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01/27– Goal

Systematic introduction and comparison of the status of the
most prominent theories of quantum and emergent gravity in
relation to cosmology.
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02/27– Particles and gravity
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03/27– Unification and open problems

Theoretical necessity, not experimental.

Non-predictive gravity if quantized perturbatively [Goroff &

Sagnotti 1985,1986].
Models of theories of everything and quantum gravity are
very formal and with little contact with observations.
Cosmological problems must be addressed.
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04/27– Cosmology and quantum gravity
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05/27– Big bang problem

• Singularities typical of classical gravity (black holes, big bang).
• Borde–Guth–Vilenkin theorem (2003): Let (M, g) be a
spacetime with a congruence uµcontinuously defined along any
past-directed timelike or null geodesic vµ (the observer). Let uµ

obey the averaged expansion condition Hav > 0 for almost any
vµ. Then (M, g) is geodesically past-incomplete (finite
proper/affine length of geodesics).
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06/27– Inflation

Graceful exit.
Trans-Planckian problem.
Model building.
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07/27– Cosmological constant problems

• Old problem: zero-point energy (dim. reg. [Koksma & Prokopec

2011]) ρvac ∼ 10−68m4
Pl ∼ 1056ρΛ wrong magnitude. E.g.,

ρeq ≈ 2.4× 10−113m4
Pl is calculable.

• New: Why ρΛ = O(ρm)? Coincidence: Why does Λ dominate
at z� 1?
• Shift symmetry: Lm → Lm + ρ0 ⇒ T ν

µ → T ν
µ + ρ0δ

ν
µ.

E.o.m.s ∇νT ν
µ = 0 invariant, Einstein eqs. are not: Why?

• 4π puzzle: For the observed value of ρΛ, the duration of the
matter-radiation era (# modes reentered) is 4π ± 10−3 e-folds
[Padmanabhan 2012].
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08/27– Asymptotic safety: setting
Weinberg, Reuter, Bonanno, Lauscher, Litim, Saueressig, . . .

• All dimensionless couplings approach a UV NGFP
limk→∞ λ̄i(k) = λ̄∗i 6= 0 (existence checked a posteriori).
• Gravity: effective action

Γk =
1

16πGk

∫
dDx
√
−g (R− 2Λk) ,

δΓk

δgµν
[〈gµν〉k] = 0

• Λ and average metric are scale-dependent:
〈gµν〉k = k−2〈gµν〉k0 , Λk = k2Λk0 as k→∞.
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09/27– Asymptotic safety: cosmology

Cutoff identification k = k(t) ∝ H(t) ⇒ Λ,G→ Λ(t),G(t).
RG-improved dynamics:

H2 =
8πG(t)

3
ρ+

Λ(t)
3
, ρ̇+ 3H(ρ+ P) = − Λ̇ + 8πρĠ

8πG

• Near the NGFP: G̃(p2) ' −1/p4 for p2 � m2
Pl,

〈h(t, x)h(t, 0)〉 ∼ ln |x|2, 〈δR(t, x)δR(t, 0)〉 ∼ |x|−4 for δR ∼ ∂2h.
Scale-invariant power spectrum. But higher-order curvature
terms are required, since GH2 ∝ G∗Λ∗ ∼ 10−3 ∼ 107Aobs

t .
• f (R) actions from scale identification k2 ∝ R, Starobinsky
dynamics: R/Gk ∼ R/R−1 ∼ R2 near the NGFP.
• Old Λ problem: Why is the perturbative semiclassical regime
of the RG trajectory fine tuned so much? [Reuter & Weyer 2004].
Also a Λ = 0 trajectory exists [Falls 2014].
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10/27– Causal dynamical triangulations: setting
Ambjørn, Loll, Jurkiewicz, . . .

