Minimal Dilatonic Gravity from cosmology to compact massive objects

Denitsa Staicova¹ Plamen Fiziev ²

¹INRNE, BAS, Bulgaria ²JINR, Dubna, Russia

March 31, 2015

Why MDG?

General relativity – extremely well-tested theory, but only in weak to moderate-field regime $(v/c\,{<<}\,1\,{\rm or}\,\,GM/c^2R\,{<<}\,1)$

Known observational deviations:

- Rotational curves of galaxies and galactic clusters, weak lensing (Dark Matter)
- Cosmology early inflation and current accelerated expansion of the universe (Dark Energy)
- $\bullet~$ Over all $\sim 95\%$ "Dark", i.e. Uknown Universe
 - \rightarrow there is plenty of space for alternative theories

- The inflation and the graceful exit to the present day accelerating de Sitter expansion of the Universe $(U(\Phi) \text{ can be reconstructed from } a(t))$.
- 2 Avoids any conflicts with the existing solar system and laboratory gravitational experiments when $m_{\Phi} \sim 10^{-3} eV/c^2$.
- 3 The time of inflation as a reciprocal quantity to the mass of dilaton m_{Φ} .

Minimal Dilatonic Gravity (MDG)

We change the Einstein-Hilbert Action: $A_E = \int \frac{1}{2\kappa} (R - 2\Lambda) \sqrt{-g} d^4x$ to

/ Fiziev, Mod. Phys. Lett. A, 15 1077 (2000) and Fiziev, PRD **87**, 044053 (2013)/

$$A_{g,\phi} = rac{c}{2\kappa} \int d^4x \sqrt{|g|} (\Phi R - 2\Lambda U(\Phi))$$

Here $\Phi \in (0,\infty)$, $\Lambda > 0$ is the cosmological constant and $\kappa = 8\pi G_N/c^2$.

The scalar **dilaton** Φ leads to variable gravitational constant $G^{eff}(\Phi) = G_N/\Phi$, while the scalar potential $U(\Phi)$ leads to a variable cosmological factor $\Lambda^{eff}(\Phi) = \Lambda U(\Phi)$.

The field equations are:/ $\kappa = c = 1, R = 2\Lambda U_{,\Phi}(\Phi), p = \sqrt{\Lambda}\hbar/cm_{\Phi}/:$

$$U(\Phi) = \Phi^{2} + \frac{3}{16}p^{-2}(\Phi - 1/\Phi)^{2}$$
$$\Box \Phi + 2/3(\Phi U_{,\Phi}(\Phi) - 2U(\Phi)) = 1/3T$$
$$\Phi \hat{R}_{\alpha}^{\beta} = -\widehat{\nabla_{\alpha}} \nabla^{\beta} \Phi - \hat{T}_{\alpha}^{\beta}$$
(1)

Credit: Fiziev, Physical Review D 87, 044053 (2013)

(e) Unique Einstein Vacuum and many deSitter vacuums: $U_{,\Phi\Phi} > 0$

(f) Unique Einstein Vacuum and unique deSitter vacuums: $U_{,\Phi\Phi} > 0, V_{,\Phi\Phi} > 0$

$$V(\Phi) = \frac{2}{3} \int_{1}^{\Phi} (\Phi U_{,\Phi}(\Phi) - 2U) d\Phi$$
$$V_{,\Phi}(\Phi) = 2/3 (\Phi U_{,\Phi}(\Phi)$$

Application to compact stars, following Fiziev, PRD 87, 044053 (2013)

We apply the field equations on a static, spherically symmetric metric: $ds^2 = e^{\nu(r)}dt^2 - e^{\lambda(r)}dr^2 - r^2d\Omega^2$ for $T^{\mu\nu} = diag(\epsilon, p, p, p)$, (perfect-fluid)

 \rightarrow a system of 4 coupled 1st order ODEs + EOS White Dwarfs and Neutron Stars In the case of GR, the white dwarfs are described well even in the polytropic approximation

1. We use it to test the limit $\Phi = 1, U(\Phi) = 1$

 $p_{nonrel} = K_{nonrel} \epsilon^{\frac{5}{3}}, p_{rel} = K_{rel} \epsilon^{\frac{4}{3}},$

$$M_{WD} = 0.17 - 1.3 M_{\odot}$$

 $R_{WD} = 0.008 - 0.02 R_{\odot}$
 $ho_{WD} = 10^5 - 10^9 gr/cm^3$

$$M_{NS} = 1.4 - 2M_{\odot}$$

$$R_{NS} = 12 - 13km$$

$$\rho_{NS} = 10^9 - 10^{17} kg/m^3$$

Model	r _{MDG}	r _{GR}	Δr	m _{MDG}	m _{GR}	Δm
Relativistic WD ($p0 = 10^{-14}$)	4 947	4840	1.07%	1.2406	1.2431	0.2%
Relativistic WD $(p0 = 10^{-15})$	8 799	8600	1.99%	1.2419	1.2432	0.1%
Relativistic WD ($p0 = 10^{-16}$)	15 648	15 080	5.6%	1.2427	1.2430	0.02%
Non-Relativistic $(p0 = 10^{-15})$	10 603	10 620	0.17%	0.3929	0.3941	0.3%
Non-Relativistic ($p0 = 10^{-16}$)	13 349	13 360	0.11%	0.1969	0.1974	0.25%

