Family name \qquad

Given name \qquad

Signature \qquad

Quantum Physics II

Mid-term exam - November 17th, 2021
(Time: 1 hour, 25 minutes)

In exercises 1 and 2, only fill in the boxes (calculations will not be collected).

1 [2 points]. In a Hilbert space, $|1\rangle$ and $|2\rangle$ are pure states, orthogonal to each other. Consider the following three operators with matrix elementes given by

$$
\varrho_{1}=\left(\begin{array}{cc}
1 & \mathrm{i} \\
-\mathrm{i} & 0
\end{array}\right), \quad \varrho_{2}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{\mathrm{i}}{2} \\
\frac{\mathrm{i}}{2} & \frac{\mathrm{i}}{2}
\end{array}\right), \quad \varrho_{3}=\left(\begin{array}{cc}
\frac{1}{4} & -\frac{\mathrm{i} \sqrt{3}}{2} \\
\frac{\mathrm{i} \sqrt{3}}{2} & \frac{3}{4}
\end{array}\right)
$$

Which ones of them are admissible matrix densities?

Density matrices: None

Which ones describe mixed states?

Mixed states: None

Which ones describe pure states?

Pure states: None

In case there is any pure state, write it as a linear superposition of $|1\rangle$ and $|2\rangle$.

```
Does not apply
```

- ϱ_{1} is not a density matrix since $\operatorname{tr} \varrho_{1}^{2}=\operatorname{tr}\left(\begin{array}{cc}2 & \mathrm{i} \\ -\mathrm{i} & 1\end{array}\right)=3$ is not less or equal than 1 .
- ϱ_{2} is not a density matrix because it is not selfadjoint.
- ϱ_{3} is not a density matrix because it is not postive semidefinite. Indeed, for any complex 2-vector $v=\left(v_{1}, v_{2}\right)$,

$$
\langle v| \varrho_{3}|v\rangle=\frac{1}{4}\left(v_{1}^{*}, v_{2}^{*}\right)\left(\begin{array}{cc}
1 & -2 \mathrm{i} \sqrt{3} \\
2 \mathrm{i} \sqrt{3} & 3
\end{array}\right)\binom{v_{1}}{v_{2}}=\frac{1}{4}\left(\left|v_{1}-2 \mathrm{i} \sqrt{3} v_{2}\right|^{2}-9\left|v_{2}\right|^{2}\right)
$$

is not larger or equal than zero. For example, for $v_{1}=2 \mathrm{i} \sqrt{3} v_{2}$, the right hand side is negative.
$\mathbf{2}[\mathbf{0 . 5}+\mathbf{0} .5$ points $]$. Two angular momenta $j_{1}=3 / 2$ and $j_{2}=1$ are composed. What are the posibble values of the resulting total angular momentum

$$
\frac{3}{2} \otimes 1=\frac{5}{2}, \frac{3}{2}, \frac{1}{2}
$$

Write the state $\left|m_{1}=\frac{3}{2}, m_{2}=-1\right\rangle$ in terms of the states $\left|J, M_{J}\right\rangle$. (Provide the expression without argumentation).

$$
\left|m_{1}=\frac{3}{2}, m_{2}=-1\right\rangle=\sqrt{\frac{1}{10}}\left|J=\frac{5}{2}, M_{J}=\frac{1}{2}\right\rangle+\sqrt{\frac{2}{5}}\left|J=\frac{3}{2}, M_{J}=\frac{1}{2}\right\rangle+\sqrt{\frac{1}{2}}\left|J=\frac{1}{2}, M_{J}=\frac{1}{2}\right\rangle
$$

3 [3 points]. Three electrons (spin $1 / 2$) are in a potential whose eigenstates and eigenenergies are

$$
\left|\phi_{n}\right\rangle, \quad E_{n}=[n(n-1)+1] \epsilon, \quad n=0,1,2, \ldots,
$$

where ϵ is a constant with dimensions of energy. Find the ground state energy and its degeneracy. Write the ground states wave functions.

The lowest one-particle energy is $E=\epsilon$, which is attained for $n=0,1$. It has degeneracy two and its eigenstates are $\left|\phi_{0}\right\rangle$ and $\left|\phi_{1}\right\rangle$. If spin is included, degeneracy is four, and the eigenstates are $\left|\phi_{0, m_{s}= \pm 1 / 2}\right\rangle$ and $\left|\phi_{1, m_{s}= \pm 1 / 2}\right\rangle$.

