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Non-Minimal Chaotic Inflation (Non-MCI) Unitarity Constraint Supergravity Embedding Inflation Analysis Conclusions

The non-SUSY Framework

Coupling non-Minimally the Inflaton to Gravity

• Our Starting Point is The Action in the Jordan Frame Of A Scalar Field φ with Potential V (φ) non-Minimally Coupled to
the Ricci Scalar Curvature, R, Through A Frame Function fR(φ) (JF). This is:

S =

∫
d4 x
√
−g

(
−

1
2

fR(φ)R +
fK(φ)

2
gµν∂µφ∂νφ − V (φ)

)
, Where

g is the Determinant Of The Background Metric and fR(〈φ〉) ' 1 (in Reduced Planck UnitsWith mP = 1) to Guarantee the
Ordinary Einstein Gravity At Low Energy. We Allow for a Kinetic Mixing Through the Function fK(φ).

•We canWrite S in the Einstein Frame (EF) as follows

S =

∫
d4 x

√
−̂g

(
−

1
2
R̂ +

1
2
ĝµν∂µφ̂∂νφ̂ − V̂

(
φ̂
))

Performing a Conformal Transformation1 AccordingWhichWe Define the EF Metric:

ĝµν = fR gµν ⇒


√
−̂g = f 2

R

√
−g and ĝµν = gµν/ fR ,

R̂ =
(
R + 3� ln fR + 3gµν∂µ fR∂ν fR/2 f 2

R

)
/ fR

and Introduce the EF Canonically Normalized Field, φ̂, and Potential, V̂, Defined As Follows: dφ̂
dφ

2

= J2 =
fK
fR

+
3
2

(
fR,φ
fR

)2

and V̂(φ̂) =
V

(
φ̂(φ)

)
fR

(
φ̂(φ)

)2 ·

•We Observe that fR Affects Both J and V̂CI. Here we deliberate J from the fR-Dependence employing fK , 1.
• The Analysis of non-MCI in the EF Using The Standard Slow-Roll Approximation is EquivalentWith The Analysis in JF.

1K. Maeda (1989), D.S. Salopek, J.R. Bond and J.M. Bardeen (1989); D.I. Kaiser (1995); T. Chiba and M. Yamaguchi (2008).
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Non-Minimal Chaotic Inflation (Non-MCI) Unitarity Constraint Supergravity Embedding Inflation Analysis Conclusions

The non-SUSY Framework

Inflationary Observables - Requirements

• The Number of e-foldings, N̂?, that the Scale kS = 0.05/Mpc Suffers During nMI has to be Sufficient to Resolve the
Horizon and Flatness Problems of Standard Big Bang:

N̂? =

∫ φ̂?

φ̂f

dφ̂
V̂

V̂,̂φ
=

∫ φ?

φf

dφ J2 V̂

V̂,φ
' 61.7 + ln

V̂(φ?)1/2

V̂(φf )1/3
+

1
3

ln Trh +
1
2

ln
fR(φ?)

fR(φf )1/3

Where φ? [φ̂?] is The Value of φ [φ̂] When k? Crosses Outside The Inflationary Horizon;
φf [φ̂f ] is the Value of φ [φ̂] at the end of non-MCI Which Can Be Found From The Condition

max{̂ε(φf ), |̂η(φf )|} = 1, With ε̂ =
1
2

 V̂,̂φ

V̂


2

=
1

2J2

 V̂,φ

V̂

2

and η̂ =
V̂,̂φφ̂

V̂
=

1
J2

 V̂,φφ

V̂
−

V̂,φ

V̂

J,φ
J

 ·

• The Amplitude of the Power Spectrum As of the Curvature Perturbations is To Be Consistent with PLANCK Data:

A1/2
s =

1

2
√

3 π

V̂(φ̂?)3/2

|V̂,̂φ(φ̂?)|
=
|J(φ?)|

2
√

3 π

V̂(φ?)3/2

|V̂,φ(φ?)|
= 4.627 · 10−5

• The (Scalar) Spectral Index, ns, Its Running, αs, And The Tensor-To-Scalar Ratio r are to be ConsistentWith the
Fitting of the Planck Results by the ΛCDM Model (at 95% c.l.)2:

ns = 1−6̂ε? + 2̂η? = 0.968±0.0045, −0.0314 ≤ αs = 2
(
4̂η2

? − (ns − 1)2
)
/3−2̂ξ? ≤ 0.0046 and r = 16̂ε? < 0.11,

Where ξ̂ = V̂,̂φV̂,̂φφ̂φ̂/V̂
2 = V̂,φ η̂,φ/V̂ J2 + 2̂η̂ε And The VariablesWith Subscript ? Are Evaluated at φ = φ?.

