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What have we learnt from the 
precision era?

• Planck completes a trilogy of CMB experiments !

• Planck: much better sensitivity and 3 times better resolution than WMAP
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We observe so much yet see so little…

• It is a highly non trivial and remarkable and disappointing 
statement that we can explain the statistical property of 107 
CMB pixels with just two numbers (+ background parameters) 

• We have only measured the amplitude and spectral index of 
the power spectrum 

• Is this a sign that inflation was simple? 

• Was only one light field present during inflation?
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• An alternative model to single-field inflation for the origin of structures. The 
inflaton drives inflation while the curvaton generates curvature perturbations 
(hence the name)!

• This multi field model allows but does not require isocurvature perturbations 
and large non-Gaussianity to be generated. Neither of these have been observed. 
Is that bad news for the model?!

• The curvaton is a light field which!

1. has a subdominant energy density during inflation!

2. Is long lived (compared to the inflaton)!

3. Generates the primordial curvature perturbation (in the “pure” curvaton limit 
with negligible inflaton perturbations)!

Enqvist and Sloth, Lyth and Wands (gave the name, 1000 cites), Moroi and Takahashi ‘01

A worked example: !
The curvaton scenario



Curvaton model I

Dimopoulos (2010)

R. Hardwick (University of Sussex) Curvaton Inflation MSc Project, 2014 6 / 16
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Curvaton (σ) background evolution:!
Log of scale factor versus log of energy density

The longer the curvaton lives, the larger its relative energy density becomes, as measured by rdec!

The curvaton may decay before or after it becomes dominant

oscillating curvaton, m>H

frozen curvaton, m<<H

curvaton decays into radiation

⌦� = 1               is an attractor if the 
curvaton decays late enough

⌦
�

=
⇢
�

⇢total
measured at the curvaton  

decay time

V =
1

2
M2�2 +

1

2
m2�2



The simplest curvaton scenario
!

!

• Parameter constraints were originally made by Bartolo and Liddle 
(2002), the data allowed so much freedom they restricted the 
model to i) the Gaussian case ii) negligible inflaton perturbations !

• CB, Cortes and Liddle (2014) revisited the model with Planck & 
BICEP data. We drop their assumptions, observations have improved 
a lot!

• Rob Hardwick & CB (2015) performed the first Bayesian analysis of 
the curvaton scenario, a model comparison technique which 
penalises unwanted free parameters (Occam’s razor)!

• The additional three curvaton parameters are its mass m, its field 
value at horizon crossing sigma* and its decay rate Gamma
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The models
• Baseline LCDM model copying the Planck constraints on inflation 

paper, with amplitude and spectral index of the perturbations but no 
tensors or non-Gaussianity!

• Quadratic single-field inflation (1 free parameter)!

• 3 variations on the curvaton scenario (all with 4 free parameters)!

1. Mixed inflaton-curvaton scenario (most general case)!

2. Pure curvaton scenario (negligible inflaton perturbations)!

3. Dominant curvaton scenario (negligible inflaton perturbations and 
the curvaton dominates the background density before it decays)!

Each scenario is a subset of the one above!

Cases 2 and 3 predict negligible tensor perturbations. Case 3 also fNL=-5/4
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The priors - these need to be specified
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In addition, we follow the Planck analysis in discarding parameter space 
which does not match  
A log prior is standard for parameters where the order of magnitude is 
unknown 
The curvaton vev has to be small in order to have a curvaton scenario



Planck 2 Results         + Bicep/Keck
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Results from using Planck TT + low P + BAO data on the left 
The effective chi squared values give the best fit 
The right hand column gives the Bayesian evidence ratios. All are disfavoured relative to 
the LCDM reference model, but there is no preference between the 4 inflationary scenarios 
we considered 
The curvaton is not disfavoured, despite having 3 extra parameters 
With Bicep/Keck data included, the curvaton becomes weakly/moderately favoured

The Jeffrey’s scale
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Curvaton Post Planck 2

The lower big black dot = single quadratic field with instant reheating (N=58) 

Top black dot has early matter era generated by curvaton but negligible curvaton perturbations (N=48) 

Curvaton scenario lies anywhere between black lines, the pure curvaton scenario also has r=0
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Why does the curvaton do so well?