Z =

∫
[Dg] eiS[g] →

∑
T

1
Aut(T)

e−SRegge
E (T) .
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11/27– Causal dynamical triangulations: cosmology

A: branched-polymer phase, disconnected “lumps” of space,
non-Riemannian geometry.
B: crumpled phase, vanishing temporal extension and almost
no spatial extension (many simplices clustered around very few
vertices).
C: semi-classical de Sitter universe (several checks).
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12/27– Non-local gravity: setting
Krasnikov, Tomboulis, Mazumdar, Modesto, G.C., . . .

Minimal requirements: (i) continuous spacetime with Lorentz
invariance; (ii) classical local (super)gravity good approximation
at low energy; (iii) perturbative super-renormalizability or
finiteness; (iv) unitary and ghost free; (v) typical classical
solutions singularity-free.

Example [G.C. & Modesto 2014]:

Sg =
1

2κ2

∫
dDx
√
−g

[
R− 2Λ− Gµν

e−f (�/M2) − 1
�

Rµν
]
.

Reproduces the linearized effective action of string field theory
when f = �/M2. Exponential operators have good properties
(Cauchy problem well defined, etc.).
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13/27– Non-local gravity: cosmology
G.C., Modesto, Nicolini 2014

Typical classical bouncing profiles in D = 4:

a(t) = a∗ cosh
(√

ω

2
t
)
,

a(t) = a∗ exp
(

H1

2
t2
)
.

Difficult dynamics, e.o.m.s still under study [G.C., Modesto & Nardelli

in progress].
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14/27– Canonical quantum cosmology
DeWitt, Hawking, Vilenkin, Ashtekar, Bojowald, . . .

Hamiltonian formalism (unconstrained):

S =

∫
dt L[q, q̇] → H[q, p] = pq̇−L[q, q̇] → Ĥ[q̂, p̂ = i~∂q]|ψ〉 = E|ψ〉

Gravity+matter dynamics (constrained): Wheeler–DeWitt
equation Ĥ(g, φ)Ψ[g, φ] = 0.
Symmetry reduction. FLRW: gµν = (−1, a2(t), a2(t), a2(t)),
p(a) = −6aȧ, Πφ = a3φ̇:

H =
1

2a3

[
−

a2p2
(a)

6κ2 + Π2
φ

]
+· · · = 0 → Ĥ =

1
2a3

[
κ2

6
∂2

(∂ ln a)2 −
∂2

∂φ2

]
+. . .
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equation Ĥ(g, φ)Ψ[g, φ] = 0.

Symmetry reduction. FLRW: gµν = (−1, a2(t), a2(t), a2(t)),
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15/27– WDW quantum cosmology

PDF (nucleation probability) of the initial state of the Universe:
ratio of the squared wave-function at the classical turning point
a = H−1 and at a = 0, P(φ) ∼ |Ψ[a = H−1, φ]/Ψ[a = 0, φi]|2 ∼
|Ψ[a = 0, φi]|−2 ∝ exp[±4/(H2κ2)].
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16/27– WDW quantum cosmology and Λ

Probabilistic interpretation [Baum 1983; Hawking 1984; Wu 2008]:

PV(Λ) = exp
(
−3m2

Pl
2πΛ

)
, PHH(Λ) = exp

(
12
κ2Λ

)
= exp

(
3m2

Pl
2πΛ

)
.

Hartle–Hawking wave-function: small-Λ Universes favored.

Problem: a Λ-dependent normalization of Ψ may erase the
effect. Undecided issue in canonical theory (linear in Ψ).
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17/27– Loop quantum cosmology

Other canonical variables, p = a2 → p̂, c ∼ ȧ→ ĥ = êiµ(p)c.
Quantum bounce (a = 0 never):

1 Bounded spectrum of inverse-volume operator:
|̂v|l−1|v〉 = 1

2l

(
|v + 1|l − |v− 1|l

)
|v〉.