• The Combined Bicep2/Keck Array and Planck Results Although Do Not Exclude Inflationary ModelsWith Negligible r’s,
They Seem to Favor ThoseWith r’s of order 0.01 Since

r = 0.048+0.035
−0.032 ⇒ 0.01 . r . 0.085 at 68%c.l.

2Planck Collaboration (2015); Bicep2/Keck Array and Planck Collaborations (2015)
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The Synergy Between fR and VCI

The Two Regimes of Synergistic non-MCI

• Non-MCI has been Originally Formulated As Follows: VCI = λφ4/4, With fR = 1 + cRφ2 and fK = 1.
•We can Generalize the Above Construction Establishing a Synergy Between fR and VCI As follows3:

VCI(φ) = λ2φn/2n/2 With fR = 1 + cRφn/2 and fK = 1

• The Resulting Model Exhibits The Following Two Regimes:
• TheWeak cR Regime, With cR � 1 or φ > 1 and cR-Dependent Observables Converging Towards Their Values In MCI,

I.e., ns ' 1 − (2 + n)/2N̂? = 0.963, 0.947 and r ' 4n/N̂? ' 0.13, 0.28 for n = 2, 4 Respectively (N̂? = 55).

• The Strong cR Regime, With cR � 1 and φ < 1 and cR-Independent Observables:

ns ' 1 − 2/N̂? = 0.965 and r ' 12/N̂2
? = 0.0036.
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3C. Pallis (2010); R. Kallosh, A. Linde and D. Roest (2013); A. Kehagias, A.M. Dizgah and A. Riotto (2013).
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The Ultraviolet (UV) Cut-off Scale

Einstein Frame Computation

•We Analyze The Small-Field Behavior Of the Theory Expanding S About δφ = φ− 0 In Terms of φ̂4. To this EndWe Find 〈J〉
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3/2cR , for n = 2,
1, for n , 2

For 〈 fK〉 = 1 .

We Observe that φ̂ = φ for n > 2 At the Vacuum of The Theory.

• For n = 2 and any cR We obtain ΛUV = mP Since The Expansions Abound 〈φ〉 = 0 Give:
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Since The TermWhich Yields The Smallest Denominator For cR > 1 is 3n2 c2
R
φ̂n−2/8 We Find ΛUV = mP/c

2/(n−2)
R

.
• IfWe Introduce a non-Canonical Kinetic Mixing Such That

〈 fK〉 = cK And cR = rRKcn/4
K

The Expansions Above Are Rewritten In Terms of the New Parameter rRK
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2 + · · ·

)
,

Consequently, No ProblemWith The Perturbative Unitarity Emerges for rRK ≤ 1, Even If cR and cK Are Large.
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The Ultraviolet (UV) Cut-off Scale

Jordan Frame Computation

• If we Expand gµν About The Flat Spacetime Metric ηµν and φ About Its V.E.V As Follows

gµν ' ηµν + hµν and φ = 〈φ〉 + δφ Where 〈φ〉 ' 0.

The Lagrangian Corresponding To The Two First Terms In The Right-Hand Side Of S Takes The Form (〈φ〉 = 0):

δL = −
〈 fR〉

4
FEH

(
hµν

)
+
〈 fK〉

2
∂µδφ∂

µδφ +

(
〈 fR,φ〉δφ +

1
2
〈 fR,φφ〉δφ2 +

1
6
〈 fR,φφφ〉δφ3 + · · ·

)
FR

= −
1
8

FEH

(
h̄µν

)
+

1
2
∂µδφ∂

µδφ + Λ−1
UVδφ

n/2
�h̄ ,

(
The Only non-Vanishing Term is (n/2)!cRδφn/2

)
Where The Functions FEH and FR Read: FEH = hµν�hµν − h�h + 2∂ρhµρ∂νhµν − 2∂νhµν∂µh and FR = �h − ∂µ∂νhµν

• The JF Canonically Normalized Fields h̄µν and δφ Are Defined By The Relations:

δφ =

√
〈 f̄R〉
〈 fR〉

δφ and h̄µν =
√
〈 fR〉 hµν +

〈 fR,φ〉√
〈 fR〉

ηµνδφ with f̄R = fK fR +
3
2

f 2
R,φ, With 〈 fR〉 = 1 and 〈 fR,φ〉 = 0 for n > 2.