• The quadratic single-field model is not a good fit!

• The vast majority of the parameter space matches the dominant pure 
curvaton scenario, which has fNL=-5/4!

• This explains why the evidence ratios are so similar for all three cases!

• The “tight” fNL constraint does not change our results much, it needs to 
decrease by an order of magnitude (unless fNL is detected)!

• Our results are not very sensitive to the choice of priors!

• However we do force the curvaton VEV to be very small compared to 
the inflatons, we are not testing whether the curvaton scenario is likely!

• Restricting to quadratic potentials, the curvaton scenario is favoured 
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Conclusions

• The latest Planck constraints remain broadly consistent with the simplest models 
of inflation!

• We have only two measured non-zero observables, related to the primordial 
perturbations, the amplitude and spectral index of the power spectrum!

• The data is still not good enough to discriminate between single and multi field 
models of inflation, and perhaps never will be!

• In the context of quadratic potentials, the curvaton is preferred over single field 
inflation, despite having 3 extra free parameters!

• Discriminating between fNL~1 and 0 is very important
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How non-Gaussianity could favour the curvaton

• If non-Gaussianity was detected in the future, how quickly could we 
favour the curvaton over the base LCDM scenario?!

• We assume all cosmological data remains the same except fNL!

• If fNL=-5/4: the curvaton “attractor” value we need an error bar of 0.4. 
This would correspond to a 3-sigma detection!

• If fNL=10.8, the current 2-sigma upper bound from Planck then we need 
an error bar of about 2.6 (and the dominant curvaton scenario is ruled 
out). This would correspond to a 4-sigma detection!

• The latter case should be “easily” achieved with Euclid, the former case 
maybe achievable in ~ 2 decades with Euclid, DESI, SKA… 



14

DRAFT: 9th August 2014 26

Figure 2.6: A plot found in [18] of the tensor-scalar-ratio as a function of the spectral

index. In the / �2 model (mCM2) the ‘solid’ black line between the small and large black

points corresponds to a di↵erence of 50 to 60 efoldings respectively, the blue coloured lines

correspond to an inflating curvaton scenario as discussed in [1] and the green and red

diagonal solid lines correspond to the range of available values when varying the mass of

the curvaton m = M/2 to m << M respectively. In the / �4 (mCM4) model the green

and red dashed lines represent the equivalent values as in the mCM2 case (where red is

preferably set by the slow roll parameter relation ⌘
�

= ⌘
�

/2). The filled regions are the

Planck+WMAP likelihoods applied to a selection cosmological models.

Filling the ns-r plane
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For this simple potential, the 
mixed inflaton-curvaton 

scenario can lie anywhere 
between the outer dashed 

green and red lines 

Credit: Robert Hardwick (MSc project)
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Model independent curvaton statements

• The pure curvaton scenario has a suppressed tensor spectrum, a 
detection of r can force us into the mixed inflaton-curvaton scenario!

• By tuning the inflaton potential, any value of ns and r can be achieved with 
a quadratic curvaton!

• A detection of (local) fNL<-5/4 would rule out all quadratic curvaton 
models (but not non-qadratic curvaton potentials)!

• A constraint |fNL|<1 would be a very strong hint against all curvaton 
scenarios, independently of the potential of either field (even 
independently of the number of curvaton and inflaton fields) 
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We lack guidance

• We lack targets for the observables, there is no minimum amplitude of isocurvature 
perturbations or non-Gaussianity which multi field inflation must have!

• Testing local fNL~1 is an important observational target, but only for some classes of 
multi field models (includes curvaton and modulated reheating)!

