
1 Mathematical formulation of QM

In the following pages the postulates of QM are formulated and the basic mathematical background
behind them is very briefly discussed. In the Quantum Physics I course they were covered (ignoring
spin) for the case of a particle in a potential, with physical states being described by wave functions.
Here a more general abstract presentation is given, applicable to a generic quantum system.

■ −→ Formal mathematical background.
No discussion of existence, domains, etc. ←− ■

■ −→ Elementary.
May be skipped. ←− ■

■ −→ Beyond the scope of this course. Included for future use if wished.
The examples given are useful though. ←− ■

These are personal notes. Although I have revised them several times, they may contain, and I am
sure they do contain, mistakes and errata. Use at your own risk!



1.1. Physical states of a quantum system.

Postulate I. At each time t the state of a physical system is described by an element ψ(t) of norm
one of a separable, complex Hilbert space.

■ −→ Reminder on Hilbert spaces. A complex Hilbert space H is a complex vector space
equipped with a scalar product that is complete with respect to the norm induced by the scalar product.
The different terms in this definition stand for the following:

• H is a complex vector space if for all ψ, ϕ in H and all a, b complex, aψ + bϕ is in H.

• A scalar product is a mapping

⟨·|·⟩ : H×H → C
(ϕ,ψ) 7→ ⟨ϕ|ψ⟩

such that

1) ⟨ψ|ψ⟩ ≥ 0 and ⟨ψ|ψ⟩ = 0 if and only if ψ = 0,
2) ⟨χ| (aψ + bϕ) ⟩ = a ⟨χ|ψ⟩+ b ⟨χ|ϕ⟩, and
3) ⟨ϕ|ψ⟩∗ = ⟨ψ|ϕ⟩.

Note that properties 2) and 3) imply that

⟨(aψ + bϕ)|χ⟩ = ⟨χ|(aψ + bϕ)⟩∗ = a∗ ⟨χ|ψ⟩+ b∗ ⟨ϕ|χ⟩ . (1.6)

• The scalar product induces a norm
∥ψ∥ :=

p
⟨ψ|ψ⟩ .

This norm generalizes the concept of modulus and defines a distance d(ψ,ϕ) between two arbitrary
vectors ψ,ϕ as

d(ψ,ϕ) = ∥ψ − ϕ∥ .

• A normed vector space (H, ⟨·|·⟩) is complete if every Cauchy sequence in H converges in H. In other
words, if for every sequence {ϕn} in H such that d(ϕn,ϕm) → 0 when n,m → ∞ there exists χ
in H such that d(ϕn,χ) → 0 for n → ∞. Completeness is not a very restrictive requirement in
the definition of a Hilbert space, since every non-complete normed vector space can be enlarged
to make it complete.

Postulate I demands the Hilbert space H to be separable. This is equivalent to saying that H
admits a countable orthonormal basis. That is, there is a numerable (not necessarily finite) set

{ϕn}n∈I with ⟨ϕn|ϕm⟩ = δnm ,

such that any ψ in H can be written as
ψ =

X

n

cnϕn ,

with cn = ⟨ψ|ϕn⟩ the Fourier coefficients.
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A detailed discussion of the mathematics behind these brief remarks lies outside the scope of this
course and will not be presented here. For our purposes it is enough to keep in mind that a sepa-
rable Hilbert space is a vector space with a norm and an orthonormal countable basis. This is the
generalization of Euclidean vector spaces Rn to complex vector spaces with finite or infinite dimension.
←− ■

Example. The space

L2(R) =
�
f : R → C such that

Z ∞

∞
dx |f(x)|2 < ∞

�

of square integrable functions from R to C is a separable complex Hilbert space. The scalar product of
f with g, both in L2(R), is given by

⟨f |g⟩ =
Z ∞

∞
dx f∗(x) g(x) ,

The integral here is understood in the Lebesgue sense, but we will not worry about this in this course.
As an orthonormal basis one may choose for example the eigenfunctions of the Hamiltonian for the
harmonic oscillator, but there are others.

Comment. One of the major problems in the quantum description of a system is the characteriza-
tion of the Hilbert space of its physical states. For the systems that we are going to be considering, the
Hilbert space will either be given or very easy to find.
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1.2. Observables.

Postulate II. Every observable attribute of a physical system is represented by a linear self-adjoint
operator that acts on the system’s Hilbert space.

■ −→ The operator A : H → H (ψ 7→ Aψ) is linear if it satisfies

A (c1ψ1 + c2ψ2) = c1Aψ1 + c2Aψ2

for all ψ1,ψ2 in H and all c1, c2 in C.

The adjoint of the operator A is an operator A+: H → H (ψ 7→ A+ψ) such that

⟨ϕ|Aψ⟩ = ⟨A+ϕ|ψ⟩ for all ψ,ϕ∈H .

An operator A is self-adjoint if A = A+, i.e. if

⟨ϕ|Aψ⟩ = ⟨Aϕ|ψ⟩ for all ψ,ϕ∈H . ←− ■

Example. The position, momentum and energy of a particle moving in one dimension in a conser-
vative potential V (x), Hilbert space L2(R), are represented by the self-adjoint operators

position: → X, with Xψ(x) = xψ(x),

momentum: → P, with Pψ(x) = −iℏ
d

dx
ψ(x),

energy: → H, with Hψ(x) =

�
− ℏ2

2m

d2

dx2
+ V (x)

�
ψ(x).

Notation. In QM it is customary to use the notation

ψ → |ψ⟩
Aψ → A|ψ⟩

⟨ϕ|Aψ⟩ = ⟨A+ϕ|ψ⟩ → ⟨ϕ|A|ψ⟩ . (1.7)

In eq. (1.7) it is understood that A acts on the right as A, and on the left as its adjoint A+. In other
words,

⟨ψ|A = ⟨A+ψ| .
We will use the same letter to refer to an observable and the linear self-adjoint operator that represents
it.
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1.3. Results and probabilities of measurements.

