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I. INTRODUCTION

In the very first inflationary model the period of inflation was driven by quantum corrections to the Einstein–
Hilbert Lagrangian [1]. In its simplest and most studied version, the Einstein–Hilbert action includes an additional
term quadratic in the Ricci–scalar R and is usually called Starobinsky–inflation or also R2 inflation. Later models
of inflation are based on the dynamics of scalar fields. We refer to [2] and [3] for reviews and list of references on
inflationary models.

The Starobinsky model of inflation is remarkably consistent with current cosmological data, in particular with
measurements of the anisotropies of the CMB. It predicts a spectral index ns ⇡ 0.96 with little spectral running
and a small amount of gravitational waves. Because of its success, several papers have tried to embed the model
into a fundamental framework, such as supergravity (see e.g. [4–12]). Motivation of this work was also to extend the
Starobinsky framework in such a way that a large tensor-to-scalar ratio can be obtained. Similarly, a lot of e↵ort
was put into finding a realisation of Higgs inflation in supergravity, either to formulate the theory in the Jordan
frame (see e.g. [13, 14]) or in the Einstein frame [15]. The inflaton fields are components of chiral multiplets (or are
combinations thereof) with the vector components are not playing a role and the universe is assumed to behave like a
Friedmann–Robertson–Walker (FRW) universe on large scales. Some of the models considered are multi–field models,
in the sense that not only one field contributes to the dynamics of inflation.

Another way of generating inflation is by considering modifications of General Relativity. Models include for example
the Starobinsky model, the Gauss–Bonnet gravity [16–20] and higher–order–polynomial corrections [21] (see also [22]
for a recent discussion on higher–order corrections in Starobinsky inflation).

In this paper we consider an extension of the Starobinsky model by including a scalar field in the matter sector.
Such setups have been studied in the past [23] to obtain a period of double inflation. In our paper, we study the system
in the Einstein frame, calculating the amplitude of the curvature perturbation at the end of inflation, the spectral
index and the tensor-to-scalar ratio. The Einstein frame analysis allows us to use the formalism presented in [26] to
calculate the power spectra for a large number of model parameter and initial conditions without using the full field
equations. In [26], the power spectra were calculated up to second order in the slow–roll parameter. Our motivation is
two-fold: firstly, we want to explore the robustness of Starobinsky-type inflation in the presence of matter fields, since
these fields are not necessarily expected to be dynamically insignificant. If these fields contribute to the dynamics
of the very early universe, then predictions of the Starobinsky model will potentially be altered and our aim is to
quantify this further. Secondly, embedding the Starbinsky model in a supergravity framework motivates the existence
of more than degree of freedom, which are usually ignored. Thus, we take a phenomenological approach, allowing two
degrees of freedom to evolve. The theory we consider has two free parameter, as we will discuss below.

The paper is organised as follows: In the next Section we present the theoretical setup and describe our numerical
method. In Section III we discuss our findings. We conclude in Section IV.
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II. THEORETICAL SETUP

The theory we consider is the simplest extension of Starobinsky’s original model of inflation we can imagine. It
includes an R2–term in the Einstein-Hilbert action as well as a massive scalar field � in the matter sector. The full
action reads
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In this equation,  = M�2

Pl

, where M�2

Pl

is the reduced Planck mass. The parameter µ has units [mass]�2. We will
perform the analysis in the Einstein–frame, which can be obtained by a conformal transformation. First, we rewrite
the gravitational sector of the action above as
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The equation of motion for � gives � = R, thus the two action are equivalent. Now considering the conformal
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and where we have defined the canonical normalised field e2↵ = 1 + 2µ . We now define the mass of

the scaleron  as [23]:
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In the following, we will work in natural units, i.e. we set  = 1. This type of theory has been considered in the past
in [23]. The model discussed in [9] with the choice ! = 1, m = m� and a2 = 1/12 is a special case of our model, where
the fields have the same mass, whereas in our model we have two fields with di↵erent masses m and m�.

Following the literature, we define b( ) = �2↵ and derive the equations of motions for the two fields in an
expanding Robertson–Walker space-time (the dot denotes the derivative with respect to cosmic time):
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To study the perturbations produced during inflation, we will not work with the fields  and � but perform a
field–rotation using the degree of freedom along the field trajectory (denoted �) and the degree of freedom orthogonal
to it (denoted s). The fields are defined by

d� = cos ✓d + sin ✓ebd� (12)

ds = eb cos ✓d�� sin ✓d . (13)
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the gravitational sector of the action above as

S0
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Z
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2
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(2)

The equation of motion for � gives � = R, thus the two action are equivalent. Now considering the conformal
transformation

g̃µ⌫ = ⌦2gµ⌫ (3)

with

⌦2 = 1 + 2µ�, (4)

we obtain from eq. (2)
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with
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and ↵ = p
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and where we have defined the canonical normalised field e2↵ = 1 + 2µ�. We now define the mass of

the scaleron  as [23]:

m2

 =
1

6µ
. (7)

In the following, we will work in natural units, i.e. we set  = 1. This type of theory has been considered in the past
in [23]. The model discussed in [9] with the choice ! = 1, m = m� and a2 = 1/12 is a special case of our model, where
the fields have the same mass, whereas in our model we have two fields with di↵erent masses m and m�.

