

On the consistency of universally nonminimally coupled $f(R, T, R_{\mu\nu}T^{\mu\nu})$ theories

Ismael Ayuso Marazuela

Based on: arXiv:1411.1636 [hep-th]

in collaboration with Jose Beltran Jimenez and Alvaro de la Cruz-Dombriz

Department of Theoretical Physics, Complutense University of Madrid

Multimessenger Approach for Dark Matter Detection

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

- 1. Introduction
 - Motivation
- 2. Recently developed theory
 - The Multi-Scalar representation
 - Conformal transformation in these theories
- 3. Dependence with the Lagrangian matter
 - Canonical Scalar Field
 - Vector Fields
- 4. Particular models for scalar field
- 5. Conclusions

1. Introduction

Motivation

- 2. Recently developed theory
 - The Multi-Scalar representation
 - Conformal transformation in these theories
- 3. Dependence with the Lagrangian matter
 - Canonical Scalar Field
 - Vector Fields
- 4. Particular models for scalar field
- 5. Conclusions

Why these theories?

• Possible extensions of Einsteinian gravity resides in the coupling of gravity and matters fields \rightarrow possibility of non-minimal coupling in cosmological scales.

But... are all models possible?

No. We need criteria which aims to guarantee the absence of instabilities.

$$S = \int \mathrm{d}^4 x \sqrt{-g} \Big[f(R, T, R_{\mu\nu} T^{\mu\nu}) + \mathcal{L}_m(g_{\mu\nu}, \Psi) \Big]$$

Example of instability:

Ostrogradski:

It is that there is a linear instability in the Hamiltonian associated with Lagrangians which depend upon more than one time derivative in such a way that the dependence cannot be eliminated by partial integration.

M. Ostrogradski, Mem. Ac. St. Petersbourg VI 4, 385 (1850)

Ismael Ayuso

How can we avoid the presence of Ostrogradski instability?

Requiring the Euler-Lagrange equations to be second order.

C. Deffayet, G. Esposito-Farese, A. Vikman, Phys. Rev. D **79**, 084003 (2009) [arXiv:0901.1314]

G. W. Horndeski, Int. J. Theor. Phys. **10** (1974) 363-384

A first great leap: the Horndeski's theorem.

$$\mathcal{L}_{2} = K(\phi, X)$$

$$X \equiv \frac{1}{2}\partial_{\mu}\phi \partial^{\mu}\phi$$

$$\mathcal{L}_{3} = G_{3}(\phi, X)\Box\phi$$

$$\mathcal{L}_{4} = G_{4}(\phi, X)R - G_{4,X}(\phi, X)\left[(\Box\phi)^{2} - (\nabla_{\mu}\nabla_{\nu}\phi)^{2}\right]$$

$$\mathcal{L}_{5} = G_{5}(\phi, X)G_{\mu\nu}\nabla^{\mu}\nabla^{\nu}\phi + \frac{1}{6}G_{5,X}(\phi, X)\left[(\Box\phi)^{3} - 3(\Box\phi)(\nabla_{\mu}\nabla_{\nu}\phi)^{2} + 2(\nabla_{\mu}\nabla_{\nu}\phi)^{3}\right]$$

 \checkmark f(R) case: avoid the Ostrogradski instability through a conformal transformation and not with the Horndeski's theorem.

Ismael Ayuso

1. Introduction

Motivation

- 2. Recently developed theory
 - The Multi-Scalar representation
 - Conformal transformation in these theories

IberiCOS 2015

- 3. Dependence with the Lagrangian matter
 - Canonical Scalar Field
 - Vector Fields
- 4. Particular models for scalar field
- 5. Conclusions

Ismael Ayuso

Recently developed theory :

$$S = \int \mathrm{d}^4 x \sqrt{-g} \Big[f(R, T, R_{\mu\nu} T^{\mu\nu}) + \mathcal{L}_m(g_{\mu\nu}, \Psi) \Big]$$

Z. Haghani, T. Harko, F. S. N. Lobo, H. R. Sepangi and S. Shahidi, Phys. Rev. D **88** (2013) 4, 044023 [arXiv:1304.5957 [grqc]] S. D. Odintsov and D. Sáez-Gómez, Phys. Lett. B **725** (2013) 437 [arXiv:1304.5411 [gr-qc]].

