Flavor symmetry and mass relations,

Cesar Bonilla

IFIC-CSIC, Universidad de Valencia

April 1, 2015

⁰C.B., S. Morisi, E. Peinado, J. Valle. Based on Phys. Lett. B: 742, 99 (2015) → E → E → Q Q

 $\exists \rightarrow$

ъ.

Matter content in nature:

< A >

문어 문

The flavor problem:

• neutrinos have mass $(m_{\nu} \neq 0)$ and is pretty small:

$$\Delta m^2_{21} = 7.59^{+0.20}_{-0.18} \times 10^{-5} \mathrm{eV^2} \ \, \mathrm{and} \ \, |\Delta m^2_{31}| = 2.5^{+0.09}_{-0.16} \times 10^{-3} \mathrm{eV^2}.$$

The flavor problem:

• neutrinos have mass $(m_{\nu} \neq 0)$ and is pretty small:

$$\Delta m^2_{21} = 7.59^{+0.20}_{-0.18} \times 10^{-5} \mathrm{eV}^2 \text{ and } |\Delta m^2_{31}| = 2.5^{+0.09}_{-0.16} \times 10^{-3} \mathrm{eV}^2.$$

• why are the **lepton mixing angles** larger than the **quark mixing angles**?,

 $\lambda \approx 0.22$: Cabibbo angle

B b b b b

3

The flavor problem:

• neutrinos have mass $(m_{\nu} \neq 0)$ and is pretty small:

 $\Delta m^2_{21} = 7.59^{+0.20}_{-0.18} \times 10^{-5} \mathrm{eV}^2 \ \, \mathrm{and} \ \, |\Delta m^2_{31}| = 2.5^{+0.09}_{-0.16} \times 10^{-3} \mathrm{eV}^2.$

- why are the **lepton mixing angles larger** than the **quark mixing angles**?,
- what is the **neutrino nature** (Majorana Vs Dirac)?,

化压力 化压力

э.

The flavor problem:

• neutrinos have mass $(m_{\nu} \neq 0)$ and is pretty small:

 $\Delta m^2_{21} = 7.59^{+0.20}_{-0.18} \times 10^{-5} \mathrm{eV}^2 \ \, \mathrm{and} \ \, |\Delta m^2_{31}| = 2.5^{+0.09}_{-0.16} \times 10^{-3} \mathrm{eV}^2.$

- why are the **lepton mixing angles larger** than the **quark mixing angles**?,
- what is the **neutrino nature** (Majorana Vs Dirac)?,
- why 3 families? ...

Introduction	Mass relation	Conclusions
000000		
Flower Symmetries		

Fermion masses and mixing angles can be explained assuming relations among the families, **flavor symmetries**,

where the symmetry group $\mathbf{G}_{\mathbf{flavor}}$ could be:

• Abelian, Non-Abelian, Continuous, Discrete.

Mass relation

Conclusions

글▶ 글

Flavor Symmetries

Imprints of flavor models

- •Mixing Sum Rules
- •Mass Sum Rules

Neutral Sector

•Mass relations

} Charged Sector

э

Flavor Symmetries

Imprints of flavor models

• mixing sum rules¹. For instance,

$$s \approx r \cos \delta \tag{1}$$

where s and r represent deviations of the TBM 2 in the following parametrization,

$$\sin \theta_{12} = \frac{1}{\sqrt{3}}(1+s), \quad \sin \theta_{23} = \frac{1}{\sqrt{2}}(1+a)$$

and $\sin \theta_{13} = \frac{r}{\sqrt{2}}$

²See Alma Rojas' talk.

 $^{^1{\}rm King}$ JHEP0508:105,2005. For details see King et al. New J.Phys. 16 (2014) 045018 and references therein.

Flavor Symmetries

Imprints of flavor models

• neutrino mass sume rules ³.