Following the literature, we define b( ) = �2↵ and derive the equations of motions for the two fields in an
expanding Robertson–Walker space-time (the dot denotes the derivative with respect to cosmic time):

 ̈ + 3H ̇ + V = b e
2b�̇2, (8)

�̈+ (3H + 2b  ̇)�̇+ e�2bV� = 0 (9)

Einstein’s field equation give
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i
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To study the perturbations produced during inflation, we will not work with the fields  and � but perform a
field–rotation using the degree of freedom along the field trajectory (denoted �) and the degree of freedom orthogonal
to it (denoted s). The fields are defined by

d� = cos ✓d + sin ✓ebd� (12)

ds = eb cos ✓d�� sin ✓d . (13)

Ñ  Instantaneous  rotation  in  field  space	
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is the reduced Planck mass. The parameter µ has units [mass]�2. We will
perform the analysis in the Einstein–frame, which can be obtained by a conformal transformation. First, we rewrite
the gravitational sector of the action above as
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The equation of motion for � gives � = R, thus the two action are equivalent. Now considering the conformal
transformation

g̃µ⌫ = ⌦2gµ⌫ (3)

with
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we obtain from eq. (??)

SE =

Z
d4x

p
�g̃


R̃

2
� g̃µ⌫

2
(@̃µ )(@̃⌫ )�

1

2
g̃µ⌫e�2↵ (@̃µ�)(@̃⌫�)� V

�
(5)

with

V =
(1� e�2↵ )2

82µ
+

1

2
m2

�e
�4↵ �2 (6)
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and where we have defined the canonical normalised field e2↵ = 1 + 2µ�. We now define the mass of

the scaleron  as [? ]:

m2

 =
1

6µ
. (7)

In the following, we will work in natural units, i.e. we set  = 1. This type of theory has been considered in the past
in [? ]. The model discussed in [? ] with the choice ! = 1, m = m� and a2 = 1/12 is a special case of our model,
where the fields have the same mass, whereas in our model we have two fields with di↵erent masses m and m�.

Following the literature, we define b( ) = �2↵ and derive the equations of motions for the two fields in an
expanding Robertson–Walker space-time (the dot denotes the derivative with respect to cosmic time):

 ̈ + 3H ̇ + V = b e
2b�̇2, (8)

�̈+ (3H + 2b  ̇)�̇+ e�2bV� = 0, (9)

Einstein’s field equation give

Ḣ = � 1
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To study the perturbations produced during inflation, we will not work with the fields  and � but perform a
field–rotation using the degree of freedom along the field trajectory (denoted �) and the degree of freedom orthogonal
to it (denoted s). The fields are defined by

d� = cos ✓d + sin ✓ebd� (12)

ds = eb cos ✓d�� sin ✓d (13)

3

with

cos ✓ =
 ̇q

 ̇2 + e2b�̇2

sin ✓ =
eb�̇q

 ̇2 + e2b�̇2

(14)

Cosmological perturbations in this system have been systematically studied in the past, see e.g. [24–26]. In [26],
a formalism was developed, which allows to calculate the power spectra to second order in the slow–roll parameter.
Instead of integrating the full perturbation equations, we will use this formalism to calculate the power spectrum.
The method consists of two steps: Firstly, we evaluate the power spectrum at horizon crossing (the ⇤ denotes the time
of horizon crossing and the slow–roll parameter are defined with respect to � and s):
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where
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f(x) = 2� � � ln 2� lnx (18)

6g(x) = 16 + 3⇡2 � 44� + 12�2 + 24� ln 2� 44 ln 2 + 12 ln2 2

+ 12 ln2 x� 44 lnx+ 24� lnx+ 24 lnx ln 2 (19)

The next step is to evaluate the power spectrum at the end of inflation. Because of the presence of isocurvature
perturbations, the power spectrum of the curvature perturbation evolves on superhorizon scales. Defining

A =
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(20)

It is not obvious that the intrinsic entropy perturbation
for a single scalar field, obtained from Eq. (23),

S =
2Vϕ

3ϕ̇2(3Hϕ̇+ 2Vϕ)

[

ϕ̇
(

˙δϕ− ϕ̇A
)

