the fine structure constant variation

Franco D. Albareti

PhD student under the supervision of

Prof. Antonio L. Maroto and Prof. Francisco Prada

Instituto de Física Teórica UAM/CSIC 30th March 2015

the fine structure constant variation

Franco D. Albareti

PhD student under the supervision of

Prof. Antonio L. Maroto and Prof. Francisco Prada

Acknowledgements

30th March 2015

the fine structure constant variation

Franco D. Albareti

Work in collaboration with

Johan Comparat (IFT-UAM/CSIC), Carlos M. Gutiérrez (IAC), Isabelle Pâris (Trieste Obs.), David Schlegel (LBNL), Martín López-Corredoira (IAC), Donald P. Schneider (Penn. U),

30th March 2015

• Fine structure constant?

$$\alpha = \frac{e^2}{\hbar c} \approx \frac{1}{137}$$

Strength of coupling between the electromagnetic field/vector bosons and matter.

Fundamental constant of Nature

• Nebulium?

• Nebulium?

Cat's Eye Planetary Nebula

• Nebulium?

Two new lines discovered by Huggins 1864

Nebulium?

In 1927, Bowen showed that they are due to [OIII]

Two new lines discovered by Huggins 1864

5000

5020

 $\lambda_2 = 5008.240 \text{ Å}$

4980

λ (Å)

 $\lambda_1 = 4960.295 \text{ Å}$

Nebulium?

In 1927, Bowen showed that they are due to [OIII]

Two new lines discovered by Huggins 1864

4960

5000

5020

 $\lambda_2 = 5008.240 \text{ Å}$

 $\Delta lpha / lpha$

4980

λ (Å)

 $\lambda_1 = 4960.295 \text{ Å}$

Nebulium?

In 1927, Bowen showed that they are due to [OIII]

Two new lines discovered by Huggins 1864

4960

the fine structure constant variation

Franco D. Albareti

PhD student under the supervision of

Prof. Antonio L. Maroto and Prof. Francisco Prada

Instituto de Física Teórica UAM/CSIC 30th March 2015

the fine structure constant variation

Franco D. Albareti

PhD student under the supervision of

Prof. Antonio L. Maroto and Prof. Francisco Prada

Instituto de Física Teórica UAM/CSIC 30th March 2015

Where do we look for those lines?

Where do we look for those lines?

[OIII] on quasar spectra ——> Cosmological probes

Where do we look for those lines?

[OIII] on quasar spectra ——> Cosmological probes

Current constraints based on the [OIII] doublet method

Where do we look for those lines?

[OIII] on quasar spectra ——> Cosmological probes

Current constraints based on the [OIII] doublet method

Reference	# QSO spectra	$\Delta \alpha / \alpha ~(\times 10^{-5})$
Babcall et al (2004)	42	7 ± 14
Gutiérrez & López-Corredoira (2010)	1,568	2.4 ± 2.5
Rahmani et al. (2014)	2,347	-2.1 ± 1.6

Where do we look for those lines?

[OIII] on quasar spectra -----> Cosmological probes

Current constraints based on the [OIII] doublet methodReference# QSO spectra $\Delta \alpha / \alpha \ (\times 10^{-5})$ Bahcall et al. (2004)42 7 ± 14 Gutiérrez & López-Corredoira (2010)1, 568 2.4 ± 2.5 Rahmani et al. (2014)2, 347 -2.1 ± 1.6

Where do we look for those lines?

[OIII] on quasar spectra -----> Cosmological probes

Current constraints based on the [OIII] doublet methodReference# QSO spectra $\Delta \alpha / \alpha (\times 10^{-5})$ Bahcall et al. (2004)42 7 ± 14 Gutiérrez & López-Corredoira (2010)1, 568 2.4 ± 2.5 Rahmani et al. (2014)2, 347 -2.1 ± 1.6 Sloan Digital Sky Survey

Outline

Methodology

- Sample selection
- Results
- Future projects

Outline

Methodology

- Sample selection
- Results
- Future projects

Measurement method

$$\frac{\Delta\alpha}{\alpha} \approx \frac{\epsilon}{2\,\delta\lambda_0}$$

Redshift independent

Measurement method

$$\begin{array}{c}
 \Delta \alpha \\
 \alpha \approx \frac{\epsilon}{2 \,\delta \lambda_0}
\end{array}$$
Redshift independent

