| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | UNITARITY CONSTRAINT | SUPERGRAVITY EMBEDDING | INFLATION ANALYSIS | CONCLUSIONS |
|-----------------------------------------|----------------------|------------------------|--------------------|-------------|
| 00                                      | 00                   | 0                      | 0                  |             |
| 0                                       |                      | 00                     | 0                  |             |

# **OBSERVABLE GRAVITATIONAL WAVES FROM NON-MINIMAL INFLATION IN SUGRA**

# C. PALLIS

DEPARTAMENT DE FÍSICA TÈORICA – IFIC UNIVERSITY OF VALÉNCIA – CSIC

# BASED ON:

• C.P., arXiv:1503.05887.

# OUTLINE

## NON-MINIMAL CHAOTIC INFLATION (NON-MCI)

The non-SUSY Framework The Synergy Between  $f_{\mathcal{R}}$  and  $V_{\mathrm{CI}}$ 

# UNITARITY CONSTRAINT

THE ULTRAVIOLET (UV) CUT-OFF SCALE

# SUPERGRAVITY EMBEDDING

THE GENERAL FRAMEWORK KINETICALLY MODIFIED NON-MCI IN SUGRA

#### INFLATION ANALYSIS

ANALYTICAL RESULTS NUMERICAL RESULTS

### CONCLUSIONS

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) O | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | Conclusions |
|-------------------------------------------|----------------------------|-----------------------------------|------------------------------|-------------|
| The NON-SUSY Framework                    |                            |                                   |                              |             |

# COUPLING NON-MINIMALLY THE INFLATON TO GRAVITY

• Our Starting Point is The Action in the Jordan Frame Of A Scalar Field  $\phi$  with Potential  $V(\phi)$  non-Minimally Coupled to the Ricci Scalar Curvature,  $\mathcal{R}$ , Through A Frame Function  $f_{\mathcal{R}}(\phi)$  (JF). This is:

$$\mathcal{S} = \int d^4x \sqrt{-\mathfrak{g}} \Biggl( -\frac{1}{2} f_{\mathcal{R}}(\phi) \mathcal{R} + \frac{f_{\mathrm{K}}(\phi)}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \Biggr), \quad \text{Where}$$

g is the Determinant Of The Background Metric and  $f_R(\langle \phi \rangle) \simeq 1$  (in Reduced Planck Units With  $m_P = 1$ ) to Guarantee the Ordinary Einstein Gravity At Low Energy. We Allow for a Kinetic Mixing Through the Function  $f_K(\phi)$ .

<sup>&</sup>lt;sup>1</sup> K. Maeda (1989), D.S. Salopek, J.R. Bond and J.M. Bardeen (1989); D.I. Kaiser (1995); T. Chiba and M. Yamaguchi (2008). 4 🚊 🕨 4 🚊 🕨 4 🚊 🖉 9, 🔿

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | UNITARITY CONSTRAINT | Supergravity Embedding<br>O | Inflation Analysis<br>O | Conclusions |
|-----------------------------------------|----------------------|-----------------------------|-------------------------|-------------|
| THE NON-SUSY FRAMEWORK                  |                      |                             | _                       |             |

#### COUPLING NON-MINIMALLY THE INFLATON TO GRAVITY

• Our Starting Point is The Action in the Jordan Frame Of A Scalar Field  $\phi$  with Potential  $V(\phi)$  non-Minimally Coupled to the Ricci Scalar Curvature,  $\mathcal{R}$ , Through A Frame Function  $f_{\mathcal{R}}(\phi)$  (JF). This is:

$$\mathcal{S} = \int d^4x \sqrt{-\mathfrak{g}} \left( -\frac{1}{2} f_{\mathcal{R}}(\phi) \mathcal{R} + \frac{f_{\mathcal{K}}(\phi)}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V\left(\phi\right) \right), \quad \text{Where}$$

g is the Determinant Of The Background Metric and  $f_R(\langle \phi \rangle) \simeq 1$  (in Reduced Planck Units With  $m_P = 1$ ) to Guarantee the Ordinary Einstein Gravity At Low Energy. We Allow for a Kinetic Mixing Through the Function  $f_K(\phi)$ .

• We can Write  ${\cal S}$  in the Einstein Frame (EF) as follows

$$S = \int d^4x \sqrt{-\widehat{\mathfrak{g}}} \left( -\frac{1}{2}\widehat{\mathcal{R}} + \frac{1}{2}\widehat{g}^{\mu\nu}\partial_{\mu}\widehat{\phi}\partial_{\nu}\widehat{\phi} - \widehat{V}\left(\widehat{\phi}\right) \right)$$

PERFORMING A CONFORMAL TRANSFORMATION<sup>1</sup> ACCORDING WHICH WE DEFINE THE EF METRIC:

$$\begin{split} \widehat{g}_{\mu\nu} &= f_{\mathcal{R}} \, g_{\mu\nu} \; \Rightarrow \; \begin{cases} \sqrt{-\widehat{\mathfrak{g}}} = f_{\mathcal{R}}^2 \, \sqrt{-\mathfrak{g}} & \text{and} \quad \widehat{\mathcal{G}}^{\mu\nu} = g^{\mu\nu} / f_{\mathcal{R}}, \\ \widehat{\mathcal{R}} &= \left(\mathcal{R} + 3 \Box \ln f_{\mathcal{R}} + 3 g^{\mu\nu} \partial_{\mu} f_{\mathcal{R}} \partial_{\nu} f_{\mathcal{R}} / 2 f_{\mathcal{R}}^2 \right) / f_{\mathcal{R}} \end{cases} \end{split}$$

and Introduce the EF Canonically Normalized Field,  $\hat{\phi}$ , and Potential,  $\hat{V}$ , Defined As Follows:

$$\left(\frac{d\widehat{\phi}}{d\phi}\right)^2 = J^2 = \frac{f_K}{f_{\mathcal{R}}} + \frac{3}{2} \left(\frac{f_{\mathcal{R},\phi}}{f_{\mathcal{R}}}\right)^2 \quad \text{and} \quad \widehat{V}(\widehat{\phi}) = \frac{V\left(\widehat{\phi}(\phi)\right)}{f_{\mathcal{R}}\left(\widehat{\phi}(\phi)\right)^2}.$$

<sup>&</sup>lt;sup>1</sup> K. Maeda (1989), D.S. Salopek, J.R. Bond and J.M. Bardeen (1989); D.I. Kaiser (1995); T. Chiba and M. Yamaguchi (2008). 🗧 🕨 4 🚊 🕨 💈 📀 🖓

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | UNITARITY CONSTRAINT | Supergravity Embedding<br>O | Inflation Analysis<br>O | Conclusions |
|-----------------------------------------|----------------------|-----------------------------|-------------------------|-------------|
| THE NON-SUSY FRAMEWORK                  |                      |                             | _                       |             |

#### COUPLING NON-MINIMALLY THE INFLATON TO GRAVITY

• Our Starting Point is The Action in the Jordan Frame Of A Scalar Field  $\phi$  with Potential  $V(\phi)$  non-Minimally Coupled to the Ricci Scalar Curvature,  $\mathcal{R}$ , Through A Frame Function  $f_{\mathcal{R}}(\phi)$  (JF). This is:

$$\mathcal{S} = \int d^4x \sqrt{-\mathfrak{g}} \left( -\frac{1}{2} f_{\mathcal{R}}(\phi) \mathcal{R} + \frac{f_{\mathrm{K}}(\phi)}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V\left(\phi\right) \right), \quad \text{Where}$$

g is the Determinant Of The Background Metric and  $f_R(\langle \phi \rangle) \simeq 1$  (in Reduced Planck Units With  $m_P = 1$ ) to Guarantee the Ordinary Einstein Gravity At Low Energy. We Allow for a Kinetic Mixing Through the Function  $f_K(\phi)$ .

• We can Write  ${\cal S}$  in the Einstein Frame (EF) as follows

$$S = \int d^4x \sqrt{-\widehat{\mathfrak{g}}} \left( -\frac{1}{2} \widehat{\mathcal{R}} + \frac{1}{2} \widehat{g}^{\mu\nu} \partial_\mu \widehat{\phi} \partial_\nu \widehat{\phi} - \widehat{V}(\widehat{\phi}) \right)$$

PERFORMING A CONFORMAL TRANSFORMATION<sup>1</sup> ACCORDING WHICH WE DEFINE THE EF METRIC:

$$\begin{array}{ll} \widehat{g}_{\mu\nu}=f_{\mathcal{R}}\,g_{\mu\nu} &\Rightarrow \\ \left\{ \begin{array}{l} \sqrt{-\widehat{\mathfrak{g}}}=f_{\mathcal{R}}^2\,\sqrt{-\mathfrak{g}} & \text{and} & \widehat{g}^{\mu\nu}=g^{\mu\nu}/f_{\mathcal{R}}, \\ \widehat{\mathcal{R}}=\left(\mathcal{R}+3\Box\ln f_{\mathcal{R}}+3g^{\mu\nu}\partial_{\mu}f_{\mathcal{R}}\partial_{\nu}f_{\mathcal{R}}/2f_{\mathcal{R}}^2\right)/f_{\mathcal{R}} \end{array} \right. \end{array}$$

and Introduce the EF Canonically Normalized Field,  $\hat{\phi}$ , and Potential,  $\hat{V}$ , Defined As Follows:

$$\left(\frac{d\widehat{\phi}}{d\phi}\right)^2 = J^2 = \frac{f_K}{f_{\mathcal{R}}} + \frac{3}{2} \left(\frac{f_{\mathcal{R},\phi}}{f_{\mathcal{R}}}\right)^2 \quad \text{and} \quad \widehat{V}(\widehat{\phi}) = \frac{V\left(\widehat{\phi}(\phi)\right)}{f_{\mathcal{R}}\left(\widehat{\phi}(\phi)\right)^2}.$$

• We Observe that  $f_{\mathcal{R}}$  Affects Both J and  $\widehat{V}_{CI}$ . Here we deliberate J from the  $f_{\mathcal{R}}$ -Dependence employing  $f_K \neq 1$ .

• THE ANALYSIS OF NON-MCI IN THE EF USING THE STANDARD SLOW-ROLL APPROXIMATION IS EQUIVALENT WITH THE ANALYSIS IN JF.

<sup>&</sup>lt;sup>1</sup> K. Maeda (1989), D.S. Salopek, J.R. Bond and J.M. Bardeen (1989); D.I. Kaiser (1995); T. Chiba and M. Yamaguchi (2008). 🐇 📄 k 🔹 👘 👘 🚆 🛷 🔍

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | CONCLUSIONS |
|-----------------------------------------|----------------------------|-----------------------------------|------------------------------|-------------|
| The NON-SUSY FRAMEWORK                  |                            |                                   |                              |             |

• The Number of e-foldings,  $\widehat{N}_{\star}$ , that the Scale  $k_S = 0.05/Mpc$  Suffers During nMI has to be Sufficient to Resolve the Horizon and Flatness Problems of Standard Big Bang:

$$\widehat{N}_{\star} = \int_{\widehat{\psi}_{\mathrm{f}}}^{\widehat{\phi}_{\star}} d\widehat{\varphi} \, \frac{\widehat{V}}{\widehat{V}_{,\widehat{\varphi}}} = \int_{\phi_{\mathrm{f}}}^{\phi_{\star}} d\phi \, J^2 \frac{\widehat{V}}{\widehat{V}_{,\phi}} \simeq 61.7 + \ln \frac{\widehat{V}(\phi_{\star})^{1/2}}{\widehat{V}(\phi_{\mathrm{f}})^{1/3}} + \frac{1}{3} \ln T_{\mathrm{th}} + \frac{1}{2} \ln \frac{f_{\mathcal{R}}(\phi_{\star})}{f_{\mathcal{R}}(\phi_{\mathrm{f}})^{1/3}}$$

Where  $\phi_{\star}[\widehat{\phi}_{\star}]$  is The Value of  $\phi[\widehat{\phi}]$  When  $k_{\star}$  Crosses Outside The Inflationary Horizon;

 $\phi_{
m f}~[\widehat{\phi}_{
m f}]$  is the Value of  $\phi~[\widehat{\phi}]$  at the end of non-MCI Which Can Be Found From The Condition

$$\max\{\widehat{\epsilon}(\phi_{\mathrm{f}}), [\widehat{\eta}(\phi_{\mathrm{f}})]\} = 1, \quad \text{With} \ \ \widehat{\epsilon} = \frac{1}{2} \left(\frac{\widehat{V}_{,\widehat{\phi}}}{\widehat{V}}\right)^2 = \frac{1}{2J^2} \left(\frac{\widehat{V}_{,\phi}}{\widehat{V}}\right)^2 \quad \text{and} \quad \widehat{\eta} = \frac{\widehat{V}_{,\widehat{\phi}\widehat{\phi}}}{\widehat{V}} = \frac{1}{J^2} \left(\frac{\widehat{V}_{,\phi\phi}}{\widehat{V}} - \frac{\widehat{V}_{,\phi}}{\widehat{V}} \frac{J_{,\phi}}{J}\right).$$

<sup>&</sup>lt;sup>2</sup> Planck Collaboration (2015); BICEP2/Keck Array and Planck Collaborations (2015)

| Non-Minimal Chaotic Inflation (Non-MCI)<br>○<br>● | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | CONCLUSIONS |
|---------------------------------------------------|----------------------------|-----------------------------------|------------------------------|-------------|
| The NON-SUSY FRAMEWORK                            |                            |                                   |                              |             |

• The Number of e-foldings,  $\widehat{N}_{\star}$ , that the Scale  $k_S = 0.05/Mpc$  Suffers During nMI has to be Sufficient to Resolve the Horizon and Flatness Problems of Standard Big Bang:

$$\widehat{N}_{\star} = \int_{\widehat{\phi}_{\mathrm{f}}}^{\widehat{\phi}_{\star}} d\widehat{\phi} \, \frac{\widehat{V}}{\widehat{V}_{,\widehat{\phi}}} = \int_{\phi_{\mathrm{f}}}^{\phi_{\star}} d\phi \, J^2 \frac{\widehat{V}}{\widehat{V}_{,\phi}} \simeq 61.7 + \ln \frac{\widehat{V}(\phi_{\star})^{1/2}}{\widehat{V}(\phi_{\mathrm{f}})^{1/3}} + \frac{1}{3} \ln T_{\mathrm{th}} + \frac{1}{2} \ln \frac{f_{\mathcal{R}}(\phi_{\star})}{f_{\mathcal{R}}(\phi_{\mathrm{f}})^{1/3}}$$

Where  $\phi_{\star}[\hat{\phi}_{\star}]$  is The Value of  $\phi[\hat{\phi}]$  When  $k_{\star}$  Crosses Outside The Inflationary Horizon;  $\phi_{t}[\hat{\phi}_{t}]$  is the Value of  $\phi[\hat{\phi}]$  at the end of Non-MCI Which Can Be Found From The Condition

$$\max\{\widehat{\epsilon}(\phi_{\mathrm{f}}), |\widehat{\eta}(\phi_{\mathrm{f}})|\} = 1, \quad \text{With} \quad \widehat{\epsilon} = \frac{1}{2} \left(\frac{\widehat{V}_{\widehat{\phi}}}{\widehat{V}}\right)^2 = \frac{1}{2J^2} \left(\frac{\widehat{V}_{\phi}}{\widehat{V}}\right)^2 \quad \text{and} \quad \widehat{\eta} = \frac{\widehat{V}_{\widehat{\phi}\widehat{\phi}}}{\widehat{V}} = \frac{1}{J^2} \left(\frac{\widehat{V}_{\phi\phi}}{\widehat{V}} - \frac{\widehat{V}_{\phi}}{\widehat{V}} \frac{J_{\phi}}{J}\right)^2$$