• For n = 2, No Offending Term Arises And So It Is a Unitarity-Safe Case.
• The Problematic Scattering Amplitude A RemainsWithin The Validity Of The Perturbation Theory Provided That E < ΛUV
IsWritten In Terms Of The Center-Of-Mass Energy E As Follows

A ∼

(
E

ΛUV

)2

With ΛUV '
1

cR

〈 f̄R〉n/4

〈 fR〉(n−2)/4 =
〈 fK〉n/4

cR
= r−1
RK if 〈 fK〉 = cK = (cR/rRK)4/n

Therefore, We Verify That Perturbative Unitarity Is Retained Up to Planck Scale, if rRK ≤ 1. For These Reasons

We Propose to Analyze Models of Kinetically Modified non-MCI With fK = cK f m
R

Where cK = (cR/rRK)4/n
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Where The Functions FEH and FR Read: FEH = hµν�hµν − h�h + 2∂ρhµρ∂νhµν − 2∂νhµν∂µh and FR = �h − ∂µ∂νhµν

• The JF Canonically Normalized Fields h̄µν and δφ Are Defined By The Relations:
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√
〈 f̄R〉
〈 fR〉

δφ and h̄µν =
√
〈 fR〉 hµν +

〈 fR,φ〉√
〈 fR〉

ηµνδφ with f̄R = fK fR +
3
2

f 2
R,φ, With 〈 fR〉 = 1 and 〈 fR,φ〉 = 0 for n > 2.

• For n = 2, No Offending Term Arises And So It Is a Unitarity-Safe Case.

• The Problematic Scattering Amplitude A RemainsWithin The Validity Of The Perturbation Theory Provided That E < ΛUV
IsWritten In Terms Of The Center-Of-Mass Energy E As Follows

A ∼

(
E

ΛUV

)2

With ΛUV '
1

cR

〈 f̄R〉n/4

〈 fR〉(n−2)/4 =
〈 fK〉n/4

cR
= r−1
RK if 〈 fK〉 = cK = (cR/rRK)4/n

Therefore, We Verify That Perturbative Unitarity Is Retained Up to Planck Scale, if rRK ≤ 1. For These Reasons

We Propose to Analyze Models of Kinetically Modified non-MCI With fK = cK f m
R

Where cK = (cR/rRK)4/n
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Non-Minimal Chaotic Inflation (Non-MCI) Unitarity Constraint Supergravity Embedding Inflation Analysis Conclusions

The General Framework

Realization of non-MCI Within SUGRA (Using a Gauge Singlet Inflaton)

• The General EF Action For The Scalar Fields Φα Plus Gravity In Four Dimensional N = 1 SUGRA is:

S =

∫
d4 x

√
−̂g

(
−

1
2
R̂ + Kαβ̄ĝ

µν∂µΦ
α∂νΦ

∗β̄ − V̂
)

Where V̂ = V̂F = eK
(
Kαβ̄(DαW)(D∗

β̄
W∗) − 3|W |2

)
,

K is The Kähler Potential With Kαβ̄ =
∂2K

∂Φα∂Φ∗β̄
> 0 and Kαβ̄Kαγ̄ = δ

β̄
γ̄; DαW = W,Φα + K,ΦαW.

Therefore, Implementing non-MCI Within SUGRA Requires The Appropriate Selection of W and K

• IfWe Set 5 K = −3 ln
(
−Ω/3

)
Where Ω is The Frame Function and Perform a Conformal Transformation, S In JF Reads

S =

∫
d4 x
√
−g

(
Ω

3
R

2
+ Ωαβ̄∂µΦ

α∂µΦ∗β̄ −ΩAµA
µ − V

)
, With Aµ = −i

(
∂µΦ

αΩα − ∂µΦ
∗ᾱΩᾱ

)
/2Ω

•We Observe that Ω Enters The Kinetic Terms of the Φα ’s too. S Can Exhibit Non-Minimal Couplings of Φα ’s to R If
• Ω Consists of an Holomorphic ΩH and a Kinetic ΩK Part, With ΩH � ΩK ' δαβΦ

αΦβ:

Ω = ΩK − 3
(
ΩH(Φα) + Ω∗H(Φ∗ᾱ)

)
⇒ K = −3 ln

(
ΩH(Φα) + Ω∗H(Φ∗ᾱ) −ΩK/3

)
, Where

ΩK

(
|Φα |2

)
= |Φα |2 + k

ΦαΦβ |Φ
α |2 |Φβ |2 (Terms Φ∗αΦβ With α , β Can Be Forbidden)

With k
ΦαΦβ ∼ 1. The terms |Φα |2 |Φβ |2 Are Included In Order To Evade A Tachyonic Instability Occurring Along This

Direction of The “Stabilized” (Non-Inflaton) Field.
• Canonical Terms for Φα ’s are Obtained EitherWith |Φa |2 orWith (Φa − Φ∗ᾱ)2/2;
• Aµ = 0. This HappensWhen Φα = |Φα | or Φα = 0 During non-MCI.

