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1 [2.5 puntos]. Un sistema cuántico tiene espacio de Hilbert C2 y hamiltoniano

H = E0

�
0 1
1 0

�
,

donde E0 es una constante real positiva con dimensiones de energía.

a) Determinar el estado del sistema en un tiempo t si inicialmente se encuentra en |ψ(0)⟩ =
�
1
0

�
.

b) Un observable está descrito por la matriz

A = ℏ
�

1 −1
−1 1

�
.

Si se realiza una medida de A en un tiempo t = T ¿qué valores pueden obtenerse y con qué
probabilidades?
c) Si la mediada del observable A en el apartado anterior da como resultado el mayor de los
valores posibles y se mide la energía en un timepo posterior t = 3T ¿qué valores pueden obtenerse
y con qué probabilidades?

a) Los autovalores del Hamiltoniano son las soluciones E de la ecuación

det(H − E) = 0 ⇒ E = ±E0 =: E±

Los correspondientes atuoestados son

|E+⟩ =
1√
2

�
1
1

�
, |E−⟩ =

1√
2

�
1

−1

�
.

En términos de la base {|E−⟩, |E+⟩}, el estado inicial se escribe

|ψ(0)⟩ =
�
1
0

�
=

1√
2


|E+⟩+ |E−⟩

�

En un tiempo t el estado del sistema será (0.75)

|ψ(t)⟩ = 1√
2

�
e−iE+t/ℏ |E+⟩+ e−iE−t/ℏ |E−⟩

b) Los posibles valores que pueden obtenerse en una medida de A son sus autovalores, es decir las
soluciones a de

det(A− a) = 0 ⇔ a(a− 2ℏ) = 0 ⇔ a = 0, 2ℏ =: am, aM .
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Los autoestados asociados a estos autovalores on

|am⟩ = 1√
2

�
1
1

�
= |E+⟩, , |aM ⟩ = 1√

2

�
1

−1

�
= |E−⟩ .

Las probabilidades de obtener estos valores en una medida de A realizada en un tiempo T son (0.75)

Pψ(T )(A, am = 0) =
��⟨am|ψ(T )⟩

��2 =
��⟨E+|ψ(T )⟩

��2 = 1

2
,

Pψ(T )(A, aM = 2ℏ) =
��⟨am|ψ(T )⟩

��2 =
��⟨E−|ψ(T )⟩

��2 = 1

2
.

c) Si en la media se obtiene el mayor valor posible, es decir aM = 2ℏ, el estado del sistema inmedia-
tamente después de la medida es |aM ⟩ = |E−⟩. Si se mide la energía en cualquier instante posterior,
siempre se obtendrá (es decir, con probabilidad 1) E− (1.0).
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2 [2.5 puntos]. Un sistema está formado por dos partículas de espín s = 1. Enumerar los
posibles estados de espín del sistema en las bases acoplada y desacoplada en los dos siguientes
casos:
a) las partículas son distinguibles.
b) las partículas son idénticas

Problema 2
Al componer dos espines s1 = s2 = 1 hay nueve posible estados de espín. En la base desacoplada
{S2

1,S
2
2, S1z, S2z} los estadoss son

|s1 = 1, s2 = 1, m1, m2⟩ =: |m1, m2⟩ , m1,m2 = −1, 0,+1 .

En la base {S2
1,S

2
2, S⃗, Sz, con S = S1 + S2, los estados de espín del sitema son

|s1 = 1, s2 = 1, S, M⟩ =: |S, MS⟩ , S = 0, 1, 2 MS = −S,−S + 1, . . .+ S

La relación entre los elementos de las dos bases viene dada por los coefficientes de Clebsch-Gordsan de
la tabla 1⊗ 1. A saber,

|S = 2, MS = 2⟩ = |m1 = 1, m2 = 1⟩

|S = 2, MS = 1⟩ = 1√
2
|m1 = 1, ms = 0⟩+ 1√

2
|m1 = 0, ms = 1⟩

|S = 2, MS = 0⟩ = 1√
6
|m1 = 1, ms = −1⟩+

r
2

3
|m1 = 0, ms = 0⟩+ 1√

6
|m1 = −1, ms = 1⟩

|S = 2, MS = −1⟩ = 1√
2
|m1 = −1, ms = 0⟩+ 1√

2
|m1 = 0, ms = −1⟩

|S = 2, MS = −2⟩ = |m1 = −1, ms = −1⟩

|S = 1,M S = 1⟩ = 1√
2
|m1 = 1, ms = 0⟩ − 1√

2
|m1 = 0, ms = 1⟩

|S = 1, MS = 0⟩ = 1√
2
|m1 = 1, ms = −1⟩ − 1√

2
|m1 = −1, ms = 1⟩

|S = 1, MS = −1⟩ = 1√
2
|m1 = −1, ms = 0⟩ − 1√

2
|m1 = 0, ms = −1⟩

|S = 0, MS = 0⟩ = 1√
3
|m1 = 1, ms = −1⟩ − 1√

3
|m1 = 0, ms = 0⟩+ 1√

3
|m1 = −1, ms = 1⟩ .

