Axion monodromy inflation with modulation corrections

Osamu Seto (Hokkai-Gakuen Univ.)

With

Tetsutaro Higaki (KEK)

Tatsuo Kobayashi (Hokkaido)

Yuya Yamaguchi (Hokkaido and Shimane)

[1] Prog. Theor. Exp. Phys. (2014) 103E01[2] JCAP10 (2014) 025

§ Introduction

Inflation solves [Guth, Sato ... (1981)]

- the flatness problem
- the horizon problem
- provides
- seeds of the density perturbation [Hawking, Starobinsky, Guth and Pi (1982)]
- gravitational wave background

[Starobinsky (1979), Rubakov et al (1982)]

§ Slow roll inflation

• Potential for *inflaton* needs to be flat

Large field model...

- The potential have a functional form as V ~ ϕ^n
- The inflaton field displacement is much larger than the Planck scale

 $\Delta \phi \gg M_{\rm P}$

- ensor-to-scalar ratio $\begin{pmatrix} r_{0.002} \end{pmatrix}$ 0.10 0.15 • Lyth bound [Lyth (1997)] $\Delta \phi \sim (r/8)^{1/2} N$ =O(10) for (N, r) ~ (50-60, 0.1)
- What keeps the potential flat for such a large field value region?

0.04

0.98

Primordial tilt (n_{π})

§ Inflation

by axion or with shift symmetry

- Shift symmetry is powerful to kill higher order terms of inflaton
- If theory is invariant under $\phi \longrightarrow \phi + i C$, then the potential V = V(..., In[ϕ])
- Flat for the $\text{Im}[\phi]$ direction.
- Its breaking at a scale f
- Then, $V = V(Im[\phi]/f)$

§ Inflation by axion or with shift symmetry

• Narural inflation [Freese et al (1990)]

 $V = V_0 (1 - \cos(\phi/f))$

- Axion monodromy inflation

[Silverstein et al, McAllister et al (2008), ...]

[from Westphal's talk file]

§ Inflation by axion or with shift symmetry

§ Axion monodromy inflation with corrections

Total potential might be [McAllister et al (2008)] $V = M^{3} \sqrt{(v^{2} + \phi^{2})} + V_{0} \cos(\phi/f) + \dots$ \uparrow instanton effects

We evaluate inflationary observables.

§ § Axion monodromy inflation with one correction [1]

Total potential

$$V = a_1\phi + a_2\cos\left(\frac{\phi}{f} + \delta\right) + v_0$$

φ

§ § Axion monodromy inflation with one correction [1]

One sin correction ⇒large tensor and reduce ns too much ⇒correct ns by η

then α_s is tiny positive

§ § Axion monodromy inflation with two correction terms [2]

We might have multiple nonperturbative corrections.

 $V = V_{\text{monodromy}}(\phi) + V_{\text{modulations}}(\phi)$ $= a_1\phi + a_2\cos\left(\frac{\phi}{f} + \delta\right) + a'_2\cos\left(\frac{\phi}{f'} + \delta'\right) + v_0,$ \mathbf{V}

§ § Axion monodromy inflation with two correction terms [2]

Scatter plot in ns-r plane for varying parameters (e.g, $a_2/(a_1 f)$, ...) with the fixed parameter (ϕ =10, \leftrightarrow N~50).

§ § Axion monodromy inflation with two correction terms [2]

§ Summary

- Axion monodromy inflation is interesting.
- We calculated the tensor to scalar ratio, spectral index and its running including nonperturbative corrections.
- Nonperturbative corrections give significant changes in inflationary observables.