There are four different ways to accomadate three electrons in the four different one-particle ground states:
i) Allocate two electrons in $\left|\phi_{0,1 / 2}\right\rangle$ and $\left|\phi_{0,-1 / 2}\right\rangle$, and the third electron in $\left|\phi_{1, m_{s}}\right\rangle$, with m_{s} either $\frac{1}{2}$ or $-\frac{1}{2}$. The corresponding wave functions are

$$
|\Psi(1,2,3)\rangle=\frac{1}{3!} \operatorname{det}\left(\begin{array}{ccc}
\left|\phi_{0,1 / 2}(1)\right\rangle & \left|\phi_{0,1 / 2}(2)\right\rangle & \left|\phi_{0,1 / 2}(3)\right\rangle \\
\left|\phi_{0,-1 / 2}(1)\right\rangle & \left|\phi_{0,-1 / 2}(2)\right\rangle & \left|\phi_{0,-1 / 2}(3)\right\rangle \\
\left|\phi_{1, \pm 1 / 2}(1)\right\rangle & \left|\phi_{1, \pm 1 / 2}(2)\right\rangle & \left|\phi_{1, \pm 1 / 2}(3)\right\rangle
\end{array}\right)
$$

2i) Two electrons in $\left|\phi_{1,1 / 2}\right\rangle,\left|\phi_{1,-1 / 2}\right\rangle$, and the third one in $\left|\phi_{0, \pm 1 / 2}\right\rangle$, with wave functions

$$
|\Psi(1,2,3)\rangle=\frac{1}{3!} \operatorname{det}\left(\begin{array}{lll}
\left|\phi_{1,1 / 2}(1)\right\rangle & \left|\phi_{1,1 / 2}(2)\right\rangle & \left|\phi_{1,1 / 2}(3)\right\rangle \\
\left|\phi_{1,-1 / 2}(1)\right\rangle & \left|\phi_{1,-1 / 2}(2)\right\rangle & \left|\phi_{1,-1 / 2}(3)\right\rangle \\
\left|\phi_{0, \pm 1 / 2}(1)\right\rangle & \left|\phi_{0, \pm 1 / 2}(2)\right\rangle & \left|\phi_{0, \pm 1 / 2}(3)\right\rangle
\end{array}\right)
$$

All in all, the ground state has energy $E=3 \epsilon$, degeneracy 4, and eigenfunctions as above.

4 [4 points]. Consider an electron in a Hydrogen atom. The electron interacts with a uniform external magnetic field B oriented in the z-axis through the Hamiltonian term

$$
\omega\left(L_{z}+2 S_{z}\right), \quad \omega=\frac{e B}{2 m c}
$$

a) Find the system eigenenergies. Note that the total Hamiltonian is $H_{\text {Hydrogen }}+\omega\left(L_{z}+2 S_{z}\right)$.
b) Initially the electron is in a state with $n=2, \ell=1$, total angular momentum (orbital + spin) $J=1 / 2$ and total angular momentum third-component $M_{J}=\frac{1}{2}$. If the energy is measured at time zero, what values can be obtained and with what probabilities?
c) Find the state at time t. If at time $t=\pi / \omega$ the square of the orbital angular momentum is measured, what values can be obtained and with what probabilities?
a) The eigenenergies and eigenstates are

$$
E_{n m_{\ell} m_{s}}=\tilde{E}_{n}+\hbar \omega\left(m_{\ell}+2 m_{s}\right), \quad \tilde{E}_{n}=-\frac{Z^{2} e^{2}}{2 a_{0} n^{2}} \quad\left|n, \ell, s=\frac{1}{2}, m_{\ell}, m_{s}\right\rangle
$$

where \tilde{E}_{n} are the usual Hydrogen atom energies in Gaussian units.
b) Using the Clebsch-Gordan table for $1 \otimes \frac{1}{2}$, the initial state $\left|n=2, \ell=1, s=\frac{1}{2}, j=\frac{1}{2}, m_{j}=\frac{1}{2}\right\rangle$ can be written in terms of $\left|n=2, \ell=1, s=\frac{1}{2}, m_{\ell}, m_{s}\right\rangle$ as

$$
|\psi(0)\rangle=\left|2,1, \frac{1}{2}, j=\frac{1}{2}, m_{j}=\frac{1}{2}\right\rangle=\sqrt{\frac{2}{3}}\left|2,1, \frac{1}{2}, m_{\ell}=1, m_{s}=-\frac{1}{2}\right\rangle-\sqrt{\frac{1}{3}}\left|2,1, \frac{1}{2}, m_{\ell}=0, m_{s}=\frac{1}{2}\right\rangle
$$

The only possible results for a measurement of the the energy at $t=0$ are then

$$
\begin{array}{ll}
E_{2,1,-\frac{1}{2}}=\tilde{E}_{2} & \text { with probability } \\
\frac{2}{3} \\
E_{2,0, \frac{1}{2}}=\tilde{E}_{2}+\hbar \omega & \text { with probability }
\end{array} \frac{1}{3} .
$$

c) The state at time t is

$$
|\psi(0)\rangle=e^{-\mathrm{i} t E_{2} / \hbar}\left[\sqrt{\frac{2}{3}}\left|2,1, \frac{1}{2}, m_{\ell}=1, m_{s}=-\frac{1}{2}\right\rangle-\sqrt{\frac{1}{3}} e^{-\mathrm{i} \omega t}\left|2,1, \frac{1}{2}, m_{\ell}=0, m_{s}=\frac{1}{2}\right\rangle\right] .
$$

It has $\ell=1$. Hence the only possible result for a measument of \mathbf{L}^{2} is $2 \hbar^{2}$, with probability 1 .