2 State |v = 0〉 disappears from dynamics:
cv+2Ψv+4 − (cv+2 + cv−2)Ψv + cv−2Ψv−4 + 〈v|Ĥφ|v〉Ψv = 0.

3 Volume expectation value (massless field):
〈|v̂|〉 = V∗ cosh(κ0φ).

4 Effective dynamics: sin2(µ̄c) = ρ
ρ∗
↔ H2 = κ2

3 ρ
(
α− ρ

ρ∗

)
,

α = 1 + δPl = 1 + Ca−σ.
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18/27– Quantum gravity and superconductivity
S. Alexander & G.C. PLB 672 (2009) 386; Found. Phys. 38 (2008) 1148

LQG with Λ in vacuum, Chern–Simons state annihilates
the constraints.
Different gravity vacua connected via large gauge
transformations.
Gravity in a degenerate sector described with fermionic
variables, behaves as a Fermi liquid (BCS):
Λ = Λ0 exp(−jz5) = Λ0 exp(−ψ̄γ5γzψ), exponentially
suppressed if 〈j5〉 ∼ O(102).
Correspondence made rigorous via a deformed CFT
(SU(2)k=2, WZW model).
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19/27– Group field theory: setting
Freidel, Oriti, Rovelli, . . .

SGFT =

∫
G

d4g
[∫

G
d4g′ ϕ∗(g)K(g, g′)ϕ(g′) + V

]
.

• Fock quantization: [ϕ̂(g), ϕ̂†(g′)] = 1G(g, g′), vacuum |∅〉
“no-spacetime” configuration, one-particle state |g〉 := ϕ̂†(g)|∅〉
4-valent spin-network vertex or dual tetrahedron, . . .
• ∞ many particles, continuity! All GFT quanta in the same
state, homogeneity! Condensate (coherent state):

|ξ〉 := A eξ̂|∅〉 , ξ̂ :=

∫
d4g ξ(g) ϕ̂†(g) , ϕ̂|ξ〉 = ξ|ξ〉
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20/27– Group field theory: cosmology
Gielen, Oriti & Sindoni 2014; G.C. Phys. Rev. D 90 (2014) 064047

Gross–Pitaevskii equation:
0 = 〈ξ|1Ĉ|ξ〉 =

∫
d4g′K(g, g′)ξ(g′) + δV

δϕ∗(g)

∣∣∣
ϕ=ξ

.

G = SU(2), isotropy:

2χ(1− χ)ξ′′(χ) + (3− 4χ)ξ′(χ) + m ξ(χ) = 0 , χ = sin2
( µ̄c

2

)
WKB approx. ξWKB(χ, φ) = A(χ, φ) eiS(χ,φ)/`2

Pl : 2χ(1− χ)(S,χ)2

= −E2(S,φ)2 + m4. Classically,

pχ ∼ a/(µ̄2H) , pφ ∼ a3φ̇ , (aµ̄)−2 ∝ −E2φ̇2 .

E2 < 0, l.h.s. is H2 if a ∝ eHt (de Sitter) in the LQC improved
quantization scheme n = 1/2.
LQC dynamics? 4χ(1− χ) = sin2(µ̄c), l.h.s. of LQC Friedmann
eq., r.h.s. depends on form of pχ. Beyond WKB. . .
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∫
d4g′K(g, g′)ξ(g′) + δV

δϕ∗(g)

∣∣∣
ϕ=ξ

.

G = SU(2), isotropy:

2χ(1− χ)ξ′′(χ) + (3− 4χ)ξ′(χ) + m ξ(χ) = 0 , χ = sin2
( µ̄c

2

)
WKB approx. ξWKB(χ, φ) = A(χ, φ) eiS(χ,φ)/`2

Pl : 2χ(1− χ)(S,χ)2

= −E2(S,φ)2 + m4. Classically,

pχ ∼ a/(µ̄2H) , pφ ∼ a3φ̇ , (aµ̄)−2 ∝ −E2φ̇2 .

E2 < 0, l.h.s. is H2 if a ∝ eHt (de Sitter) in the LQC improved
quantization scheme n = 1/2.
LQC dynamics? 4χ(1− χ) = sin2(µ̄c), l.h.s. of LQC Friedmann
eq., r.h.s. depends on form of pχ. Beyond WKB. . .