Postulate III. The only possible result of the measurement of an observable is one of the eigenvalues
of the corresponding self-adjoint operator A. If a measurement of the observable in a system in a
physical state |ψ⟩ is made, the probability of obtaining the eigenvalue an is

Probψ(A, an) =
X

i

|⟨αni|ψ⟩|2 , (1.8)

where |αni⟩ are all the orthonormal eigenstates of A with eigenvalue an,

A|αni⟩ = an|αni⟩ . (1.9)

Example. In an hydrogen atom in a state

|ψ⟩ = 1√
3


|ψ100⟩+ |ψ210⟩+ |ψ21−1⟩

�
,

the only possible results for the measurement of the third component of the angular momentum are 0
and −ℏ, with probabilities

Probψ(Lz, 0) =
∞X

ℓ=0

|⟨Y 0
ℓ |ψ⟩|2 =

����
1√
3

����
2

+

����
1√
3

����
2

=
2

3
,

Probψ(Lz,−ℏ) =
∞X

ℓ=1

|⟨Y −1
ℓ |ψ⟩|2 =

����
1√
3

����
2

=
1

3
.

Projection and measurement. ■ −→ The spectral theorem, which we give without proof,
states that the eigenvectors of a (compact) self-adjoint operator A that acts on a Hilbert space form an
orthonormal basis. That is, the solutions {|αni⟩} of

A|αni⟩ = an|αni⟩

form an orthonormal basis,
⟨αni|αmj⟩ = δnm δij . ←− ■

The index i here has been introduced to emphasize that the eigenvalue an may have multiplicity larger
than 1, so that are several eigenvectors associated with it. The eigenvectors of a given eigenvalue an
can always be linearly combined so as to end up with orthonormal eigenvectors, which we have denoted
by |αni⟩. Any physical state |ψ⟩ can then be written as a Fourier series

|ψ⟩ =
X

ni

⟨αni|ψ⟩| {z }
cni

|αni⟩ =
X

ni

|αni⟩ ⟨αni|ψ⟩. (1.10)

This equation is the generalization to Hilbert spaces of the decomposition

v =

NX

i=1

(ai ·v) ai
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of a vector v of RN in terms of the orthonormal basis {ai} associated to the eigenvalues of an orthogonal
matrix.

In eq. (1.10), the Fourier coefficient cni = ⟨αni|ψ⟩ is the component of |ψ⟩ in the direction of |αni⟩.
Multiplication of cni with |αni⟩ gives the projection of the state |ψ⟩ on the direction of |αni⟩. So

PA,ni = |αni⟩⟨αni| (1.11)

is actually a projection operator on the direction of |αni⟩. The projection operator on the subspace
spanned by {|αni⟩}i is the sum

PA,an =
X

i

|αni⟩⟨αni|.

Let us check that PA,an is indeed a projection operator. For this to be case it must satisfy
(i) idempotency, and

(ii) that the sum of all projectors be the identity.
The first one follows from

PA,an PA,am =
X

i,j

|αni⟩ ⟨αni|αmj⟩| {z }
δnmδij

⟨αmj | = δnm
X

i

|αni⟩⟨αni| = δnmPA,an

As for the second one, since eq. (1.10) holds for any |ψ⟩ in H, it follows that
X

ni

|αni⟩⟨αni| =
X

n

PA,an = �. (1.12)

The probability of obtaining an when A is measured can then be written as

Probψ(A, an) =
X

i

|⟨αni|ψ⟩|2

=
X

i

⟨αni|ψ⟩⟨αni|ψ⟩∗ =
X

i

⟨ψ|αni⟩⟨αni|ψ⟩ = ⟨ψ|PA,an |ψ⟩.

Exercise. Show that
|ψ⟩⟨ϕ|

�+
= |ϕ⟩⟨ψ|
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1.4. Physical state after a measurement.

Postulate IV. If a system is in a state |ψ⟩ and a measurement of an observable A is made with
result an, immediately after the measurement the system is in the state

|ψ′⟩ = 1

∥PA,anψ∥
PA,an |ψ⟩ . (1.13)

This is the most controversial postulate of QM. It is commonly known as “the collapse of the wave
packet” and is motivated by experimental results. If one prepares many identical systems in the same
state |ψ⟩ and makes a measurement of observable A on them, it is observed that different results an
are obtained, each with probability |⟨ψ|PA,an |ψ⟩|2. This is what Postulate III states. If, in a system in
which the value an is obtained, immediately after the measurement a second measurement is performed,
it is observed that the result is always an, with no probabilistic distribution. This is what Postulate IV
asserts, and the equation in the box is the mathematical expression of this statement.

Indeed, if the right hand side of eq. (1.13) any basis element |αkj⟩ with k ̸= n were present, the
probability of obtaining in the second measurement the result ak would be different from zero. Note
finally that the sate |ψ′⟩ has unit norm, since ∥PA,anψ∥ is the norm of PA,an |ψ⟩.

Eq. (1.13) states that measuring observable A with result an is equivalent to projecting the ket |ψ⟩
representing the system’s physical state on the subspace associated to the eigenvalue an.
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1.5. Time evolution of a physical state.

Postulate V. In the time interval between two consecutive measurements time evolution is described
by the Scrödinger equation

iℏ
d

dt
|ψ(t)⟩ = H(t) |ψ(t)⟩ ,

where H(t) is a self-adjoint operator, called the Hamiltonian of the system.

Comments

1. The observables of a system are represented by operators that are constant in time, unless the
experimental devices that measure them explicitly change in time. If this is the case, the operators
representing them should contain the change.

2. When H(t) does not depend on time, it is usually called the energy operator and is the observable
representing the energy of the system.

3. The Schrödinger equation is deterministic. That is, given the quantum state |ψ(t0)⟩ at time t0,
its solution gives the quantum state |ψ(t)⟩ at any other time t. This does not contradict the probabilistic
interpretation of QM, since any measurement at any time t is governed by postulates III and IV.

4. In contrast with position, time in QM is not an observable but a parameter.

5. Using Scrödinger’s equation it is trivial to show that the norm of physical states does not change
with time,

d

dt
⟨ψ(t)|ψ(t)⟩ = 0 .