 \implies lower bounds for the effective mass $|m_{ee}|~$ in $~\nu 0\beta\beta$ For example,

$$3m_2 + 3m_3 = m_1$$
 (NH) (2)

³Altarelli and Meloni, J.Phys.G36:085005,2009. Barry and Rodejohann, Phys.Rev.D81:093002,2010. Dorame et al., Nucl.Phys. B861 (2012) 259-270. King, Merle and Stuart, JHEP 1312 (2013) 005.

Introduction 0000000	$\begin{array}{c} \mathbf{Mass \ relation} \\ \texttt{00000000} \end{array}$	Conclusions
Flavor Symmetries		

Neutrino mass sum rule, 4

$$3m_2 + 3m_3 = m_1 \tag{3}$$

Figure : Effective $0\nu\beta\beta$ mass parameter $\langle |m_{ee}| \rangle$ as a function of the lightest neutrino mass. The yellow band corresponds to the model which predicts the mass sum rule $3m_2 + 3m_3 = m_1$ for the case of NH.

 $^{^4}$ Figure taken from Dorame et al., Nucl.Phys. B861 (2012) 259-270 (7) + (\equiv + (\equiv + (\equiv +) (\equiv -) (\sim (\sim)

Mass relation

Conclusions

Flavor Symmetries

Imprints of flavor models

• mass relation in a GUT-less framework

$$\frac{m_{\tau}}{\sqrt{m_e m_{\mu}}} \approx \frac{m_b}{\sqrt{m_s m_d}} \left(= \frac{m_t}{\sqrt{m_u m_c}} \right)^5.$$
(4)

⁵This part predicted by Wilczek and Zee in a model with SU(2) as flavor symmetry. That relation is ruled out by the top quark mass.

Introduction 000000● Mass relation

Conclusions

Flavor Symmetries

Mass relation in the charge sector 6

• mass relation in <u>a GUT-less frame</u>work

Figure : The shaded band gives our prediction for the down-strange quark masses at the M_z scale, vertical and horizontal lines are the 1σ experimental range.

⁶Morisi et al., Phys.Rev.D84:036003,2011. King et. al., Phys.Lett. B 724 (2013) 68-72. These models consider A_4 as the underlying flavor symmetry.

э.

- Is it possible to obtain the previous mass relation with another group?
- Are there other mass relations in the charged sector?

"What we found"

- Is it possible to obtain the previous mass relation with another group? Yes, for instance with T_7 ⁷.
- Are there other mass relations in the charged sector?

⁷Some works with T₇, Luhn et al. Phys.Lett. B652 (2007) 27-33, Cao et al. Phys.Rev.Lett. 106 (2011) 131801.

"What we found"

- Is it possible to obtain the previous mass relation with another group? Yes, for instance with T_7 ⁸.
- Are there other mass relations in the charged sector? We still do not know.

$T_7 \operatorname{group}^9$

 T_7 is a SU(3) subgroup with 21 elements. It contains three singlets ($\mathbf{1}_i$ with i = 1, 2, 3) and two triplets ($\mathbf{3}$ and $\overline{\mathbf{3}}$). Multiplication rules:

- $3 \times \bar{3} = \sum_{i} 1_{i} + 3 + \bar{3}$ • $3 \times 3 = 3 + \bar{3} + \bar{3}$ • $\bar{3} \times \bar{3} = \bar{3} + 3 + 3$
- $3 \times 3 \times 3 \supset 1 + 1$

⁹Ishimori et al. Prog.Theor.Phys.Suppl. 183 (2010) 1163, arXiv:100353552 [hep-th] 🗄 👘 👘 🔿 🔍

Mass relation

Conclusions

Model with the T_7 flavor group

Matter assignments of the model

	\overline{L}	ℓ_R	N_R	ν_R	\overline{Q}	d_R	u_{R_i}	H	φ_{ν}	φ_u	$arphi_d$	$\xi_{ u}$
T_7	3	3	3	1_0	3	3	1_i	1_0	3	$\bar{3}$	3	1_0
\mathbb{Z}_7	a^3	a^3	a^5	a^2	a^3	a^3	a^2	1	a^4	a^2	a^1	a^3

Table : Where $a^7 = 1$.