5M.B. Einhorn and D.R.T. Jones (2010); S. Ferrara et al. (2010, 2011); H.M. Lee (2010); C.P. and N. Toumbas (2011).
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∗ᾱΩᾱ
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)
⇒ K = −3 ln

(
ΩH(Φα) + Ω∗H(Φ∗ᾱ) −ΩK/3
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∗ᾱΩᾱ
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KineticallyModified non-MCI in SUGRA

Selecting Conveniently the Superpotential and Frame Function

•We Use 2 Superfields Φ1 = Φ (Inflaton) and Φ2 = S (“Stabilized” Field) And Adopt the Following Superpotential:

W = λS Φn/2

FromWhich in the The SUSY LimitWe Get VCI = λ2 |Φ|n + λ2 |S |2

Charge Assignments
Superfields: S Φ

U(1) 1 2/n

• IfWe Set S = 0, The Only Surviving Term of V̂ is V̂CI = eK KS S ∗
∣∣∣W,S

∣∣∣2.
• To Obtain Kinetically Modified non-MCI in SUGRA We Select the Following Kähler Potential :

K = −3 ln
(

1
2

(
FR + F∗

R

)
+

cK

2m6

(
FR + F∗

R

)m
FK − FS +

kΦ

6
F2

K −
kS Φ

3
FK |S |2

)
,

WhereWe have Defined The Functions

FR(Φ) = 1 + 2
n
4 Φ

n
2 cR , FK = (Φ − Φ∗)2 and FS = |S |2/3 − kS |S |4/3.

• Along the Inflationary Direction S = Φ − Φ∗ = 0, V̂CI0 isWritten As Follows:

V̂CI =
λ2 |Φ|n

f 2
R

Where fR = FR = −Ω/3, Since eK = f −3
R
and KS S ∗ = fR ·

• The η ProblemWithin SUGRA is Resolved by Mildly Tuning cK � 1 and rRK = cR/c
n/4
K ≤ 1.

• The Function cK f m
R

Remains Invisible in V̂CI And Influences Only the Canonical Normalization of Φ, KΦΦ∗ = J2

• For cK � cR, Our models are Completely Natural, Because The Theory Enjoys The Following Enhanced Symmetries:

Φ→ Φ∗, Φ→ Φ + c and S → eiαS , in the Limits cR → 0 & λ→ 0
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• Along the Inflationary Direction S = Φ − Φ∗ = 0, V̂CI0 isWritten As Follows:

V̂CI =
λ2 |Φ|n

f 2
R

Where fR = FR = −Ω/3, Since eK = f −3
R
and KS S ∗ = fR ·

• The η ProblemWithin SUGRA is Resolved by Mildly Tuning cK � 1 and rRK = cR/c
n/4
K ≤ 1.

• The Function cK f m
R

Remains Invisible in V̂CI And Influences Only the Canonical Normalization of Φ, KΦΦ∗ = J2

• For cK � cR, Our models are Completely Natural, Because The Theory Enjoys The Following Enhanced Symmetries:

Φ→ Φ∗, Φ→ Φ + c and S → eiαS , in the Limits cR → 0 & λ→ 0
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KineticallyModified non-MCI in SUGRA

Framework Of Inflationary Analysis

• Expanding Φ and S in Real And Imaginary Parts as Follows:
Φ = φeiθ/

√
2 and S = (s + is̄)/

√
2 We Obtain V̂CI = λ2φn/(1 + cRφn/2)2 (No Dependence on m and cK Arises)

•We Can Check the Stability of the Inflationary Trajectory s = s̄ = θ = 0 w.r.t the Fluctuations Of The Various Fields, i.e.
∂V
∂χ̂α

∣∣∣∣∣
s=s̄=θ=0

= 0 and m̂2
χα > 0 Where m̂2

χα = Egv
[
M̂2
αβ

]
With M̂2

αβ =
∂2V

∂χ̂α∂χ̂β

∣∣∣∣∣∣
θ=s=s̄=0

and χα = θ, s, s̄.

• HereWe Introduce The EF Canonically Normalized Fields, dφ̂/dφ = J '
√

cK f m−1
R

, θ̂ ' Jφθ and (̂s,̂̄s) ' (̂s,̂̄s)/
√

fR .

The Mass Spectrum Along The Inflationary Trajectory

Fields Eingestates Masses Squared

1 Real Scalar θ̂ m̂2
θ ' 4V̂CI/3 ' 4H2

CI

2 Real Scalars ŝ, ̂̄s m̂2
s ' 2(6kS fR − 1)V̂CI/3

2 Weyl Spinors ψ̂± = (ψ̂Φ ± ψ̂S )/
√

2 m̂2
ψ± ' n2V̂CI/2cKφ

2 f 1+m
R

•We Observe the Following:
• ∀α, m̂2

χα
> 0. Especially m̂2

s > 0 ⇔ kS > (0.5 − 1.5);

• ∀α, m̂2
χα

> Ĥ2
CI and So Any Inflationary Perturbations Of The Fields Other Than The Inflaton Are Safely Eliminated;

• The One-Loop Radiative Corrections (RCs) à la Coleman-Weinberg to V̂CI Have The Usual Form:

∆V̂CI =
1

64π2

m̂4
θ ln

m̂2
θ

Λ2 + 2m̂4
s ln

m̂2
s

Λ2 − 4m̂4
ψ±

ln
m̂2
ψ±

Λ2


Where Λ ' (1 − 5) · 1014 is A Renormalization Group Mass Scale Determined By Requiring ∆V̂CI(φ?) = 0 or
∆V̂CI(φf ) = 0. Under These Circumstances, ∆V̂CI Has No Significant Effect On The Results.
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• The One-Loop Radiative Corrections (RCs) à la Coleman-Weinberg to V̂CI Have The Usual Form:

∆V̂CI =
1

64π2

m̂4
θ ln

m̂2
θ

Λ2 + 2m̂4
s ln

m̂2
s

Λ2 − 4m̂4
ψ±

ln
m̂2
ψ±

Λ2


Where Λ ' (1 − 5) · 1014 is A Renormalization Group Mass Scale Determined By Requiring ∆V̂CI(φ?) = 0 or
∆V̂CI(φf ) = 0. Under These Circumstances, ∆V̂CI Has No Significant Effect On The Results.

C. Pallis Observable GravitationalWaves From Non-Minimal Inflation in SUGRA 9 / 12



Non-Minimal Chaotic Inflation (Non-MCI) Unitarity Constraint Supergravity Embedding Inflation Analysis Conclusions

KineticallyModified non-MCI in SUGRA

Framework Of Inflationary Analysis

• Expanding Φ and S in Real And Imaginary Parts as Follows:
Φ = φeiθ/

√
2 and S = (s + is̄)/

√
2 We Obtain V̂CI = λ2φn/(1 + cRφn/2)2 (No Dependence on m and cK Arises)

•We Can Check the Stability of the Inflationary Trajectory s = s̄ = θ = 0 w.r.t the Fluctuations Of The Various Fields, i.e.
∂V
∂χ̂α

∣∣∣∣∣
s=s̄=θ=0

= 0 and m̂2
χα > 0 Where m̂2

χα = Egv
[
M̂2
αβ

]
With M̂2

αβ =
∂2V

∂χ̂α∂χ̂β

∣∣∣∣∣∣
θ=s=s̄=0

and χα = θ, s, s̄.

• HereWe Introduce The EF Canonically Normalized Fields, dφ̂/dφ = J '
√

cK f m−1
R

, θ̂ ' Jφθ and (̂s,̂̄s) ' (̂s,̂̄s)/
√

fR .

The Mass Spectrum Along The Inflationary Trajectory

Fields Eingestates Masses Squared

1 Real Scalar θ̂ m̂2
θ ' 4V̂CI/3 ' 4H2

CI

2 Real Scalars ŝ, ̂̄s m̂2
s ' 2(6kS fR − 1)V̂CI/3

2 Weyl Spinors ψ̂± = (ψ̂Φ ± ψ̂S )/
√

2 m̂2
ψ± ' n2V̂CI/2cKφ

2 f 1+m
R

•We Observe the Following:
• ∀α, m̂2

χα
> 0. Especially m̂2

s > 0 ⇔ kS > (0.5 − 1.5);

• ∀α, m̂2
χα

> Ĥ2
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Analytical Results

Approximating the Inflationary Dynamics

• The Slow-Roll Parameters Are Determined Using the Standard Formulae in the EF:
ε̂ = n2/(2φ2cK f 1+m

R
) and η̂ =

(
2 (1 − 1/n) −

(
4 + n(1 + m)cRφ

n
2 /2n

) )̂
ε .

• The Number of e-foldings Is Calculated to be

N̂? '
cKφ

2
?

2n 2F1

(
−m,

4
n

; 1 +
4
n

;−cRφ
n/2
?

)
⇒ φ? '


√

2nN̂?
cK

for m = 0, Since 2F1

(
0, 4

n ; 1 + 4
n ;−cRφ

n/2
?

)
= 1;√

fm?−1
rRKcK

for n = 4, Since 2F1

(
−m, 1; 2;−cRφ

n/2
?

)
=

f 1+m
R

−1

(1+m)cRφ
2
?
.

Here 2F1 is the Gauss Hypergeometric Function and fm? =
(
1 + 8(m + 1)rRKN̂?

)1/(1+m)
.

• For Every m and n, There is a Lower Bound on cK, AboveWhich φ? < 1.
• The Power Spectrum Normalization Implies A Dependence of λ on cK for Every rRK

λ =
√

3Asπ ·


(
cK/nN̂?

) n
4

(
2n fn?/N̂?

) 1
2 for m = 0,

16cKr3/2
RK/( fm? − 1)

3
2 f

1+m
2

m? for n = 4,
where fn? = fR(φ?) = 1 + rRK(2nN̂?)n/4.