The Amplitude of the Power Spectrum A<sub>s</sub> of the Curvature Perturbations is To Be Consistent with PLANCK Data:

$$A_{\rm s}^{1/2} = \frac{1}{2\sqrt{3}\pi} \frac{\widehat{V}(\widehat{\phi}_{\star})^{3/2}}{|\widehat{V}_{,\widehat{\phi}}(\widehat{\phi}_{\star})|} = \frac{|J(\phi_{\star})|}{2\sqrt{3}\pi} \frac{\widehat{V}(\phi_{\star})^{3/2}}{|\widehat{V}_{,\phi}(\phi_{\star})|} = 4.627 \cdot 10^{-5}$$

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

<sup>&</sup>lt;sup>2</sup> Planck Collaboration (2015); BICEP2/Keck Array and Planck Collaborations (2015)

| Non-Minimal Chaotic Inflation (Non-MCI)<br>○<br>● | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | Conclusions |
|---------------------------------------------------|----------------------------|-----------------------------------|------------------------------|-------------|
| The NON-SUSY Framework                            |                            |                                   |                              |             |

• The Number of e-foldings,  $\widehat{N}_{\star}$ , that the Scale  $k_S = 0.05/Mpc$  Suffers During nMI has to be Sufficient to Resolve the Horizon and Flatness Problems of Standard Big Bang:

$$\widehat{N}_{\star} = \int_{\widehat{\phi}_{\mathrm{f}}}^{\widehat{\phi}_{\star}} d\widehat{\phi} \, \frac{\widehat{V}}{\widehat{V}_{,\widehat{\phi}}} = \int_{\phi_{\mathrm{f}}}^{\phi_{\star}} d\phi \, J^2 \frac{\widehat{V}}{\widehat{V}_{,\phi}} \simeq 61.7 + \ln \frac{\widehat{V}(\phi_{\star})^{1/2}}{\widehat{V}(\phi_{\mathrm{f}})^{1/3}} + \frac{1}{3} \ln T_{\mathrm{th}} + \frac{1}{2} \ln \frac{f_{\mathcal{R}}(\phi_{\star})}{f_{\mathcal{R}}(\phi_{\mathrm{f}})^{1/3}}$$

Where  $\phi_{\star}[\widehat{\phi_{\star}}]$  is The Value of  $\phi[\widehat{\phi}]$  When  $k_{\star}$  Crosses Outside The Inflationary Horizon;  $\phi_{t}[\widehat{\phi_{t}}]$  is the Value of  $\phi[\widehat{\phi}]$  at the end of non-MCI Which Can Be Found From The Condition

$$\max\{\widehat{\epsilon}(\phi_{\mathrm{f}}), |\widehat{\eta}(\phi_{\mathrm{f}})|\} = 1, \quad \text{With} \ \ \widehat{\epsilon} = \frac{1}{2} \left(\frac{\widehat{V}_{,\widehat{\phi}}}{\widehat{V}}\right)^2 = \frac{1}{2J^2} \left(\frac{\widehat{V}_{,\phi}}{\widehat{V}}\right)^2 \quad \text{and} \quad \widehat{\eta} = \frac{\widehat{V}_{,\widehat{\phi}\widehat{\phi}}}{\widehat{V}} = \frac{1}{J^2} \left(\frac{\widehat{V}_{,\phi\phi}}{\widehat{V}} - \frac{\widehat{V}_{,\phi}}{\widehat{V}} \frac{J_{,\phi}}{J}\right).$$

• The Amplitude of the Power Spectrum  $A_{
m s}$  of the Curvature Perturbations is To Be Consistent with PLANCK Data:

$$A_{\rm s}^{1/2} = \frac{1}{2\sqrt{3}\pi} \frac{\widehat{V}(\widehat{\phi}_{\star})^{3/2}}{|\widehat{V}_{\widehat{\phi}}(\widehat{\phi}_{\star})|} = \frac{|J(\phi_{\star})|}{2\sqrt{3}\pi} \frac{\widehat{V}(\phi_{\star})^{3/2}}{|\widehat{V}_{\phi}(\phi_{\star})|} = 4.627 \cdot 10^{-5}$$

• The (Scalar) Spectral Index,  $n_s$ , Its Running,  $\alpha_s$ , And The Tensor-To-Scalar Ratio r are to be Consistent With the Fitting of the *Planck* Results by the  $\Lambda$ CDM Model (at 95% c.l.)<sup>2</sup>:

$$\begin{split} n_{\mathrm{s}} &= 1 - 6 \widehat{\epsilon_{\star}} + 2 \widehat{\eta_{\star}} = 0.968 \pm 0.0045, \quad -0.0314 \leq \alpha_{\mathrm{s}} = 2 \left( 4 \widehat{\eta_{\star}^2} - (n_{\mathrm{s}} - 1)^2 \right) / 3 - 2 \widehat{\xi_{\star}} \leq 0.0046 \quad \text{and} \quad r = 16 \widehat{\epsilon_{\star}} < 0.11, \\ \text{Where} \ \widehat{\xi} = \widehat{V}_{\widehat{\phi}} \widehat{V}_{\widehat{\phi} \widehat{\phi} \widehat{\phi}} / \widehat{V}^2 = \widehat{V}_{,\phi} \ \widehat{\eta_{\phi}} / \widehat{V} \ J^2 + 2 \widehat{\eta \widehat{\epsilon}} \ \text{And} \ \text{The Variables With Subscript } \star \text{ Are Evaluated at } \phi = \phi_{\star}. \end{split}$$

・ロト ・ 御 ト ・ 注 ト ・ 注 ト …

<sup>&</sup>lt;sup>2</sup> Planck Collaboration (2015); BICEP2/Keck Array and Planck Collaborations (2015)

| Non-Minimal Chaotic Inflation (Non-MCI)<br>○<br>● | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | Conclusions |
|---------------------------------------------------|----------------------------|-----------------------------------|------------------------------|-------------|
| The NON-SUSY Framework                            |                            |                                   |                              |             |

• The Number of e-foldings,  $\widehat{N}_{\star}$ , that the Scale  $k_S = 0.05/Mpc$  Suffers During nMI has to be Sufficient to Resolve the Horizon and Flatness Problems of Standard Big Bang:

$$\widehat{N}_{\star} = \int_{\widehat{\phi}_{\mathrm{f}}}^{\widehat{\phi}_{\star}} d\widehat{\phi} \, \frac{\widehat{V}}{\widehat{V}_{,\widehat{\phi}}} = \int_{\phi_{\mathrm{f}}}^{\phi_{\star}} d\phi \, J^2 \frac{\widehat{V}}{\widehat{V}_{,\phi}} \simeq 61.7 + \ln \frac{\widehat{V}(\phi_{\star})^{1/2}}{\widehat{V}(\phi_{\mathrm{f}})^{1/3}} + \frac{1}{3} \ln T_{\mathrm{th}} + \frac{1}{2} \ln \frac{f_{\mathcal{R}}(\phi_{\star})}{f_{\mathcal{R}}(\phi_{\mathrm{f}})^{1/3}}$$

Where  $\phi_{\star}[\hat{\phi}_{\star}]$  is The Value of  $\phi[\hat{\phi}]$  When  $k_{\star}$  Crosses Outside The Inflationary Horizon;  $\phi_{t}[\hat{\phi}_{t}]$  is the Value of  $\phi[\hat{\phi}]$  at the end of Non-MCI Which Can Be Found From The Condition

$$\max\{\widehat{\epsilon}(\phi_{\mathrm{f}}), |\widehat{\eta}(\phi_{\mathrm{f}})|\} = 1, \quad \text{With} \quad \widehat{\epsilon} = \frac{1}{2} \left(\frac{\widehat{V}_{,\widehat{\phi}}}{\widehat{V}}\right)^2 = \frac{1}{2J^2} \left(\frac{\widehat{V}_{,\phi}}{\widehat{V}}\right)^2 \quad \text{and} \quad \widehat{\eta} = \frac{\widehat{V}_{,\widehat{\phi}\widehat{\phi}}}{\widehat{V}} = \frac{1}{J^2} \left(\frac{\widehat{V}_{,\phi\phi}}{\widehat{V}} - \frac{\widehat{V}_{,\phi}}{\widehat{V}} \frac{J_{,\phi}}{J}\right).$$

• The Amplitude of the Power Spectrum  $A_{
m s}$  of the Curvature Perturbations is To Be Consistent with PLANCK Data:

$$A_{\rm s}^{1/2} = \frac{1}{2\sqrt{3}\pi} \frac{\widehat{V}(\widehat{\phi}_{\star})^{3/2}}{|\widehat{V}_{\widehat{\phi}}(\widehat{\phi}_{\star})|} = \frac{|J(\phi_{\star})|}{2\sqrt{3}\pi} \frac{\widehat{V}(\phi_{\star})^{3/2}}{|\widehat{V}_{\phi}(\phi_{\star})|} = 4.627 \cdot 10^{-5}$$

• The (Scalar) Spectral Index,  $n_s$ , Its Running,  $\alpha_s$ , And The Tensor-To-Scalar Ratio r are to be Consistent With the Fitting of the *Planck* Results by the **ACDM** Model (at 95% c.l.)<sup>2</sup>:

$$\begin{split} n_{\mathrm{s}} &= 1 - 6\widehat{\epsilon_{\star}} + 2\widehat{\eta}_{\star} = 0.968 \pm 0.0045, \quad -0.0314 \leq \alpha_{\mathrm{s}} = 2\left(4\widehat{\eta_{\star}^2} - (n_{\mathrm{s}} - 1)^2\right)/3 - 2\widehat{\xi}_{\star} \leq 0.0046 \quad \text{and} \quad r = 16\widehat{\epsilon_{\star}} < 0.11, \\ \text{Where } \widehat{\xi} = \widehat{V}_{,\widehat{\phi}} \widehat{V}_{\widehat{\phi}\widehat{\phi}\widehat{\phi}}/\widehat{V}^2 = \widehat{V}_{,\phi} \,\widehat{\eta}_{,\phi}/\widehat{V} \, J^2 + 2\widehat{\eta}\widehat{\epsilon} \text{ And The Variables With Subscript } \star \text{ Are Evaluated at } \phi = \phi_{\star}. \end{split}$$

• The Combined Bicep2/Keck Array and Planck Results Although Do Not Exclude Inflationary Models With Negligible r's, They Seem to Favor Those With r's of order 0.01 Since

 $r = 0.048^{+0.035}_{-0.032} \ \Rightarrow \ 0.01 \lesssim r \lesssim 0.085 \ \text{ at 68\%c.l.}$ 

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

<sup>&</sup>lt;sup>2</sup> Planck Collaboration (2015); BICEP2/Keck Array and Planck Collaborations (2015)

| Non-Minimal Chaotic Inflation (Non-MCI)<br>○○<br>●       | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>O O | Inflation Analysis<br>O<br>O | Conclusions |
|----------------------------------------------------------|----------------------------|------------------------------------|------------------------------|-------------|
| The Synergy Between $f_{\mathcal{R}}$ and $V_{	ext{CI}}$ |                            |                                    |                              |             |

# THE TWO REGIMES OF SYNERGISTIC NON-MCI

- Non-MCI has been Originally Formulated As Follows:  $V_{\text{CI}} = \lambda \phi^4/4$ , With  $f_{\mathcal{R}} = 1 + c_{\mathcal{R}} \phi^2$  and  $f_{\text{K}} = 1$ . We can Generalize the Above Construction Establishing a Synergy Between  $f_{\mathcal{R}}$  and  $V_{\text{CI}}$  As follows<sup>3</sup>:

$$V_{
m CI}(\phi)=\lambda^2\phi^n/2^{n/2}$$
 With  $f_{\cal R}=1+c_{\cal R}\phi^{n/2}$  and  $f_{
m K}=1$ 

<sup>&</sup>lt;sup>3</sup> C. Pallis (2010); R. Kallosh, A. Linde and D. Roest (2013); A. Kehagias, A.M. Dizgah and A. Riotto (2013)... > < A > Image: Im ∢ ≣

| Non-Minimal Chaotic Inflation (Non-MCI)            | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | CONCLUSIONS |
|----------------------------------------------------|----------------------------|-----------------------------------|------------------------------|-------------|
| The Synergy Between $f_{\mathcal{R}}$ and $V_{CI}$ |                            |                                   |                              |             |

# THE TWO REGIMES OF SYNERGISTIC NON-MCI

- Non-MCI has been Originally Formulated As Follows:  $V_{\text{CI}} = \lambda \phi^4/4$ , With  $f_{\mathcal{R}} = 1 + c_{\mathcal{R}} \phi^2$  and  $f_{\text{K}} = 1$ .
- We can Generalize the Above Construction Establishing a Synergy Between  $f_{\mathcal{R}}$  and  $V_{\mathrm{CI}}$  As follows <sup>3</sup>:

$$V_{
m CI}(\phi)=\lambda^2\phi^n/2^{n/2}$$
 With  $f_{\cal R}=1+c_{\cal R}\phi^{n/2}$  and  $f_{
m K}=1$ 

- THE RESULTING MODEL EXHIBITS THE FOLLOWING TWO REGIMES:
  - The Weak  $c_{\mathcal{R}}$  Regime, With  $c_{\mathcal{R}} \ll 1$  or  $\phi > 1$  and  $c_{\mathcal{R}}$ -Dependent Observables Converging Towards Their Values In MCI,

$$\text{I.e., } n_{\text{s}} \simeq 1 - (2+n)/2\widehat{N}_{\star} = 0.963, 0.947 \text{ and } r \simeq 4n/\widehat{N}_{\star} \simeq 0.13, 0.28 \text{ for } n = 2,4 \text{ Respectively } (\widehat{N}_{\star} = 55).$$

• The Strong  $c_R$  Regime, With  $c_R \gg 1$  and  $\phi < 1$  and  $c_R$ -Independent Observables:

$$n_{\rm s} \simeq 1 - 2/\widehat{N}_{\star} = 0.965$$
 and  $r \simeq 12/\widehat{N}_{\star}^2 = 0.0036$ .



<sup>3</sup> C. Pallis (2010); R. Kallosh, A. Linde and D. Roest (2013); A. Kehagias, A.M. Dizgah and A. Riotto (2013): D + 4 🗇 + 4 🚊 + 4 🚊 + 🖉 🖉 🔨 🔍

| Non-Minimal Chaotic Inflation (Non-MCI)            | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | CONCLUSIONS |
|----------------------------------------------------|----------------------------|-----------------------------------|------------------------------|-------------|
| The Synergy Between $f_{\mathcal{R}}$ and $V_{CI}$ |                            |                                   |                              |             |

# THE TWO REGIMES OF SYNERGISTIC NON-MCI

- Non-MCI has been Originally Formulated As Follows:  $V_{\text{CI}} = \lambda \phi^4/4$ , With  $f_{\mathcal{R}} = 1 + c_{\mathcal{R}} \phi^2$  and  $f_{\text{K}} = 1$ .
- We can Generalize the Above Construction Establishing a Synergy Between  $f_{\mathcal{R}}$  and  $V_{\mathrm{CI}}$  As follows <sup>3</sup>:

$$V_{
m CI}(\phi)=\lambda^2\phi^n/2^{n/2}$$
 With  $f_{\cal R}=1+c_{\cal R}\phi^{n/2}$  and  $f_{
m K}=1$ 

- THE RESULTING MODEL EXHIBITS THE FOLLOWING TWO REGIMES:
  - The Weak  $c_R$  Regime, With  $c_R \ll 1$  or  $\phi > 1$  and  $c_R$ -Dependent Observables Converging Towards Their Values In MCI,

I.e., 
$$n_{\rm s} \simeq 1 - (2+n)/2\widehat{N}_{\star} = 0.963, 0.947$$
 and  $r \simeq 4n/\widehat{N}_{\star} \simeq 0.13, 0.28$  for  $n = 2, 4$  Respectively ( $\widehat{N}_{\star} = 55$ ).

• The Strong  $c_R$  Regime, With  $c_R \gg 1$  and  $\phi < 1$  and  $c_R$ -Independent Observables:

$$n_{\rm s} \simeq 1 - 2/\widehat{N}_{\star} = 0.965$$
 and  $r \simeq 12/\widehat{N}_{\star}^2 = 0.0036$ .



