	FAMILY NAME	
	GIVEN NAME	
UNIVERSIDAD COMPLUTENSE MADRID	SIGNATURE	DNI

Quantum Physics II – Midterm exam – November 16th, 2022 (Time: 1 hour 30 minutes)

1 [2 points]. The Hilbert space of a system has basis $\{|1\rangle, |2\rangle, |3\rangle\}$. Given in this basis the matrix

	$\left(\frac{1}{2}\right)$	0	$\frac{i}{2}$	
$\varrho =$	0	$\frac{1}{2}$	0	,
	$\left(-\frac{\mathrm{i}}{2}\right)$	0	0/	

does it describe a physical state? If so, of which type?

2 [2 points]. An electron at rest with gyromagnetic ratio $\gamma > 0$ and spin initially oriented positively in the direction of $\mathbf{n} = \frac{\sqrt{3}}{2}\mathbf{e}_1 - \frac{1}{2}\mathbf{e}_2$ is under the action of a constant magnetic field $\mathbf{B} = B(\mathbf{e}_1 - \mathbf{e}_2)$, with B > 0. The Hamiltonian is $H = \gamma \mathbf{B} \cdot \mathbf{S}$, with \mathbf{S} the electron's spin operator. Find the precession axis, the precession frequency and the angle formed by the expectation value of the electron's spin with the magnetic field.

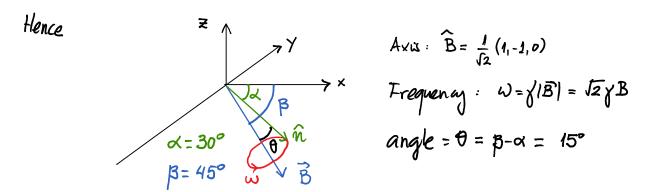
3 [1 point]. A system formed by two particles with spins $s_1 = 3/2$ and $s_2 = 1/2$ is in a state whose total spin squared is $6\hbar^2$ and whose total spin third component is \hbar . If the spin third component of each particle is measured, what values can be obtained and with what probabilities?

4 [2 points]. A system is formed by three electrons. The one-particle states and energies are given by ϕ_{kp} and $E_{kp} = \epsilon(k+p)$, with $\epsilon > 0$ a constant with dimension of energy and k, p = 1, 2, ... Note that the one-particle energies are degenerate. Find the system's ground state energy, its degenaracy and write the corresponding wave functions as Slater determinants.

Problem 1
$ \rho = \begin{pmatrix} 1/2 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 \\ -\frac{1}{2} & 0 & 0 \end{pmatrix} $
The matrix p satisfies
i) $tr p=1$
$2i$) $\rho^{+} = \rho$
3i) Its eigenvalues are the solutions A to the equation
$0 = \det \begin{pmatrix} 1/_{2} - \lambda & 0 & i/_{2} \\ 0 & 1/_{2} - \lambda & 0 \\ -i/_{2} & 0 & -\lambda \end{pmatrix} = -\lambda \left(\frac{1}{2} - \lambda\right)^{2} - \frac{1}{4} \left(\frac{1}{2} - \lambda\right) = -\left(\frac{1}{2} - \lambda\right) \left[\lambda \left(\frac{1}{2} - \lambda\right) + \frac{1}{4}\right]$
$0 = \left(\frac{1}{2} - \lambda\right) \left(\lambda^2 - \frac{\lambda}{2} - \frac{1}{4}\right) \implies \lambda_0 = 0 , \lambda_{\pm} = \frac{1}{4} \left(1 \pm \sqrt{5}\right)$
Since $A_{-} = \frac{1}{4} (1-\sqrt{5})$ is negative, p is not positive semidelimite and hence p does not describe a physical state.

Problem 2

As discussed in the lectures, the expectation value $\langle \vec{S} \rangle_{\mu}$ of the spin in a state 1/4> precesses about the magnetic field with angle θ . To compute θ , we calculate $\langle \vec{S} \rangle_{\mu}$ at time t=0 and the angle that the latter forms with \vec{B} . Now $\langle \vec{S} \rangle_{\mu(0)} = \langle \hat{m}_{+} | \vec{S} | \hat{m}_{+} \rangle = [part c)$ problem 2.1] = $\frac{\hbar}{2} \hat{n} (\frac{\sqrt{3}}{2}, -\frac{1}{2}, 0)$ $|\hat{m}_{+} \rangle = spin state positively mented along <math>\hat{m}$



<u>Problem 3</u> The system is in a state $|S=2, M=1\rangle := |S_1=3/2, S_2=1/2, S_2=2, M=1\rangle$. Use the table of Clebsch - Gardan coefficients to write it in the table $|M_1, M_2 \rangle := |S_1=3/2, S_2=1/2, M_3=-1/2 \rangle = ao$ $|S=2, M=1\rangle = \frac{1}{2} |M_1=3/2, M_3=-1/2 \rangle + \frac{\sqrt{3}}{2} |M_1=1/2, M_2=1/2 \rangle$ If S_{12} and S_{22} are measured the following results may be obtained $Prob(S_{12}, \frac{3}{2}h) = \frac{1}{4}$, $Prob(S_{12}, \frac{1}{2}) = \frac{3}{4}$ $Prob(S_{22}, -\frac{5}{2}) = \frac{1}{4}$, $Prob(S_{22}, \frac{1}{2}) = \frac{3}{4}$

$$\Psi(1,2,3) = \frac{1}{\sqrt{3!}} \quad det \begin{pmatrix} \phi_{d_2}(1) & \phi_{d_2}(2) & \phi_{d_2}(3) \\ \phi_{a'_3}(1) & \phi_{a'_3}(2) & \phi_{a'}(3) \end{pmatrix}$$