Recently developed theory :

$$S = \int \mathrm{d}^4 x \sqrt{-g} \Big[f(R, T, R_{\mu\nu} T^{\mu\nu}) + \mathcal{L}_m(g_{\mu\nu}, \Psi) \Big]$$

Multi-scalar representation $\chi_1 = R$ $\chi_2 = T$ $\chi_3 = R_{\mu\nu}T^{\mu\nu}$

$$S = \int d^4x \sqrt{-g} \Big[f(\chi_1, \chi_2, \chi_3) + \sum_{i=1}^3 f_{\chi_i} \left(P_i - \chi_i \right) + \mathcal{L}_m \Big]$$

Condition: the determinant $\frac{\partial^2 f}{\partial \chi_i \partial \chi_j}$ is non zero. $\varphi_i = -f_{\chi_i}$
$$S = \int d^4x \sqrt{-g} \Big[\mathcal{U}(\varphi_1, \varphi_2, \varphi_3) - \varphi_1 R - \varphi_2 T - \varphi_3 R_{\mu\nu} T^{\mu\nu} + \mathcal{L}_m \Big]$$

Ismael Ayuso

An useful tool: the conformal transformation

$$\begin{aligned}
g_{\mu\nu} &= e^{2\Omega} \tilde{g}_{\mu\nu} \\
& \longrightarrow R_{\mu\nu} = \tilde{R}_{\mu\nu} - 2\tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\Omega + 2\tilde{\nabla}_{\mu}\Omega\tilde{\nabla}_{\nu}\Omega - (2\tilde{g}^{\alpha\beta}\partial_{\alpha}\Omega\partial_{\beta}\Omega + \tilde{\Box}\Omega)\tilde{g}_{\mu\nu} \\
& \longrightarrow R = e^{-2\Omega} \left(\tilde{R} - 6\tilde{g}^{\alpha\beta}\partial_{\alpha}\Omega\partial_{\beta}\Omega - 6\tilde{\Box}\Omega\right) \\
& \longrightarrow \tilde{T}_{\mu\nu} = e^{2\Omega}T_{\mu\nu}
\end{aligned}$$

Ismael Ayuso

An useful tool: the conformal transformation

$$\begin{split} g_{\mu\nu} &= e^{2\Omega} \tilde{g}_{\mu\nu} \\ & \longrightarrow R_{\mu\nu} = \tilde{R}_{\mu\nu} - 2\tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\Omega + 2\tilde{\nabla}_{\mu}\Omega\tilde{\nabla}_{\nu}\Omega - (2\tilde{g}^{\alpha\beta}\partial_{\alpha}\Omega\partial_{\beta}\Omega + \tilde{\Box}\Omega)\tilde{g}_{\mu\nu} \\ & \longrightarrow R = e^{-2\Omega} \left(\tilde{R} - 6\tilde{g}^{\alpha\beta}\partial_{\alpha}\Omega\partial_{\beta}\Omega - 6\tilde{\Box}\Omega\right) \\ & \longrightarrow \tilde{T}_{\mu\nu} = e^{2\Omega}T_{\mu\nu} \end{split}$$
The result for $\Omega = \log \frac{1}{\sqrt{16\pi G\varphi_1}}$ Minimal coupling
 $S = \int d^4x \sqrt{-\tilde{g}} \left\{ e^{4\Omega}\mathcal{U}(\Omega, \varphi_2, \varphi_3) - \frac{1}{16\pi G} \left(\tilde{R} - 6\tilde{g}^{\alpha\beta}\partial_{\alpha}\Omega\partial_{\beta}\Omega\right) - \varphi_2\tilde{T} \\ & - e^{-2\Omega}\varphi_3 \left[\tilde{R}_{\mu\nu} - 2\tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\Omega + 2\tilde{\nabla}_{\mu}\Omega\tilde{\nabla}_{\nu}\Omega - (2\tilde{g}^{\alpha\beta}\partial_{\alpha}\Omega\partial_{\beta}\Omega + \tilde{\Box}\Omega)\tilde{g}_{\mu\nu}\right]\tilde{T}^{\mu\nu} \\ & + e^{4\Omega}\mathcal{L}_m(e^{2\Omega}\tilde{g}_{\mu\nu}, \Psi) \rbrace \end{split}$

Ismael Ayuso

Potentially problematic terms

Problem! Non-minimal coupling of the Ricci tensor to the energy-momentum tensor For a fixed curved background, this coupling will modify the kinetic term \rightarrow could turn into a ghost.