[OIII] doublet
$$\delta \lambda_0 = 47.945 \text{ Å} \longrightarrow \epsilon \approx 1 \text{ Å} \Rightarrow \frac{\Delta \alpha}{\alpha} \approx 10^{-2}$$

Outline

• Sample selection

• Results

• Future projects

Outline

• Introduction

Sample selection

• Results

• Future projects

Quasars from BOSS December 2009 # > 1,000

Franco D. Albareti 30th March 2015 IberiCOS

-1000000

June 2010 # > 19,000

Quasars from BOSS December 2010 # > 46,000

Dec. 11

June 2011 # > 84,000

Quasars from BOSS December 2011

> 107,000

Quasars from BOSS June 2012 # > 164,000

Quasars from BOSS December 2012 # > 189,000

Quasars from BOSS December 2013 # > 264,000

Franco D. Albareti 30th March 2015 IberiCOS

Quasars from SDSS-III/BOSS ~300,000

Franco D. Albareti 30th March 2015 IberiCOS

Quasars from SDSS-III/BOSS ~300,000

Wavelength

Franco D. Albareti 30th March 2015 IberiCOS

Quasars from SDSS-III/BOSS ~300,000

CIV CIII]

Lya

MgII

Ha

Franco D. Albareti 30th March 2015 IberiCOS

Quasars from SDSS-III/BOSS ~300,000

[OIII] 4960 5008 A

Franco D. Albareti 30th March 2015 IberiCOS

Quasars from SDSS-III/BOSS ~300,000

z < 1

Sample selection

Sample selection

Sample selection

Sample selection

Outline

• Results

• Future projects

Outline

• Introduction

• Future projects

Franco D. Albareti **30th March 2015** IberiCOS **Results** 20 50 100 200 500 1000 1.0 0.5 $\Delta a/a ~(\times 10^{-2})$ 0.0 -0.5 -1.0 1.0 0.8 Error 0.6 0.4 0.2 0.0 20 200 1000 50 100 500

S/N_[OIII] 5008

Franco D. Albareti **30th March 2015** IberiCOS **Results** 20 50 100 200 500 1000 1.0 0.5 $\Delta a/a ~(\times 10^{-2})$ 0.0 -0.5 -1.0 1.0 0.8 Error 0.6 0.4 0.2 0.0 20 200 500 1000 50 100

S/N_[OIII] 5008

$\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

Systematics? Results $\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

- Misidentification of the lines
- Interval for the Gaussian fits
- Hβ contamination
- Continuum subtraction
- Different fitting methods

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hβ contamination OK
- Continuum subtraction OK
- Different fitting methods OK

$\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

Spatial variation

Hemisphere	# QSO spectra	redshift	$\Delta \alpha / \alpha ~(\times 10^{-5})$
North	8,069	0.56 ± 0.21	2.6 ± 2.6
South	2,294	0.59 ± 0.20	-3.1 ± 4.9

$\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

Spatial variation

H	Iemisphere	# QSO spectra	redshift	$\Delta \alpha / \alpha ~(\times 10^{-5})$	
	North South	8,069 2,294	0.56 ± 0.21 0.59 ± 0.20	2.6 ± 2.6 -3.1 ± 4.9	OK

$\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

Spatial variation

Dipole?

$\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

Spatial variation

No statistical significance

$\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

• **Robust constraint** for the variation of the fine structure constant at **z** ~ **0.6** (**5.7 Gyr ago**) (more than **35 samples** analyzed).

$\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

- **Robust constraint** for the variation of the fine structure constant at **z** ~ **0.6** (**5.7 Gyr ago**) (more than **35 samples** analyzed).
- For further details, "FDA, J. Comparat, F. Prada *et al.*, arXiv:1501.00560"

$\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

- **Robust constraint** for the variation of the fine structure constant at **z** ~ **0.6** (**5.7 Gyr ago**) (more than **35 samples** analyzed).
- For further details, "FDA, J. Comparat, F. Prada *et al.*, arXiv:1501.00560"
- Well..., it is not a big improvement...

$\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

- **Robust constraint** for the variation of the fine structure constant at z ~ 0.6 (5.7 Gyr ago) (more than 35 samples analyzed).
- "FDA, J. Comparat, F. Prada et al., • For further details. arXiv:1501.00560"

- Well..., it is not a big improvement...

whv?