•The Yukawa Lagrangian for the charged sector is given by,

$$\mathcal{L} = \frac{Y^{\ell}}{\Lambda} \overline{L} \ell_R H_d + \frac{Y^d}{\Lambda} \overline{Q} d_R H_d + \frac{Y^u}{\Lambda} \overline{Q} u_R H_u + h.c.$$
(5)

where $H_d = H\varphi_d$, $H_u = \tilde{H}\varphi_u$ and $\tilde{H} = i\sigma_2 H^*$.

3

∃ 990

Model with the T_7 flavor group

After EWSB,

$$M_u = \begin{pmatrix} y_1^u u_1 & y_2^u u_1 & y_3^u u_1 \\ y_1^u u_2 & \omega y_2^u u_2 & \omega^2 y_3^u u_2 \\ y_1^u u_3 & \omega^2 y_2^u u_3 & \omega y_3^u u_3 \end{pmatrix}$$

and

$$M_f = \begin{pmatrix} 0 & e^{i\theta_f} y_1^f v_3 & y_2^f v_2 \\ y_2^f v_3 & 0 & e^{i\theta_f} y_1^f v_1 \\ e^{i\theta_f} y_1^f v_2 & y_2^f v_1 & 0 \end{pmatrix},$$
(6)

where $\omega^3 = 1$,

$$\frac{\langle \varphi_u \rangle \langle H \rangle}{\Lambda} \approx (u_1, u_2, u_3) \ \, \text{and} \ \, \frac{\langle \varphi_d \rangle \langle H \rangle}{\Lambda} \approx (v_1, v_2, v_3)$$

<ロ> (四) (四) (三) (三)

3 **)** } 3

Model with the T_7 flavor group

Mass relation between quarks and leptons

The mass matrix of the charged leptons (down-type quarks) can be rewritten as,

$$M_f = \begin{pmatrix} 0 & e^{i\theta_f} a^f \alpha^f & b^f \\ b^f \alpha^f & 0 & e^{i\theta_f} a^f r^f \\ e^{i\theta_f} a^f & b^f r^f & 0 \end{pmatrix},$$
(7)

where

$$a^{f} = y_{1}^{f} v_{2}, \quad b^{f} = y_{2}^{f} v_{2}, \quad \alpha^{f} = v_{3}/v_{2} \quad \text{and} \quad r^{f} = v_{1}/v_{2}.$$
 (8)

Mass relation

Conclusions

Model with the T_7 flavor group

Mass relation between quarks and leptons

Taking the invariants of $M_f M_f^{\dagger}$ and assuming

$$r^f \gg a^f \Leftrightarrow u_1 \gg u_{2,3}$$

then one obtains,

$$\left(r^f \approx \frac{m_3^f}{\sqrt{m_1^f m_2^f}} \sqrt{\alpha^f}\right).$$

By definition,

$$r^{\ell} = r^d$$
 and $\alpha^{\ell} = \alpha^d$

and then

$$rac{m_{ au}}{\sqrt{m_e m_{\mu}}} pprox rac{m_b}{\sqrt{m_s m_d}}.$$

This was obtained **without** the need of **any GUT**

Introduction 0000000	Mass relation 0000€000	Conclusions
Model with the T_7 flavor group		
Neutrino Sector		

	\overline{L}	ℓ_R	N_R	ν_R	\overline{Q}	d_R	u_{R_i}	H	φ_{ν}	φ_u	φ_d	ξ_{ν}
T_7	3	3	3	1_0	3	3	1_i	1_0	3	Ī	3	1_0
\mathbb{Z}_7	a^3	a^3	a^5	a^2	a^3	a^3	a^2	1	a^4	a^2	a^1	a^3

Table : Where $a^7 = 1$.