For dynamical gravitational fields, this will introduce additional propagating degrees of freedom \rightarrow Ostrogradski instability.

$$S = \int d^{4}x \sqrt{-\tilde{g}} \left\{ \hat{\mathcal{U}}(\Omega, \tilde{T}, \varphi_{3}) - \frac{1}{16\pi G} \left(\tilde{R} - 6\tilde{g}^{\alpha\beta}\partial_{\alpha}\Omega\partial_{\beta}\Omega \right) - e^{-2\Omega}\varphi_{3} \left(\tilde{R}_{\mu\nu}\tilde{T}^{\mu\nu} \right) - \left(2\tilde{T}^{\mu\nu} + \tilde{T}\tilde{g}^{\mu\nu} \right) \tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\Omega + 2\left(\tilde{T}^{\mu\nu} - \tilde{T}\tilde{g}^{\mu\nu} \right) \tilde{\nabla}_{\mu}\Omega\tilde{\nabla}_{\nu}\Omega \right] + e^{4\Omega}\mathcal{L}_{m}(e^{2\Omega}\tilde{g}_{\mu\nu}, \Psi) \right\}$$

Problem!

It contains first derivatives of the matter fields so it will lead to higher-order equations of motion and the propagation of additional degrees of freedom \rightarrow Ostrogradski instability

Ismael Ayuso

- 1. Introduction
 - Motivation
- 2. Recently developed theory
 - The Multi-Scalar representation
 - Conformal transformation in these theories

IberiCOS 2015

- 3. Dependence with the Lagrangian matter
 - Canonical Scalar Field
 - Vector Fields
- 4. Particular models for scalar field
- 5. Conclusions

Ismael Ayuso

CANONICAL SCALAR FIELD

$$\mathcal{L}_{m} = \mathcal{L}_{\phi} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi)$$

$$T_{\mu\nu} = \partial_{\mu} \phi \partial_{\nu} \phi - g_{\mu\nu} \mathcal{L}_{\phi}$$

$$T = -(\partial \phi)^{2} + 4V(\phi)$$

$$R_{\mu\nu} T^{\mu\nu} = G_{\mu\nu} \partial^{\mu} \phi \partial^{\nu} \phi + RV(\phi)$$

$$With Horndeski:$$

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left[\left(c_1 + c_2 V(\phi) \right) R + \frac{1}{2} \left(g^{\mu\nu} + c_2 G^{\mu\nu} \right) \partial_\mu \phi \, \partial_\nu \phi - V(\phi) + f(T) \right]$$

With Multiscalar-tensor representation:

$$S = \int d^4x \sqrt{-\tilde{g}} \left\{ \hat{\mathcal{U}}(\Omega, \tilde{T}, \varphi_3) - \frac{1}{16\pi G} \left[\tilde{R} - 6(\partial \Omega)^2 \right] - \varphi_3 \left[\tilde{G}^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + 2\left(\partial_\mu \Omega \partial^\mu \phi \right)^2 + \left(\partial \Omega \right)^2 (\partial \phi)^2 + 2 \left(\tilde{g}^{\mu\nu} (\partial \phi)^2 - \partial^\mu \phi \partial^\nu \phi \right) \tilde{\nabla}_\mu \tilde{\nabla}_\nu \Omega \right] \right\}$$

Ismael Ayuso

CANONICAL SCALAR FIELD

$$\mathcal{L}_{m} = \mathcal{L}_{\phi} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi)$$

$$T_{\mu\nu} = \partial_{\mu} \phi \partial_{\nu} \phi - g_{\mu\nu} \mathcal{L}_{\phi}$$

$$T = -(\partial \phi)^{2} + 4V(\phi)$$

$$R_{\mu\nu} T^{\mu\nu} = G_{\mu\nu} \partial^{\mu} \phi \partial^{\nu} \phi + RV(\phi)$$

$$\rightarrow \text{ With Horndeski:}$$

$$S = \int \mathrm{d}^4x \sqrt{-g} \left[\left(c_1 + c_2 V(\phi) \right) R + \frac{1}{2} \left(g^{\mu\nu} + c_2 G^{\mu\nu} \right) \partial_\mu \phi \, \partial_\nu \phi - V(\phi) + f(T) \right]$$