6. The Schrödinger equation admits stationary solutions

|ψ(t)⟩ = e−iEt/ℏ |ϕ⟩ ,

with time-independent |ϕ⟩, if |ϕ⟩ and E solve the eigenvalue problem

H|ϕ⟩ = E|ϕ⟩ .

Since H is self-adjoint, its eigenvalues En are real and its eigenstates {|ϕn⟩} form a basis of the Hilbert
space.

7. It is very easy to check (do it as an exercise) that the expectation value in |ψ(t)⟩ of an observable
A(t) satisfies

iℏ
d

dt
⟨ψ(t)|A(t) |ψ(t)⟩ = ⟨ψ(t)| [A(t), H(t)] |ψ(t)⟩+ iℏ



ψ(t)

�� dA(t)

dt

��ψ(t)
�
. (1.14)

The observable A(t) is a said to be a constant of motion if

[A(t), H(t)] + iℏ
d

dt
A(t) = 0 .

Note that then the expectation value of A(t) in any |ψ(t)⟩, given by the left hand side of eq. (1.14),
vanishes. Hence the name.
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8. The necessary and sufficient condition for two self-adjoint operators A and B to commute is
that there exists a basis of vectors which are simultaneous eigenvectors of both of them. If this is the
case the corresponding observables are said to be compatible. Denote this basis by {|ab⟩}. If every
element |ab⟩ spans a one-dimensional subspace, we say that A and B form complete set of compatible
observables (CSCO). If not, we look for a third observable C, compatible with A and B, such that
every |abc⟩ spans a one-dimensional subspace. And so on.

We say that the observables A ,B ,C , . . . form a complete set of compatible observables if

i) The corresponding operators commute.

ii) The basis formed by the simultaneous eigenvectors {|abc . . .⟩} is unique up to phases.

iii) Condition ii) fails if one observable is removed.

9. In conservative systems the Hamiltonian does not depend on time, so it is itself a constant of
motion. Every other operator that commutes with it and does not depend on time is also a constant of
motion. In such systems one usually looks for complete sets of compatible observables taking as starting
point the Hamiltonian.

Examples. {L2, Lz} is a CSCO on the Hilbert space of square integrable functions defined on the
sphere. {H,L2, Lz} is a CSCO on the Hilbert space of the Hydrogen atom.
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1.6. Canonical quantization.

Postulate VI. For a physical system with Cartesian coordinates qq, . . . , qN and corresponding conju-
gate momenta p1, . . . , pN , the operators X1, . . . , XN and P1, . . . , PN that represent them must satisfy
the commutation relations

[Xi, Xj ] = 0, [Pi, Pj ] = 0, [Xi, Pj ] = iℏ δij .

We already know that for a particle in a one-dimensional potential in a state described by the
wave function ψ(x, t) position and momentum are represented by the self-adjoint operators X = x

(multiplication with x) and P = −iℏ
d

dx
. It follows that [X,P ] = iℏ, which provides a realization of the

postulate.

Things in general are not that simple and this postulate gives a general law for observables having
a classical analogue. Let us see an example. If a system has an observable with classical expression
A(q1, . . . , qN , p1, . . . , pN ; t), the corresponding operator is obtained by replacing the variables qi and pj
with the operators Xi and Pj . This, however, may not give a unique result and, moreover, may lead to
operators that are not self-adjoint. Think for example of the observable xp for a particle moving in a
one dimension. Classically, there is no distinction between xp and px, but quantum-mechanically XP
and PX are different, since XP − PX = iℏ. Moreover, neither XP nor PX is self-adjoint. A practical
prescription, justified by experimental evidence, to deal with classical observables of this form is

X

j

fj(qi; t) pj =
1

2

X

j

�
fj(qi; t) pj + pj fj(qi; t)

�
→ 1

2

X

j

�
fj(Xi)Pj + Pj fj(Xi)

�
.

This rule yields operators that are formally self-adjoint. If applied to xp, it gives

xp → 1

2
(XP + PX) ,

which is clearly self-adjoint.

In classical mechanics, the generalized coordinates and their canonical conjugate momenta satisfy
the Poisson brackets

{qi, pj}PB = δij

The prescription

Classical mechanics → Quantum mechanics

{A,B}PB → 1

iℏ
[A,B]

leads to the commutation rules in the postulate and is known as canonical quantization.
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1.7. Uncertainty relations.

If many identical systems are prepared in the same physical state |ψ⟩ and the observable A is
measured, according to Postulate III, different results are obtained, each with a certain probability. The
uncertainty or standard deviation that characterizes the dispersion of the results is

∆ψA :=

q
⟨ψ|


A− ⟨A⟩ψ

�2|ψ⟩ .

This can be rewritten as
∆ψA :=

q
⟨A2⟩ψ − ⟨A⟩2ψ ,

Exercise. For a system in a quantum state |ψ⟩ and two observables A and B show that

∆ψA∆ψB ≥ 1

2

���⟨ψ| [A,B] |ψ⟩
��� .
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1.8. Unbounded operators

Equations (1.10), (1.11) and (1.12) only make sense for bounded self-adjoint operators, whose eigen-
values form a discrete set. There are relevant observables whose self-adjoint operators are unbounded
and have a non-countable set of eigenvalues and eigenfunctions. For such operators, eqs. (1.10), (1.11)
and (1.12) as they currently stand do not make sense. In what follows we discuss how to modify the
latter.

To fix the ideas, consider the position and momentum of a particle moving in one dimension. If we
use wave functions ψ(x), their eigenvalues and eigenfunctions are the solutions to the equations

(Xψ)(x) = xψ(x) = λψ(x) , (Pψ)(x) = −iℏ
ψ(x)

dx
= pψ(x) .

Modulo integration constants, their solutions read

ψλ(x) = δ(x− λ) , ψp(x) =
eipx/ℏ√
2πℏ

, (1.15)

with real arbitrary eigenvalues λ and p. These solutions exist in the sense of distributions but not as
functions. Note that there is a continuum (non-countable) set of eigenvalues and “eigenfunctions”.

