Problem 6.2. A system with Hilbert space \mathbb{C}^{3} has Hamiltonian given by

$$
H=H_{0}+H_{\mathrm{I}}, \quad H_{0}=\epsilon\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad H_{\mathrm{I}}=a\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad 0<a \ll \epsilon
$$

Find the exact eigenvalues and eigenvectors. Use first-order perturbation theory to determine the energy levels. Compare the approximate results with the exact expressions.

Solution. The exact eigenvalues and eigenvetors are

$$
\begin{gathered}
E_{1}=\epsilon, \quad|1\rangle=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
E_{2}=-\epsilon+a, \quad|2\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
1
\end{array}\right), \\
E_{3}=-\epsilon-a, \quad|3\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) .
\end{gathered}
$$

The eigenstates and eigenvalues of the unperturbed Hamiltonian are

$$
\begin{gathered}
E_{1}^{(0)}=\epsilon, \text { non-degenerate, } \quad\left|1^{(0)}\right\rangle=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
E_{2}^{(0)}=-\epsilon, \quad \text { degeneracy }=2, \quad\left|21^{(0)}\right\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad\left|22^{(0)}\right\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
\end{gathered}
$$

Using perturbation theory for nondegenerate states, we obtain that the first-order correction to $E_{1}^{(0)}$ vanishes,

$$
E_{1}^{(1)}=\left\langle 1^{(0)}\right| H_{\mathrm{I}}\left|1^{(0)}\right\rangle=0
$$

Hence we must resort to order two. The second-order correction is in turn given by

$$
E_{1}^{(2)}=\frac{\left.\left|\left\langle 21^{(0)}\right| H_{\mathrm{I}}\right| 1^{(0)}\right\rangle\left.\right|^{2}}{E_{1}^{(0)}-E_{2}^{(0)}}+\frac{\left.\left|\left\langle 22^{(0)}\right| H_{\mathrm{I}}\right| 1^{(0)}\right\rangle\left.\right|^{2}}{E_{1}^{(0)}-E_{2}^{(0)}}
$$

Using that

$$
\left\langle 21^{(0)}\right| H_{\mathrm{I}}\left|1^{(0)}\right\rangle=\left\langle 22^{(0)}\right| H_{\mathrm{I}}\left|1^{(0)}\right\rangle=0
$$

we conclude that

$$
E_{1}^{(2)}=0
$$

More generally, since $H_{\text {I }}$ does not connect $\left|1^{(0)}\right\rangle$ with $\left|21^{(0)}\right\rangle,\left|22^{(0)}\right\rangle$, the energy $E_{1}^{(0)}$ and the state $\left|1^{(0)}\right\rangle$ remain unchanged to all orders in perturbation theory.

To find the first-order correction $E_{2}^{(1)}$ to $E_{2}^{(0)}$, we must use perturbation theory for degenerate states. This amounts to finding the eigenvalues of the matrix

$$
\tilde{H}_{\mathrm{I}}=\left(\begin{array}{cc}
\left\langle 21^{(0)}\right| H_{\mathrm{I}}\left|21^{(0)}\right\rangle & \left\langle 21^{(0)}\right| H_{\mathrm{I}}\left|22^{(0)}\right\rangle \\
\left\langle 22^{(0)}\right| H_{\mathrm{I}}\left|21^{(0)}\right\rangle & \left\langle 22^{(0)}\right| H_{\mathrm{I}}\left|22^{(0)}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
0 & a \\
a & 0
\end{array}\right) .
$$

This matrix has two simple eigenvalues,

$$
E_{2-}^{(1)}=-a, \quad E_{2+}^{(1)}=a,
$$

with eigenvectors

$$
\left|2-^{(0)}\right\rangle=\frac{1}{\sqrt{2}}\binom{-1}{1}, \quad\left|2+^{(0)}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{1} .
$$

In the basis $\left\{\left|2-^{(0)}\right\rangle,\left|2+{ }^{(0)}\right\rangle\right\}$ the perturbation H_{I} is diagonal. This is the basis that in the lectures we have been calling $\left\{\left|\varphi_{\alpha}^{(0)}\right\rangle\right\}$.

Putting everything together we conclude that

$$
\begin{gathered}
E_{1}^{(0)}=\epsilon \text { remains unchanged to all orders, } \\
E_{2}^{(0)}=-\epsilon \text { splits to first order in }-\epsilon \pm a
\end{gathered}
$$

which agree with the exact eigenenergies.