3 C. Pallis (2010); R. Kallosh, A. Linde and D. Roest (2013); A. Kehagias, A.M. Dizgah and A. Riotto (2013): 🗆 🕨 ( 🗇 🕨 ( 🗟 🕨 ( 🧟 🕨 ) 🚊 🛷 🔍

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI)<br>OO<br>O | Unitarity Constraint | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | CONCLUSIONS |
|----------------------------------------------------|----------------------|-----------------------------------|------------------------------|-------------|
| The Ultraviolet (UV) Cut-off Scale                 |                      |                                   |                              |             |

• We Analyze The Small-Field Behavior Of the Theory Expanding S About  $\delta\phi = \phi - 0$  In Terms of  $\widehat{\phi}^4$ . To this End We Find  $\langle J \rangle$ 

$$J^2 = \left(\frac{d\widehat{\phi}}{d\phi}\right)^2 = \frac{f_K}{f_R} + \frac{3n^2 c_R^2 \phi^{n-2}}{8f_R^2} \quad \Rightarrow \quad \langle J \rangle = \begin{cases} \sqrt{3/2} c_R, \text{ for } n=2, \\ 1, \text{ for } n\neq2 \end{cases} \qquad \text{For } \langle f_K \rangle = 1 \end{cases}$$

We Observe that  $\widehat{\phi}=\phi$  for n>2 At the Vacuum of The Theory.

<sup>&</sup>lt;sup>4</sup> J.L.F. Barbon and J.R. Espinosa (2009); C.P. Burgess, H.M. Lee, and M. Trott (2010); A. Kehagias, A.M. Dizgah, and 🖪. Riotto (2013) ( 喜 ) 🚊 🔗 🤉 🖓

| Non-Minimal Chaotic Inflation (Non-MCI)<br>OO<br>O | Unitarity Constraint | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | Conclusions |
|----------------------------------------------------|----------------------|-----------------------------------|------------------------------|-------------|
| THE ULTRAVIOLET (UV) CUT-OFF SCALE                 |                      |                                   |                              |             |

• We Analyze The Small-Field Behavior Of the Theory Expanding S About  $\delta\phi = \phi - 0$  In Terms of  $\widehat{\phi}^4$ . To this End We Find  $\langle J \rangle$ 

$$J^{2} = \left(\frac{d\widehat{\phi}}{d\phi}\right)^{2} = \frac{f_{\mathrm{K}}}{f_{\mathrm{R}}} + \frac{3n^{2}c_{\mathrm{R}}^{2}\phi^{n-2}}{8f_{\mathrm{R}}^{2}} \implies \langle J \rangle = \begin{cases} \sqrt{3/2}c_{\mathrm{R}}, \text{ for } n = 2, \\ 1, \text{ for } n \neq 2 \end{cases} \quad \text{For } \langle f_{\mathrm{K}} \rangle = 1 \end{cases}$$

We Observe that  $\widehat{\phi} = \phi$  for n > 2 At the Vacuum of The Theory.

• For n = 2 and any  $c_R$  We obtain  $\Lambda_{\rm UV} = m_{\rm P}$  Since The Expansions Abound  $\langle \phi \rangle = 0$  Give:

$$J^2 \dot{\phi}^2 = \left(1 - \sqrt{\frac{8}{3}}\widehat{\phi} + 2\widehat{\phi}^2 - \cdots\right) \dot{\overline{\phi}}^2 \text{ and } \widehat{V} = \frac{\lambda^2 \widehat{\phi}^2}{3c_R^2} \left(1 - \sqrt{\frac{8}{3}}\widehat{\phi} + 2\widehat{\phi}^2 - \cdots\right).$$

<sup>4</sup> J.L.F. Barbon and J.R. Espinosa (2009); C.P. Burgess, H.M. Lee, and M. Trott (2010); A. Kehagias, A.M. Dizgah, and 🖟. Riotto (2013) 4 🚊 🕨 🚊 🚽 🛇 🔍

| Non-Menimal Chaotic Inflation (Non-MCI)<br>OO<br>O | Unitarity Constraint | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | Conclusions |
|----------------------------------------------------|----------------------|-----------------------------------|------------------------------|-------------|
| THE ULTRAVIOLET (UV) CUT-OFF SCALE                 |                      |                                   |                              |             |

• WE ANALYZE THE SMALL-FIELD BEHAVIOR OF THE THEORY EXPANDING S About  $\delta\phi = \phi - 0$  In Terms of  $\widehat{\phi}^4$ . To this End We Find  $\langle J \rangle$ 

$$J^{2} = \left(\frac{d\widehat{\phi}}{d\phi}\right)^{2} = \frac{f_{\mathrm{K}}}{f_{\mathrm{R}}} + \frac{3n^{2}c_{\mathrm{R}}^{2}\phi^{n-2}}{8f_{\mathrm{R}}^{2}} \quad \Rightarrow \quad \langle J \rangle = \begin{cases} \sqrt{3/2}c_{\mathrm{R}}, \text{ for } n = 2, \\ 1, \text{ for } n \neq 2 \end{cases} \quad \qquad \text{For } \langle f_{\mathrm{K}} \rangle = 1 \end{cases}$$

We Observe that  $\widehat{\phi} = \phi$  for n > 2 At the Vacuum of The Theory.

• For n = 2 and any  $c_R$  We obtain  $\Lambda_{\rm UV} = m_{\rm P}$  Since The Expansions Abound  $\langle \phi \rangle = 0$  Give:

$$J^2 \dot{\phi}^2 = \left(1 - \sqrt{\frac{8}{3}} \widehat{\phi} + 2 \widehat{\phi}^2 - \cdots\right) \dot{\overline{\phi}}^2 \quad \text{and} \quad \widehat{V} = \frac{\lambda^2 \widehat{\phi}^2}{3c_R^2} \left(1 - \sqrt{\frac{8}{3}} \widehat{\phi} + 2 \widehat{\phi}^2 - \cdots\right).$$

• For n > 2 Similar Expansions Can Be Derived:

$$J^2 \dot{\phi}^2 = \left(1 - c_{\mathcal{R}} \widehat{\phi}^{\frac{n}{2}} + \frac{3n^2}{8} c_{\mathcal{R}}^2 \widehat{\phi}^{n-2} + c_{\mathcal{R}}^2 \widehat{\phi}^n \cdots\right) \dot{\overline{\phi}}^2 \text{ and } \widehat{V}_{\text{CI}} = \frac{\lambda^2 \widehat{\phi}^n}{2} \left(1 - 2c_{\mathcal{R}} \widehat{\phi}^{\frac{n}{2}} + 3c_{\mathcal{R}}^2 \widehat{\phi}^n - 4c_{\mathcal{R}}^3 \widehat{\phi}^{\frac{3n}{2}} + \cdots\right) \cdot$$

Since The Term Which Yields The Smallest Denominator For  $c_{\mathcal{R}} > 1$  is  $3n^2 c_{\mathcal{R}}^2 \widehat{\phi}^{n-2}/8$  We Find  $\Lambda_{\rm UV} = m_{\rm P}/c_{\mathcal{R}}^{2/(n-2)}$ .

<sup>4</sup> J.L.F. Barbon and J.R. Espinosa (2009); C.P. Burgess, H.M. Lee, and M. Trott (2010); A. Kehagias, A.M. Dizgah, and A. Riotto (2013) < 🚊 🔷 🔍 🔍

| Non-Minimal Chaotic Inflation (Non-MCI)<br>OO<br>O | Unitarity Constraint | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | Conclusions |
|----------------------------------------------------|----------------------|-----------------------------------|------------------------------|-------------|
| THE ULTRAVIOLET (UV) CUT-OFF SCALE                 |                      |                                   |                              |             |

• We Analyze The Small-Field Behavior Of the Theory Expanding S About  $\delta \phi = \phi - 0$  In Terms of  $\widehat{\phi}^4$ . To this End We Find  $\langle J \rangle$ 

$$J^{2} = \left(\frac{d\widehat{\phi}}{d\phi}\right)^{2} = \frac{f_{\mathrm{K}}}{f_{\mathrm{R}}} + \frac{3n^{2}c_{\mathrm{R}}^{2}\phi^{n-2}}{8f_{\mathrm{R}}^{2}} \quad \Rightarrow \quad \langle J \rangle = \begin{cases} \sqrt{3/2}c_{\mathrm{R}}, \text{ for } n = 2, \\ 1, \text{ for } n \neq 2 \end{cases} \quad \qquad \text{For } \langle f_{\mathrm{K}} \rangle = 1 \end{cases}$$

We Observe that  $\widehat{\phi} = \phi$  for n > 2 At the Vacuum of The Theory.

• For n = 2 and any  $c_R$  We obtain  $\Lambda_{\rm UV} = m_{\rm P}$  Since The Expansions Abound  $\langle \phi \rangle = 0$  Give:

$$J^2 \dot{\phi}^2 = \left(1 - \sqrt{\frac{8}{3}} \widehat{\phi} + 2 \widehat{\phi}^2 - \cdots\right) \dot{\overline{\phi}}^2 \quad \text{and} \quad \widehat{V} = \frac{\lambda^2 \widehat{\phi}^2}{3c_R^2} \left(1 - \sqrt{\frac{8}{3}} \widehat{\phi} + 2 \widehat{\phi}^2 - \cdots\right).$$

• For n > 2 Similar Expansions Can Be Derived:

$$J^2 \dot{\phi}^2 = \left(1 - c_{\mathcal{R}} \widehat{\phi}^{\frac{n}{2}} + \frac{3n^2}{8} c_{\mathcal{R}}^2 \widehat{\phi}^{n-2} + c_{\mathcal{R}}^2 \widehat{\phi}^n \cdots \right) \widehat{\phi}^2 \quad \text{and} \quad \widehat{V}_{\text{CI}} = \frac{\lambda^2 \widehat{\phi}^n}{2} \left(1 - 2c_{\mathcal{R}} \widehat{\phi}^{\frac{n}{2}} + 3c_{\mathcal{R}}^2 \widehat{\phi}^n - 4c_{\mathcal{R}}^3 \widehat{\phi}^{\frac{3n}{2}} + \cdots \right) \cdots$$

Since The Term Which Yields The Smallest Denominator For  $c_R > 1$  is  $3n^2 c_R^2 \overline{\phi}^{n-2}/8$  We Find  $\Lambda_{\rm UV} = m_{\rm P}/c_R^{2/(n-2)}$ . • If We Introduce a non-Canonical Kinetic Mixing Such That

$$\langle f_{\rm K} \rangle = c_{\rm K}$$
 And  $c_{\cal R} = r_{\cal R \rm K} c_{\rm K}^{n/4}$ 

The Expansions Above Are Rewritten In Terms of the New Parameter  $r_{\mathcal{R}K}$ 

$$J^{2}\phi^{2} = \left(1 - r_{\mathcal{R}K}\widehat{\phi}^{\frac{n}{2}} + \frac{3n^{2}}{8}r_{\mathcal{R}K}^{2}\widehat{\phi}^{n-2} + r_{\mathcal{R}K}^{2}\widehat{\phi}^{n}\cdots\right)\stackrel{\rightarrow}{\phi}^{2} \text{ and } \widehat{V}_{\text{CI}} = \frac{\lambda^{2}\widehat{\phi}^{n}}{2c_{K}^{n/2}}\left(1 - 2r_{\mathcal{R}K}\widehat{\phi}^{\frac{n}{2}} + 3r_{\mathcal{R}K}^{2}\widehat{\phi}^{n} - 4r_{\mathcal{R}K}^{3}\widehat{\phi}^{\frac{3n}{2}} + \cdots\right),$$

Consequently, No Problem With The Perturbative Unitarity Emerges for  $r_{\mathcal{R}K} \leq 1$ , Even IF  $c_{\mathcal{R}}$  and  $c_K$  Are Large.

<sup>&</sup>lt;sup>4</sup> J.L.F. Barbon and J.R. Espinosa (2009); C.P. Burgess, H.M. Lee, and M. Trott (2010); A. Kehagias, A.M. Dizgah, and A. Riotto (2013) < 🚊 🔷 🔍

| Non-Minimal Chaotic Inflation (Non-MCI)<br>OO<br>O | UNITARITY CONSTRAINT | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | Conclusions |
|----------------------------------------------------|----------------------|-----------------------------------|------------------------------|-------------|
| The Ultraviolet (UV) Cut-off Scale                 |                      |                                   |                              |             |

• If we Expand  $g_{\mu\nu}$  About The Flat Spacetime Metric  $\eta_{\mu\nu}$  and  $\phi$  About Its V.E.V As Follows

$$g_{\mu\nu} \simeq \eta_{\mu\nu} + h_{\mu\nu}$$
 and  $\phi = \langle \phi \rangle + \delta \phi$  Where  $\langle \phi \rangle \simeq 0$ .

The Lagrangian Corresponding To The Two First Terms In The Right-Hand Side Of  ${\cal S}$  Takes The Form ( $\langle \phi 
angle = 0$ ):

$$\begin{split} \delta \mathcal{L} &= -\frac{\langle f_{\mathcal{R}} \rangle}{4} F_{\mathrm{EH}} \left( h^{\mu \nu} \right) + \frac{\langle f_{\mathrm{K}} \rangle}{2} \partial_{\mu} \delta \phi \partial^{\mu} \delta \phi + \left( \langle f_{\mathcal{R},\phi} \rangle \delta \phi + \frac{1}{2} \langle f_{\mathcal{R},\phi\phi} \rangle \delta \phi^2 + \frac{1}{6} \langle f_{\mathcal{R},\phi\phi\phi} \rangle \delta \phi^3 + \cdots \right) F_{\mathcal{R}} \\ &= -\frac{1}{8} F_{\mathrm{EH}} \left( \bar{h}^{\mu \nu} \right) + \frac{1}{2} \partial_{\mu} \overline{\delta \phi} \partial^{\mu} \overline{\delta \phi} + \Lambda_{\mathrm{UV}}^{-1} \overline{\delta \phi}^{n/2} \Box \bar{h} \,, \quad (\text{The Only non-Vanishing Term is} \quad (n/2)! c_{\mathcal{R}} \delta \phi^{n/2}) \end{split}$$

Where The Functions  $F_{\rm EH}$  and  $F_{\mathcal{R}}$  Read:  $F_{\rm EH} = h^{\mu\nu} \Box h_{\mu\nu} - h \Box h + 2\partial_{\rho}h^{\mu\rho}\partial^{\nu}h_{\mu\nu} - 2\partial_{\nu}h^{\mu\nu}\partial_{\mu}h$  and  $F_{\mathcal{R}} \equiv \Box h - \partial_{\mu}\partial_{\nu}h^{\mu\nu}$ 

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI)<br>OO<br>O | UNITARITY CONSTRAINT | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | CONCLUSIONS |
|----------------------------------------------------|----------------------|-----------------------------------|------------------------------|-------------|
| The Ultraviolet (UV) Cut-off Scale                 |                      |                                   |                              |             |

• If we Expand  $g_{\mu\nu}$  About The Flat Spacetime Metric  $\eta_{\mu\nu}$  and  $\phi$  About Its V.E.V As Follows

$$\eta_{\mu\nu} \simeq \eta_{\mu\nu} + h_{\mu\nu}$$
 and  $\phi = \langle \phi \rangle + \delta \phi$  Where  $\langle \phi \rangle \simeq 0$ .