Denote by |x⟩ an eigenstate of X with eigenvalue x, and by |p⟩ an eigenstate of P with eigenvalue p,

X|x⟩ = x|x⟩, P |p⟩ = p|p⟩.

A natural generalization of the orthogonality condition ⟨αn|αm⟩ = δnm is

⟨x|x′⟩ = δ(x− x′) , ⟨p|p′⟩ = δ(p− p′) .

For the projection operators on the subspaces associated to the eigenvalues x and p, we write the
continuum analogues of eqs. (1.11),

Px = |x⟩⟨x| and Pp = |p⟩⟨p| ,

and of eqs. (1.12), Z
dx |x⟩⟨x| = 1 and

Z
dp |p⟩⟨p| = 1 .

If the particle is in a physical state |ψ⟩, its expansion in terms of the eigenfunctions of the position
operator, i. e. the analogue of the Fourier expansion (1.10), is

|ψ⟩ =
Z ∞

−∞
dy c(y) |y⟩ .

Multiplying with ⟨y′| and using ⟨y′|y⟩ = δ(y′− y) gives

⟨y′|ψ⟩ = c(y′) .

In the same way that the set of Fourier coefficients {cn} determine the physical state in the discrete
case, the function c(y) determines the physical state when this is written in terms of the eigenstates of
the position operator. Let us now look at the probability that a measurement of the position gives a
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value in [x, x+ dx]. On the one hand, Postulate III in eq. (1.8), or rather its continuum generalization,
gives

Prob(X, dx) =

Z x+dx

x
dy |⟨y|ψ⟩|2 ≈ |⟨x|ψ⟩|2 dx .

On the other, if instead of a generic |ψ⟩, a square integrable wave function is used to represent the
physical state, the probability is given by |ψ(x)|2 dx. Hence we conclude

⟨x|ψ⟩ = ψ(x) . (1.16)

Note that the probability of finding the particle is 1, since

1 =

Z ∞

−∞
dx |ψ(x)|2 =

Z ∞

−∞
dx |⟨x|ψ⟩|2 = ⟨ψ|

� Z ∞

−∞
dx |x⟩⟨x|

�
|ψ⟩ .

Take now an eigenstate |p⟩ of the momentum operator P with eigenvalue p and form ⟨p|ψ⟩. Inserting
the identity

R
dx |x⟩⟨x| = 1, one has

⟨p|ψ⟩ =
Z
dx ⟨p|x⟩ ⟨x|ψ⟩ (1.17)

Now, we have already argued that ⟨x|ψ⟩ = ψ(x). As for ⟨p|x⟩ we have that, according to eq. (1.16),
⟨x|p⟩ is the wave function of the eigenstate |p⟩ of the momentum opertator P with eigenvalue p, given
in the second equation in (1.15),

⟨p|x⟩ = ⟨x|p⟩∗ = e−ipx/ℏ
√
2πℏ

.

All in all,

⟨p|ψ⟩ =
Z
dx

e−ipx/ℏ
√
2πℏ

ψ(x) = Fourier transform ψ̂(p) of ψ(x) . (1.18)

As a consistency check, note that

⟨p|p′⟩ =
Z ∞

−∞
dx ⟨p|x⟩⟨x|p′⟩ =

Z ∞

−∞

dx

2πℏ
e−i(p−p′)x/ℏ = δ(p− p′) .

Comment. These statements can be more rigorously made using spectral theory.
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1.9. Density matrix

Consider a state described by an element |ψ⟩ of a basis specified by the simultaneous eigenstates
of a complete set of compatible observables. This state is unique up to a phase, and we have maximal
information on it. States of this type are called pure states. Examples of them are the eigenstates
|ψnℓm⟩ of the Hydrogen atom.

It may well occur, however, that we only have partial information on the state. For example when we
only know the probabilities p1, . . . , pi, . . . that the system be found in the pure states |ψ1⟩, . . . , |ψi⟩, . . .,
with

P
i pi = 1 and 0 ≤ pi ≤ 1. A state of this type is called mixed state, since different pure states

participate in it.

Remark. The pure states |ψi⟩ that enter a mixed state need not be orthogonal; they may be pure
with respect to different complete sets of compatible observables. Think of an electron in a state of
which it is known, one, that the probability of finding it with spin 1/2 in the x-direction is 1/2, and,
two, that the probability of finding it with spin 1/2 in the z-direction is 1/2. The eigenstates of σx and
σz are both pure states, yet they are not orthogonal to each other.

Comment. Another way to understand this distinction between pure and mixed states is the
following. To make statements on probabilities, an ensemble of N identical systems is needed. If all of
them are prepared in the same state, the ensemble is said to be prepared in a pure state. If however
they are not all in the same state but Ni of them are in the state |ψi⟩, with

P
iNi = N , the ensemble

is in a mixed state.

Since the projector |ψi⟩⟨ψi| picks the component along |ψi⟩ it seems plausible to describe a mixed
state by the operator

ϱ =
X

i

pi|ψi⟩⟨ψi| , pi ≥ 0,
X

ni

pi = 1, (1.19)

called density matrix or density operator. This by itself does not say much. We must supplement
it with a prescription to compute in terms of ϱ the expectation value of any observable. To do this,
we note that the expectation value of an observable A in a mixed state is the statistical average, with
weights pi, of the expectation values of A in the pure states |ψi⟩,

⟨A⟩mixed state =
X

i

pi⟨ψi|A|ψi⟩ .

Now we choose a basis {|ϕn⟩} of the Hilbert space and introduce in this equation the identity as
1=
X

n

|ϕn⟩⟨ϕn|. This gives

⟨A⟩mixed state =
X

ni

pi⟨ψi|A|ϕn⟩⟨ϕn|ψi⟩ =
X

n

pi⟨ϕn|ψi⟩⟨ψi|Aϕn⟩ = tr (ϱA) . (1.20)

We thus conclude that ϱ, together with ⟨A⟩ϱ = tr (ϱA), represents a mixed stated.