− ϕ̈δϕ
]

, (28)

should vanish on large scales. Because the scalar field
obeys a second-order equation of motion, its general so-
lution contains two arbitrary constants of integration,
which can describe both adiabatic and entropy perturba-
tions. However S for a single scalar field is proportional
to the comoving density perturbation given in Eq. (10),
and this in turn is related to the metric perturbation, Ψ,
via Eq. (14), so that [39]

S = −
Vϕ

6πGϕ̇2[3Hϕ̇+ 2Vϕ]

(

k2

a2
Ψ

)

. (29)

In the absence of anisotropic stresses, Ψ must be of order
AQ, by Eq. (11), and hence the non-adiabatic pressure
becomes small on large scales [6,39,10]. The amplitude of
the asymptotic solution for the scalar field at late times
(and hence large scales) during inflation thus determines
the amplitude of an adiabatic perturbation.

The change in the comoving curvature perturbation is
given by

Ṙ =
H

Ḣ

k2

a2
Ψ , (30)

and hence the rate of change of the curvature perturba-
tion, given by d lnR/d ln a ∼ (k/aH)2, becomes negligi-
ble on large scales during single-field inflation.

C. Two fields

In this section we will consider two interacting scalar
fields, φ ≡ ϕ1 and χ ≡ ϕ2. The analysis developed here
should be straightforward to extend to include additional
scalar fields, but we do not expect to see any qualitatively
new features in this case, so for clarity we restrict our
discussion here to two fields.

In order to clarify the role of adiabatic and entropy
perturbations, their evolution and their inter-relation, we
define new adiabatic and entropy fields by a rotation in
field space. The “adiabatic field”, σ, represents the path
length along the classical trajectory, such that

σ̇ = (cos θ)φ̇+ (sin θ)χ̇ , (31)

where

cos θ =
φ̇

√

φ̇2 + χ̇2

, sin θ =
χ̇

√

φ̇2 + χ̇2

. (32)

This definition, plus the original equations of motion for
φ and χ, give

σ̈ + 3Hσ̇ + Vσ = 0 , (33)

where

Vσ = (cos θ)Vφ + (sin θ)Vχ . (34)

As illustrated in Fig. 1, δσ is the component of the
two-field perturbation vector along the direction of the
background fields’ evolution. Conversely, fluctuations or-

δσ

Background trajectory

Perturbationδχ

δs

δφθ

χ

φ
FIG. 1. An illustration of the decomposition of an arbi-

trary perturbation into an adiabatic (δσ) and entropy (δs)
component. The angle of the tangent to the background tra-
jectory is denoted by θ. The usual perturbation decomposi-
tion, along the φ and χ axes, is also shown.

thogonal to the background classical trajectory represent
non-adiabatic perturbations, and we define the “entropy
field”, s, such that

δs = (cos θ)δχ− (sin θ)δφ . (35)

From this definition, it follows that s =constant along
the classical trajectory, and hence entropy perturbations
are automatically gauge-invariant [40]. Perturbations in
δσ, with δs = 0, describe adiabatic field perturbations,
and this is why we refer to σ as the “adiabatic field”.

The total momentum of the two-field system, given by
Eq. (9), is then

δq,i = −φ̇δφ,i − χ̇δχ,i = −σ̇δσ,i , (36)

and the comoving curvature perturbation in Eq. (17) is
given by

R = ψ + H

(

φ̇δφ+ χ̇δχ

φ̇2 + χ̇2

)

,

= ψ +
H

σ̇
δσ . (37)

4
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We  look  at  three  observables:	

Ñ  The  spectral  index:  ns	

Ñ  The  Amplitude  at  the  pivot  scale  0.05  Mpc-­‐‑1:  As	

Ñ  The  tensor  to  scalar  ratio:  r	

	

And  compare  them  to  the  Plank  2015  values:	

Ñ  ns  =  [0.9530,  0.9676]	

Ñ  As  109    =  [2.07,  2,39]	

Ñ  r  =  <0.1	


Numerical  Results  1	
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Different  initial  conditions:	

Ñ  Keep  one  field  initial  value  
fixed  and  vary  the  other  one	


Ñ  We  find  that  the  variation  in  
ns  and  r  is  <1%	


Ñ  The  variation  in  As  can  be  as  
high  as  10%	


	


Numerical  Results  2	

Ñ  Changing  the  masses  of  the  fields,  changes  the  potential  
landscape	
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Numerical  
Results  3	


Ñ  Different  mass  ratios	

Ñ  Mass  ratio  defined  :  	


2

RMASSS IS HERE
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S =

Z
d4x

p
�g


R

2
+

µ

2
R2

�
+

Z
d4x

p
�g


� 1

2
gµ⌫@µ�@⌫�� 1

2
m2

��
2

�
(2)