Results

Results

Franco D. Albareti

The precision is limited by the sky subtraction

Redshift bins

Redshift

Outline

• Introduction

• Future projects

Outline

• Introduction

Future projects

Future projects

• VLT/UVES \longrightarrow High-resolution spectrograph $\Delta \alpha / \alpha < 10^{-6}$ R ~ 62,000 – 110,000 $z \sim 0,6$

Future projects

• VLT/UVES \longrightarrow High-resolution spectrograph $\Delta \alpha / \alpha < 10^{10} \text{ for } 6^{18.27-053804.1}$ $R \sim 6^{22} 0.000 - 110,000^{24814.03-074633.2}$ $R \sim 6^{22} 0.000 - 110,000^{24814.03-074633.2}$ $R \sim 6^{22} 0.000 - 110,000^{24814.03-074633.2}$ $R \sim 6^{22} 0.000 - 110,000^{24814.03-074633.2}$

7440

z = 0.481

λ (Å) (observed)

Ηδ Ηγ

6000 7000

Hß

8000

 λ (Å) (observed)

9000 10 000

SDSS J022918.27-053804.1

erg cm⁻² s⁻¹ Å⁻¹)

f_Å (10⁻¹⁷

₹V

20

15

MgI

4000 5000

λ (Å) (observed)

7000 8000

λ (Å) (observed)

6000

SDSS J021606.07-051722.7

z=0.056

9000 10.000

Å⁻¹)

ت_ح 150

 f_{λ} (10⁻¹⁷ erg cm⁻²

Ľ

4000 5000

200

100

50

ΗδΗγ Ηβ

λ (Å) (observed)

 λ (Å) (observed)

Future projects

Future projects

• VLT/UVES \longrightarrow High-resolution spectrograph $\Delta \alpha / \alpha < 10^{-6}$ R ~ 62,000 – 110,000 $z \sim 0.6$

• APOGEE-N \rightarrow Med-resolution spectrograph $\Delta \alpha / \alpha < 10^{-5}$ $R \sim 22,000$ $z \sim 2.2$

Future projects

APOGEE-Q Ancillary Science Proposal For SDSS-IV/APOGEE-2

APOGEE-N -> Med-resolution

 $\Delta \alpha / \alpha$ < 10^-5

APOGEE-2 Ancillary Science Proposal March 18, 2015

> APOGEE-Q APOGEE Quasar Survey Type of request: 1

> > PI

Franco D. Albareti Instituto de Física Teórica UAM/CSIC Cantoblanco, C/ Nicolás Cabrera, 13-15, 28049 Madrid Phone number: +34 91 299 98 71 E-mail: franco.albareti@uam.es

Co-Is

Johan Comparat Instituto de Física Teórica UAM/CSIC

Francisco Prada Instituto de Física Teórica UAM/CSIC

Isabelle Pâris Instituto Nazionali di Astrofisica/Osservatorio Astronomico di Trieste

> Andreu Font Lawrence Berkeley National Laboratory

David Schlegel Lawrence Berkeley National Laboratory

Joseph Hennawi Max-Planck-Institut für Astronomie

R~

Jean-Paul Kneib École Polytechnique Fédérale de Lausanne

All participants are SDSS-IV members

Thanks!

Backslides

Exact formula for the determination of the variation of the fine structure constant

$$\frac{\Delta\alpha}{\alpha}(z) = \frac{1}{2} \left\{ \frac{\left[\left(\lambda_2 - \lambda_1\right) / \left(\lambda_2 + \lambda_1\right)\right]_z}{\left[\left(\lambda_2 - \lambda_1\right) / \left(\lambda_2 + \lambda_1\right)\right]_0} - 1 \right\}$$

• Fine structure constant?

$$\alpha = \frac{e^2}{\hbar c} \approx \frac{1}{137}$$

Energy levels

 $\alpha \approx 1/137$

How do we measure its variation?

Meteorites z=0.45 Local measurements —> 10 years • Astronomical tests - $\begin{bmatrix} Absorption \ z = 0.6-4 \\ Emission \ z = 0.05-1.0 \\ Emission \ z = 0.0$

 $\alpha \approx 1/137$

How do we measure its variation?