The Lagrangian Corresponding To The Two First Terms In The Right-Hand Side Of  ${\cal S}$  Takes The Form ( $\langle \phi 
angle = 0$ ):

$$\begin{split} \delta \mathcal{L} &= -\frac{\langle f_{\mathcal{R}} \rangle}{4} F_{\mathrm{EH}} \left( h^{\mu\nu} \right) + \frac{\langle f_{\mathrm{K}} \rangle}{2} \partial_{\mu} \delta \phi \partial^{\mu} \delta \phi + \left( \langle f_{\mathcal{R},\phi} \rangle \delta \phi + \frac{1}{2} \langle f_{\mathcal{R},\phi\phi} \rangle \delta \phi^{2} + \frac{1}{6} \langle f_{\mathcal{R},\phi\phi\phi} \rangle \delta \phi^{3} + \cdots \right) F_{\mathcal{R}} \\ &= -\frac{1}{8} F_{\mathrm{EH}} \left( \bar{h}^{\mu\nu} \right) + \frac{1}{2} \partial_{\mu} \overline{\delta \phi} \partial^{\mu} \overline{\delta \phi} + \Lambda_{\mathrm{UV}}^{-1} \overline{\delta \phi}^{n/2} \Box \bar{h} \,, \quad \left( \mathsf{The Only non-Vanishing Term is } (n/2)! c_{\mathcal{R}} \delta \phi^{n/2} \right) \end{split}$$

Where The Functions  $F_{\rm EH}$  and  $F_{\mathcal{R}}$  Read:  $F_{\rm EH} = h^{\mu\nu} \Box h_{\mu\nu} - h \Box h + 2\partial_{\rho}h^{\mu\rho}\partial^{\nu}h_{\mu\nu} - 2\partial_{\nu}h^{\mu\nu}\partial_{\mu}h$  and  $F_{\mathcal{R}} = \Box h - \partial_{\mu}\partial_{\nu}h^{\mu\nu}$ . • The JF Canonically Normalized Fields  $\bar{h}_{\mu\nu}$ , and  $\overline{\delta\phi}$  are Defined by The Relations:

$$\overline{\delta\phi} = \sqrt{\frac{\langle \bar{f}_{\mathcal{R}} \rangle}{\langle f_{\mathcal{R}} \rangle}} \delta\phi \quad \text{and} \quad \bar{h}_{\mu\nu} = \sqrt{\langle f_{\mathcal{R}} \rangle} h_{\mu\nu} + \frac{\langle f_{\mathcal{R},\phi} \rangle}{\sqrt{\langle f_{\mathcal{R}} \rangle}} \eta_{\mu\nu} \delta\phi \text{ with } \\ \bar{f}_{\mathcal{R}} = f_K f_{\mathcal{R}} + \frac{3}{2} f_{\mathcal{R},\phi}^2, \quad \text{With } \langle f_{\mathcal{R}} \rangle = 1 \quad \text{and} \quad \langle f_{\mathcal{R},\phi} \rangle = 0 \quad \text{for } n > 2.$$

| Non-Minimal Chaotic Inflation (Non-MCI)<br>OO<br>O | UNITARITY CONSTRAINT | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | Conclusions |
|----------------------------------------------------|----------------------|-----------------------------------|------------------------------|-------------|
| THE ULTRAVIOLET (UV) CUT-OFF SCALE                 |                      |                                   |                              |             |

• If we Expand  $g_{\mu\nu}$  About The Flat Spacetime Metric  $\eta_{\mu\nu}$  and  $\phi$  About Its V.E.V As Follows

$$g_{\mu\nu} \simeq \eta_{\mu\nu} + h_{\mu\nu}$$
 and  $\phi = \langle \phi \rangle + \delta \phi$  Where  $\langle \phi \rangle \simeq 0$ .

The Lagrangian Corresponding To The Two First Terms In The Right-Hand Side Of S Takes The Form ( $\langle \phi \rangle = 0$ ):

$$\begin{split} \delta \mathcal{L} &= -\frac{\langle f_{\mathcal{R}} \rangle}{4} F_{\mathrm{EH}} \left( h^{\mu\nu} \right) + \frac{\langle f_{\mathrm{K}} \rangle}{2} \partial_{\mu} \delta \phi \partial^{\mu} \delta \phi + \left( \langle f_{\mathcal{R},\phi} \rangle \delta \phi + \frac{1}{2} \langle f_{\mathcal{R},\phi\phi} \rangle \delta \phi^{2} + \frac{1}{6} \langle f_{\mathcal{R},\phi\phi\phi} \rangle \delta \phi^{3} + \cdots \right) F_{\mathcal{R}} \\ &= -\frac{1}{8} F_{\mathrm{EH}} \left( \bar{h}^{\mu\nu} \right) + \frac{1}{2} \partial_{\mu} \overline{\delta \phi} \partial^{\mu} \overline{\delta \phi} + \Lambda_{\mathrm{UV}}^{-1} \overline{\delta \phi}^{n/2} \Box \bar{h} \,, \quad \left( \mathsf{The Only non-Vanishing Term is } (n/2)! c_{\mathcal{R}} \delta \phi^{n/2} \right) \end{split}$$

Where The Functions  $F_{\rm EH}$  and  $F_{\mathcal{R}}$  Read:  $F_{\rm EH} = h^{\mu\nu} \Box h_{\mu\nu} - h \Box h + 2\partial_{\rho}h^{\mu\rho}\partial^{\nu}h_{\mu\nu} - 2\partial_{\nu}h^{\mu\nu}\partial_{\mu}h$  and  $F_{\mathcal{R}} = \Box h - \partial_{\mu}\partial_{\nu}h^{\mu\nu}$ . • The JF Canonically Normalized Fields  $\bar{h}_{\mu\nu}$ , and  $\overline{\delta\phi}$  are Defined by The Relations:

$$\overline{\delta\phi} = \sqrt{\frac{\langle \bar{f}_{\mathcal{R}} \rangle}{\langle f_{\mathcal{R}} \rangle}} \delta\phi \quad \text{and} \quad \bar{h}_{\mu\nu} = \sqrt{\langle f_{\mathcal{R}} \rangle} h_{\mu\nu} + \frac{\langle f_{\mathcal{R},\phi} \rangle}{\sqrt{\langle f_{\mathcal{R}} \rangle}} \eta_{\mu\nu} \delta\phi \text{ with } \\ \bar{f}_{\mathcal{R}} = f_{\mathcal{K}} f_{\mathcal{R}} + \frac{3}{2} f_{\mathcal{R},\phi}^2, \quad \text{With } \langle f_{\mathcal{R}} \rangle = 1 \quad \text{and} \quad \langle f_{\mathcal{R},\phi} \rangle = 0 \quad \text{for } n > 2.$$

• For n = 2, No Offending Term Arises And So It Is a Unitarity-Safe Case.

| Non-Minimal Chaotic Inflation (Non-MCI)<br>OO<br>O | UNITARITY CONSTRAINT | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | Conclusions |
|----------------------------------------------------|----------------------|-----------------------------------|------------------------------|-------------|
| THE ULTRAVIOLET (UV) CUT-OFF SCALE                 |                      |                                   |                              |             |

• If we Expand  $g_{\mu\nu}$  About The Flat Spacetime Metric  $\eta_{\mu\nu}$  and  $\phi$  About Its V.E.V As Follows

$$g_{\mu\nu} \simeq \eta_{\mu\nu} + h_{\mu\nu}$$
 and  $\phi = \langle \phi \rangle + \delta \phi$  Where  $\langle \phi \rangle \simeq 0$ .

The Lagrangian Corresponding To The Two First Terms In The Right-Hand Side Of S Takes The Form ( $\langle \phi \rangle = 0$ ):

$$\begin{split} \delta \mathcal{L} &= -\frac{\langle f_{\mathcal{R}} \rangle}{4} F_{\mathrm{EH}} \left( h^{\mu\nu} \right) + \frac{\langle f_{\mathrm{K}} \rangle}{2} \partial_{\mu} \delta \phi \partial^{\mu} \delta \phi + \left( \langle f_{\mathcal{R},\phi} \rangle \delta \phi + \frac{1}{2} \langle f_{\mathcal{R},\phi\phi} \rangle \delta \phi^{2} + \frac{1}{6} \langle f_{\mathcal{R},\phi\phi\phi} \rangle \delta \phi^{3} + \cdots \right) F_{\mathcal{R}} \\ &= -\frac{1}{8} F_{\mathrm{EH}} \left( \bar{h}^{\mu\nu} \right) + \frac{1}{2} \partial_{\mu} \overline{\delta \phi} \partial^{\mu} \overline{\delta \phi} + \Lambda_{\mathrm{UV}}^{-1} \overline{\delta \phi}^{n/2} \Box \bar{h} \,, \quad \left( \mathsf{The Only non-Vanishing Term is } (n/2)! c_{\mathcal{R}} \delta \phi^{n/2} \right) \end{split}$$

Where The Functions  $F_{\rm EH}$  and  $F_{\mathcal{R}}$  Read:  $F_{\rm EH} = h^{\mu\nu} \Box h_{\mu\nu} - h \Box h + 2\partial_{\rho}h^{\mu\rho}\partial^{\nu}h_{\mu\nu} - 2\partial_{\nu}h^{\mu\nu}\partial_{\mu}h$  and  $F_{\mathcal{R}} = \Box h - \partial_{\mu}\partial_{\nu}h^{\mu\nu}$ . • The JF Canonically Normalized Fields  $\bar{h}_{\mu\nu}$ , and  $\overline{\delta\phi}$  are Defined by The Relations:

$$\overline{\delta\phi} = \sqrt{\frac{\langle \bar{f}_{\mathcal{R}} \rangle}{\langle f_{\mathcal{R}} \rangle}} \delta\phi \quad \text{and} \quad \bar{h}_{\mu\nu} = \sqrt{\langle f_{\mathcal{R}} \rangle} h_{\mu\nu} + \frac{\langle f_{\mathcal{R},\phi} \rangle}{\sqrt{\langle f_{\mathcal{R}} \rangle}} \eta_{\mu\nu} \delta\phi \text{ with } \\ \bar{f}_{\mathcal{R}} = f_{\mathcal{K}} f_{\mathcal{R}} + \frac{3}{2} f_{\mathcal{R},\phi}^2, \quad \text{With } \langle f_{\mathcal{R}} \rangle = 1 \quad \text{and} \quad \langle f_{\mathcal{R},\phi} \rangle = 0 \quad \text{for } n > 2.$$

• For n = 2, No Offending Term Arises And So It Is a Unitarity-Safe Case.

| Non-Minimal Chaotic Inflation (Non-MCI)<br>OO<br>O | UNITARITY CONSTRAINT | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | Conclusions |
|----------------------------------------------------|----------------------|-----------------------------------|------------------------------|-------------|
| THE ULTRAVIOLET (UV) CUT-OFF SCALE                 |                      |                                   |                              |             |

• IF WE EXPAND  $g_{\mu\nu}$  About The Flat Spacetime Metric  $\eta_{\mu\nu}$  and  $\phi$  About Its V.E.V As Follows

$$g_{\mu\nu} \simeq \eta_{\mu\nu} + h_{\mu\nu}$$
 and  $\phi = \langle \phi \rangle + \delta \phi$  Where  $\langle \phi \rangle \simeq 0$ .

The Lagrangian Corresponding To The Two First Terms In The Right-Hand Side Of S Takes The Form ( $\langle \phi \rangle = 0$ ):

$$\begin{split} \delta \mathcal{L} &= -\frac{\langle f_{\mathcal{R}} \rangle}{4} F_{\mathrm{EH}} \left( h^{\mu\nu} \right) + \frac{\langle f_{\mathrm{K}} \rangle}{2} \partial_{\mu} \delta \phi \partial^{\mu} \delta \phi + \left( \langle f_{\mathcal{R},\phi} \rangle \delta \phi + \frac{1}{2} \langle f_{\mathcal{R},\phi\phi} \rangle \delta \phi^{2} + \frac{1}{6} \langle f_{\mathcal{R},\phi\phi\phi} \rangle \delta \phi^{3} + \cdots \right) F_{\mathcal{R}} \\ &= -\frac{1}{8} F_{\mathrm{EH}} \left( \bar{h}^{\mu\nu} \right) + \frac{1}{2} \partial_{\mu} \overline{\delta \phi} \partial^{\mu} \overline{\delta \phi} + \Lambda_{\mathrm{UV}}^{-1} \overline{\delta \phi}^{n/2} \Box \bar{h} \,, \quad \left( \mathsf{The Only non-Vanishing Term is } (n/2)! c_{\mathcal{R}} \delta \phi^{n/2} \right) \end{split}$$

Where The Functions  $F_{\text{EH}}$  and  $F_{\mathcal{R}}$  Read:  $F_{\text{EH}} = h^{\mu\nu} \Box h_{\mu\nu} - h \Box h + 2\partial_{\rho}h^{\mu\rho}\partial^{\nu}h_{\mu\nu} - 2\partial_{\nu}h^{\mu\nu}\partial_{\mu}h$  and  $F_{\mathcal{R}} = \Box h - \partial_{\mu}\partial_{\nu}h^{\mu\nu}$ . • The JF Canonically Normalized Fields  $\bar{h}_{\mu\nu}$  and  $\overline{\delta\phi}$  are Defined by The Relations:

$$\overline{\delta\phi} = \sqrt{\frac{\langle \bar{f}_{\mathcal{R}} \rangle}{\langle f_{\mathcal{R}} \rangle}} \delta\phi \quad \text{and} \quad \bar{h}_{\mu\nu} = \sqrt{\langle f_{\mathcal{R}} \rangle} h_{\mu\nu} + \frac{\langle f_{\mathcal{R},\phi} \rangle}{\sqrt{\langle f_{\mathcal{R}} \rangle}} \eta_{\mu\nu} \delta\phi \text{ with } \\ \bar{f}_{\mathcal{R}} = f_{\mathcal{K}} f_{\mathcal{R}} + \frac{3}{2} f_{\mathcal{R},\phi}^2, \quad \text{With } \langle f_{\mathcal{R}} \rangle = 1 \quad \text{and} \quad \langle f_{\mathcal{R},\phi} \rangle = 0 \quad \text{for } n > 2.$$

• For n = 2, No Offending Term Arises And So It Is a Unitarity-Safe Case.

• The Problematic Scattering Amplitude  $\mathcal{A}$  Remains Within The Validity Of The Perturbation Theory Provided That  $E < \Lambda_{\rm UV}$ Is Written In Terms Of The Center-Of-Mass Energy E As Follows

$$\mathcal{A} \sim \left(\frac{E}{\Lambda_{\rm UV}}\right)^2 \quad \text{With} \quad \Lambda_{\rm UV} \simeq \frac{1}{c_{\mathcal{R}}} \frac{\langle \bar{f}_{\mathcal{R}} \rangle^{n/4}}{\langle f_{\mathcal{R}} \rangle^{(n-2)/4}} = \frac{\langle f_{\rm K} \rangle^{n/4}}{c_{\mathcal{R}}} = r_{\mathcal{R}}^{-1} \text{ if } \langle f_{\rm K} \rangle = c_{\rm K} = (c_{\mathcal{R}}/r_{\mathcal{R}{\rm K}})^{4/n}$$

Therefore, We Verify That Perturbative Unitarity Is Retained Up to Planck Scale, if  $r_{RK} \leq 1$ . For These Reasons

・ロト ・ 御 ト ・ 注 ト ・ 注 ト …

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI)<br>OO<br>O | UNITARITY CONSTRAINT | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | CONCLUSIONS |
|----------------------------------------------------|----------------------|-----------------------------------|------------------------------|-------------|
| The Ultraviolet (UV) Cut-off Scale                 |                      |                                   |                              |             |

• IF WE EXPAND  $g_{\mu\nu}$  About The Flat Spacetime Metric  $\eta_{\mu\nu}$  and  $\phi$  About Its V.E.V As Follows

$$g_{\mu\nu} \simeq \eta_{\mu\nu} + h_{\mu\nu}$$
 and  $\phi = \langle \phi \rangle + \delta \phi$  Where  $\langle \phi \rangle \simeq 0$ .