In this equation,  = M�2
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is the reduced Planck mass. The parameter µ has units [mass]�2. We will
perform the analysis in the Einstein–frame, which can be obtained by a conformal transformation. First, we rewrite
the gravitational sector of the action above as
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G =

Z
d4x

p
�g


R

2
(1 + 2µ�)� µ�2

2

�
(3)

The equation of motion for � gives � = R, thus the two action are equivalent. Now considering the conformal
transformation

g̃µ⌫ = ⌦2gµ⌫ (4)

with

⌦2 = 1 + 2µ�, (5)

we obtain from eq. (3)
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and ↵ = p
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and where we have defined the canonical normalised field e2↵ = 1 + 2µ�. We now define the mass of

the scaleron  as [23]:

m2

 =
1

6µ
. (8)

In the following, we will work in natural units, i.e. we set  = 1. This type of theory has been considered in the past
in [23]. The model discussed in [9] with the choice ! = 1, m = m� and a2 = 1/12 is a special case of our model, where
the fields have the same mass, whereas in our model we have two fields with di↵erent masses m and m�.

Following the literature, we define b( ) = �2↵ and derive the equations of motions for the two fields in an
expanding Robertson–Walker space-time (the dot denotes the derivative with respect to cosmic time):

 ̈ + 3H ̇ + V = b e
2b�̇2, (9)

�̈+ (3H + 2b  ̇)�̇+ e�2bV� = 0, (10)

Einstein’s field equation give

Ḣ = � 1

2M2

P

h
 ̇2 + e2b�̇2

i
and (11)

H2 =
1

3M2

P

"
 ̇2

2
+

e2b

2
�̇2 + V

#
. (12)



Ñ  This  model  is  stable  under  variations  in  initial  conditions	

Ñ  The  model  allows  for  a  variety  of  mass  ratios  between  the  
two  fields  	


Ñ  When  calculating  the  power  spectra  there  is  great  
agreement  between  first  and  second  order  approximation  
in  slow-­‐‑roll	


Ñ  Good  model  for  embedding  in  a  fundamental  theory	

Ñ  Worth  exploring  the  limits  of  the  model  at  times  subsequent  
inflation  –  asymmetrical  potential	


Conclusions  	
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Ñ  There  have  been  aWempts  to  obtain  Starobinsky  inflation  from  more  
fundamental  theories	


Ñ  Supergravity  motivations  use  chiral  multiplets  or  combinations  to  
drive  inflation	


Ñ  One  such  aWempt  is  done  in  arXiv:1405.0271v3  	
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the final power spectra are given by
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where the ’⇤’ denotes the value of the power spectra at horizon crossing and � = D �A.
Finally, to calculate the power spectrum of tensor perturbations PT we use the slow-roll approximation (see e.g.

[27]):
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III. NUMERICAL RESULTS

The model we consider in this paper has two degrees of freedom ( and �) with two free parameters (m and m�).
The initial conditions are specified by the initial values of the fields and their derivatives. We start our fields at zero
velocity but make sure that inflation lasts long enough so that the fields are in the slow–roll regime at the time the
observable scales leave the horizon. We address the following questions: firstly, do the initial conditions of the fields
have an significant influence on the observables and secondly, what are the restrictions on the masses of the fields in
light of the latest Planck results?

Using the formalism presented in the last section, we evaluate the power spectrum and calculate the amplitude AS

of the power spectra at the pivot point k
pivot

= 0.05h�1Mpc�1, the spectral index ns and the tensor-to-scalar ratio
r. To test the robustness of the predictions of the model, we run a large number of di↵erent initial conditions for the
fields � and � for the mass ratio Rm = m /m� between 0.1 and 5. We find that the variation in the spectral index
and the tensor–to scalar ratio is < 1%. The tensor–to–scalar ratio r is small, ranging from r ⇡ 0.035 to r ⇡ 0.07, with
the details depending on m� and m�. DISCUSS AS .

In Figure 1 we illustrate the three types of trajectories that the fields can follow as they are approaching the global
minimum at the end of inflation and the associated power spectra. The figure shows that varying the mass ratio Rm

changes the behaviour of the fields. The heavier  becomes, the more the model behaves like double inflation, where
the heavy field drives inflation first and then the second field triggers a second period of inflation. In the opposite

Ñ  The  case  when  both  fields  have  the  same  mass,  w  =  1  and  a2=  1\12  
reduces  our  Lagrangian	
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III. NUMERICAL RESULTS

The model we consider in this paper has two degrees of freedom ( and �) with two free parameters (m and m�).
The initial conditions are specified by the initial values of the fields and their derivatives. We start our fields at zero
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