3-form inflation in a 5D braneworld

Bruno Barros

Faculty of Sciences, University of Lisbon
Collaboration with Nelson Nunes

April 1, 2015

Inflation driven by higher order spin fields

- Vector inflation has been investigated, however, seem to support anisotropy and to inflate, the vector needs a nonminimal coupling and seems to feature some instabilities. (Phys. Rev. D 40, 967 (1989))
- 2-form inflation resembles much the vector inflation with the same problems.
(arXiv:0902.3667)
- 3-form fields inflation has also been studied and seem to present some interesting results.
(arXiv: 1404.0211)
We shall focus on 3-forms!

What is a 3-form?

- Its a rank 3 totally antisymmetric tensor,

$$
A_{\mu \nu \rho}=-A_{\nu \mu \rho}
$$

For example, the Levi-Civita symbol, $\epsilon_{i j k}$, used in the cross-product,

$$
(\vec{u} \times \vec{v})_{i}=\epsilon_{i j k} u_{j} v_{k}
$$

is a 3 -form.

3 -form field model

- We start by considering a flat FLRW 4-dim cosmology, where the metric takes the form,

$$
d s^{2}=-d t^{2}+a^{2}(t) d \mathbf{x}^{2}
$$

where $a(t)$ is the scale factor with t being the cosmic time.

- The general action for Einstein gravity and the 3-form is written as,

$$
S=-\int d^{4} x \sqrt{-g}\left[\frac{1}{2 \kappa^{2}} R-\frac{1}{48} F^{2}-V\left(A^{2}\right)\right]
$$

where $\kappa^{2}=8 \pi G$ and,

$$
F_{\mu \nu \rho \sigma}=4 \nabla_{[\mu} A_{\nu \rho \sigma]}=\nabla_{\mu} A_{\nu \rho \sigma}-\nabla_{\sigma} A_{\mu \nu \rho}+\nabla_{\rho} A_{\sigma \mu \nu}-\nabla_{\nu} A_{\rho \sigma \mu}
$$

Equations of motion

- Let χ be a comoving field associated with the 3-form, $A_{\mu \nu \rho}$.
- Assuming a homogeneous and isotropic universe (cosmological principle) the nonzero components of the comoving field, χ, are,

$$
A_{i j k}=a^{3}(t) \epsilon_{i j k} \chi \Rightarrow A^{2}=6 \chi^{2}
$$

- The Euler-Lagrange equations, for the 3 -form, lead to the equations of motion,

$$
\nabla \cdot F=12 V^{\prime}\left(A^{2}\right) A
$$

or, in terms of the comoving field,

$$
\ddot{\chi}+3 H \dot{\chi}+3 \dot{H} \chi+V_{, \chi}=0
$$

Friedmann and Raychaudhuri equations

- Varying the action with respect to the metric tensor we get the energy-momentum tensor,

$$
T_{\mu \nu}=g_{\mu \nu} \mathcal{L}+\frac{1}{6}(F \circ F)_{\mu a}+6 V^{\prime}\left(A^{2}\right)(A \circ A)_{\mu a}
$$

- Now, using Einstein equations, $G_{\mu \nu}=\kappa^{2} T_{\mu \nu}$, we can calculate the Friedmann and Raychaudhuri equations,

$$
\begin{aligned}
H^{2} & =\frac{\kappa^{2}}{3}\left\{\frac{1}{2}\left[(\dot{\chi}+3 H \chi)^{2}\right]+V\right\} \\
\dot{H} & =-\frac{\kappa^{2}}{2} V_{, \chi \chi}
\end{aligned}
$$

Randall-Sundrum II model

Going up to 5 dimensions...

- A single positive tension brane carrying the standard model fields is embedded in 5-dim Einstein gravity with a negative (bulk) cosmological constant and an infinite fifth dimension.

$$
S=S_{E H}+S_{b r a n e}=-\int d^{5} x \sqrt{-g^{(5)}}\left(\frac{R}{2 \kappa_{5}^{2}}+\Lambda_{5}\right)-\int d^{4} x \sqrt{-g^{(4)}} \lambda
$$

RSII Model

- The 5-dimensional Einstein equations lead to the Friedmann equation,

$$
H^{2}=\frac{\kappa_{5}^{2}}{3} \rho\left[1+\frac{\rho}{2 \lambda}\right]
$$

where λ is the brane tension and κ_{5}^{2} is the five dimensional gravitational constant.

- The motion equations and energy density for a single 3-form, already studied, are given by,

$$
\ddot{\chi}+3 H \dot{\chi}+3 \dot{H} \chi+V_{, \chi}=0
$$

and

$$
\rho_{\chi}=\frac{1}{2}(\dot{\chi}+3 H \chi)^{2}+V
$$

Dynamical system for RSII

- We now define the variables,

$$
x \equiv \chi \quad w \equiv \frac{\dot{\chi}+3 H \chi}{\sqrt{2 \rho}} \quad \Theta \equiv\left(1+\frac{\rho}{2 \lambda}\right)^{-1 / 2}
$$

- The dynamical system for the equations of motion becomes,

$$
\left\{\begin{array}{lc}
x^{\prime}= & 3\left(\sqrt{\frac{2}{3}} \Theta w-x\right) \\
w^{\prime}= & \frac{3}{2} \frac{V, x}{V}\left(1-w^{2}\right)\left[x w-\Theta \sqrt{\frac{2}{3}}\right]
\end{array}\right.
$$

with the following constraint equation for Θ,

$$
\Theta^{2}=\frac{1-w^{2}}{1-w^{2}+\frac{v}{2 \lambda}}
$$

Critical points

- The critical points of the system are,

	x	w	$\frac{V_{, x}}{V}$	Description
A	$\pm \sqrt{\frac{2}{3}} \Theta$	± 1	any	Kinetic domination
B	$x_{\text {ext }}$	$\sqrt{\frac{3}{2}} \frac{1}{\Theta} x_{\text {ext }}$	0	Potential extrema

- How does the system behaves as Θ changes?