The Lagrangian Corresponding To The Two First Terms In The Right-Hand Side Of S Takes The Form ( $\langle \phi \rangle = 0$ ):

$$\begin{split} \delta \mathcal{L} &= -\frac{\langle f_{\mathcal{R}} \rangle}{4} F_{\mathrm{EH}} \left( h^{\mu \nu} \right) + \frac{\langle f_{\mathrm{K}} \rangle}{2} \partial_{\mu} \delta \phi \partial^{\mu} \delta \phi + \left( \langle f_{\mathcal{R},\phi} \rangle \delta \phi + \frac{1}{2} \langle f_{\mathcal{R},\phi\phi} \rangle \delta \phi^{2} + \frac{1}{6} \langle f_{\mathcal{R},\phi\phi\phi} \rangle \delta \phi^{3} + \cdots \right) F_{\mathcal{R}} \\ &= -\frac{1}{8} F_{\mathrm{EH}} \left( \bar{h}^{\mu \nu} \right) + \frac{1}{2} \partial_{\mu} \overline{\delta \phi} \partial^{\mu} \overline{\delta \phi} + \Lambda_{\mathrm{UV}}^{-1} \overline{\delta \phi}^{n/2} \Box \bar{h} \,, \quad \left( \mathsf{The Only non-Vanishing Term is } (n/2)! c_{\mathcal{R}} \delta \phi^{n/2} \right) \end{split}$$

Where The Functions  $F_{\text{EH}}$  and  $F_{\mathcal{R}}$  Read:  $F_{\text{EH}} = h^{\mu\nu} \Box h_{\mu\nu} - h \Box h + 2\partial_{\rho}h^{\mu\rho}\partial^{\nu}h_{\mu\nu} - 2\partial_{\nu}h^{\mu\nu}\partial_{\mu}h$  and  $F_{\mathcal{R}} = \Box h - \partial_{\mu}\partial_{\nu}h^{\mu\nu}$ . • The JF Canonically Normalized Fields  $\bar{h}_{\mu\nu}$  and  $\overline{\delta\phi}$  are Defined by The Relations:

$$\overline{\delta\phi} = \sqrt{\frac{\langle \bar{f}_{\mathcal{R}} \rangle}{\langle f_{\mathcal{R}} \rangle}} \delta\phi \quad \text{and} \quad \bar{h}_{\mu\nu} = \sqrt{\langle f_{\mathcal{R}} \rangle} h_{\mu\nu} + \frac{\langle f_{\mathcal{R},\phi} \rangle}{\sqrt{\langle f_{\mathcal{R}} \rangle}} \eta_{\mu\nu} \delta\phi \text{ with } \\ \bar{f}_{\mathcal{R}} = f_{\mathcal{K}} f_{\mathcal{R}} + \frac{3}{2} f_{\mathcal{R},\phi}^2, \quad \text{With } \langle f_{\mathcal{R}} \rangle = 1 \quad \text{and} \quad \langle f_{\mathcal{R},\phi} \rangle = 0 \quad \text{for } n > 2.$$

• For n = 2, No Offending Term Arises And So It Is a Unitarity-Safe Case.

• The Problematic Scattering Amplitude  $\mathcal{A}$  Remains Within The Validity Of The Perturbation Theory Provided That  $E < \Lambda_{\rm UV}$ Is Written In Terms Of The Center-Of-Mass Energy E As Follows

$$\mathcal{A} \sim \left(\frac{E}{\Lambda_{\rm UV}}\right)^2 \quad \text{With} \quad \Lambda_{\rm UV} \simeq \frac{1}{c_{\mathcal{R}}} \frac{\langle \bar{f}_{\mathcal{R}} \rangle^{n/4}}{\langle f_{\mathcal{R}} \rangle^{(n-2)/4}} = \frac{\langle f_{\mathcal{K}} \rangle^{n/4}}{c_{\mathcal{R}}} = r_{\mathcal{R}{\rm K}}^{-1} \text{ if } \langle f_{\rm K} \rangle = c_{\rm K} = (c_{\mathcal{R}}/r_{\mathcal{R}{\rm K}})^{4/n}$$

Therefore, We Verify That Perturbative Unitarity Is Retained Up to Planck Scale, if  $r_{RK} \leq 1$ . For These Reasons

We Propose to Analyze Models of Kinetically Modified non-MCI With  $f_{\rm K} = c_{\rm K} f_{\cal R}^m$  Where  $c_{\rm K} = (c_{\cal R}/r_{\cal R\rm K})^{4/n}$ 

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | UNITARITY CONSTRAINT | SUPERGRAVITY EMBEDDING | INFLATION ANALYSIS | Conclusions |
|-----------------------------------------|----------------------|------------------------|--------------------|-------------|
| 00                                      | 00                   | •                      | 0                  |             |
| 0                                       |                      | 00                     | 0                  |             |
|                                         |                      |                        |                    |             |
| THE GENERAL FRAMEWORK                   |                      |                        |                    |             |

• The General EF Action For The Scalar Fields  $\Phi^{\alpha}$  Plus Gravity In Four Dimensional  $\mathcal{N} = 1$  SUGRA is:

$$\mathcal{S} = \int d^4x \, \sqrt{-\widehat{\mathfrak{g}}} \bigg( -\frac{1}{2} \widehat{\mathcal{R}} + K_{a \tilde{\beta}} \widehat{g}^{\mu \nu} \partial_\mu \Phi^\alpha \partial_\nu \Phi^{\ast \tilde{\beta}} - \widehat{V} \bigg) \quad \text{Where} \quad \widehat{V} = \widehat{V}_{\mathrm{F}} = e^K \Big( K^{a \tilde{\beta}} (D_a W) (D^\ast_{\tilde{\beta}} W^\ast) - 3 |W|^2 \Big),$$

 $K \text{ is The Kähler Potential With } K_{\alpha\beta} = \frac{\partial^2 K}{\partial \Phi^{\alpha} \partial \Phi^{\alpha\beta}} > 0 \text{ and } K^{\alpha\beta} K_{\alpha\bar{\gamma}} = \delta^{\beta}_{\bar{\gamma}}; \quad D_{\alpha}W = W_{,\Phi^{\alpha}} + K_{,\Phi^{\alpha}}W.$ 

THEREFORE, IMPLEMENTING NON-MCI WITHIN SUGRA REQUIRES THE APPROPRIATE SELECTION OF W AND K

<sup>&</sup>lt;sup>5</sup> M.B. Einhorn and D.R.T. Jones (2010); S. Ferrara et al. (2010, 2011); H.M. Lee (2010); C.P. and N. Toumbas (2011) 🗇 🕨 🕴 🛓 🗦 🖉 🔷 🔍

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | UNITARITY CONSTRAINT | SUPERGRAVITY EMBEDDING | INFLATION ANALYSIS | CONCLUSIONS |
|-----------------------------------------|----------------------|------------------------|--------------------|-------------|
| 00                                      | 00                   | •                      | 0                  |             |
| 0                                       |                      | 00                     | 0                  |             |
|                                         |                      |                        |                    |             |
| THE GENERAL ERAMEWORK                   |                      |                        |                    |             |

• The General EF Action For The Scalar Fields  $\Phi^{\alpha}$  Plus Gravity In Four Dimensional  $\mathcal{N} = 1$  SUGRA is:

$$\mathcal{S} = \int d^4x \, \sqrt{-\widehat{\mathfrak{g}}} \bigg( -\frac{1}{2} \widehat{\mathcal{R}} + K_{\alpha \overline{\beta}} \widehat{g}^{\mu\nu} \partial_\mu \Phi^\alpha \partial_\nu \Phi^{\ast \overline{\beta}} - \widehat{V} \bigg) \quad \text{Where} \quad \widehat{V} = \widehat{V}_{\mathrm{F}} = e^K \Big( K^{\alpha \overline{\beta}} (D_\alpha W) (D_{\overline{\beta}}^* W^*) - 3|W|^2 \Big),$$

 $K \text{ is The Kähler Potential With } K_{\alpha\bar{\beta}} = \frac{\partial^2 K}{\partial \Phi^{\alpha} \partial \Phi^{\gamma\bar{\beta}}} > 0 \text{ and } K^{\alpha\bar{\beta}} K_{\alpha\bar{\gamma}} = \delta^{\beta}_{\bar{\gamma}}; \quad D_{\alpha}W = W_{,\Phi^{\alpha}} + K_{,\Phi^{\alpha}}W.$ 

THEREFORE, IMPLEMENTING NON-MCI WITHIN SUGRA REQUIRES THE APPROPRIATE SELECTION OF W AND K

• IF WE SET <sup>5</sup>  $K = -3 \ln \left(-\Omega/3\right)$  Where  $\Omega$  is The Frame Function and Perform a Conformal Transformation, S in JF Reads

$$S = \int d^4x \sqrt{-\mathfrak{g}} \bigg( \frac{\Omega}{3} \frac{\mathcal{R}}{2} + \Omega_{a\bar{\beta}} \partial_\mu \Phi^a \partial^\mu \Phi^{*\bar{\beta}} - \Omega \mathcal{R}_\mu \mathcal{R}^\mu - V \bigg), \quad \text{With} \quad \mathcal{R}_\mu = -i \Big( \partial_\mu \Phi^a \Omega_\alpha - \partial_\mu \Phi^{*\bar{\alpha}} \Omega_{\bar{\alpha}} \Big) / 2\Omega + 2\Omega \Big( \partial_\mu \Phi^a \Omega_\alpha - \partial_\mu \Phi^{*\bar{\alpha}} \Omega_{\bar{\alpha}} - \partial_\mu \Phi^{*\bar{\alpha}} \Omega_{\bar{\alpha}} \Big) = 0$$

<sup>&</sup>lt;sup>5</sup> M.B. Einhorn and D.R.T. Jones (2010); S. Ferrara et al. (2010, 2011); H.M. Lee (2010); C.P. and N. Toumbas (2011) 🗇 🕨 🤞 🚊 🕨 💐 🥏 🖉 🔍 🔍

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | UNITARITY CONSTRAINT | SUPERGRAVITY EMBEDDING | INFLATION ANALYSIS | Conclusions |
|-----------------------------------------|----------------------|------------------------|--------------------|-------------|
| 00                                      | 00                   | 00                     | 0                  |             |
| Tur Grama En es ruyony                  |                      |                        |                    |             |

• The General EF Action For The Scalar Fields  $\Phi^{\alpha}$  Plus Gravity In Four Dimensional  $\mathcal{N} = 1$  SUGRA is:

$$\mathcal{S} = \int d^4x \, \sqrt{-\widehat{\mathfrak{g}}} \bigg( -\frac{1}{2} \widehat{\mathcal{R}} + K_{a \overline{\beta}} \widehat{g}^{\mu \nu} \partial_\mu \Phi^\alpha \partial_\nu \Phi^{\ast \overline{\beta}} - \widehat{V} \bigg) \quad \text{Where} \quad \widehat{V} = \widehat{V}_{\mathrm{F}} = e^K \Big( K^{a \overline{\beta}} (D_a W) (D_{\overline{\beta}}^* W^*) - 3 |W|^2 \Big),$$

 $K \text{ is The Kähler Potential With } K_{\alpha\bar{\beta}} = \frac{\partial^2 K}{\partial \Phi^{\alpha} \partial \Phi^{\ast\bar{\beta}}} > 0 \text{ and } K^{\alpha\bar{\beta}} K_{\alpha\bar{\gamma}} = \delta^{\bar{\beta}}_{\bar{\gamma}}; \quad D_{\alpha}W = W_{,\Phi^{\alpha}} + K_{,\Phi^{\alpha}}W.$ 

Therefore, Implementing non-MCI Within SUGRA Requires The Appropriate Selection of W and K

• IF WE SET <sup>5</sup>  $K = -3 \ln \left(-\Omega/3\right)$  Where  $\Omega$  is The Frame Function and Perform a Conformal Transformation, S in JF Reads

$$\mathcal{S} = \int d^4x \sqrt{-\mathfrak{g}} \bigg( \frac{\Omega}{3} \frac{\mathcal{R}}{2} + \Omega_{a\bar{\beta}} \partial_\mu \Phi^a \partial^\mu \Phi^{*\bar{\beta}} - \Omega \mathcal{R}_\mu \mathcal{R}^\mu - V \bigg), \quad \text{With } \mathcal{R}_\mu = -i \Big( \partial_\mu \Phi^a \Omega_a - \partial_\mu \Phi^{*\bar{\alpha}} \Omega_{\bar{\alpha}} \Big) / 2\Omega$$

- We Observe that  $\Omega$  Enters The Kinetic Terms of the  $\Phi^{a}$ 's too. S Can Exhibit Non-Minimal Couplings of  $\Phi^{a}$ 's to R IF
  - $\Omega$  Consists of an Holomorphic  $\Omega_H$  and a Kinetic  $\Omega_K$  Part, With  $\Omega_H \gg \Omega_K \simeq \delta_{\alpha\beta} \Phi^{\alpha} \Phi^{\beta}$ :

$$\begin{split} \Omega &= \Omega_{\rm K} - 3 \left( \Omega_{\rm H} (\Phi^{\alpha}) + \Omega_{\rm H}^* (\Phi^{*\tilde{\alpha}}) \right) \Rightarrow K = -3 \ln \left( \Omega_{\rm H} (\Phi^{\alpha}) + \Omega_{\rm H}^* (\Phi^{*\tilde{\alpha}}) - \Omega_{\rm K}/3 \right), \quad \text{Where} \\ \Omega_{\rm K} \left( |\Phi^{\alpha}|^2 \right) &= |\Phi^{\alpha}|^2 + k_{\Phi^{\alpha} \Phi^{\beta}} |\Phi^{\alpha}|^2 |\Phi^{\beta}|^2 \quad (\text{Terms } \Phi^*_{\alpha} \Phi^{\beta} \text{ With } \alpha \neq \beta \text{ Can Be Forbidden}) \end{split}$$

With  $k_{\Phi^{\prime \alpha}\Phi^{\beta}} \sim 1$ . The terms  $|\Phi^{\prime \alpha}|^2 |\Phi^{\beta}|^2$  Are Included In Order To Evade A Tachyonic Instability Occurring Along This Direction of The "Stabilized" (Non-Inflaton) Field.

<sup>&</sup>lt;sup>5</sup> M.B. Einhorn and D.R.T. Jones (2010); S. Ferrara et al. (2010, 2011); H.M. Lee (2010); C.P. and N. Toumbas (2011) 🗇 🕨 👌 🛓 👌 🚊 🔷 🔍

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | UNITARITY CONSTRAINT | SUPERGRAVITY EMBEDDING | INFLATION ANALYSIS | CONCLUSIONS |
|-----------------------------------------|----------------------|------------------------|--------------------|-------------|
| 00                                      | 00                   | •                      | 0                  |             |
| Tur Cristo II En Autovork               |                      |                        |                    |             |

• The General EF Action For The Scalar Fields  $\Phi^{\alpha}$  Plus Gravity In Four Dimensional  $\mathcal{N} = 1$  SUGRA is:

$$\mathcal{S} = \int d^4x \, \sqrt{-\widehat{\mathfrak{g}}} \bigg( -\frac{1}{2} \widehat{\mathcal{R}} + K_{a \overline{\beta}} \widehat{g}^{\mu \nu} \partial_\mu \Phi^\alpha \partial_\nu \Phi^{\ast \overline{\beta}} - \widehat{V} \bigg) \quad \text{Where} \quad \widehat{V} = \widehat{V}_{\mathrm{F}} = e^K \Big( K^{a \overline{\beta}} (D_a W) (D_{\overline{\beta}}^* W^*) - 3 |W|^2 \Big),$$

 $K \text{ is The Kähler Potential With } K_{\alpha\bar{\beta}} = \frac{\partial^2 K}{\partial \Phi^{\alpha} \partial \Phi^{\gamma\bar{\beta}}} > 0 \text{ and } K^{\alpha\bar{\beta}} K_{\alpha\bar{\gamma}} = \delta^{\beta}_{\bar{\gamma}}; \quad D_{\alpha}W = W_{,\Phi^{\alpha}} + K_{,\Phi^{\alpha}}W.$ 

Therefore, Implementing non-MCI Within SUGRA Requires The Appropriate Selection of W and K

• IF WE SET <sup>5</sup>  $K = -3\ln(-\Omega/3)$  Where  $\Omega$  is The Frame Function and Perform a Conformal Transformation, S In JF Reads

$$S = \int d^4x \sqrt{-\mathfrak{g}} \bigg( \frac{\Omega}{3} \frac{\mathcal{R}}{2} + \Omega_{a\bar{\beta}} \partial_\mu \Phi^a \partial^\mu \Phi^{*\bar{\beta}} - \Omega \mathcal{R}_\mu \mathcal{R}^\mu - V \bigg), \quad \text{With } \mathcal{R}_\mu = -i \Big( \partial_\mu \Phi^a \Omega_a - \partial_\mu \Phi^{*\bar{\alpha}} \Omega_{\bar{\alpha}} \Big) / 2\Omega$$

- We Observe that  $\Omega$  Enters The Kinetic Terms of the  $\Phi^{a's}$  too. S Can Exhibit Non-Minimal Couplings of  $\Phi^{a's}$  to  $\mathcal{R}$  IF
  - $\Omega$  Consists of an Holomorphic  $\Omega_H$  and a Kinetic  $\Omega_K$  Part, With  $\Omega_H \gg \Omega_K \simeq \delta_{a\beta} \Phi^a \Phi^\beta$ :

$$\begin{split} \Omega &= \Omega_{\rm K} - 3 \Big( \Omega_{\rm H} (\Phi^{\alpha}) + \Omega_{\rm H}^* (\Phi^{*\tilde{\alpha}}) \Big) \Rightarrow K = -3 \ln \Big( \Omega_{\rm H} (\Phi^{\alpha}) + \Omega_{\rm H}^* (\Phi^{*\tilde{\alpha}}) - \Omega_{\rm K}/3 \Big), \quad \text{Where} \\ \Omega_{\rm K} \left( |\Phi^{\alpha}|^2 \right) &= |\Phi^{\alpha}|^2 + k_{\Phi^{\alpha} \Phi^{\beta}} |\Phi^{\alpha}|^2 |\Phi^{\beta}|^2 \quad (\text{Terms } \Phi^*_{\alpha} \Phi^{\beta} \text{ With } \alpha \neq \beta \text{ Can Be Forbidden}) \end{split}$$

With  $k_{\phi^{\alpha}\phi^{\beta}} \sim 1$ . The terms  $|\Phi^{\alpha}|^2 |\Phi^{\beta}|^2$  Are Included In Order To Evade A Tachyonic Instability Occurring Along This Direction of The "Stabilized" (Non-Inflaton) Field.

