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Quantum physics II - Final exam - January 20th, 2023
(Time: 3 horas)

1 [3 points]. The Hamiltonian of a particle with spin s = 1 is

H =
A

ℏ2
L·S+

B

ℏ
(Lz + Sz) ,

where L and S are the particle’s orbital angular momentum and spin operators, and A and B
are constants with units of energy.

(a) Find the energy levels and the allowed values for the quantum numbers on which the energies
depend.

(b) The system is initally in a state characterized by the quantum numbers ℓ = 2, mℓ = 0,
ms= 0. Find the state of the system at time t.

(c) If the initial state of the system is as in (b), calculate the probability to obtain +ℏ in a
measurement of the third component of the orbital angular momentum performed at t = T .

In terms of the total angular momentum J = L+ S the Hamiltonian reads

H =
A

2ℏ2
(J2 − L2 − S2) +

B

ℏ
Jz .

In the coupled basis {L2,S2,J2, Jz} the energy levels are for s = 1

EℓJM =
A

2

�
J(J + 1)− ℓ(ℓ+ 1)− 2

�
+BM ,

where ℓ, J and M may take the following values

i) ℓ = 0, 1, 2, . . .

2i) J = ℓ+ 1, ℓ, ℓ− 1 for ℓ = 1, 2, . . . , and J = 1 for ℓ = 0

3i) M = −J,−J + 1, . . . , J − 1, J.

The system’s initial state is

|ψ(0)⟩ = |ℓ = 2, s = 1, mℓ = 0, ms = 0⟩ = { use 2×1 Clebsch-Gordan coefficients table }

=

r
3

5
|ℓ = 2, s = 1, J = 3, M = 0⟩ −

r
2

5
|ℓ = 2, s = 1, J = 1, M = 0⟩ .

From now on we omit from the notation the quantum numbers ℓ = 2, s = 1. The sates |J, M⟩ on the
second line in the equation above are eigenstates of H, so their time evolution is stationary with energies
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E230 = 2A and E210 = −3A. At time t the system is then in state

|ψ(t)⟩ =
r

3

5
e−2iAt/ℏ |J = 3, M = 0⟩ −

r
2

5
e3iAt/ℏ |J = 1, M = 0⟩ .

To calculate the probability of obtaining a given value when measuring Lz it is best to go back to
the decoupled basis {L2,S2, Lz, Sz}. To do that, we again use the 2×1 table:

|ψ(t)⟩ =
r

3

5
e−2iAt/ℏ

�r
1

5
|mℓ = +1, ms = −1⟩+

r
3

5
|mℓ = 0, ms = 0⟩+

r
1

5
|mℓ = −1, ms = +1⟩

�

−
r

2

5
e3iAt/ℏ

�r
3

10
|mℓ = +1, ms = −1⟩ −

r
2

5
|mℓ = 0, ms = 0⟩+

r
3

10
|mℓ = −1, ms = +1⟩

�

=

√
3

5

�
e−2iAt/ℏ − e3iAt/ℏ

� �
|mℓ = +1, ms = −1⟩ + |mℓ = −1, ms = +1⟩

�

+
�3
5
e−2iAt/ℏ +

2

5
e3iAt/ℏ

�
|mℓ = 0, ms = 0⟩ .

The probability to obtain +ℏ for Lz at time t = T is then

Pψ(T )(Lz,+ℏ) =
����
√
3

5

�
e−2iAT/ℏ − e3iAT/ℏ

� ����
2

=
3

25

���� e−5iAT/2ℏ − e5iAT/2ℏ
����
2

=
12

25
sin2

�5AT
2ℏ

�
.
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2 [2 points]. A system is formed by two non-interacting electrons in a Coulomb potential
produced by a charge Ze at the origin. The system is in a state of which the following is known:

(1) Its energy is E = E1/2, with E1 the ground sate energy of an Hydrogen-like atom.

(2) The orbital angular momentum squared of the system is 6ℏ2.

Find the states in which the the system may be in the basis of the total orbital angular momentum
L = L1 + L2. Determine the total spin of the system ans its third component.
Ayuda. The eigenenergies of an Hydrogen-like atom are E = E1/n

2.

In accordance with (1), the quantum numbers n1 and n2 are given by

1

2
=

1

n2
1

+
1

n2
2

⇒ n1 = n2 = 2 .

The orbital angular momentum quantum numbers ℓ1 and ℓ2 of the electrons may then be 0 or 1.
From condition (2) we have that the system’s total orbital angular momentum number L is such that
L(L + 1) = 6. This gives L = 2 and implies that the system is in a total orbital angular momentum
state |L = 2,ML⟩ with ML = −2, −1, 0, +1, +2 as possibles values for its third component. Since
L = 2, both ℓ1 and ℓ2 must be equal to 1. The 1×1 Clebsch-Gordan table shows that the all the states
|L = 2,ML⟩ are linear combinations of states |mℓ1 , mℓ2⟩ that are symmetric under mℓ1 ↔ mℓ2 . For the
total wave function to be antisymmetric, the latter must then be antisymmetric under ms1 ↔ ms2 . Now,
the composition of two spins s1= s2=

1
2 gives a triplet |S = 1,MS⟩, whose three states MS = −1, 0, +1

are symmetric under ms1 ↔ ms2 , and a singlet |S = 0, MS = 0⟩, which is antisymmetric. This selects
the singlet

|S = 0, MS = 0⟩ = 1√
2


|ms1 = +1

2 , ms2 = −1
2⟩ − |ms1 = −1

2 , ms2 = +1
2⟩

�
,

so the system may be in any of the states

|L = 2, ML⟩ |S = 0, MS = 0⟩, ML=−2, −1, 0, +1, +2 ,

with total spin S = 0 and total spin’s thrid component MS = 0.
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3 [3 points]. Tha Hamiltonian of a particle with spin 3/2 is H = H0 +HI , with

H0 =
ω

ℏ
(S2

z − 2ℏSz) , HI = λωSx , λ ≪ 1

and ω an angular frequency.
i) Find the eigenenergies H0, their degeneracies and their eigenvectors.