Denitsa Staicova, Plamen Fiziev

in which MDG \rightarrow GR:

Some plots: WD with Maple and NS with COCAL /Compact Object CALculator (Tsokaros et al. (2014))

White Dwarfs /p=1e-19, $\rho 0 = 10^7 - 10^8$ CGS/:

Neutron stars $/\gamma = 4/3$, p0=1e+15 /:

The complete picture for NS for different EOS

The connection with cosmology

- We get get masses/radii in the expected ranges and reproduce GR in the limit
- 2 In both cases, the total mass is \sim 30% the mass of the compact star
- 3 The less massive the dilaton, the higher the total mass (for the moment, we are at $(d \sim 10^{-20})$, the goal is $\sim 10^{-30}$.
- The total mass of WD is critical to their consideration as standard candles – essential to cosmology
- The maximal neutron star mass is important for both particle physics, astrophysics and cosmology (GRBs as standard candles)

Good perspectives in front of MDG in both stellar physics and cosmology!

Denitsa Staicova, Plamen Fiziev

MDG from cosmology to CMO

March 31, 2015 8 / 12

Thank you for the attention!

Some of the works where details on the MDG model have been worked out.

A theory in development

Fiziev, arXiv:1402.2813 [gr-qc], "Frontiers of Fundamental Physics 14", Marseille, France, July, 15-18, 2014, PoS(FFP14)080
P.P. Fiziev, Physical Review D 87, 044053 (2013)
P. Fiziev, Georgieva D., Phys. Rev. D 67 064016 (2003).
Plamen P. Fiziev, arXiv:gr-qc/0202074
Fiziev P. P., Yazadjiev S., Boyadjiev T., Todorov M., Phys. Rev. D 61 124018 (2000).
P. Fiziev, Mod. Phys. Lett. A, 15 1077 (2000)

The pioneering work on the MDG model is by O'Hanlon, Phys. Rev. Lett. 29 137 (1972).

The equations

1. For the inner domain $r \in [0, r_*]$:

$$\frac{dm}{dr} = 4\pi r^{2} \epsilon_{eff} / \Phi \qquad (2) \qquad \text{Additionally, we have:} \\ \frac{dp}{dr} = -\frac{p+\epsilon}{r} \frac{m+4\pi r^{3} p_{eff} / \Phi}{\Delta - 2\pi r^{3} p_{\Phi} / \Phi} \qquad (3) \qquad \epsilon_{\Lambda} = -p_{\Lambda} - \frac{\Lambda}{12\pi} \Phi, \\ \frac{d\Phi}{dr} = -4\pi r^{2} p_{eff} / \Delta \qquad (4) \qquad \epsilon_{\Phi} = p - \frac{1}{3}\epsilon + \frac{\Lambda}{8\pi} V'(\Phi) + \frac{p_{\Phi}}{2} \Pi \\ \frac{dp_{\Phi}}{dr} = -\frac{p_{\Phi}}{r\Delta} \left(3r - 7m - \frac{2}{3}\Lambda r^{3} + 4\pi r^{3}\epsilon_{eff} / \Phi \right) \qquad \epsilon = \epsilon(p) \\ -\frac{2}{r}\epsilon_{\Phi} \qquad (5)$$

where

$$\Delta = r - 2m - \frac{1}{3}\Lambda r^3, \epsilon_{eff} = \epsilon + \epsilon_{\Phi} + \epsilon_{\Lambda}, p_{eff} = p + p_{\Phi} + p_{\Lambda}, \Pi = \frac{m + 4\pi r^3 p_{eff} / \Phi}{\Delta - 2\pi r^3 p_{\Phi} / \Phi}$$

and

$$\epsilon_{\Lambda} = rac{\Lambda}{8\pi}(U(\Phi) - \Phi), p_{\Lambda} = rac{\Lambda}{8\pi}(U(\Phi) - rac{1}{3}\Phi)$$

• • •

The 4 unknown functions are m(r), p(r), $\Phi(r)$, $p_{\Phi}(r)$.

Initial and boundary conditions:

$$m(0) = m_c = 0, \Phi(0) = \Phi_c, p(0) = p_c$$
$$p_{\Phi}(0) = p_{\Phi c} = \frac{2}{3} \left(\frac{\epsilon(p)}{3} - p_c \right) - \frac{\Lambda}{12\pi} V'(\Phi_c)$$

On the star's edge $(p(r^*) = 0)$ we have

$$m^* = m(r^*; p_c, \Phi_c), \Phi^* = \Phi(r^*, p_c, \Phi_c), p_{\Phi}^* = p_{\Phi c}(r^*, p_c, \Phi_c)$$

2. For the outer domain: a boundary value problem for Φ :

$$p = 0, \epsilon = 0, \Phi_{\Delta} = 1$$

After introducing the EOS, we solve the ODE system + the initial and boundary conditions for the unknown functions m(r), p(r), $\Phi(r)$, $p_{\Phi}(r)$.