• A Clear Efficient Dependence of The Observables On rRK Arises, I.e.,

ns = 1 − ( f 1+m
m? − 1)

m − 1 + (m + 2) fm?
( fm? − 1) f 1+m

m? (1 + m)N̂?

, r =
16( f 1+m

m? − 1)

( fm? − 1) f 1+m
m? (1 + m)N̂?

,

αs =
f −2(1+m)
m?

(1 + m)N̂?

( f 1+m
m? − 1)2

( fm? − 1)2

(
2 fm?(1 + fm?) + 3( fm? − 1) fm?m + ( fm? − 1)2m2 − 1)

)
• E.g., Expanding the Relevant Formulas for 1/N̂? � 1 We Find for n = 4 and m = 1:

ns ' 1 − 3/2N̂? − 3/8(N̂3
?rRK)1/2, r ' 1/2N̂2

?rRK + 2/(N̂3
?rRK)1/2, αs ' −3/2N̂2

? − 9/16(N̂5
?rRK)1/2
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) n
4

(
2n fn?/N̂?

) 1
2 for m = 0,

16cKr3/2
RK/( fm? − 1)

3
2 f

1+m
2

m? for n = 4,
where fn? = fR(φ?) = 1 + rRK(2nN̂?)n/4.

• A Clear Efficient Dependence of The Observables On rRK Arises, I.e.,

ns = 1 − ( f 1+m
m? − 1)

m − 1 + (m + 2) fm?
( fm? − 1) f 1+m

m? (1 + m)N̂?

, r =
16( f 1+m

m? − 1)

( fm? − 1) f 1+m
m? (1 + m)N̂?

,

αs =
f −2(1+m)
m?

(1 + m)N̂?

( f 1+m
m? − 1)2

( fm? − 1)2

(
2 fm?(1 + fm?) + 3( fm? − 1) fm?m + ( fm? − 1)2m2 − 1)

)
• E.g., Expanding the Relevant Formulas for 1/N̂? � 1 We Find for n = 4 and m = 1:

ns ' 1 − 3/2N̂? − 3/8(N̂3
?rRK)1/2, r ' 1/2N̂2

?rRK + 2/(N̂3
?rRK)1/2, αs ' −3/2N̂2

? − 9/16(N̂5
?rRK)1/2
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•We Observe the Following:
• Apart from the n = 2 line, the Others Terminate for rRK = 1, BeyondWhich The Theory Ceases To Be Unitarity Safe.
• For m = 0 we Reveal The Results of the Original non-MCI AlthoughWith φ < 1.
• For m = 1 The Curves Move To The Right And Fill More Densely the 1-σ Observationally Favored Ranges For Quite

Natural rRK ’s – e.g. 0.005 . rRK . 0.1 for m = 1 and n = 4.
• The Requirement rRK ≤ 1 Provides a Lower Bound on r, Which Ranges From 0.0032 (for m = 0 and n = 6) to 0.015

(for m = 4 and n = 4).
• The n = 2 Line Approaches an Attractor Value for cR � 1 any m.

C. Pallis Observable GravitationalWaves From Non-Minimal Inflation in SUGRA 11 / 12



Non-Minimal Chaotic Inflation (Non-MCI) Unitarity Constraint Supergravity Embedding Inflation Analysis Conclusions

Numerical Results

Testing Against Observations

• Imposing the PlanckConstraints for N̂? = 55, kS = 0.5 − 1 and kΦ = 1 we Obtain the Following Allowed Curves:

0.955 0.960 0.965 0.970 0.975 0.980

0.02

0.04

0.06

0.08

0.10

0.12

0.14

r
RK

 = 

r
RK

 = 

r
RK

 = 

0.01 11

9 10-4

0.002

0.15

0.08

0.3

0.8

0.027

0.001

0.05

0.013
0.02

  n = 2
  n = 4
  n = 6

r 0.
00

2

 ns

6 10-3

m = 0

0.955 0.960 0.965 0.970 0.975 0.980

0.02

0.04

0.06

0.08

0.10

0.12

0.14

r
RK

 = 

r
RK

 = 

r
RK

 = 

1 1

0.3
7.3 10-4

3.5 10-4

0.0015
0.005

0.072

0.15

1

0.022

0.001

0.03

9 10-3

0.015

  n = 2
  n = 4
  n = 6

r 0.
00

2

 ns

5 10-3

0.1

m = 1

•We Observe the Following:
• Apart from the n = 2 line, the Others Terminate for rRK = 1, BeyondWhich The Theory Ceases To Be Unitarity Safe.

• For m = 0 we Reveal The Results of the Original non-MCI AlthoughWith φ < 1.
• For m = 1 The Curves Move To The Right And Fill More Densely the 1-σ Observationally Favored Ranges For Quite

Natural rRK ’s – e.g. 0.005 . rRK . 0.1 for m = 1 and n = 4.
• The Requirement rRK ≤ 1 Provides a Lower Bound on r, Which Ranges From 0.0032 (for m = 0 and n = 6) to 0.015

(for m = 4 and n = 4).
• The n = 2 Line Approaches an Attractor Value for cR � 1 any m.