Si las partículas son distinguibles cualquiera de los nueve estados es posible (0.50 + 0.50 por cada base).
Sin embargo, si son idénticas, por ser bosones, el estado debe ser simétrico bajo m1 ↔ m2 (0.50). Los
únicos estados simétrico son los estados del quintuplete |S = 2,Ms⟩ y el singlete |S = 0,Ms = 0⟩ (1.0).
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3 [2.5 puntos]. El hamiltoniano de un sistema cuántico unidimensional es

H = H0 +HI H0 = ℏω a+a+aa HI = λℏω(a++ a) ,

donde a+ y a son los operadores creación y aniquilación de un oscilador armónico de frecuencia
angular ω, y 0 < λ ≪ 1 es un parámetro sin dimensiones.
a) Demostrar que los autoestados |n⟩ (n = 0, 1, 2 . . .) del oscilador armónico son autoestados de
H0 y calcular sus autovalores y degeneración.
b) Calcular la energía del estado fundamental de H a primer orden en teoría de perturbaciones.
c) Comparar el resultado anterior con el que se obtiene por el método variacional para una un
estado prueba |ψθ⟩ = cos θ |0⟩+ sin θ |1⟩, siendo θ el parámetro variacional.

a) Usando a|n⟩ = √
n |n− 1⟩ y a+|n⟩ =

√
n+ 1 |n+ 1⟩ se tiene que

H0|0⟩ = 0

H0|1⟩ = 0

H0|n⟩ = ℏω (a+)2a2 |n⟩ =
p

n(n− 1) ℏω (a+)2 |n− 2⟩ = n(n− 1) ℏω |n⟩ para n ≥ 2 .

Las autoenergías y los autoestados no perturbados son

E(0)
n = ℏω n(n− 1) , |ϕ(0)

n ⟩ = |n⟩ , n = 0, 1, . . .

El valor más bajo para E
(0)
n se da para n = 0 y n = 1, por lo que el estado fundamental no perturbado

tiene degeneración 2, energía E
(0)
0 = E

(0)
1 = 0 y subespacio de Hilbert H0 = Span{|0⟩, |1⟩}. Los demás

autovalores del Hamiltoniano no perturbado tienen n ≥ 2 y son simples (0.5).

b) La correción E
(1)
0 a primer orden en teoría de perturbaciones a la energía del estado fundamental

son las soluciones de (0.5).

det

 
⟨0|HI |0⟩ − E

(1)
0 ⟨0|HI |1⟩

⟨1|HI |0⟩ ⟨1|HI |1⟩ − E
(1)
0

!
= 0 .

Usando nuevamente a|n⟩ = √
n |n− 1⟩ y a+|n⟩ =

√
n+ 1 |n+ 1⟩ resulta

⟨0|HI |0⟩ = ⟨1|HI |1⟩ = 0 ,

⟨0|HI |1⟩ = ⟨1|HI |0⟩ = λℏω ⟨1|(a+ + a)|0⟩ = λℏω .

Y, por tanto,

det

 
−E

(1)
0 λℏω

λℏω −E
(1)
0

!
= 0 ⇒ E

(1)
0 = ±λℏω .

La perturbacióm rompe la degeneración del estado fundamental no perturbado. El estado fundamental
pasa a tener energía E0 = −λℏω +O(λ2) (0.5).

c) Para la función prueba |ψθ⟩ = cos θ |0⟩+sin θ |1⟩ el valor esperado del hamiltoniano total es (0.5).

E(θ) = ⟨ψθ|H|ψθ⟩ = ⟨ψθ|HI |ψθ⟩ = 2 cos θ sin θ ⟨0|HI |1⟩ = sin(2θ)λℏω .
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E(θ) alcanza su mínimo en θ = −π/4:

θ = −π

4
, Emin = E(−π

4 ) = −λℏω .