With Multiscalar-tensor representation:

$$S = \int d^4x \sqrt{-\tilde{g}} \left\{ \hat{\mathcal{U}}(\Omega, \tilde{T}, \varphi_3) - \frac{1}{16\pi G} \left[\tilde{R} - 6(\partial \Omega)^2 \right] - \left(\alpha \int \tilde{\mathcal{F}}^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + 2 \left(\partial_\mu \Omega \partial^\mu \phi \right)^2 + (\partial \Omega)^2 (\partial \phi)^2 + 2 \left(\tilde{g}^{\mu\nu} (\partial \phi)^2 - \partial^\mu \phi \partial^\nu \phi \right) \tilde{\nabla}_\mu \tilde{\nabla}_\nu \Omega \right] \right\}$$

Ismael Ayuso

VECTORS FIELDS

$$\mathcal{L}_{m} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}M^{2}A^{2}$$

$$T_{\mu\nu} = -F_{\mu\alpha}F_{\nu}^{\alpha} + \frac{1}{4}g_{\mu\nu}F^{2} - \frac{M^{2}}{2}g_{\mu\nu}A^{2} + M^{2}A_{\mu}A_{\nu} \qquad T = -M^{2}A^{2}$$

$$R_{\mu\nu}T^{\mu\nu} = \frac{1}{4}\left(RF_{\mu\nu}F^{\mu\nu} - 4R_{\mu\nu}F^{\mu\alpha}F^{\nu}_{\alpha}\right) + M^{2}G_{\mu\nu}A^{\mu}A^{\nu}$$

$$\rightarrow \text{Don't have the Horndeski's terms}$$

$$Almost Horndeski term$$

$$S = \int d^{4}x\sqrt{-\tilde{g}}\left\{e^{4\Omega}\hat{U} - \frac{1}{16\pi G}\left[\tilde{R} - 6(\partial\Omega)^{2}\right] - \varphi_{3}M^{2}\tilde{G}^{\mu\nu}A_{\mu}A_{\nu} - \varphi_{3}e^{-2\Omega}\left(\frac{1}{4}\tilde{F}^{2}\tilde{g}^{\mu\nu} - \tilde{F}^{\mu\alpha}\tilde{F}^{\nu}_{\alpha}\right) - M^{2}\left(\tilde{A}^{2}\tilde{g}^{\mu\nu} - \tilde{A}^{\mu}\tilde{A}^{\nu}\right)\right]\tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\Omega$$

$$- 2\varphi_{3}\left[e^{-2\Omega}\left(\frac{1}{4}\tilde{F}^{2}\tilde{g}^{\mu\nu} - \tilde{F}^{\mu\alpha}\tilde{F}^{\nu}_{\alpha}\right) + M^{2}\left(\tilde{A}^{2}\tilde{g}^{\mu\nu} + \tilde{A}^{\mu}\tilde{A}^{\nu}\right)\right]\tilde{\nabla}_{\mu}\Omega\tilde{\nabla}_{\nu}\Omega + e^{4\Omega}\mathcal{L}_{m}\left(e^{2\Omega}\tilde{g}_{\mu\nu},\tilde{A}\right)\right\}$$

Ismael Ayuso

VECTORS FIELDS

Direct coupling of vector fields with the scalar curvature. The coupling through the Einstein tensor guarantees the absence of an extra mode