■ −→ In the last equality sign in eq. (1.20) we have used that the trace of an operator B is
given by

tr (B) =
X

n

⟨ϕn|B|ϕn⟩ .
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Note that this definition is independent of the basis used, since if {|χm⟩} is a different basis, we have

tr (B) =
X

n

⟨ϕn|B|ϕn⟩ =
X

nm

⟨ϕn|B|χm⟩⟨χm|ϕn⟩ =
X

nm

⟨χm|ϕn⟩⟨ϕn|B|χm⟩

=
X

m

⟨χm|B|χm⟩ . ←− ■

Properties of the density matrix.
(i) tr (ϱ) = 1, since

tr (ϱ) =
X

ni

⟨ϕn|pi|ψi⟩⟨ψi|ϕn⟩

=
X

ni

pi⟨ψi|ϕn⟩⟨ϕn|ψi⟩ =
X

i

pi⟨ψi|ψi⟩ =
X

i

pi = 1.

(ii) ϱ2 ̸= ϱ and tr (ϱ2) < 1. Indeed, in general we have

ϱ2 =
X

ij

pipj |ψi⟩⟨ψi|ψj⟩⟨ψj | ̸= ϱ . (1.21)

Note that if ϱ is a pure state, all the pi vanish except of one i, say i0, for which pi0 = 1. In this case
ϱ2 = ϱ trivially. If the states |ψi⟩ form an orthonormal set, then ⟨ψi|ψj⟩ = δij and again ϱ2 = ϱ. This
is however another realization of pure state, as we discuss below. As for the trace of ϱ2, it is clear that

tr (ϱ2) =
X

nij

pipj⟨ϕn|ψi⟩⟨ψi|ψj⟩⟨ψj |ϕn⟩ =
X

nij

pipj⟨ψj |ϕn⟩⟨ϕn|ψi⟩⟨ψi|ψj⟩

=
X

ij

pipj⟨ψj |ψi⟩⟨ψi|ψj⟩ =
X

ij

pipj |⟨ψi|ψj⟩|2

≤
X

ij

pipj |⟨ψi|ψi⟩| |⟨ψj |ψj⟩| =
�X

i

pi

�2

= 1 ,

where we have used the Schwarz inequality

|⟨α|β⟩|2 ≤ ∥α∥2∥β∥2 .
(iii) ϱ+ = ϱ, since |ψi⟩⟨ψi| is self-adjoint and the pi are real.
(iv) ⟨χ|ϱ|χ⟩ =P pi|⟨χ|ψi⟩|2 ≥ 0 for all |χ⟩.

Criterion for purity. As already mentioned, for a pure state, ϱ2 = ϱ. This criterion make it
possible to distinguish pure from mixed states.

Example. Fourier exapansions as density matrices. Assume that {|ϕn⟩} are the elements of
a basis associated to a CSCO. The linear combination

|ψ⟩ =
X

n

cn |ϕn⟩ , cn = ⟨ϕn|ψ⟩ ,
X

n

|cn|2 = 1

is a pure state since we have maximal inofrmation on it, modulo a phase. Its realization as a density
matrix is

ϱ =




c1 c
∗
1 c1 c

∗
2 · · · c1 c

∗
n · · ·

c2 c
∗
1 c2 c

∗
2 · · · c2 c

∗
n · · ·

...
...

...
cn c

∗
1 cn c

∗
2 · · · cn c

∗
n · · ·


 .
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First we check that ϱ2 = ϱ, so that, according to the purity ctiterion, ϱ describes a pure state:

(ϱ2)ij = ij-matrix element of ϱ2 =
X

k

cic
∗
kckc

∗
j = cic

∗
j = ij-matrix element of ϱ

And now let us show that the expectation value ⟨ψ|A|ψ⟩ of any observable A in |ψ⟩ can be written as
tr (ϱA). Using that the matrix elements of A in the basis {|ϕn⟩} are Anm = ⟨ϕm|A|ϕn⟩ we have

(ϱA)ij = ij-matrix element of ϱA =
X

k

cic
∗
k Akj

=
X

k

⟨ϕi|ψ⟩ ⟨ψ|ϕk⟩ ⟨ϕk|A|ϕj⟩ =
�

use
X

k

|ϕk⟩⟨ϕk| = 1

�
= ⟨ψ|A|ϕj⟩ ⟨ϕi|ψ⟩ .

Taking now the trace, we conclude the argument

tr (ϱA) =
X

i

(ϱA)ii =
X

i

⟨ψ|A|ϕi⟩ ⟨ϕi|ψ⟩ = ⟨ψ|A|ψ⟩ .

Note that ϱ can be written as ϱ = |ψ⟩⟨ψ|.
■ −→ Any self-adjoint operator B on a complex Hilbert space such that ⟨χ|B|χ⟩ ≥ 0 for all |χ⟩ in

H is called positive semidefinite. If B is positive semidefinite, all its eigenvalues are ≥ 0. Indeed, for b
an eigenvalue of B with eigenvector |β⟩, we have

B|β⟩ = b|β⟩ ⇒ 0 ≤ ⟨β|B|β⟩ = b⟨β|β⟩ = b . ←− ■

To include mixed sates in Postulate I, this is reformulated as

Postulate I’. To every system there corresponds a separable, complex Hilbert space H. Every
physical state is described by a linear operator ϱ, called density matrix, that satisfies the following
properties:

ϱ+ = ϱ , tr (ϱ) = 1 , ⟨ψ|ϱ|ψ⟩ ≥ 0 for all |ψ⟩ in H .

Eigenvalue problem for the density matrix,

ϱ|ηk⟩ = qk|ηk⟩ . (1.22)

Since ϱ is self-adjoint, its eigenvectors {|ηk⟩} form an orthonormal basis. Furthermore, since ϱ is positive
semidefinite [see property (iv)], its eigenvalues are qk ≥ 0 and satisfy

1 = tr (ϱ) =
X

k

⟨ηk|ϱ|ηk⟩ =
X

k

qk⟨ηk|ηk⟩ =
X

k

qk. (1.23)

Using now 1 =
X

i

|ηi⟩⟨ηi| and eq. (1.22), we conclude

ϱ = ϱ
X

i

|ηi⟩⟨ηi| =
X

i

qi|ηi⟩⟨ηi| , qi ≥ 0,
X

i

qi = 1. (1.24)

This is analogous to eq. (1.19) but with pairwise orthogonal projections:

Qi = |ηi⟩⟨ηi|, QiQj = δij , whereas

Pi = |ψi⟩⟨ψi|, PiPj not necessarily = δij .
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Let us illustrate our discussion of density matrix with two simple examples.