• Canonical Terms for  $\Phi^{a}$ 's are Obtained Either With  $|\Phi^{a}|^{2}$  or With  $(\Phi^{a} - \Phi^{*\tilde{a}})^{2}/2$ ;

<sup>5</sup> M.B. Einhorn and D.R.T. Jones (2010); S. Ferrara et al. (2010, 2011); H.M. Lee (2010); C.P. and N. Toumbas (2011) 🗇 🕨 ፋ 🚊 🕨 🔩 🥏 🖉 🔷 🔍

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | UNITARITY CONSTRAINT | SUPERGRAVITY EMBEDDING | INFLATION ANALYSIS | CONCLUSIONS |
|-----------------------------------------|----------------------|------------------------|--------------------|-------------|
| 00                                      | 00                   | •                      | 0                  |             |
| Tur Cristo II En Autovork               |                      |                        |                    |             |

• The General **EF** Action For The Scalar Fields  $\Phi^{\alpha}$  Plus Gravity In Four Dimensional N = 1 SUGRA is:

$$\mathcal{S} = \int d^4x \, \sqrt{-\widehat{\mathfrak{g}}} \bigg( -\frac{1}{2} \widehat{\mathcal{R}} + K_{a \tilde{\beta}} \widehat{g}^{\mu \nu} \partial_\mu \Phi^\alpha \partial_\nu \Phi^{\ast \tilde{\beta}} - \widehat{V} \bigg) \quad \text{Where} \quad \widehat{V} = \widehat{V}_{\mathrm{F}} = e^K \Big( K^{a \tilde{\beta}} (D_a W) (D^\ast_{\tilde{\beta}} W^\ast) - 3 |W|^2 \Big),$$

 $K \text{ is The Kähler Potential With } K_{\alpha\bar{\beta}} = \frac{\partial^2 K}{\partial \Phi^{\alpha} \bar{\partial} \Phi^{\ast\bar{\beta}}} > 0 \text{ and } K^{\alpha\bar{\beta}} K_{\alpha\bar{\gamma}} = \delta^{\beta}_{\bar{\gamma}}; \quad D_{\alpha}W = W_{,\Phi^{\alpha}} + K_{,\Phi^{\alpha}}W.$ 

Therefore, Implementing non-MCI Within SUGRA Requires The Appropriate Selection of W and K

• IF WE SET <sup>5</sup>  $K = -3\ln(-\Omega/3)$  Where  $\Omega$  is The Frame Function and Perform a Conformal Transformation, S In JF Reads

$$S = \int d^4x \sqrt{-\mathfrak{g}} \bigg( \frac{\Omega}{3} \frac{\mathcal{R}}{2} + \Omega_{a\bar{\beta}} \partial_\mu \Phi^a \partial^\mu \Phi^{*\bar{\beta}} - \Omega \mathcal{R}_\mu \mathcal{R}^\mu - V \bigg), \quad \text{With } \mathcal{R}_\mu = -i \Big( \partial_\mu \Phi^a \Omega_a - \partial_\mu \Phi^{*\bar{\alpha}} \Omega_{\bar{\alpha}} \Big) / 2\Omega$$

- We Observe that  $\Omega$  Enters The Kinetic Terms of the  $\Phi^{a's}$  too. S Can Exhibit Non-Minimal Couplings of  $\Phi^{a's}$  to  $\mathcal{R}$  IF
  - $\Omega$  Consists of an Holomorphic  $\Omega_H$  and a Kinetic  $\Omega_K$  Part, With  $\Omega_H \gg \Omega_K \simeq \delta_{a\beta} \Phi^a \Phi^\beta$ :

$$\begin{split} \Omega &= \Omega_{\rm K} - 3 \Big( \Omega_{\rm H}(\Phi^{\alpha}) + \Omega_{\rm H}^*(\Phi^{*\tilde{\alpha}}) \Big) \Rightarrow K = -3 \ln \Big( \Omega_{\rm H}(\Phi^{\alpha}) + \Omega_{\rm H}^*(\Phi^{*\tilde{\alpha}}) - \Omega_{\rm K}/3 \Big), \quad \text{Where} \\ \Omega_{\rm K} \left( |\Phi^{\alpha}|^2 \right) &= |\Phi^{\alpha}|^2 + k_{\Phi^{\alpha}\Phi^{\beta}} |\Phi^{\alpha}|^2 |\Phi^{\beta}|^2 \quad (\text{Terms } \Phi^*_{\alpha}\Phi^{\beta} \text{ With } \alpha \neq \beta \text{ Can Be Forbidden}) \end{split}$$

With  $k_{\Phi^{\prime \alpha}\Phi^{\beta}} \sim 1$ . The terms  $|\Phi^{\prime \alpha}|^2 |\Phi^{\beta}|^2$  Are Included In Order To Evade A Tachyonic Instability Occurring Along This Direction of The "Stabilized" (Non-Inflaton) Field.

- Canonical Terms for  $\Phi^{a}$ 's are Obtained Either With  $|\Phi^{a}|^{2}$  or With  $(\Phi^{a} \Phi^{*\tilde{a}})^{2}/2$ ;
- $\mathcal{A}_{\mu} = 0$ . This Happens When  $\Phi^{\alpha} = |\Phi^{\alpha}|$  or  $\Phi^{\alpha} = 0$  During non-MCI.

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI)<br>OO<br>O | Unitarity Constraint<br>00 | Supergravity Embedding<br>○<br>● ○ | Inflation Analysis<br>O<br>O | Conclusions |
|----------------------------------------------------|----------------------------|------------------------------------|------------------------------|-------------|
| KINETICALLY MODIFIED NON-MCI IN SUGRA              |                            |                                    |                              |             |

• We Use 2 Superfields  $\Phi^1 = \Phi$  (Inflaton) and  $\Phi^2 = S$  ("Stabilized" Field) And Adopt the Following Superpotential:

 $W = \lambda S \Phi^{n/2}$ 

From Which in the The SUSY Limit We Get  $V_{\rm CI} = \lambda^2 |\Phi|^n + \lambda^2 |S|^2$ 

| CHARGE A | ASSIGNMENTS |
|----------|-------------|
|----------|-------------|

| SUPERFIELDS: | S | Φ   |
|--------------|---|-----|
| U(1)         | 1 | 2/n |

・ロト ・ 御 ト ・ 注 ト ・ 注 ト …

3

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | UNITARITY CONSTRAINT | SUPERGRAVITY EMBEDDING | INFLATION ANALYSIS | Conclusions |
|-----------------------------------------|----------------------|------------------------|--------------------|-------------|
| 00                                      | 00                   | 0                      | 0                  |             |
| 0                                       |                      | •0                     | 0                  |             |
|                                         |                      |                        |                    |             |
| KINETICALLY MODIFIED NON-MCLIN SUGRA    |                      |                        |                    |             |

• We Use 2 Superfields  $\Phi^1 = \Phi$  (Inflaton) and  $\Phi^2 = S$  ("Stabilized" Field) And Adopt the Following Superpotential:

$$W = \lambda S \Phi^{n/2}$$

From Which in the The SUSY Limit We Get  $V_{\rm CI} = \lambda^2 |\Phi|^n + \lambda^2 |S|^2$ 

- IF WE SET S = 0, The Only Surviving Term of  $\widehat{V}$  is  $\widehat{V}_{CI} = e^K K^{SS^*} |W_{,S}|^2$ . To Obtain Kinetically Modified non-MCI in SUGRA WE Select the Following Kähler Potential :

$$K = -3\ln\left(\frac{1}{2}\left(F_{\mathcal{R}} + F_{\mathcal{R}}^*\right) + \frac{c_{\mathrm{K}}}{2^{m}6}\left(F_{\mathcal{R}} + F_{\mathcal{R}}^*\right)^m F_{\mathrm{K}} - F_{\mathcal{S}} + \frac{k_{\Phi}}{6}F_{\mathrm{K}}^2 - \frac{k_{S\Phi}}{3}F_{\mathrm{K}}|\mathcal{S}|^2\right),\label{eq:K}$$

WHERE WE HAVE DEFINED THE FUNCTIONS

$$F_{\mathcal{R}}(\Phi) = 1 + 2^{\frac{n}{4}} \Phi^{\frac{n}{2}} c_{\mathcal{R}}, \quad F_{\mathrm{K}} = (\Phi - \Phi^*)^2 \text{ and } F_{\mathcal{S}} = |\mathcal{S}|^2 / 3 - k_{\mathcal{S}} |\mathcal{S}|^4 / 3.$$

• Along the Inflationary Direction  $S = \Phi - \Phi^* = 0$ ,  $\widehat{V}_{CI0}$  is Written As Follows:

$$\widehat{V}_{\rm CI} = \frac{\lambda^2 |\Phi|^n}{f_{\mathcal{R}}^2} \quad {\rm Where} \quad f_{\mathcal{R}} = F_{\mathcal{R}} = -\Omega/3, \quad {\rm Since} \quad e^K = f_{\mathcal{R}}^{-3} \quad {\rm and} \quad K^{SS^*} = f_{\mathcal{R}}.$$

• The  $\eta$  Problem Within SUGRA is Resolved by Mildly Tuning  $c_K \gg 1$  and  $r_{\mathcal{R}K} = c_{\mathcal{R}}/c_{\kappa}^{n/4} \leq 1$ .

#### CHARGE ASSIGNMENTS

| SUPERFIELDS: | S | Φ   |
|--------------|---|-----|
| U(1)         | 1 | 2/n |

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト …

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | UNITARITY CONSTRAINT | SUPERGRAVITY EMBEDDING | INFLATION ANALYSIS | Conclusions |
|-----------------------------------------|----------------------|------------------------|--------------------|-------------|
| 00                                      | 00                   | 0                      | 0                  |             |
| 0                                       |                      | •0                     | 0                  |             |
|                                         |                      |                        |                    |             |
| KINETICALLY MODIFIED NON-MCLIN SUGRA    |                      |                        |                    |             |

• We Use 2 Superfields  $\Phi^1 = \Phi$  (Inflaton) and  $\Phi^2 = S$  ("Stabilized" Field) And Adopt the Following Superpotential:

$$W = \lambda S \Phi^{n/2}$$

From Which in the The SUSY Limit We Get  $V_{\rm CI} = \lambda^2 |\Phi|^n + \lambda^2 |S|^2$ 

- IF WE SET S = 0, The Only Surviving Term of  $\widehat{V}$  is  $\widehat{V}_{CI} = e^{K} K^{SS^{*}} |W_{,S}|^{2}$ .
- To Obtain KINETICALLY Modified NON-MCI IN SUGRA WE SELECT THE FOLLOWING KÄHLER POTENTIAL :

$$K = -3\ln\left(\frac{1}{2}\left(F_{\mathcal{R}} + F_{\mathcal{R}}^{*}\right) + \frac{c_{\mathrm{K}}}{2^{m}6}\left(F_{\mathcal{R}} + F_{\mathcal{R}}^{*}\right)^{m}F_{\mathrm{K}} - F_{S} + \frac{k_{\Phi}}{6}F_{\mathrm{K}}^{2} - \frac{k_{S\Phi}}{3}F_{\mathrm{K}}|S|^{2}\right),\label{eq:K}$$

WHERE WE HAVE DEFINED THE FUNCTIONS

$$F_{\mathcal{R}}(\Phi) = 1 + 2^{\frac{n}{4}} \Phi^{\frac{n}{2}} c_{\mathcal{R}}, \quad F_{\mathrm{K}} = (\Phi - \Phi^*)^2 \text{ and } F_S = |S|^2 / 3 - k_S |S|^4 / 3.$$

• Along the Inflationary Direction  $S=\Phi-\Phi^*=0,$   $\widehat{V}_{CI0}$  is Written As Follows:

$$\widehat{V}_{\rm CI} = \frac{\lambda^2 |\Phi|^n}{f_{\mathcal R}^2} \quad {\rm Where} \quad f_{\mathcal R} = F_{\mathcal R} = -\Omega/3, \quad {\rm Since} \quad e^K = f_{\mathcal R}^{-3} \quad {\rm and} \quad K^{SS^*} = f_{\mathcal R}.$$

- The  $\eta$  Problem Within SUGRA is Resolved by Mildly Tuning  $c_K \gg 1$  and  $r_{RK} = c_R/c_K^{n/4} \le 1$ .
- The Function  $c_K f_{R}^m$  Remains Invisible in  $\widehat{V}_{CI}$  And Influences Only the Canonical Normalization of  $\Phi$ ,  $K_{\Phi\Phi^*} = J^2$

CHARGE ASSIGNMENTS

| SUPERFIELDS: | S | Φ   |
|--------------|---|-----|
| U(1)         | 1 | 2/n |

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト …

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI)<br>OO<br>O | Unitarity Constraint<br>00 | Supergravity Embedding<br>○<br>●O | Inflation Analysis<br>O<br>O | Conclusions |
|----------------------------------------------------|----------------------------|-----------------------------------|------------------------------|-------------|
| KINETICALLY MODIFIED NON-MCLIN SUGRA               |                            |                                   |                              |             |

• We Use 2 Superfields  $\Phi^1 = \Phi$  (Inflaton) and  $\Phi^2 = S$  ("Stabilized" Field) And Adopt the Following Superpotential:

$$W = \lambda S \Phi^{n/2}$$

From Which in the The SUSY Limit We Get  $V_{\rm CI} = \lambda^2 |\Phi|^n + \lambda^2 |S|^2$ 