$$S = \int d^{4}x \sqrt{-\tilde{g}} \left\{ e^{4\Omega} \hat{\mathcal{U}} - \frac{1}{16\pi G} \left[\tilde{R} - 6(\partial\Omega)^{2} \right] - \varphi_{3}M^{2}\tilde{G}^{\mu\nu}A_{\mu}A_{\nu} - \varphi_{3}e^{-2\Omega} \left(\frac{1}{4}\tilde{F}^{2}\tilde{R} - \tilde{R}_{\mu\nu}\tilde{F}^{\mu\alpha}\tilde{F}^{\nu}{}_{\alpha} \right) \right. \\ \left. + 2\varphi_{3} \left[e^{-2\Omega} \left(\frac{1}{4}\tilde{F}^{2}\tilde{g}^{\mu\nu} - \tilde{F}^{\mu\alpha}\tilde{F}^{\nu}{}_{\alpha} \right) - M^{2} \left(\tilde{A}^{2}\tilde{g}^{\mu\nu} - \tilde{A}^{\mu}\tilde{A}^{\nu} \right) \right] \tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\Omega \right. \\ \left. - 2\varphi_{3} \left[e^{-2\Omega} \left(\frac{1}{4}\tilde{F}^{2}\tilde{g}^{\mu\nu} - \tilde{F}^{\mu\alpha}\tilde{F}^{\nu}{}_{\alpha} \right) + M^{2} \left(\tilde{A}^{2}\tilde{g}^{\mu\nu} + \tilde{A}^{\mu}\tilde{A}^{\nu} \right) \right] \tilde{\nabla}_{\mu}\Omega\tilde{\nabla}_{\nu}\Omega + e^{4\Omega}\mathcal{L}_{m} \left(e^{2\Omega}\tilde{g}_{\mu\nu}, \tilde{A} \right) \right\} \right.$$

Coupling of the conformal mode to F is pathological \rightarrow we can find higherorder equations of motion

We conclude these theories lead to Ostrogradski instabilities in a very general manner when coupled to vector fields

Almost Horndeski term

Ismael Ayuso

- 1. Introduction
 - Motivation
- 2. Recently developed theory
 - The Multi-Scalar representation
 - Conformal transformation in these theories
- 3. Dependence with the Lagrangian matter
 - Canonical Scalar Field
 - Vector Fields
- 4. Particular models for scalar field
- 5. Conclusions

Ismael Ayuso

PARTICULAR MODELS

1. Model:
$$f(R, T, R_{\mu\nu}T^{\mu\nu}) = \alpha R^n + \beta (R_{\mu\nu}T^{\mu\nu})^m$$

- n=1 and m=1.
 Arbitrary n and m=1.
 Free of instabilities
- Arbitrary n and m. — Instabilities appear!

• Case
$$f(R, T, R_{\mu\nu}T^{\mu\nu}) = -\frac{R}{16\pi G} + \beta (R_{\mu\nu}T^{\mu\nu})^m$$

$$S = \int d^{4}x \sqrt{-\tilde{g}} \Big\{ e^{4\Omega} \mathcal{U}(\Omega, \phi) - \frac{1}{16\pi G} \Big(R + 6(\partial\Omega)^{2} \Big) \\ + \frac{1 - e^{-2\Omega}}{16\pi GV(\phi)} \Big[\tilde{G}^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + 2(\partial^{\alpha}\Omega \partial_{\alpha} \phi)^{2} + (\partial\Omega)^{2}(\partial\phi)^{2} + 2(\tilde{g}^{\mu\nu}(\partial\phi)^{2} - \partial^{\mu}\phi \partial^{\nu}\phi) \tilde{\nabla}_{\mu} \tilde{\nabla}_{\nu}\Omega \Big] \\ + e^{4\Omega} \mathcal{L}_{m}(\phi, e^{2\Omega} \tilde{g}_{\mu\nu}) \Big\} \qquad \text{Free of instabilities}$$

Ismael Ayuso

- 1. Introduction
 - Motivation
- 2. Recently developed theory
 - The Multi-Scalar representation
 - Conformal transformation in these theories
- 3. Dependence with the Lagrangian matter
 - Canonical Scalar Field
 - Vector Fields
- 4. Particular models for scalar field
- 5. Conclusions

CONCLUSIONS

• We have considered a class of universal non-minimally coupled where the gravitational Lagrangian is of the form: $f(R, T, R_{\mu\nu}T^{\mu\nu})$

• We have studied instabilities in these theories. We have found **two** sources of instabilities:

- 1. Derivative non-minimal coupling of the matter fields to curvature.
- 2. Conformal mode with second derivatives in the action.
- We have analyzed some cases for the matter sector and we found **conditions** for these theories

• The universal nature of the non-minimal coupling should be abandoned because, although it is possible to obtain stable models for scalar fields, it is troublesome to have couplings to vector fields

Ismael Ayuso