Example 1. Same density matrix, different mixtures of pure states. Let us give an example
of the ideas just explained. Consider a system with two-dimensional Hilbert space C2. A mixed state is
prepared with weights

p1 =
3

7
, p2 =

4

7
,

relatives to the pure states

|ψ1⟩ =
1√
2

�
1
1

�
, |ψ2⟩ =

�
1
0

�
.

The corresponding density matrix is, see eq. (1.19),

ϱ =
3

7

 
1/
√
2

1/
√
2

!�
1√
2
,

1√
2

�
+

4

7

�
1
0

�
0 , 0

�
=

1

14

�
11 3
3 3

�
.

This matrix ϱ has eigenvalues and eigenvectors

q1 =
1

7
, |η1⟩ =

 
1/
√
10

−3/
√
10

!
; q2 =

6

7
, |η2⟩ =

 
3/
√
10

1/
√
10

!
.

hence can be recast [see eq. (1.24)] as

ϱ =
1

7

 
1/
√
10

3/
√
10

!�
1√
10

,
−3√
10

�
+

6

7

 
3/
√
10

1/
√
10

!�
3√
10

,
1√
10

�
.

We thus have two mixtures of pure states for the same density matrix. This is turn confirms that we do
not have maximal information on the mixed state, since we do not know with certainty the participating
states.

Example 2. Consider in the two-dimensional Hilbert space C2 the eigenstate |x+⟩ of Sx =
ℏ
2
σx

with eigenvalue ℏ/2, given by

|x+⟩ =
1√
2

�
1
1

�
,

This is a pure state and can be represented by the density matrix

ϱ1 = |x+⟩⟨x+| =
1

2

�
1 1
1 1

�
,

Consider now the eigenstates |z+⟩ and |z−⟩ of Sz =
ℏ
2
σz with eigenvalues ±ℏ/2, given by

|z+⟩ =
�
1
0

�
, |z−⟩ =

�
0
1

�
,

and form the mixed state

ϱ2 =
1

2


|z+⟩⟨z+|+ |z−⟩⟨z−|

�
=

1

2

�
1 0
0 1

�
.

For these densities matrices we have:
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• The same probability of obtaining ±ℏ/2 in a measurement of Sz. Indeed, noting that the latter is
the statistical average, with the corresponding weights, of the probabilities of obtaining ±ℏ/2 in
the participating pure states, we obtain

Probϱ1

�
Sz,±

ℏ
2

�
=

1

2
, Probϱ2

�
Sz,±

ℏ
2

�
=

1

2
.

• The same expectation values of Sz and S2
z , since

⟨Sz⟩ϱ1 = tr

ϱ1Sz

�
= tr

�
1

2

�
1 1
1 1

�
ℏ
2

�
1 0
0 −1

��
= 0 ,

⟨Sz⟩ϱ2 = tr

ϱ2Sz

�
= tr

�
1

2

�
1 0
0 1

�
ℏ
2

�
1 0
0 −1

��
= 0

⟨S2
z ⟩ϱ1 = tr


ϱ1S

2
z

�
= tr

"
1

2

�
1 1
1 1

�
ℏ2

4

�
1 0
0 −1

�2
#
=

ℏ2

4
,

⟨S2
z ⟩ϱ2 = tr


ϱ2S

2
z

�
= tr

"
1

2

�
1 0
0 1

�
ℏ2

4

�
1 0
0 −1

�2
#
=

ℏ2

4
,

This in turn gives the same uncertainty in a measurement of Sz,

∆ϱ1Sz =
ℏ
2
, ∆ϱ2Sz =

ℏ
2
.

• Different probabilities of obtaining ±ℏ/2 in a measurement of Sx. In particular, we have

Probϱ1

�
Sx,+

ℏ
2

�
= 1 , Probϱ1

�
Sx,−

ℏ
2

�
= 0 ,

Probϱ2

�
Sx,+

ℏ
2

�
=

1

2
, Probϱ1

�
Sx,−

ℏ
2

�
=

1

2
.

This shows that ϱ1 has a definite orientation along Sx, whereas ϱ2 does not.

• In fact for the uncertainty in Sx we have

⟨Sx⟩ϱ1 = tr

ϱ1Sx

�
= tr

�
1

2

�
1 1
1 1

�
ℏ
2

�
0 1
1 0

��
=

ℏ
2
,

⟨Sx⟩ϱ2 = tr

ϱ2Sx

�
= tr

�
1

2

�
1 0
0 1

�
ℏ
2

�
0 1
1 0

��
= 0

⟨S2
x⟩ϱ1 = tr


ϱ1S

2
x

�
= tr

"
1

2

�
1 1
1 1

�
ℏ2

4

�
0 1
1 0

�2
#
=

ℏ2

4
,

⟨S2
x⟩ϱ2 = tr


ϱ2S

2
x

�
= tr

"
1

2

�
1 0
0 1

�
ℏ2

4

�
0 1
1 0

�2
#
=

ℏ2

4
,

and
∆ϱ1Sx = 0 , ∆ϱ2Sx =

ℏ
2
.
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The state ϱ1 represents a polarized along the x-direction beam of spins, whilst ϱ2 represents and
unpolarized beam.

■ −→ Other (non-examinable!) issues on density matrices.