- IF WE SET S = 0, The Only Surviving Term of  $\widehat{V}$  is  $\widehat{V}_{CI} = e^K K^{SS^*} |W_{,S}|^2$ .
- To Obtain KINETICALLY Modified NON-MCI IN SUGRA WE SELECT THE FOLLOWING KÄHLER POTENTIAL :

$$K = -3\ln\left(\frac{1}{2}\left(F_{\mathcal{R}} + F_{\mathcal{R}}^{*}\right) + \frac{c_{\mathrm{K}}}{2^{m}6}\left(F_{\mathcal{R}} + F_{\mathcal{R}}^{*}\right)^{m}F_{\mathrm{K}} - F_{S} + \frac{k_{\Phi}}{6}F_{\mathrm{K}}^{2} - \frac{k_{S\Phi}}{3}F_{\mathrm{K}}|S|^{2}\right),\label{eq:K}$$

WHERE WE HAVE DEFINED THE FUNCTIONS

$$F_{\mathcal{R}}(\Phi) = 1 + 2^{\frac{n}{4}} \Phi^{\frac{n}{2}} c_{\mathcal{R}}, \quad F_{\mathrm{K}} = (\Phi - \Phi^*)^2 \text{ and } F_S = |S|^2 / 3 - k_S |S|^4 / 3.$$

• Along the Inflationary Direction  $S=\Phi-\Phi^*=0,$   $\widehat{V}_{CI0}$  is Written As Follows:

$$\widehat{V}_{\rm CI} = \frac{\lambda^2 |\Phi|^n}{f_{\mathcal R}^2} \quad {\rm Where} \quad f_{\mathcal R} = F_{\mathcal R} = -\Omega/3, \quad {\rm Since} \quad e^K = f_{\mathcal R}^{-3} \quad {\rm and} \quad K^{SS^*} = f_{\mathcal R}.$$

- The  $\eta$  Problem Within SUGRA is Resolved by Mildly Tuning  $c_K \gg 1$  and  $r_{\mathcal{R}K} = c_{\mathcal{R}}/c_K^{n/4} \leq 1$ .
- THE FUNCTION  $c_K f_{\varphi}^m$  Remains Invisible in  $\widehat{V}_{CI}$  And Influences Only the Canonical Normalization of  $\Phi$ ,  $K_{\Phi\Phi^*} = J^2$
- For  $c_K \gg c_R$ , Our models are Completely Natural, Because The Theory Enjoys The Following Enhanced Symmetries:

$$\Phi \to \Phi^*, \ \Phi \to \Phi + c$$
 and  $S \to e^{i\alpha}S$ , in the Limits  $c_{\mathcal{R}} \to 0 \& \lambda \to 0$ 

CHARGE ASSIGNMENTS

| SUPERFIELDS: | S | Φ   |
|--------------|---|-----|
| U(1)         | 1 | 2/n |

| Non-Minimal Chaotic Inflation (Non-MCI)<br>OO<br>O | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>O | Inflation Analysis<br>O<br>O | CONCLUSIONS |
|----------------------------------------------------|----------------------------|----------------------------------|------------------------------|-------------|
| KINETICALLY MODIFIED NON-MCI IN SUGRA              |                            |                                  |                              |             |

## FRAMEWORK OF INFLATIONARY ANALYSIS

• Expanding  $\Phi$  and S in Real And Imaginary Parts as Follows:

 $\Phi = \phi e^{i\theta} / \sqrt{2} \text{ and } S = (s + i\bar{s}) / \sqrt{2} \text{ We Obtain } \widehat{V}_{\text{CI}} = \lambda^2 \phi^n / (1 + c_{\mathcal{R}} \phi^{n/2})^2 \text{ (No Dependence on } m \text{ and } c_{\text{K}} \text{ Arises)}$ 

æ.

・ロト ・ 同ト ・ ヨト ・ ヨト

| Non-Minimal Chaotic Inflation (Non-MCI)<br>OO<br>O | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>O | Inflation Analysis<br>O<br>O | Conclusions |
|----------------------------------------------------|----------------------------|----------------------------------|------------------------------|-------------|
| KINETICALLY MODIFIED NON-MCI IN SUGRA              |                            |                                  |                              |             |

## FRAMEWORK OF INFLATIONARY ANALYSIS

• Expanding  $\Phi$  and S in Real And Imaginary Parts as Follows:

 $\Phi = \phi e^{i\theta} / \sqrt{2} \text{ and } S = (s + i\bar{s}) / \sqrt{2} \text{ We Obtain } \widehat{V}_{\text{CI}} = \lambda^2 \phi^n / (1 + c_{\mathcal{R}} \phi^{n/2})^2 \text{ (No Dependence on } m \text{ and } c_{\text{K}} \text{ Arises)}$ 

• We Can Check the Stability of the Inflationary Trajectory  $s = \bar{s} = \theta = 0$  w.r.t the Fluctuations Of The Various Fields, i.e.

$$\frac{\partial V}{\partial \widetilde{\chi}^{\alpha}}\Big|_{s=\overline{s}=\theta=0} = 0 \quad \text{and} \quad \widehat{m}^2_{\chi^{\alpha}} > 0 \quad \text{Where} \quad \widehat{m}^2_{\chi^{\alpha}} = \mathsf{Egv}\left[\widehat{M}^2_{\alpha\beta}\right] \quad \text{With} \quad \widehat{M}^2_{\alpha\beta} = \left. \frac{\partial^2 V}{\partial \widetilde{\chi}^{\alpha} \partial \widetilde{\chi}^{\beta}} \right|_{\theta=s=\overline{s}=0} \quad \text{and} \quad \chi^{\alpha} = \theta, s, \overline{s}.$$

• Here We Introduce The EF Canonically Normalized Fields,  $d\widehat{\phi}/d\phi = J \simeq \sqrt{c_{\rm K}} f_{\mathcal{R}}^{m-1}, \quad \widehat{\theta} \simeq J\phi\theta$  and  $(\widehat{s}, \widehat{\widetilde{s}}) \simeq (\widehat{s}, \widehat{\widetilde{s}})/\sqrt{f_{\mathcal{R}}}$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

| Non-Minimal Chaotic Inflation (Non-MCI)<br>OO<br>O | Unitarity Constraint<br>00 | Supergravity Embedding<br>O | Inflation Analysis<br>O<br>O | Conclusions |
|----------------------------------------------------|----------------------------|-----------------------------|------------------------------|-------------|
| KINETICALLY MODIFIED NON-MCI IN SUGRA              |                            |                             |                              |             |

# FRAMEWORK OF INFLATIONARY ANALYSIS

• Expanding  $\Phi$  and S in Real And Imaginary Parts as Follows:

 $\Phi = \phi e^{i\theta} / \sqrt{2} \text{ and } S = (s + i\overline{s}) / \sqrt{2} \text{ We Obtain } \widehat{V}_{\text{CI}} = \lambda^2 \phi^n / (1 + c_{\mathcal{R}} \phi^{n/2})^2 \text{ (No Dependence on } m \text{ and } c_{\mathbf{K}} \text{ Arises)}$ 

• We Can Check the Stability of the Inflationary Trajectory  $s = \bar{s} = \theta = 0$  w.r.t the Fluctuations Of The Various Fields, i.e.

$$\frac{\partial V}{\partial \widetilde{\chi}^{\alpha}}\Big|_{s=\overline{s}=\theta=0} = 0 \quad \text{and} \quad \widehat{m}^2_{\chi^{\alpha}} > 0 \quad \text{Where} \quad \widehat{m}^2_{\chi^{\alpha}} = \mathsf{Egv}\left[\widehat{M}^2_{\alpha\beta}\right] \quad \text{With} \quad \widehat{M}^2_{\alpha\beta} = \left. \frac{\partial^2 V}{\partial \widetilde{\chi}^{\alpha} \partial \widetilde{\chi}^{\beta}} \right|_{\theta=s=\overline{s}=0} \quad \text{and} \quad \chi^{\alpha} = \theta, s, \overline{s}.$$

• Here We Introduce The EF Canonically Normalized Fields,  $d\widehat{\phi}/d\phi = J \simeq \sqrt{c_K} f_{\mathcal{R}}^{m-1}, \quad \widehat{\theta} \simeq J\phi\theta$  and  $(\widehat{s}, \widehat{s}) \simeq (\widehat{s}, \widehat{s})/\sqrt{f_{\mathcal{R}}}$ .

| Fields         | Eingestates                                                                      | Masses Squared                                                                                    |
|----------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 1 Real Scalar  | $\widehat{	heta}$                                                                | $\widehat{m}_{\theta}^2 \simeq 4 \widehat{V}_{CI} / 3 \simeq 4 H_{CI}^2$                          |
| 2 Real Scalars | $\widehat{s}, \widehat{\overline{s}}$                                            | $\widehat{m}_s^2 \simeq 2(6k_S f_{\mathcal{R}} - 1)\widehat{V}_{\rm CI}/3$                        |
| 2 WEYL SPINORS | $\widehat{\psi}_{\pm} = (\widehat{\psi}_{\Phi} \pm \widehat{\psi}_{S})/\sqrt{2}$ | $\widehat{m}_{\psi\pm}^2 \simeq n^2 \widehat{V}_{\rm CI}/2c_{\rm K} \phi^2 f_{\mathcal{R}}^{1+m}$ |

THE MASS SPECTRUM ALONG THE INFLATIONARY TRAJECTORY

- WE OBSERVE THE FOLLOWING:
  - $\forall \alpha, \ \widehat{m}_{\chi^{\alpha}}^2 > 0.$  Especially  $\widehat{m}_s^2 > 0 \iff k_S > (0.5 1.5);$
  - $\forall \alpha, \widehat{m}_{y^{\alpha}}^2 > \widehat{H}_{CI}^2$  and So Any Inflationary Perturbations Of The Fields Other Than The Inflaton Are Safely Eliminated;
  - The One-Loop Radiative Corrections (RCs) à la Coleman-Weinberg to  $\widehat{V}_{\mathrm{CI}}$  Have The Usual Form:

$$\Delta \widehat{V}_{\text{CI}} = \frac{1}{64\pi^2} \left( \widehat{m}_{\theta}^4 \ln \frac{\widehat{m}_{\theta}^2}{\Lambda^2} + 2\widehat{m}_s^4 \ln \frac{\widehat{m}_s^2}{\Lambda^2} - 4\widehat{m}_{\psi_{\pm}}^4 \ln \frac{\widehat{m}_{\psi_{\pm}}^2}{\Lambda^2} \right)$$

Where  $\Lambda \simeq (1-5) \cdot 10^{14}$  is A Renormalization Group Mass Scale Determined By Requiring  $\Delta \widehat{V}_{CI}(\phi_{\star}) = 0$  or  $\Delta \widehat{V}_{CI}(\phi_{f}) = 0$ . Under These Circumstances,  $\Delta \widehat{V}_{CI}$  has No Significant Effect on The Results.

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI)<br>OO<br>O | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>OO | Inflation Analysis | Conclusions |
|----------------------------------------------------|----------------------------|-----------------------------------|--------------------|-------------|
| Analytical Results                                 |                            |                                   |                    |             |

• THE SLOW-ROLL PARAMETERS ARE DETERMINED USING THE STANDARD FORMULAE IN THE EF:

$$\widehat{\epsilon} = n^2 / (2\phi^2 c_{\mathrm{K}} f_{\mathcal{R}}^{1+m}) \quad \text{and} \quad \widehat{\eta} = \left( 2\left(1 - 1/n\right) - \left(4 + n(1+m)c_{\mathcal{R}}\phi^{\frac{n}{2}}/2n\right) \right) \widehat{\epsilon} \,.$$

Ξ.

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | UNITARITY CONSTRAINT | Supergravity Embedding | INFLATION ANALYSIS | CONCLUSIONS |
|-----------------------------------------|----------------------|------------------------|--------------------|-------------|
| 00                                      | 00                   | 0                      | •                  |             |
| 0                                       |                      | 00                     | 0                  |             |
|                                         |                      |                        |                    |             |
| ANALYTICAL RESULTS                      |                      |                        |                    |             |

• THE SLOW-ROLL PARAMETERS ARE DETERMINED USING THE STANDARD FORMULAE IN THE EF:

$$\widehat{\epsilon} = n^2 / (2\phi^2 c_{\mathrm{K}} f_{\mathcal{R}}^{1+m}) \quad \text{and} \quad \widehat{\eta} = \left( 2\left(1 - 1/n\right) - \left(4 + n(1+m)c_{\mathcal{R}}\phi^{\frac{n}{2}}/2n\right)\right) \widehat{\epsilon}$$

• THE NUMBER OF *e*-foldings Is Calculated to be

$$\begin{split} \widehat{N}_{\star} &\simeq \frac{c_{\mathrm{K}} \phi_{\star}^{2}}{2n} \ _{2}F_{1}\left(-m, \frac{4}{n}; 1+\frac{4}{n}; -c_{\mathcal{R}} \phi_{\star}^{n/2}\right) \Rightarrow \ \phi_{\star} &\simeq \left\{ \sqrt{\frac{2n \widetilde{N}_{\star}}{c_{\mathrm{K}}}} \ \text{ for } m=0, \ \text{Since } \ _{2}F_{1}\left(0, \frac{4}{n}; 1+\frac{4}{n}; -c_{\mathcal{R}} \phi_{\star}^{n/2}\right) = 1; \\ \sqrt{\frac{f_{m\star}-1}{r_{\mathcal{R}\mathrm{K}}c_{\mathrm{K}}}} \ \text{ for } n=4, \ \text{Since } \ _{2}F_{1}\left(-m, 1; 2; -c_{\mathcal{R}} \phi_{\star}^{n/2}\right) = \frac{f_{\mathcal{R}}^{1+m-1}}{(1+m)c_{\mathcal{R}} \phi_{\star}^{2}}. \\ \text{Here } \ _{2}F_{1} \ \text{ is the Gauss Hypergeometric Function and } f_{m\star} = \left(1+8(m+1)r_{\mathcal{R}\mathrm{K}} \widehat{N}_{\star}\right)^{1/(1+m)}. \end{split}$$

æ

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト …

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | UNITARITY CONSTRAINT | Supergravity Embedding | INFLATION ANALYSIS | CONCLUSIONS |
|-----------------------------------------|----------------------|------------------------|--------------------|-------------|
| 00                                      | 00                   | 0                      | •                  |             |
| 0                                       |                      | 00                     | 0                  |             |
|                                         |                      |                        |                    |             |
| ANALYTICAL RESULTS                      |                      |                        |                    |             |

• THE SLOW-ROLL PARAMETERS ARE DETERMINED USING THE STANDARD FORMULAE IN THE EF:

$$\widehat{\epsilon} = n^2 / (2\phi^2 c_{\mathrm{K}} f_{\mathcal{R}}^{1+m}) \quad \text{and} \quad \widehat{\eta} = \left( 2\left(1 - 1/n\right) - \left(4 + n(1+m)c_{\mathcal{R}}\phi^{\frac{n}{2}}/2n\right)\right) \widehat{\epsilon}$$

• THE NUMBER OF *e*-foldings Is Calculated to be

$$\widehat{N}_{\star} \simeq \frac{c_{\mathrm{K}} \phi_{\star}^{2}}{2n} \ _{2}F_{1}\left(-m, \frac{4}{n}; 1+\frac{4}{n}; -c_{\mathcal{R}} \phi_{\star}^{n/2}\right) \Rightarrow \phi_{\star} \simeq \begin{cases} \sqrt{\frac{2n \widetilde{N}_{\star}}{c_{\mathrm{K}}}} \text{ for } m = 0, \text{ Since } _{2}F_{1}\left(0, \frac{4}{n}; 1+\frac{4}{n}; -c_{\mathcal{R}} \phi_{\star}^{n/2}\right) = 1; \\ \sqrt{\frac{f_{\mathrm{R}} - 1}{r_{\mathcal{R}} c_{\mathrm{K}} c_{\mathrm{K}}}} \text{ for } n = 4, \text{ Since } _{2}F_{1}\left(-m, 1; 2; -c_{\mathcal{R}} \phi_{\star}^{n/2}\right) = \frac{f_{\mathrm{R}}^{1+m-1}}{(1+m)c_{\mathcal{R}} \phi_{\star}^{2}} \end{cases}$$

Here  $_2F_1$  is the Gauss Hypergeometric Function and  $f_{m\star} = \left(1 + 8(m+1)r_{\mathcal{R}\mathbf{K}}\widehat{N}_{\star}\right)^{1/(1+m)}$ .