• The data is not good enough to distinguish between many classes of models, in some 
cases it will never ever be (two models can predict the same CMB spectrum)!

• If there is no wasted parameter space in the more complex model, even Bayesian 
evidence does not favour the “simpler” model!
!

• We definitely need both fundamental physics and observations to make progress
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Summary of observables

• Observables which are very important for learning about inflation, but do not in 
general discriminate between the single and multi field scenarios include:!

1. The running of the spectral index!

2. The tensor to scalar ratio!

3. Non-Gaussianity away from the squeezed limit!

4. Most anomalies!

!

• A smoking gun of multi field inflation could be one of:!

A. Squeezed limit (close to local) non-Gaussianity!

B. Isocurvature perturbations!

C. Deviation from the single field consistency relation! rT = �8nT
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What non-Gaussianity does the (quadratic) curvaton predict?

• The curvature perturbation is approximately !

• Local non-Gaussianity is generated:   fNL~1/Ωσ!

• The Planck constraint fNL<10, tells us Ωσ>0.1. A priori, Ωσ~10-5 (and 
fNL~105) was possible. !

• If the curvaton dominates before decay, Ωσ=1 and fNL=-5/4!

• In terms of a linear scale on -5/4<fNL<105 - 99.99% has already been 
ruled out !

• In terms of a linear scale on 10-5<Ωσ<1 - 10% has been ruled out!

• A highly subdominant curvaton is totally ruled out, so the dominant 
curvaton case becomes our “prediction”. Detecting fNL=3 or 7 seems 
unlikely, although it is compatible with the model
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Curvaton post Planck1

The uncertainty in matching the Planck pivot scale to N is significant. We don't know the expansion history of 
the universe between inflation and BBN. Smaller values of N are possible, which the data prefers.!

Red lines are for a negligible curvaton mass !

Blue lines have m_sigma=m_phi/2 (it is hard to make the curvaton heavier, and a bluer spectrum results)!

Green lines are the inflating curvaton regime, where it drives a second period of inflation 



20

Curvaton post Planck1 and BICEP2

Red lines are for negligible curvaton mass, blue lines have m_sigma=m_phi/2. Green lines are the inflating 
curvaton regime, where it drives a second period of inflation. !

BICEP2 adds a lower bound on the tensor to scalar ratio, which requires that the inflaton perturbations 
contribute at least 50% of the total curvature perturbation. If confirmed, this rules out the original curvaton 
scenario, in which the inflaton perturbations and hence r are negligible.

Bicep2  lower bound on r

0  curvaton dominates P

1  inflaton dominates P

P�
⇣
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The early universe is very poorly constrained

• The curvaton scenario really is different from single-field inflation!

• During inflation we have a second, perturbed degree of freedom!

• From the end of inflation until after the curvaton decays, the universe behaves 
very differently. Both at the homogeneous and the perturbed level. !

• What was the background equation of state during baryogenesis? Did 
isocurvature perturbations exist? Are the perturbations on these small scales 
Gaussian? We have no idea.!

• Because the perturbations are so tiny, fNL=-5/4 is a small correction, except 
when the amplitude of perturbations is large. For small scale perturbations 
where power spectrum bounds are very weak, this value has a huge effect. 
Example: Primordial black hole formation rates - S. Young & CB 2013
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When fNL=-5/4 makes a big difference

• In order for primordial black holes to form in the very early universe, the 
amplitude of perturbations needs to be much larger (otherwise the 
required order unity perturbations will never occur)!

• For Gaussian perturbations, one needs zeta~0.1 on the relevant (small) 
scales in order to form an observable number of primordial black holes!

• The curvaton prediction for fNL does not depend on the amplitude of 
perturbations!

• With zeta~0.1, even fNL=-5/4 has a big effect, especially on the tail of the 
pdf!

• This leads to (at least) an order unity change on the allowed amplitude of 
the power spectrum on small scales

Sam Young & CB 2013