2i) Find the ground state energy of H up to first order in perturbation theory (that is, unper-
turbed energy plus first order correction).

3i) Find the first excited state energy of H up to second order.

The eigenvectors and eigenvalues of the unperturbed Hamiltonian H0 are

E(0)
m = ℏω (m2 − 2m) , |ϕ(0)

m ⟩ = |sm⟩ =: |m⟩ , m =
3

2
,
1

2
,
1

2
, −3

2
.

Hence

ground state: E
(0)
3/2 = E

(0)
1/2 = −3

4
ℏω, degeneracy = 2, eigenvectors = | 32⟩ , | 12⟩ ;

1st excited state: E
(0)
−1/2 =

5

4
ℏω, degeneracy = 1, eigenvectors = |− 1

2⟩ ;

2nd excited state: E
(0)
−3/2 =

21

4
ℏω, degeneracy = 1, eigenvectors = |− 3

2⟩ .

The unperturbed state is doubly degenerate. The first order corrections in perturbation theory
produced by HI are the eigenvalues of the matrix

HI =

 ⟨ 3
2 |HI | 32 ⟩ ⟨ 3

2 |HI | 12 ⟩

⟨ 1
2 |HI | 32 ⟩ ⟨ 1

2 |HI | 12 ⟩

!
.

Using Sx=
1
2 (S+ + S−) and S±|s,m⟩ = ℏ

p
s(s+ 1)−m(m± 1)|s,m± 1⟩, we have

HI =

√
3

2
λℏω

 
0 1

1 0

!
.

Its eigenvalues are E
(1)
3/2 = ∓λℏω

√
3/2, so the ground state energy splits then in two energy levels

E3/2,± = −3

4
ℏω

�
1± 2√

3
λ+O(λ2)

�
.

The first unpeturbed excited state is nondegenerate. Its first order correction due to HI is

E
(1)
−1/2 = ⟨−1

2 |HI |− 1
2 ⟩ = 0 .

At second order the energy correction is given by

E
(2)
−1/2 =

X

m̸=− 1
2

��⟨m|HI |− 1
2 ⟩

��2

E
(0)
−1/2 − E

(0)
m

=
n

only m = 1
2 , −3

2 contribute
o
= λ2ℏω

�
1

2
− 3

16

�
=

5

16
λ2ℏω
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The first excited state enegy up to second order corrections is thus

E−1/2 = E
(0)
−1/2 + E

(1)
−1/2 + E

(2)
−1/2 + · · · = 5

4
ℏω

�
1 +

1

4
λ2 +O(λ3)

�
.
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4 [1 points]. The variational method is used to estimate the ground state enegy of a sys-
tem with Hamiltonian H. Two different trial wave functions ψ1(λ) and ψ2(λ) with the same
parameter λ are used. The resulting values are E1 = minλ⟨ψ1(λ)|H|ψ1(λ)⟩ = 3 eV and
E2 = minλ⟨ψ2(λ)|H|ψ2(λ)⟩ = 1 eV . Which one approximates most to the exact value? Why?

Since the variational method provides an upper bound to the ground state energy, the closest value
to the exact value is the smallest one, namely E2.

5 [2 points]. A system has Hamiltonian H0, eigenenergies Ejm and eigensates |j,m⟩, where
j and m are the quantum numbers labelling the eigenvalues of the operators J2 and Jz of an
angular mmomentum J. At an initial time ti = 0 a perturbation V (t) = Jxf(t) is introduced,
with f(t) a function of time. Find at first order in perturbation theory the final states |jf mf ⟩
to which the system may have transited after a time t = tf as a result of the perturbation if the
system was initally in state

(a) |ji = 2, ,mi = 2⟩,

(b) |ji = 0, ,mi = 0⟩.

To first order the transistion probability to a state |j,f mf ⟩ in a time t is

Pif (0, t) =
1

ℏ2

���� ⟨jf mf |Jx|jimi⟩
Z t

o
dt′ eiωfit

′
f(t′)

����
2

For this to be nonzero we need ⟨jf ,mf |Jx|ji,mi⟩ ̸= 0. Using

Jx =
1

2
(J+ + J−) , J±|ji,mi⟩ = ℏ

p
ji(ji + 1)−mi(mi ± 1) |ji,mi± 1⟩ ,

we have that the final state quantum numbers must be jf = ji and either mf = mi+1 or mf = mi−1.
This gives for the cases that we are interested in

a) |jf = 2,mf = 1⟩, since mf = 3 is not compatible with jf = 2, and

b) There is no transition at first order since there are no states with jf = 0 and mf = ±1.
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