Once the density matrix eigenvalue problem has been solved, one may now go further and consider
an orthonormal basis {|ϕk⟩} different from {|ηk⟩}. These two basis are related by a transformation

|ϕk⟩ =
X

n

ukn|ηn⟩ , (1.25)

where the coefficients ukn cannot be arbitrary but must satisfy

δkl = ⟨ϕk|ϕl⟩ =
X

nm

⟨uknηn|ulmηm⟩ =
X

nm

u∗kn ulm⟨ηn|ηm⟩ =
X

n

uln u
∗
kn. (1.26)

Let us arrange the unk in an infinite-dimensional matrix U ,

U = matrix, with matrix elements unk .

The product AB of two matrices A and B has matrix elements (AB)lk =
P

nalnbnk. Set B = A+ and
use that the adjoint of a matrix is the complex conjugate of its transpose, so that bnk = a∗kn. This gives
(AA+)lk =

P
nalna

∗
kn, which for A = U is the right hand side in eq. (1.26), so condition (1.26) can then

be written as
1 = UU+ .

Multiplication with U−1 from the left and with U from the right yields

1 = UU+ ⇔ U−1 = U+ ⇔ 1 = U+U . (1.27)

Analogous arguments to those given above show that eq (1.27) can be recast as

δkl =
X

n

uln u
∗
kn ⇔ (U−1)ln = u∗nl ⇔ δlk =

X

n

u∗nl unk . (1.28)

To invert eq. (1.25), we multiply it with u∗kl, sum over k and use eq. (1.28), thus obtaining

|ηl⟩ =
X

k

u∗kl|ϕk⟩ . (1.29)

An operator U satisfying condition (1.27 is called unitary, and the transformation (1.25), whose inverse
is given by (1.29), is called unitary transformation.

Substituting the change (1.29) in the expression (1.24) of the density matrix ϱ, we obtain

ϱ =
X

k

qk|ηk⟩⟨ηk| =
X

knm

qk|u∗nkϕn⟩⟨u∗mkϕm| =
X

nm

pnm|ϕn⟩⟨ϕm| .

where pnm are given by
pnm :=

X

k

u∗nkqkumk = ⟨ϕn|ϱ|ϕm⟩ .
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For n = m we have

qk ≥ 0 ⇒ pnn =
P

k qk|unk|2 ≥ 0

1 = tr (ϱ) =
P

n pnn

)
⇒ 0 ≤ pnn ≤ 1 .

The quantity pnn is the probability of finding the system in the state pure |ϕn⟩ and is called the
population of the state |ϕn⟩. For n ̸= m, pnm is in general a complex number and is known as coherence.
It accounts for the interference effects between the states |ηn⟩ and |ηm⟩ when these are expressed as
linear combinations of states |ϕn⟩.

Probabilities of measurements in mixed states. The probability of obtaining an eigenvalue a
of an observable A in a measurement is the statistical average, with weights pi, of the probabilities of
obtaining a in each participating state in the mixture,

Probϱ(A, a) =
X

i

pi⟨ψi|PA,a|ψi⟩ =
X

i

pi⟨ψi|P 2
A,a|ψi⟩

=
X

i

pi
X

I

⟨ψi|PA,a|αI⟩⟨αI |PA,a|ψi⟩

=
X

I

X

i

pi⟨αI |PA,a|ψi⟩⟨ψi|PA,a|αNI⟩

=
X

I

⟨αI |PA,aϱPA,a|αI⟩

= tr (PA,aϱPA,a)

= tr (ϱPA,a) ,

where we have denoted by |αI⟩ the orthonormal eigenvectors of A with eigenvalue a, and have used the
cyclic property of the trace, tr(ABC) = tr(CAB).

Mixed state after a measurement. Consider a mixed ensamble described by the density matrix
ϱ. Recall that this a statistical ensamble formed by identical systems prepared in, in gerneral, different
states. Suppose that observable A is measured and select those systems which give as outcome of the
measurement the eigenvalue a. We may now ask what is the density matrix describing the ensemble
that results from this filtering measurement.

To answer this question, look at a system in the ensemble in the pure state |ψi⟩. In accordance with
Postulate III, the probability of obtaining a from this system is

paN := Prob (A, a) = ⟨ψi|PA,a|ψi⟩ = ∥PA,a|ψi⟩∥2 .

If pa is zero, the system does not participate in the emerging ensemble, but if it is nonzero, it participates
and in accordance with Postulate IV, after the measurement the system collapses to a state |ψ′

i⟩,

|ψi⟩ → |ψ′
i⟩ =

1

∥PA,a∥
PA,a|ψi⟩ .

After the measurement, we thus have the following ensemble

ϱ =
X

i

pi |ψi⟩⟨ψi| −→
X

i

pi pa
PA,a|ψi⟩
∥PA,a|ψi⟩∥

⟨ψi|PA,a

∥PA,a|ψi⟩∥
.
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The pa in the numerator cancels the denominator and we are left with

ϱ −→ PA,a

�X

i

pi|ψi⟩⟨ψi|
�
PA,a = PA,aϱPA,a .

Finally, to have a physical state we must normalize, i. e. divide by the norm tr(PA,aϱPA,a) = tr(ϱPA,a).
We conclude that the mixed state that results from the measurement is

ϱ −→ ϱA,a :=
PA,aϱPA,a

tr(ϱPA,a)
.

For mixed states, Postulates III, IV and V also change their form. From our discussion above,
Postulates III and IV now read

Postulate III’. If a physical system is in a state described by the density matrix ϱ, the probability
of obtaining in a measurement of observable A one of its eigenvalues a is

Probϱ(A, a) = tr

ϱPA,a

�
.

Postulate IV’. If a physical system is in a state described by the density matrix ϱ, and a filtering
measurement of an observable A for its eigenvalue a is made, the system after the measurement is in
a mixed state with density matrix

ϱA,a =
PA,aϱPA,a

tr(ϱPA,a)
.

With very little extra work it is easy to arrive at Postulate V for mixed states, which replaces the
Schrödinger equation with the von Neumann equation to account for time evolution. This will be
covered in the Quantum Mechanics course next semester. ←− ■
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1.10. Composite systems and entanglement

Two systems 1 and 2, with Hilbert spaces H1 and H2, can be put together to form a composite
system. The Hilbert space of the resulting system is the tensor product Hilbert space H = H1 ⊗H2,
formed by ordered pairs

|ψ1⟩ ⊗ |ψ2⟩ := |ψ1⟩|ψ2⟩ := |ψ1ψ2⟩ with |ψ1⟩ ∈ H1 , |ψ2⟩ ∈ H2 .