Los dos métodos dan el mismo resultado. La función prueba

|ϕθ⟩ =
1√
2


|0⟩ − |1⟩

�

para la que se alcanza el mínimo es precisamente el autoestado de la matriz de perturbación
�
⟨0|HI |0⟩ ⟨0|HI |1⟩
⟨1|HI |0⟩ ⟨1|HI |1⟩

�

con autovalor E
(1)
0 = −λℏω (0.5).
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4 [2.5 puntos]. Un oscilador armónico bidimensional de masa m tiene hamiltoniano

H =
1

2m
(P 2

x + P 2
y ) +

1

2
m(ω2

xX
2 + ω2

y Y
2) ,

donde Px y Py son operadores momento, X e Y son operadores posición, y ωx y ωy son frecuencias
angulares. El oscilador se encuentra en su estado fundamental. En t = 0 se introduce una
perturbación dependiente del tiempo

V (t) = λ
q
ω2
x + ω2

y Lz e
−t/τ , t > 0 ,

donde Lz es la tercera componente del momento angular orbital, λ ≪ 1 es un parámetro adi-
mensional y τ un tiempo característico. Calcular la probabilidad de que el sistema transite a
un estado distinto del fundamdental en un tiempo t → ∞ y determinar cual sería dicho estado.
Discutir el caso ωx = ωy.

Los autovalores y autoestados de H son

Enx,ny = ℏωx

�
nx +

1

2

�
+ ℏωy

�
ny +

1

2

�
, |nxny⟩ = |nx⟩ ⊗ |ny⟩ , nx, ny = 0, 1, 2 . . .

En particular (0.5),

estado fundamental: |00⟩ , E00 =
1

2
ℏ (ωx + ωy) .

En la aproximación de Born, la probabilidad de que, debido a la acción de la perturbación, el sistema
hay saltado del estado fundamental |i⟩ = |00⟩ a un estado |f⟩ = |nxny⟩ tras un tiempo t → ∞ es

Pi→f (0,∞) =
1

ℏ2

����
Z ∞

0
dt′eiωfit

′
Vif (t

′)

����
2

,

donde
ωfi =

Ef − Ei

ℏ
= ωxnx + ωyny , Vfi(t) = λ

q
ω2
x + ω2

y .e
−t/τ ⟨nxny|Lz|00⟩ .

Es decir,

Pi→f (0,∞) =
λ2 (ω2

x + ω2
y)

ℏ2

����
Z ∞

0
dt′eiωfit

′− t′
τ

����
2 ��⟨nxny|Lz|00⟩

��2 .

La integral temporal en esta expresión es (0.5)

Z ∞

0
dt′eiωfit

′− t′
τ =

eiωfit
′− t′

τ

iωfi − 1
τ

�����

t′→∞

t′=0

=
1

1
τ − iωfi

,

cuyo módulo al cuadrado vale
����
Z ∞

0
dt′eiωfit

′− t′
τ

����
2

=
τ2

1 + τ2 (ωxnx + ωyny)2
.

Para ⟨nxny|Lz|00⟩, usando

X =

r
ℏ

2mωx
(a+x + ax) , Px = i

r
ℏmωx

2
(a+x − ax)
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y expresiones análogas para el oscilador en la dirección y, se tiene que (0.5),

Lz = XPy − Y Px =
iℏ
2

�r
ωy

ωx
(ax + a+x ) (a

+
y − ay)−

r
ωx

ωy
(ay + a+y ) (a

+
x − ax)

�
.

A partir de aquí (0.5),

⟨nxny|Lz|00⟩ =
iℏ
2

�r
ωy

ωx
−
r

ωx

ωy

�
⟨nx|a+x |0⟩ ⟨ny|a+y |0⟩ =

iℏ
2

�r
ωy

ωx
−
r

ωx

ωy

�
δnx,1 δny ,1 ,

��⟨nxny|Lz|00⟩
��2 = ℏ2 (ωx − ωy)

2

2ωxωy
δnx,1 δny ,1 .

Así pues,

P00→nxny(0,∞) =
λ2

4

τ2 (ω2
x + ω2

y)�
1 + τ2 (ωx + ωy)2

� (ωx − ωy)
2

ωxωy
δnx,1 δny ,1 .

Nótese que, como debe ser, la probabilidad no tiene dimensiones. El sistema sólo puede transitar a un
estado final |11⟩ con probabilidad P00→11(0,∞).

Si ωx = ωy, la probabilidad se anula. En este caso el hamiltoniano H es el de un oscilador armónico
bidimensional isótropo de frecuencia angular ω := ωx = ωy, H conmuta con Lz, y el estado fundamental
|00⟩ es propio de Lz con autovalor cero (0.5).
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