- Absorption lines from quasars (*Many-multiplet method*)
- More precise
- Several assumptions
- Controversial

 $\alpha \approx 1/137$

How do we measure its variation?

• Emission lines doublet from quasars

- Less precise
- Straight-forward
- No assumptions

Fine structure of the emission lines

- Forbidden lines
- Electric quadrupole and magnetic dipole transitions
- Found in extremely rarefied media

Methodology

Continuum fit: seven-order polynomial $H\alpha$, $H\beta$, $H\gamma$, $H\delta$, MgII

Methodology <u>Find the lines</u> \longrightarrow SDSS Redshift Three significant figures (error estimates $10^{-4} - 10^{-5}$) Flux TTT λ

Methodology

Measurement method

λ (Å)

Methodology

Measurement method

λ (Å)

Methodology

Real pixels (with errors) Gaussian fits Expected line position

Error for $\Delta \alpha / \alpha \sim 10^{-3}$,-4

Methodology

Real pixels (with errors) Gaussian fits Expected line position

Error for $\Delta \alpha / \alpha \sim 10^{-3}$,-4

Methodology

Real pixels (with errors) Gaussian fits Expected line position

Error for $\Delta \alpha / \alpha \sim 10^{-3}$,-4

Line positions

• Redshift z < 1

Criteria

~45,000

Redshift

Sample selection

Criteria

- Redshift z < 1
- Noise $S/N_{[OIII]5008} > 10$
- Non-converging Gaussian fits

~45,000

~300,000

- ~13,000
- ~12,000

Sample selection

Criteria

- Redshift z < 1
- Noise $S/N_{[OIII]5008} > 10$
- Non-converging Gaussian fits
- Outlier points $> 2.5 \sigma$

- ~300,000 ~45,000 ~13,000 ~12,000
- ~11,000

Sample selection

Criteria

- Redshift z < 1
- Noise $S/N_{[OIII]5008} > 10$
- Non-converging Gaussian fits

~13,000 ~12,000

~300,000

~45,000

• Outlier points > 2.5 σ (> 4 σ) ~11,000

Sample selection

Criteria

- Redshift z < 1
- Noise $S/N_{[OIII]5008} > 10$
- Non-converging Gaussian fits
- Outlier points > 2.5σ (> 4σ)

~45,000

~13,000

~12,000

Sample selection

Criteria

- Redshift z < 1
- Noise $S/N_{[OIII]5008} > 10$
- Non-converging Gaussian fits
- Outlier points $> 2.5 \sigma (> 4 \sigma)$

Mild constraints

Systematics

Systematics

• Misidentification of the lines

λ (Å)

Systematics

$\sigma_{4960}/\sigma_{5008} - 1(\%)$	# QSO spectra	redshift	$\Delta \alpha / \alpha \; (\times 10^{-5})$
< 50%	10,028	0.56 ± 0.21	1.6 ± 2.3
< 25%	8,877	0.56 ± 0.21	1.9 ± 2.3
< 10%	5,846	0.56 ± 0.21	1.7 ± 2.5
< 5%	3,458	0.54 ± 0.22	-0.9 ± 3.0
$[A \times \lambda]_{5008} / [A \times \lambda]_{4960}$	# QSO spectra	redshift	$\Delta \alpha / \alpha ~(\times 10^{-5})$
$[A \times \lambda]_{5008} / [A \times \lambda]_{4960}$ 3.00 ± 0.50	# QSO spectra 8, 308	redshift 0.56 ± 0.21	$\frac{\Delta \alpha / \alpha ~(\times 10^{-5})}{1.8 \pm 2.4}$
$[A \times \lambda]_{5008} / [A \times \lambda]_{4960}$ 3.00 ± 0.50 3.00 ± 0.25	# QSO spectra 8, 308 5, 752	redshift 0.56 ± 0.21 0.55 ± 0.21	$\Delta \alpha / \alpha \; (\times 10^{-5})$ 1.8 ± 2.4 -0.2 ± 2.6
$[A \times \lambda]_{5008} / [A \times \lambda]_{4960}$ 3.00 ± 0.50 3.00 ± 0.25 3.00 ± 0.10	# QSO spectra 8, 308 5, 752 2, 677	redshift 0.56 ± 0.21 0.55 ± 0.21 0.54 ± 0.21	$\Delta \alpha / \alpha \ (\times 10^{-5})$ 1.8 ± 2.4 -0.2 ± 2.6 -0.4 ± 3.4