Let us recall some properties of tensor products. For any complex number a, one has

a

|ψ1⟩ ⊗ |ψ2⟩

�
=


a |ψ1⟩

�
⊗ |ψ2⟩ = |ψ1⟩ ⊗


a |ψ2⟩

�
,


|χ1⟩+ |ϕ1⟩

�
⊗ |ψ2⟩ = |χ1⟩ ⊗ |ψ2⟩+ |ϕ1⟩ ⊗ |ψ2⟩

|ψ1⟩ ⊗

|χ2⟩+ |ϕ2⟩

�
= |ψ1⟩ ⊗ |χ2⟩+ |ψ1⟩ ⊗ |ϕ2⟩ ,

The scalar product of two states |Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ and |Φ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ in H1 ⊗H2 is

⟨Φ|Ψ⟩ :=


|ϕ1⟩ ⊗ |ϕ2⟩ , |ψ1⟩ ⊗ |ψ2⟩

�
= ⟨ϕ1|ψ1⟩1 ⟨ϕ2|ψ2⟩2 ,

where ⟨·|·⟩1 and ⟨·|·⟩2 are the scalar products in H1 and H2.

If {|ϕ1n⟩} and {|ϕ2i⟩} are orthonormal bases of H1 and H2, any element Ψ in H1⊗H2 can be written
as

|Ψ⟩ :=
X

ni

cni |ϕ1n⟩ ⊗ |ϕ2i⟩ .

States that can be written as the product of one |ψ1⟩ in H1 and one |ψ2⟩ in H2 are called separable
states. Linear combinations of two or more separable states are called entangled states.

If A1 and A2 are operators acting on H1 and H2, the operator A1 ⊗A2 acts on H1 ⊗H2 as

A1 ⊗A2

�
|ψ1⟩ ⊗ |ψ2⟩

�
=


A1|ψ1⟩

�
⊗

A2|ψ2⟩

�
.

Every linear operator C acting on H1 ⊗H2 can be written as

C =
X

ij

cij A1i ⊗A2j ,

with A1i and A2j operators acting on H1 and H2.

An observable A1 acting only on subsystem 1, is represented by A1 ⊗ 1, with

A1 ⊗ 1

�
|ψ1⟩ ⊗ |ψ2⟩

�
=


A1|ψ1⟩

�
⊗ |ψ2⟩ ,

and similarly for A2 = 1⊗A2.

Consider a density matrix ϱ of the composite system and an observable A1 of subsystem 1. The
expectation value of A1 in the state ϱ is

tr (ϱA1) =
X

ni

⟨ϕ2iϕ1n|ϱA1|ϕ1nϕ2i⟩ =
X

n

⟨ϕ1n|
�X

i

⟨ϕ2i|ϱ|ϕ2i⟩
�
A1|ϕ1n⟩|, . (1.30)

QPII - 09/20/2023 - F.Ruiz 22



We introduce partial traces of ϱ over H1 and H2 as

trH1 (ϱ) =
X

n

⟨ϕ1n|ϱ|ϕ1n⟩ =: ϱH2 , trH2 (ϱ) =
X

i

⟨ϕ2i|ϱ|ϕ2i⟩ =: ϱH1 .

The two resulting quantities are called reduced density matrices. Note that taking the trace over
a subsystem amounts to ignoring the information on that subsystem. The reduced density matrix ϱH1

thus describes the state of subsystem 1 when the information about the rest of the system is ignored.
Coming back to tr (ϱA1) in eq. (1.30) we have

tr (ϱA1) = trH1


ϱH1A1

�
.

Because of the loss of information, if the density matrix ϱ that we start with describes a pure state
of the composite system, its reduced density matrices may be a mixed state. This happens in particular
when the state of the composite system is an entangled state. Let us see an example.

Example. Consider a composite system with Hilbert space H = C2 ⊗ C2. For the two subsystems
consider the bases formed by the eigenstates of σz and f σx

�
|z+⟩ =

�
1
0

�
, |z−⟩} =

�
0
1

��
,

�
|x+⟩ =

1√
2

�
1
1

�
, |x−⟩} =

1√
2

�
1

−1

��
.

With the convention

v =

�
v1
v2

�
w =

�
w1

w2

�
v ⊗w =




v1w1

v1w2

v2w1

v2w2


 ,

the tensor product basis is formed by

|z+x+⟩ =
1√
2




1
1
0
0


 |z+x−⟩ =

1√
2




1
−1
0
0


 |z−x+⟩ =

1√
2




0
0
1
1


 |z−x−⟩ =

1√
2




0
0
1

−1


 .

Assume that the composite system is in the entangled state

|ψ⟩ = 1√
2


|z+ x+⟩+ |z− x−⟩

�
=

1

2




1
1
1

−1


 .

The density matrix that describes this state is

ϱ = |ψ⟩⟨ψ| = 1

4




1
1
1

−1





1 , 1 , 1 , −1

�
=

1

4




1 1 1 −1
1 1 1 −1
1 1 1 −1

−1 −1 −1 1


 .

Note that ϱ2 = ϱ, so that, according to the purity criterion given earlier, ϱ is a pure state. We already
knew this since we have maximal information on |ψ⟩. The reduced density matrix of subsystem 1 is the
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partial trace

ϱH1 = trH2(ϱ) = ⟨x+|ϱ|x+⟩+ ⟨x−|ϱ|x−⟩ = ⟨x+|ψ⟩⟨ψ|x+⟩+ ⟨x−|ψ⟩⟨ψ|x−⟩

=
1√
2


|z+⟩⟨z+|+ |z−⟩⟨z−|

�
.

This does not describe a pure state, since ϱ2H1
̸= ϱH1 . Half of the times subsystem 1 is the pure state

|z+⟩ and the other half is in |z−⟩.
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