•The Lagrangian for the neutrino sector is given by,

$$\mathcal{L}_{\nu} = \frac{Y_1^{\nu}}{\Lambda} \bar{L} N_R \tilde{H}_d + \frac{Y_2^{\nu}}{\Lambda} \bar{L} \nu_R H_u + \kappa_1 N_R N_R \varphi_{\nu} + \kappa_2 \nu_R \nu_R \xi_{\nu} \qquad (9)$$

where, $\tilde{H}_d = \tilde{H}\overline{\varphi}_d$.

ъ.

Mass relation

Conclusions

3

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Model with the T_7 flavor group

•The neutrino masses come from the **Type-I** seesaw,

$$M_{\nu} = -M_D M_{RR}^{-1} M_D^T \tag{10}$$

$$M_{\nu} = \kappa \begin{pmatrix} \epsilon_1 - 2e^{-i\theta_{\nu}}\alpha_1^2\epsilon_2 & -\alpha^d - 2e^{-i\theta_{\nu}}\alpha_1\alpha_2\epsilon_2 & -\epsilon_3 - 2e^{-i\theta_{\nu}}\alpha_1\epsilon_2 \\ \cdot & \frac{\alpha^{d\,2}}{\epsilon_1} - 2e^{-i\theta_{\nu}}\alpha_2^2\epsilon_2 & -\frac{\alpha^d\epsilon_3}{\epsilon_1} - 2e^{-i\theta_{\nu}}\alpha_2\epsilon_2 \\ \cdot & \cdot & -2e^{-i\theta_{\nu}}\epsilon_2 + \frac{\epsilon_3^2}{\epsilon_1} \end{pmatrix}$$

which is symmetric and $\alpha_1 = 2.14\lambda^4$, $\alpha_2 = 1.03\lambda^2$, $\lambda = 0.2$ and we have defined,

$$\kappa \equiv \frac{(Y^{\nu}v)^2}{M}, \quad \epsilon_2 \equiv \frac{M(Y_2^{\nu}u)^2}{M_4(Y_1^{\nu}v)^2}, \quad \epsilon_3 \equiv \frac{r^d}{R}$$

and $\theta_{\nu} \equiv -2\theta_1 + \theta_2.$ (11)

Model with the T_7 flavor group

Figure : Left: Assuming normal hierarchy (NH). Right: Assuming inverted hierarchy (IH). Oscillation constraints are taken at 3σ ¹¹.

¹⁰D. Forero, M. Tortola, and J. Valle, Neutrino oscillations refitted, Phys. Rev. D90, 093006 (2014), arXiv:1405.7540 [hep-ph],

¹¹D. Forero, M. Tortola, and J. Valle, Neutrino oscillations refitted, Phys. Rev. D90, 093006 (2014), arXiv:1405.7540 [hep-ph],

Model with the T_7 flavor group

Figure : Effective neutrino mass parameter $|m_{ee}|$ versus the lightest neutrino mass for NH and IH. The vertical dotdashed line and labeled as "Cosmology" denotes the bound from the combination of CMB and BAO data ¹⁴. The vertical dotted line is the future sensitivity of KATRIN, ¹⁵.

¹²Planck Collaboration, P. Ade et al., "Planck 2013 results. XVI. Cosmological parameters," arXiv:1303.5076 [astro-ph.CO].

¹³KATRIN Collaboration Collaboration, L. Bornschein, KATRIN: Direct measurement of neutrino masses in the sub-Ev region, eConf C030626 (2003) FRAP14, arXiv:hep-ex/0309007 [hep-ex].

- We have a model which predicts a mass relation between quarks and leptons.
- We have a lower bound for the lightest neutrino mass.

• $\frac{m_{\overline{\tau}}}{\sqrt{m_e m_{\mu}}} \approx \frac{m_b}{\sqrt{m_s m_d}}$ because of the group structure. It be obtained with other groups containing three-dimensional irreducible representations (irreps) such as, for example, $T_n \cong Z_n \rtimes Z_3$ (with n = 13, 19, 31, 43, 49) as well as T'.