C. Pallis Observable GravitationalWaves From Non-Minimal Inflation in SUGRA 11 / 12



Non-Minimal Chaotic Inflation (Non-MCI) Unitarity Constraint Supergravity Embedding Inflation Analysis Conclusions

Numerical Results

Testing Against Observations

• Imposing the PlanckConstraints for N̂? = 55, kS = 0.5 − 1 and kΦ = 1 we Obtain the Following Allowed Curves:

0.955 0.960 0.965 0.970 0.975 0.980

0.02

0.04

0.06

0.08

0.10

0.12

0.14

r
RK

 = 

r
RK

 = 

r
RK

 = 

0.01 11

9 10-4

0.002

0.15

0.08

0.3

0.8

0.027

0.001

0.05

0.013
0.02

  n = 2
  n = 4
  n = 6

r 0.
00

2

 ns

6 10-3

m = 0

0.955 0.960 0.965 0.970 0.975 0.980

0.02

0.04

0.06

0.08

0.10

0.12

0.14

r
RK

 = 

r
RK

 = 

r
RK

 = 

1 1

0.3
7.3 10-4

3.5 10-4

0.0015
0.005

0.072

0.15

1

0.022

0.001

0.03

9 10-3

0.015

  n = 2
  n = 4
  n = 6

r 0.
00

2

 ns

5 10-3

0.1

m = 1

•We Observe the Following:
• Apart from the n = 2 line, the Others Terminate for rRK = 1, BeyondWhich The Theory Ceases To Be Unitarity Safe.
• For m = 0 we Reveal The Results of the Original non-MCI AlthoughWith φ < 1.

• For m = 1 The Curves Move To The Right And Fill More Densely the 1-σ Observationally Favored Ranges For Quite
Natural rRK ’s – e.g. 0.005 . rRK . 0.1 for m = 1 and n = 4.

• The Requirement rRK ≤ 1 Provides a Lower Bound on r, Which Ranges From 0.0032 (for m = 0 and n = 6) to 0.015
(for m = 4 and n = 4).

• The n = 2 Line Approaches an Attractor Value for cR � 1 any m.

C. Pallis Observable GravitationalWaves From Non-Minimal Inflation in SUGRA 11 / 12



Non-Minimal Chaotic Inflation (Non-MCI) Unitarity Constraint Supergravity Embedding Inflation Analysis Conclusions

Numerical Results

Testing Against Observations

• Imposing the PlanckConstraints for N̂? = 55, kS = 0.5 − 1 and kΦ = 1 we Obtain the Following Allowed Curves:

0.955 0.960 0.965 0.970 0.975 0.980

0.02

0.04

0.06

0.08

0.10

0.12

0.14

r
RK

 = 

r
RK

 = 

r
RK

 = 

0.01 11

9 10-4

0.002

0.15

0.08

0.3

0.8

0.027

0.001

0.05

0.013
0.02

  n = 2
  n = 4
  n = 6

r 0.
00

2

 ns

6 10-3

m = 0

0.955 0.960 0.965 0.970 0.975 0.980

0.02

0.04

0.06

0.08

0.10

0.12

0.14

r
RK

 = 

r
RK

 = 

r
RK

 = 

1 1

0.3
7.3 10-4

3.5 10-4

0.0015
0.005

0.072

0.15

1

0.022

0.001

0.03

9 10-3

0.015

  n = 2
  n = 4
  n = 6

r 0.
00

2

 ns

5 10-3

0.1

m = 1

•We Observe the Following:
• Apart from the n = 2 line, the Others Terminate for rRK = 1, BeyondWhich The Theory Ceases To Be Unitarity Safe.
• For m = 0 we Reveal The Results of the Original non-MCI AlthoughWith φ < 1.
• For m = 1 The Curves Move To The Right And Fill More Densely the 1-σ Observationally Favored Ranges For Quite

Natural rRK ’s – e.g. 0.005 . rRK . 0.1 for m = 1 and n = 4.

• The Requirement rRK ≤ 1 Provides a Lower Bound on r, Which Ranges From 0.0032 (for m = 0 and n = 6) to 0.015
(for m = 4 and n = 4).

• The n = 2 Line Approaches an Attractor Value for cR � 1 any m.

C. Pallis Observable GravitationalWaves From Non-Minimal Inflation in SUGRA 11 / 12



Non-Minimal Chaotic Inflation (Non-MCI) Unitarity Constraint Supergravity Embedding Inflation Analysis Conclusions

Numerical Results

Testing Against Observations

• Imposing the PlanckConstraints for N̂? = 55, kS = 0.5 − 1 and kΦ = 1 we Obtain the Following Allowed Curves:

0.955 0.960 0.965 0.970 0.975 0.980

0.02

0.04

0.06

0.08

0.10

0.12

0.14

r
RK

 = 

r
RK

 = 

r
RK

 = 

0.01 11

9 10-4

0.002

0.15

0.08

0.3

0.8

0.027

0.001

0.05

0.013
0.02

  n = 2
  n = 4
  n = 6

r 0.
00

2

 ns

6 10-3

m = 0

0.955 0.960 0.965 0.970 0.975 0.980

0.02

0.04

0.06

0.08

0.10

0.12

0.14

r
RK

 = 

r
RK

 = 

r
RK

 = 

1 1

0.3
7.3 10-4

3.5 10-4

0.0015
0.005

0.072

0.15

1

0.022

0.001

0.03

9 10-3

0.015

  n = 2
  n = 4
  n = 6

r 0.
00

2

 ns

5 10-3

0.1

m = 1

•We Observe the Following:
• Apart from the n = 2 line, the Others Terminate for rRK = 1, BeyondWhich The Theory Ceases To Be Unitarity Safe.
• For m = 0 we Reveal The Results of the Original non-MCI AlthoughWith φ < 1.
• For m = 1 The Curves Move To The Right And Fill More Densely the 1-σ Observationally Favored Ranges For Quite

Natural rRK ’s – e.g. 0.005 . rRK . 0.1 for m = 1 and n = 4.
• The Requirement rRK ≤ 1 Provides a Lower Bound on r, Which Ranges From 0.0032 (for m = 0 and n = 6) to 0.015

(for m = 4 and n = 4).

• The n = 2 Line Approaches an Attractor Value for cR � 1 any m.

C. Pallis Observable GravitationalWaves From Non-Minimal Inflation in SUGRA 11 / 12



Non-Minimal Chaotic Inflation (Non-MCI) Unitarity Constraint Supergravity Embedding Inflation Analysis Conclusions

Numerical Results

Testing Against Observations

• Imposing the PlanckConstraints for N̂? = 55, kS = 0.5 − 1 and kΦ = 1 we Obtain the Following Allowed Curves:

0.955 0.960 0.965 0.970 0.975 0.980

0.02

0.04

0.06

0.08

0.10

0.12

0.14

r
RK

 = 

r
RK

 = 

r
RK

 = 

0.01 11

9 10-4

0.002

0.15

0.08

0.3

0.8

0.027

0.001

0.05

0.013
0.02

  n = 2
  n = 4
  n = 6

r 0.
00

2

 ns

6 10-3

m = 0

0.955 0.960 0.965 0.970 0.975 0.980

0.02

0.04

0.06

0.08

0.10

0.12

0.14

r
RK

 = 

r
RK

 = 

r
RK

 = 

1 1

0.3
7.3 10-4

3.5 10-4

0.0015
0.005

0.072

0.15

1

0.022

0.001

0.03

9 10-3

0.015

  n = 2
  n = 4
  n = 6

r 0.
00

2

 ns

5 10-3

0.1

m = 1

•We Observe the Following:
• Apart from the n = 2 line, the Others Terminate for rRK = 1, BeyondWhich The Theory Ceases To Be Unitarity Safe.
• For m = 0 we Reveal The Results of the Original non-MCI AlthoughWith φ < 1.
• For m = 1 The Curves Move To The Right And Fill More Densely the 1-σ Observationally Favored Ranges For Quite

Natural rRK ’s – e.g. 0.005 . rRK . 0.1 for m = 1 and n = 4.
• The Requirement rRK ≤ 1 Provides a Lower Bound on r, Which Ranges From 0.0032 (for m = 0 and n = 6) to 0.015

(for m = 4 and n = 4).
• The n = 2 Line Approaches an Attractor Value for cR � 1 any m.

C. Pallis Observable GravitationalWaves From Non-Minimal Inflation in SUGRA 11 / 12



Non-Minimal Chaotic Inflation (Non-MCI) Unitarity Constraint Supergravity Embedding Inflation Analysis Conclusions

• For m = 2 & m = 4 The Curves Move More And More To The Right And Tend To Go Further From The 1-σ Ranges:
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Conclusions

•We Proposed A Variant of non-MCI Which Can Safely Accommodate r’s of Order 0.01.
• This setting can be Elegantly Implemented in SUGRA, Employing a Logarithmic Kähler Potential Which Includes an
Holomorphic Function and a Shift-Symmetric Quadratic Function FK Which Remains Invisible in V̂CI0 While Dominates J.
• Inflationary Solutions Can Be Attained EvenWith φ < 1 Requiring Large cK ’s andWithout Causing Any ProblemWith The
Perturbative Unitarity.
• A Sizable Fraction of the Allowed Parameter Space Of Our Models (with n = 4) can be Studied Analytically.
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