- For Every m and n, There is a Lower Bound on  $c_{\rm K}$ , Above Which  $\phi_{\star} < 1$ .
- The Power Spectrum Normalization Implies A Dependence of  $\lambda$  on  $c_{
  m K}$  for Every  $r_{{\cal R}{
  m K}}$

$$\lambda = \sqrt{3A_s}\pi \cdot \begin{cases} \left(c_K/n\widehat{N}_\star\right)^{\frac{n}{4}} \left(2nf_{n\star}/\widehat{N}_\star\right)^{\frac{1}{2}} & \text{for } m = 0, \\ 16c_K r_{\mathcal{R}K}^{3/2}/(f_{m\star} - 1)^{\frac{3}{2}} f_{m\star}^{\frac{1+m}{2}} & \text{for } n = 4, \end{cases} \quad \text{ where } f_{n\star} = f_{\mathcal{R}}(\phi_\star) = 1 + r_{\mathcal{R}K}(2n\widehat{N}_\star)^{n/4}.$$

ヘロト 人間 トメヨトメヨト

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | UNITARITY CONSTRAINT | SUPERGRAVITY EMBEDDING | INFLATION ANALYSIS | CONCLUSIONS |
|-----------------------------------------|----------------------|------------------------|--------------------|-------------|
| 00                                      | 00                   | 0                      | •                  |             |
| 0                                       |                      | 00                     | 0                  |             |
| A Brown                                 |                      |                        |                    |             |

• THE SLOW-ROLL PARAMETERS ARE DETERMINED USING THE STANDARD FORMULAE IN THE EF:

$$\widehat{\epsilon} = n^2 / (2\phi^2 c_{\mathrm{K}} f_{\mathcal{R}}^{1+m}) \quad \text{and} \quad \widehat{\eta} = \left( 2\left(1 - 1/n\right) - \left(4 + n(1+m)c_{\mathcal{R}}\phi^{\frac{n}{2}}/2n\right) \right) \widehat{\epsilon}$$

• THE NUMBER OF *e*-foldings Is Calculated to be

$$\widehat{N}_{\star} \simeq \frac{c_{\mathrm{K}} \phi_{\star}^{2}}{2n} \ _{2}F_{1}\left(-m, \frac{4}{n}; 1+\frac{4}{n}; -c_{\mathcal{R}} \phi_{\star}^{n/2}\right) \Rightarrow \phi_{\star} \simeq \begin{cases} \sqrt{\frac{2n \widetilde{N}_{\star}}{c_{\mathrm{K}}}} \text{ for } m = 0, \text{ Since } _{2}F_{1}\left(0, \frac{4}{n}; 1+\frac{4}{n}; -c_{\mathcal{R}} \phi_{\star}^{n/2}\right) = 1; \\ \sqrt{\frac{f_{\mathrm{R}} - 1}{r_{\mathcal{R}} c_{\mathrm{K}} c_{\mathrm{K}}}} \text{ for } n = 4, \text{ Since } _{2}F_{1}\left(-m, 1; 2; -c_{\mathcal{R}} \phi_{\star}^{n/2}\right) = \frac{f_{\mathrm{R}}^{1+m-1}}{(1+m)c_{\mathcal{R}} \phi_{\star}^{2}} \end{cases}$$

Here  $_2F_1$  is the Gauss Hypergeometric Function and  $f_{m\star} = \left(1 + 8(m+1)r_{\mathcal{RK}}\widehat{N}_{\star}\right)^{1/(1+m)}$ .

- For Every m and n, There is a Lower Bound on  $c_{\mathrm{K}}$ , Above Which  $\phi_{\star} < 1$ .
- The Power Spectrum Normalization Implies A Dependence of  $\lambda$  on  $c_{
  m K}$  for Every  $r_{{\cal R}{
  m K}}$

$$\mathcal{A} = \sqrt{3A_{\mathrm{s}}}\pi \cdot \begin{cases} \left(c_{\mathrm{K}}/n\widehat{N}_{\star}\right)^{\frac{n}{4}} \left(2nf_{n\star}/\widehat{N}_{\star}\right)^{\frac{1}{2}} & \text{for } m = 0, \\ 16c_{\mathrm{K}}r_{\mathrm{RK}}^{3/2}/(f_{m\star} - 1)^{\frac{3}{2}}f_{m\star}^{\frac{1+m}{2}} & \text{for } n = 4, \end{cases}$$
 where  $f_{n\star} = f_{\mathrm{R}}(\phi_{\star}) = 1 + r_{\mathrm{RK}}(2n\widehat{N}_{\star})^{n/4}.$ 

• A Clear Efficient Dependence of The Observables On  $r_{\mathcal{R}K}$  Arises, I.e.,

$$n_{\rm s} = 1 - (f_{m\star}^{1+m} - 1) \frac{m-1 + (m+2)f_{m\star}}{(f_{m\star} - 1)f_{m\star}^{1+m}(1+m)\widehat{N}_{\star}}, \ r = \frac{16(f_{m\star}^{1+m} - 1)}{(f_{m\star} - 1)f_{m\star}^{1+m}(1+m)\widehat{N}_{\star}},$$

$$\alpha_{\rm s} = \frac{f_{m\star}^{-(\star,\star,m)}}{(1+m)\widehat{N_{\star}}} \frac{(f_{m\star}^{++m}-1)^2}{(f_{m\star}-1)^2} \left(2f_{m\star}(1+f_{m\star}) + 3(f_{m\star}-1)f_{m\star}m + (f_{m\star}-1)^2m^2 - 1)\right)$$

• E.g., Expanding the Relevant Formulas for  $1/\widehat{N}_{\star} \ll 1$  We Find for n = 4 and m = 1:

$$n_{\rm s} \simeq 1 - 3/2\widehat{N}_{\star} - 3/8(\widehat{N}_{\star}^3 r_{\rm RK})^{1/2}, \ r \simeq 1/2\widehat{N}_{\star}^2 r_{\rm RK} + 2/(\widehat{N}_{\star}^3 r_{\rm RK})^{1/2}, \ \alpha_{\rm s} \simeq 3/2\widehat{N}_{\star}^2 + 9/16(\widehat{N}_{\star}^5 r_{\rm RK})^{1/2} \equiv 0 \leq 0$$

| Non-Minimal Chaotic Inflation (Non-MCI)<br>OO<br>O | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O | Conclusions |
|----------------------------------------------------|----------------------------|-----------------------------------|-------------------------|-------------|
| NUMERICAL RESULTS                                  |                            |                                   |                         |             |

• Imposing the PlanckConstraints for  $\widehat{N}_{\star}$  = 55,  $k_S = 0.5 - 1$  and  $k_{\Phi} = 1$  we Obtain the Following Allowed Curves:



æ

| Non-Minimal Chaotic Inflation (Non-MCI)<br>OO<br>O | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O | Conclusions |
|----------------------------------------------------|----------------------------|-----------------------------------|-------------------------|-------------|
| NUMERICAL RESULTS                                  |                            |                                   |                         |             |

• Imposing the PlanckConstraints for  $\widehat{N}_{\star} = 55$ ,  $k_s = 0.5 - 1$  and  $k_{\Phi} = 1$  we Obtain the Following Allowed Curves:



• WE OBSERVE THE FOLLOWING:

• Apart from the n = 2 line, the Others Terminate for  $r_{\mathcal{RK}} = 1$ , Beyond Which The Theory Ceases To Be Unitarity Safe.

| Non-Minimal Chaotic Inflation (Non-MCI)<br>OO<br>O | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O | Conclusions |
|----------------------------------------------------|----------------------------|-----------------------------------|-------------------------|-------------|
| NUMERICAL RESULTS                                  |                            |                                   |                         |             |

• Imposing the PlanckConstraints for  $\widehat{N}_{\star} = 55$ ,  $k_S = 0.5 - 1$  and  $k_{\Phi} = 1$  we Obtain the Following Allowed Curves:



• WE OBSERVE THE FOLLOWING:

- Apart from the n = 2 line, the Others Terminate for  $r_{\mathcal{RK}} = 1$ , Beyond Which The Theory Ceases To Be Unitarity Safe.
- For m = 0 we Reveal The Results of the Original non-MCI Although With  $\phi < 1$ .

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI)<br>OO<br>O | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O | Conclusions |
|----------------------------------------------------|----------------------------|-----------------------------------|-------------------------|-------------|
| NUMERICAL RESULTS                                  |                            |                                   |                         |             |

• Imposing the PlanckConstraints for  $\hat{N}_{\star} = 55$ ,  $k_S = 0.5 - 1$  and  $k_{\Phi} = 1$  we Obtain the Following Allowed Curves:



• WE OBSERVE THE FOLLOWING:

- Apart from the n = 2 line, the Others Terminate for  $r_{\mathcal{RK}} = 1$ , Beyond Which The Theory Ceases To Be Unitarity Safe.
- For m = 0 we Reveal The Results of the Original Non-MCI Although With  $\phi < 1$ .
- For m = 1 The Curves Move To The Right And Fill More Densely the 1- $\sigma$  Observationally Favored Ranges For Quite Natural  $r_{RK}$ 's e.g.  $0.005 \leq r_{RK} \leq 0.1$  for m = 1 and n = 4.

| Non-Minimal Chaotic Inflation (Non-MCI)<br>OO<br>O | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O | Conclusions |
|----------------------------------------------------|----------------------------|-----------------------------------|-------------------------|-------------|
| NUMERICAL RESULTS                                  |                            |                                   |                         |             |

• Imposing the PlanckConstraints for  $\widehat{N}_{\star} = 55$ ,  $k_S = 0.5 - 1$  and  $k_{\Phi} = 1$  we Obtain the Following Allowed Curves:



• WE OBSERVE THE FOLLOWING:

- Apart from the n = 2 line, the Others Terminate for  $r_{\mathcal{RK}} = 1$ , Beyond Which The Theory Ceases To Be Unitarity Safe.
- For m = 0 we Reveal The Results of the Original Non-MCI Although With  $\phi < 1$ .
- For m = 1 The Curves Move To The Right And Fill More Densely the 1- $\sigma$  Observationally Favored Ranges For Quite Natural  $r_{RK}$ 's e.g.  $0.005 \leq r_{RK} \leq 0.1$  for m = 1 and n = 4.
- The Requirement  $r_{RK} \le 1$  Provides a Lower Bound on r, Which Ranges From 0.0032 (for m = 0 and n = 6) to 0.015 (for m = 4 and n = 4).

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI)<br>OO<br>O | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O | Conclusions |
|----------------------------------------------------|----------------------------|-----------------------------------|-------------------------|-------------|
| NUMERICAL RESULTS                                  |                            |                                   |                         |             |

• Imposing the PlanckConstraints for  $\widehat{N}_{\star} = 55$ ,  $k_S = 0.5 - 1$  and  $k_{\Phi} = 1$  we Obtain the Following Allowed Curves:



• WE OBSERVE THE FOLLOWING:

- Apart from the n = 2 line, the Others Terminate for  $r_{RK} = 1$ , Beyond Which The Theory Ceases To Be Unitarity Safe.
- For m = 0 we Reveal The Results of the Original Non-MCI Although With  $\phi < 1$ .
- For m = 1 The Curves Move To The Right And Fill More Densely the 1- $\sigma$  Observationally Favored Ranges For Quite Natural  $r_{RK}$ 's e.g.  $0.005 \leq r_{RK} \leq 0.1$  for m = 1 and n = 4.
- The Requirement  $r_{RK} \leq 1$  Provides a Lower Bound on r, Which Ranges From 0.0032 (for m = 0 and n = 6) to 0.015 (for m = 4 and n = 4).
- The n = 2 Line Approaches an Attractor Value for  $c_{\mathcal{R}} \gg 1$  any m.

・ロト ・ 御 ト ・ ヨト ・ ヨト

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | UNITARITY CONSTRAINT | Supergravity Embedding | INFLATION ANALYSIS | CONCLUSIONS |
|-----------------------------------------|----------------------|------------------------|--------------------|-------------|
| 00                                      | 00                   | 0                      | 0                  |             |
| 0                                       |                      | 00                     | 0                  |             |
|                                         |                      |                        |                    |             |
|                                         |                      |                        |                    |             |



OBSERVABLE GRAVITATIONAL WAVES FROM NON-MINIMAL INFLATION IN SUGRA

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | UNITARITY CONSTRAINT | Supergravity Embedding | INFLATION ANALYSIS | CONCLUSIONS |
|-----------------------------------------|----------------------|------------------------|--------------------|-------------|
| 00                                      | 00                   | 0                      | 0                  |             |
| 0                                       |                      | 00                     | 0                  |             |
|                                         |                      |                        |                    |             |
|                                         |                      |                        |                    |             |



#### CONCLUSIONS

• WE PROPOSED A VARIANT OF NON-MCI WHICH CAN SAFELY ACCOMMODATE r'S OF ORDER 0.01.

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | UNITARITY CONSTRAINT | Supergravity Embedding | INFLATION ANALYSIS | CONCLUSIONS |
|-----------------------------------------|----------------------|------------------------|--------------------|-------------|
| 00                                      | 00                   | 0                      | 0                  |             |
| 0                                       |                      | 00                     | 0                  |             |
|                                         |                      |                        |                    |             |
|                                         |                      |                        |                    |             |



#### CONCLUSIONS

- WE PROPOSED A VARIANT OF NON-MCI WHICH CAN SAFELY ACCOMMODATE r's OF ORDER 0.01.
- This setting can be Elegantly Implemented in SUGRA, Employing a Logarithmic Kähler Potential Which Includes an Holomorphic Function and a Shift-Symmetric Quadratic Function  $F_K$  Which Remains Invisible in  $\widehat{V}_{C10}$  While Dominates J.

| NON-MINIMAL CHAOTIC INFLATION (NON-MCI) | UNITARITY CONSTRAINT | SUPERGRAVITY EMBEDDING | INFLATION ANALYSIS | CONCLUSIONS |
|-----------------------------------------|----------------------|------------------------|--------------------|-------------|
| 00                                      | 00                   | 0                      | 0                  |             |
| 0                                       |                      | 00                     | 0                  |             |
|                                         |                      |                        |                    |             |
|                                         |                      |                        |                    |             |



#### CONCLUSIONS

- WE PROPOSED A VARIANT OF NON-MCI WHICH CAN SAFELY ACCOMMODATE r's OF ORDER 0.01.
- This setting can be Elegantly Implemented in SUGRA, Employing a Logarithmic Kähler Potential. Which Includes an Holomorphic Function and a Shift-Symmetric Quadratic Function  $F_K$  Which Remains Invisible in  $\widehat{V}_{C10}$  While Dominates J. • Inflationary Solutions Can Be Attained Even With  $\phi < 1$  Requiring Large  $c_K$ 's and Without Causing Any Problem With The Perturbative Unitarity.

| Non-Minimal Chaotic Inflation (Non-MCI)<br>00<br>0 | Unitarity Constraint<br>00 | Supergravity Embedding<br>O<br>OO | Inflation Analysis<br>O<br>O | Conclusions |
|----------------------------------------------------|----------------------------|-----------------------------------|------------------------------|-------------|
|                                                    |                            |                                   |                              |             |
|                                                    |                            |                                   |                              |             |



#### CONCLUSIONS

- WE PROPOSED A VARIANT OF NON-MCI WHICH CAN SAFELY ACCOMMODATE r's OF ORDER 0.01.
- This setting can be Elegantly Implemented in SUGRA, Employing a Logarithmic Kähler Potential. Which Includes an Holomorphic Function and a Shift-Symmetric Quadratic Function  $F_K$ . Which Remains Invisible in  $\widehat{V}_{C10}$ . While Dominates J.
- Inflationary Solutions Can Be Attained Even With  $\phi < 1$  Requiring Large  $c_K$ 's and Without Causing Any Problem With The Perturbative Unitarity.
- A Sizable Fraction of the Allowed Parameter Space Of Our Models (with n = 4) can be Studied Analytically.

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト