Física computacional – Curso 2011/12 – Práctica

El péndulo caótico

A pendulum of mass m and length ℓ moves under the action of damping and driving forces $-\gamma \dot{\theta}(t)$ and $F_{\rm D} \sin(\Omega_{\rm D} t)$, with $\theta(t)$ the angle from the vertical axis, and γ , $F_{\rm D}$ and $\Omega_{\rm D}$ constants. In units such that $g = \ell$, the corresponding initial value problem reads

$$\begin{split} \dot{\theta}(t) &= -\sin \theta(t) - \eta \, \dot{\theta}(t) + A_{\rm D} \sin(\Omega_{\rm D} t) \\ \theta(0) &= \theta_0 \\ \dot{\theta}(0) &= \omega_0 \,, \end{split}$$

where η and $A_{\rm D}$ are defined as

$$\eta := \frac{\gamma}{m\ell^2} \qquad A_{\mathrm{D}} := \frac{F_{\mathrm{D}}}{m\ell^2}.$$

We have set $g = \ell$ so that the angular frequency of the free pendulum is $\Omega_0 = \sqrt{g/\ell} = 1$.

1. Write a Maple code for RK4 that solves the equation of motion. Since the vertical axis has been taken as origin of angles, work in a domain $-\pi \leq \theta \leq \pi$.

2. Assume that $\eta = A_{\rm D} = 0$. Produce one single plot with the trajectories for the three sets of initial data

$$(\theta_0, \omega_0) = (-\pi/4, 0), \ (-\pi/3, \pi/4), \ (3\pi/4, \pi/4).$$

Include in the plot a few oscillations.

3. Still with $\eta = A_{\rm D} = 0$, make a phase space diagram, velocity $\omega(t) = \dot{\theta}(t)$ versus position $\theta(t)$, taking as initial data

$$(\theta_0,\omega_0) = (0,\pi/6), \ (0,\pi/3), \ (0,\pi/2), \ (0,\pm 2\pi/3), \ (0,\pm 3\pi/4), \ (0,\pm 11\pi/12)$$

4. Consider $\eta = 1/2$ (damping) and $\eta = 1$ (overdamping) and go again over question 3. For clarity in the display, in the last thre cases consider only the positive sign in \pm .

5. Take from now on $\eta = 1/2$, $\Omega_{\rm D} = 2/3$ and initial data $(\theta_0, \omega_0) = (0.5, 0)$. For zero external force, $A_{\rm D} = 0$, the pendulum oscillates with frequency $\Omega_0 = 1$ and damped amplitude. For small values of $A_{\rm D}$, after some oscillations with frequency $\Omega_0 = 1$, it begins to oscillate with frequency $\Omega_{\rm D} = 2/3$. Finally, for large values of $A_{\rm D}$, the pendulum becomes chaotic. Verify this behaviour by making a graphic of $\theta(t)$ versus t

for values of $A_{\rm D} = 0.1, 0.2, 0.3, \ldots, 2$. Make an estimate of the ranges of $A_{\rm D}$ for which these regimes occur.

6. Make a phase space diagram for $A_{\rm D} = 0.2, 0.6$ and a second one for $A_{\rm D} = 1.2, 1.6$ and briefly explain them.

7. Let the system ocillate approximately 300 times. Warning: depending on the step size $\delta t = h$ this may require a large number of steps! Say that T_{300} is the time after 300 oscillations. Let the pendulum perform about 30 oscillations more, so that $T_{300} \leq t \leq T_{330}$, and make phase diagrams for $A_{\rm D} = 0.5, 1.070, 1.458, 1.468$. Explain the result.

8. For $T_{300} \leq t \leq T_{330}$, calculate the solution $\theta(t_n)$ at times $t_n = 2\pi n/\Omega_D$, with n an integer, for the values of A_D in question 7. Make a graph with the results. The resulting graph for every A_D is called a Poincaré section.

9. To study stability and how the driving term affects it, one may solve the initial value problem for new conditions

$$\theta_0' = \theta_0 + \delta \theta_0 \qquad \omega_0' = \omega_0 + \delta \omega_0$$

and look at $\delta\theta(t) = \theta'(t) - \theta(t)$. Take $(\theta'_0, \omega'_0) = (0.51, 0)$ and explicitly compute the difference $\delta\theta(t)$ for $A_{\rm D} = 0.500, 1.070, 1.468$. Study the instability at the Poincaré section for $A_{\rm D} = 1.468$.