Gianluca Calcagni Instituto de Estructura de la Materia (IEM) – CSIC

Cosmology and quantum gravities: Where are we?



Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

21/27– Causal sets: setting
Bombelli, Dowker, Sorkin, . . .

• “Order and number”: discrete structure of partially ordered
points (x � y) reproducing the causal structure of continuous
Lorentzian geometries.

• Volume measurement = point counting: N ≈ α2 mD
Pl V.

• Sprinkling: random generation of points on a Lorentzian
manifoldM respecting light-cone structure. Discreteness and
Lorentz invariance require a Poisson distribution (i):
P(N = n) = 1

n! (ρV)ne−ρV . Standard deviation, kinematical
fluctuations:

∆N := σN =
√

N , ∆V = (αmD/2
Pl )−1

√
V .

Regular lattices/graphs do not satisfy this property.
• Dynamics under construction through different approaches.
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22/27– Causal sets: cosmology

(ii) Statistical uncertainty and volume fixing imply
∆V∆Λ & κ2.

(iii) Λ = action of α2 fundamental elements; if each contribution
is independent and fluctuates in sign by ±α2, then 〈Λ〉 = 0.

(iv) (i)–(iii) imply an everpresent Λ (only in D = 4):

ρΛ =
∆Λ

κ2 ∼
1

∆V
=
αm2

Pl√
V
∼ αm2

PlH
2.

(v) To explain dark energy, α = O(10−2)÷ O(1). For α = O(1),
N0 ≈ m4

Pl V0 ∼ 10244 and ρΛ ∼ 10−122m4
Pl.

(vi) Fine tuning problem!
∆T/T ∼ ∆Φ/Φ ∼ δρΛ/ρtot ∼ α ∼ 10−5.

(vii) Effective time-varying α(t)? Dynamics?
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23/27– Emergent gravity: setting
Padmanabhan

Local Rindler observer (constant proper acceleration)

Total heat within V:

Q[n] :=
1

8π

∫ σ2

σ1

dσ
∫
∂V

d2y
√
γ
(
Q + κ2Tµνnµnν

)
,

Q := ∇µnν∇νnµ − (∇µnµ)2

Dynamics (for all Rindler observers):
δQ
δnµ

= 0 ⇒
(
Gµν + Λgµν − κ2Tµν

)
nµnν = 0
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24/27– Emergent gravity: cosmology

• Metric not fundamental, other quantum d.o.f.

• Example of unimodular gravity, e.o.m.s invariant under shift
symmetry: Λ is an arbitrary constant.
• If a fundamental principle fixed the value of Λ, the shift
symmetry would not change it.
• Holography and statistical mechanics? Nc = # modes
accessible to our causal patch VH during radiation-dust era.
Emergent gravity: Nc = # d.o.f. populating the Hubble sphere
∂VH. Expansion rate of radiation-dust era is the same as of the
inflationary era and 4π is precisely the number of d.o.f. of the
boundary of an elementary Planck ball,
N∂VPl = (4π`2

Pl)/`
2
Pl = 4π.

Nc
?
= N∂VPl , Λ ∝ e−N∂V/4?
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25/27– Comparison: How far from realistic cosmology?

Asymptotic safety: types of f (R) actions naturally
produced. Λ problem reformulated.
Multi-scale spacetimes: Λ problem reformulated.
WDW QC: probabilistic interpretation for Λ problem.
Causal dynamical triangulations: de Sitter universe
emerges from full quantum gravity.
Group field theory: cosmology from full theory, LQC
dynamics possibly obtained.
Non-local gravity: big bang removed.
Loop quantum gravity: big bang removed, Λ as a
condensate.
Causal sets: prediction for Λ. Big bang perhaps removed.
Emergent gravity: towards a resolution of the Λ problem.
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26/27– More can be found in . . .

Classical and Quantum
Cosmology (Gradu-
ate Texts in Physics,
Springer, to appear).
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Discussion

Thank you!

¡Muchas gracias!

Grazie!

Danke schön!
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