Exponential potential $V=e^{\chi^{2}}$

$$
\Theta=1(4-\operatorname{dim}) \quad \Theta=\left(1+\frac{\rho}{2 \lambda}\right)^{-1 / 2}(5-\operatorname{dim})
$$

Exponential potential $V=e^{\chi^{2}}$
$\Theta=1 \quad(4-\operatorname{dim})$

$$
\Theta=\left(1+\frac{\rho}{2 \lambda}\right)^{-1 / 2} \quad(5-\operatorname{dim})
$$

Exponential potential $V=e^{\chi^{2}}$

$$
\Theta=1(4-\operatorname{dim}) \quad \Theta=\left(1+\frac{\rho}{2 \lambda}\right)^{-1 / 2} \quad(5-\operatorname{dim})
$$

- How does Θ changes the phase space in 5-dim?

Exponential potential $V=e^{\chi^{2}}$

$$
\Theta=0.1
$$

Exponential potential $V=e^{\chi^{2}}$

$$
\Theta=0.2
$$

Exponential potential $V=e^{\chi^{2}}$

$$
\Theta=0.3
$$

Exponential potential $V=e^{\chi^{2}}$

$$
\Theta=0.4
$$

Exponential potential $V=e^{\chi^{2}}$

$$
\Theta=0.5
$$

Exponential potential $V=e^{\chi^{2}}$

$$
\Theta=0.6
$$

Exponential potential $V=e^{\chi^{2}}$

$$
\Theta=0.7
$$

Exponential potential $V=e^{\chi^{2}}$

$$
\Theta=0.8
$$

Exponential potential $V=e^{\chi^{2}}$

$$
\Theta=0.9
$$

Exponential potential $V=e^{\chi^{2}}$

$$
\Theta=1
$$

Landau-Ginzburg potential $V=\left(x^{2}-c^{2}\right)^{2}, c=0.5$

$$
\Theta=1(4-\operatorname{dim}) \quad \Theta=\left(1+\frac{\rho}{2 \lambda}\right)^{-1 / 2}(5-\operatorname{dim})
$$

Landau-Ginzburg potential $V=\left(x^{2}-c^{2}\right)^{2}, c=0.5$

$$
\Theta=1(4-\operatorname{dim}) \quad \Theta=\left(1+\frac{\rho}{2 \lambda}\right)^{-1 / 2}(5-\operatorname{dim})
$$

Stability through the effective potential

- Writing the equations of motion,

$$
\ddot{\chi}+3 H \dot{\chi}+3 \dot{H} \chi+V_{, \chi}=0
$$

we can define the effective potential,

$$
V_{\text {eff }, \chi}=3 \dot{H} \chi+V_{, \chi}
$$

and study the stability of the critical points through its analysis instead of tracing the (x, w) phase space.

Landau-Ginzburg potential $V=\left(x^{2}-c^{2}\right)^{2}, c=0.5$

$$
\Theta=0.2
$$

Landau-Ginzburg potential $V=\left(x^{2}-c^{2}\right)^{2}, c=0.5$

$$
\Theta=0.25
$$

Landau-Ginzburg potential $V=\left(x^{2}-c^{2}\right)^{2}, c=0.5$

$$
\Theta=0.3
$$

Landau-Ginzburg potential $V=\left(x^{2}-c^{2}\right)^{2}, c=0.5$

$$
\Theta=0.4
$$

Landau-Ginzburg potential $V=\left(x^{2}-c^{2}\right)^{2}, c=0.5$

$$
\Theta=0.5
$$

Landau-Ginzburg potential $V=\left(x^{2}-c^{2}\right)^{2}, c=0.5$

$$
\Theta=0.6
$$

Landau-Ginzburg potential $V=\left(x^{2}-c^{2}\right)^{2}, c=0.5$

$$
\Theta=0.7
$$

Landau-Ginzburg potential $V=\left(x^{2}-c^{2}\right)^{2}, c=0.5$

$$
\Theta=0.8
$$

Landau-Ginzburg potential $V=\left(x^{2}-c^{2}\right)^{2}, c=0.5$

$$
\Theta=0.9
$$

Landau-Ginzburg potential $V=\left(x^{2}-c^{2}\right)^{2}, c=0.5$

$$
\Theta=1
$$

Landau-Ginzburg potential $V=\left(x^{2}-c^{2}\right)^{2}, c=0.5$

Summary

- 4 DIM
- Less friction!
- The field inflates always at the same critical point, $x= \pm \sqrt{2 / 3}$, then stops and ends in the attractor $x=x_{e x t}$.
- 5 DIM
- More friction!
- The field inflates, as it goes through a journey $(x \approx 0$ to $x= \pm \sqrt{2 / 3})$, at instant critical points, $x= \pm \sqrt{2 / 3} \Theta$.

Future work

- Evolution of scalar perturbations.
- Evolution of tensor perturbations.
- Compare with data.

3-form inflation in a 5D braneworld

Thank you for the attention!

