5)

x(t) =
v0
ω

sinωt , y(t) =
v0
ω



1− cosωt
�

, z(t) = 0 .

The variation of the Lagrangian under the transformation (2) is

δL = m
�

ẋ
dδx

dt
+ ẏ

dδy

dt

�

+
qB

2

�dδx

dt
y + ẋδy −

dδy

dt
x− ẏδx

�

, (5)

where we have sued that δz = 0. Using that

δx = yδθ, δy = −xδθ ⇒
dδx

dt
= ẏδθ ,

dδy

dt
= −ẋδθ

each one of the two parenthesis in eq. (5) vanishes. Hence δL = 0 and the transformation (2) is a
symmetry of the system (0.75). Its associated conserved quantity is

Q = piδq
i = pxδx+ pyδy = (pxy − pyx) δθ

Since δθ is arbitrary, the conserved quantity is Lz = pxy−pyx, which is the z-component of the angular
momentum. From z = 0 and pz = 0 it follows that the x and y-components of the particle’s angular
momentum vanish, Lx = y pz − z py = 0 and Ly = z px − x pz = 0. Hence, the particle’s angular
momentum L = x ∧ p is conserved (0.75).
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2 [2 points]. In reference frame S an event 1 takes place at time ct1 = 1 in position x1 = (2, 0, 0).
Two other events, 2 and 3, take place at

a) (ct2,x2) = (4, 1, 0, 0) b) (ct3,x3) = (3, 5, 0, 0)

Can they be causally connected with event 1? In case they can, find an inertial frame S ′ in which
events take place at the same position but at different times. In case they can’t, find an inertial
frame S′ in which events occur at the same time but in different positions.

(See problem 6.2 solved in the lectures). Event 1 is at xµ1 = (1, 2, 0, 0). For two events at xµ1 =
(ct1,x1) and xµ2 = (ct2,x2) to be causally connected, the vector xµ

21 := xµ1 − xµ2 must be timelike. Let
us check if this is the case here

a) x221 = ηµν x
µ
21 x

ν
21 = (4− 1)2 − (1− 2)2 = 8 > 0 ⇒ xµ21 is timelike ,

b) x231 = ηµν x
µ
31 x

ν
31 = (3− 1)2 − (5− 2)2 = −5 < 0 ⇒ xµ31 is spacelike .

Event 2 can then be causally connected with event 1, but event 3 cannot (0.5+0.5).

Let us now look for an inertial frame S ′ at which events 1 and 2 take place at the same position but
at different times. To do this, recall that a Lorentz boost along the x axis with velocity v goes from S
to S′ and transforms coordinates through

x′ = γ (x− vt) ct′ = γ (ct−
v

c
x), y′ = y, z′ = z, γ =

�

1−
v2

c2

�−1/2
.

We want to find v such that x′21 = x′2 − x′1 = 0, i. e.

0 = γ
�

x21 −
v

c
ct21

�

⇔ 0 = (−1− 3
v

c
) ⇒ v = −

c

3
.

Hence, in a frame that moves with velocity −c/3 in the x-direction of frame S events 1 and 2 occur at
the same position but at different times (0.5) .

Let us now look for an inertial frame S ′ at which events 1 and 3 take place at the same time but at
different space points. To do this, recall that a Lorentz boost along the x axis with velocity v goes from
S to S′ and transforms coordinates through

x′ = γ (x− vt) ct′ = γ (ct−
v

c
x), y′ = y, z′ = z, γ =

�

1−
v2

c2

�−1/2
.

We want to find v such that ct′31 = c(t′3 − t′1) = 0, i. e.

0 = γ (ct31 −
v

c
x31) ⇔ 0 = (2− 3

v

c
) ⇒ v =

2c

3
.

where we have used that ct31 = 2 and x31 = −3. In a frame that moves with velocity 2c/3 in the
x-direction of frame S events 1 and 3 occur at the same time but at different positions (0.5).
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3 [2 points]. A particle of mass m moves in a central force field. The particle follows a trajectory
r = aebθ of known angular momentum L, with a a constant with dimensions of length and b a
real parameter. Find in terms of L a and b the potential energy V (r). Write the coordinate r(t)
of the trajectory as a function of time.

(Compare with problem 2.5 solved in the lectures). The equation of motion in Binet’s form is

d2u

dθ2
+ u = −

m

L2u2
f
�1

u

�

, u =
1

r
, f(r) = −

dV (r)

dr
,

where V (r) is the potential energy. Using

u =
1

a
e−bθ ⇒

d2u

dθ2
=

b2

a
e−bθ = b2u ,

it follows that

(b2 + 1)u = −
m

L2u2
f
�1

u

�

.

Hence

f
�1

u

�

= −
L2(b2 + 1)

m
u3 ⇔ f(r) = −

L2(b2 + 1)

mr3
.

This gives (1)

V (r) = −

Z

dr f(r) = −
L2(b2 + 1)

2mr2

Upon using conservation of angular momentum L = mr2θ̇, the time derivative of r reads

ṙ =
dr

dθ

dθ

dt
= baebθ

L

mr2
=

bL

mr
.

Hence, upon integration from t = 0 to t = t,

rdr =
bL

m
dt ⇒ r =

r

2bL

m
(t+ r20) ,

with r0 an integration constant, the initial radial coordinate.

Note that the orbit’s energy is zero since

E =
1

2
mṙ2 +

L2

2mr2
+ V (r) =

1

2
mṙ2 −

L2b2

2mr2
= 0 ,

where in the last equality we have used ṙ = bL/mr.
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4 [3 points]. A rod of mass M and length L rotates with con-
stant angular velocity Ω about a vertical axis that goes through
its center. Rotation takes place so that the angle θ formed by
the rotation axis and the rod remains constant. A bead of mass
m can freely slide along the rod. The system is subject to the
Earth’s constant gravitational field. Write the Lagrangian, de-
rive the Euler-Lagrange equations and solve them. Explain the
solution. What is the rôle that the rod plays in the system?

θ

Ω

Take the rod’s center as origin of coordinates and the rotation axis as the z-axis. As x-axis take the
line orthogonal to the rotation axis that goes through the bead’s initial position. Call s to the distance
on the rod from the bead to the origin.

θ
s

Ω

z

The bead coordinates are (0.5)

x = s sin θ cosΩt, y = s sin θ sinΩt, z = s cos θ

It follows that

ẋ = sin θ (ṡ cosΩt− sΩ sinΩt), ẏ = sin θ (ṡ sinΩt+ sΩ cosΩt), ż = ṡ cos θ.

The Lagrangian is then (0.5)

L = T − V =
1

2
m



ṡ2 + s2 Ω2 sin2 θ
�

+
1

2
IΩ2 −mgs cos θ .

The moment of inertia I with respect to the rotation axis is a constant, hence the term IΩ2/2 in the
Lagrangian is a constant and does not enter the Euler-Lagrange equation. For the sake of completeness,
let us compute I. By definition,

I =

Z L/2

−L/2
ds ρ d2s =

M sin2 θ

L

Z L/2

−L/2
ds s2 =

1

12
sin2θML2 .

where ρ = M/L is the rod’s mass density and ds = s sin θ is the distance to the rotation axis from
the rod’s segment [s, s + ds]. Note that I = a(θ)ML2, with a = sin2θ/12=const, as one expects on
dimensional grounds.
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The system only has one degree of freedom, namely the distance s on the rod, so there is only one
Euler-Lagrange equation,

d

dt

�∂L

∂ṡ

�

−
∂L

∂s
= 0 .

Using
∂L

∂ṡ
= mṡ ,

∂L

∂s
= msΩ2 sin2θ −mg cos θ ,

one has (0.5)
ms̈−msΩ2 sin2θ +mg cos θ = 0 .

Its solution is (0.5)

s(t) = Ae−tΩ sin θ +B etΩ sin θ +
g cos θ

Ω2 sin2θ
, (6)

where A and B are integration constants. The sum of the first two terms in the solution is the general
solution to the homogeneous equation. The third term is a particular solution to the complete equation.
The first term approaches zero exponentially as time increases, whereas the second one blows up. Only
for very specific initial conditions, the integration constant B will be equal to zero and the trajectory
will approach for very large times to a circle of radius g tan θ/Ω2. If the initial conditions are such that
B is different from zero, the bead will leave the rod after a finite time (0.5).

The solution does no depend on the rod’s parameters, M and L. The rotating rod constraints the
particle to move on a “double-cone” with half-angle at its tip equal to θ, with the particle’s angular
velocity around the cone axis being constant. (0.5).
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