Systematics

$\sigma_{4960}/\sigma_{5008} - 1(\%)$	# QSO spectra	redshift	$\Delta \alpha / \alpha ~(\times 10^{-5})$
< 50%	10,028	0.56 ± 0.21	1.6 ± 2.3
< 25%	8,877	0.56 ± 0.21	1.9 ± 2.3
< 10%	5,846	0.56 ± 0.21	1.7 ± 2.5
< 5%	3,458	0.54 ± 0.22	-0.9 ± 3.0
$[A \times \lambda]_{5008} / [A \times \lambda]_{4960}$	# QSO spectra	redshift	$\Delta \alpha / \alpha ~(\times 10^{-5})$
$[A \times \lambda]_{5008} / [A \times \lambda]_{4960}$ 3.00 ± 0.50	# QSO spectra 8,308	redshift 0.56 ± 0.21	$\Delta \alpha / \alpha \; (\times 10^{-5})$ 1.8 ± 2.4
$[A \times \lambda]_{5008} / [A \times \lambda]_{4960}$ 3.00 ± 0.50 3.00 ± 0.25	# QSO spectra 8, 308 5, 752	redshift 0.56 ± 0.21 0.55 ± 0.21	$\Delta \alpha / \alpha \; (\times 10^{-5})$ 1.8 ± 2.4 -0.2 ± 2.6
$[A \times \lambda]_{5008} / [A \times \lambda]_{4960}$ 3.00 ± 0.50 3.00 ± 0.25 3.00 ± 0.10	# QSO spectra 8, 308 5, 752 2, 677	redshift 0.56 ± 0.21 0.55 ± 0.21 0.54 ± 0.21	$\Delta \alpha / \alpha \ (\times 10^{-5})$ 1.8 ± 2.4 -0.2 ± 2.6 -0.4 ± 3.4

Systematics

$\sigma_{4960}/\sigma_{5008} - 1(\%)$	# QSO spectra	redshift	$\Delta \alpha / \alpha \; (\times 10^{-5})$
< 50% < 25% < 10% < 5%	10,028 8,877 5,846 3,458	0.56 ± 0.21 0.56 ± 0.21 0.56 ± 0.21 0.54 ± 0.22	1.6 ± 2.3 1.9 ± 2.3 1.7 ± 2.5 -0.9 ± 3.0
			F
$[A \times \lambda]_{5008} / [A \times \lambda]_{4960}$	# QSO spectra	redshift	$\Delta \alpha / \alpha ~(\times 10^{-5})$

Systematics

$\sigma_{4960}/\sigma_{5008} - 1(\%)$	# QSO spectra redshift	$\Delta \alpha / \alpha ~(\times 10^{-5})$
< 50% < 25% < 10% < 5%	$\begin{array}{cccc} 10,028 & 0.56 \pm 0.21 \\ 8,877 & 0.56 \pm 0.21 \\ 5,846 & 0.56 \pm 0.21 \\ 3,458 & 0.54 \pm 0.22 \end{array}$	1.6 ± 2.3 1.9 ± 2.3 1.7 ± 2.5 -0.9 ± 3.0
		h / (10-5)
$[A \times \Lambda]_{5008} / [A \times \Lambda]_{4960}$	#QSO spectra redshift	$\Delta \alpha / \alpha (\times 10^{-5})$

Systematics

$\sigma_{4960}/\sigma_{5008} - 1(\%)$	# QSO spectra redshift	$\Delta \alpha / \alpha ~(\times 10^{-5})$
< 50% < 25% < 10% < 5%	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1.6 \pm 2.3 \\ 1.9 \pm 2.3 \\ 1.7 \pm 2.5 \\ -0.9 \pm 3.0 \end{array} $
$[A \times \lambda]_{5008} / [A \times \lambda]_{4960}$	# QSO spectra redshift	$\Delta \alpha / \alpha \; (\times 10^{-5})$
3.00 ± 0.50 3.00 ± 0.25 3.00 ± 0.10 3.00 ± 0.05	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1.8 \pm 2.4 \\ -0.2 \pm 2.6 \\ -0.4 \pm 3.4 \\ 2.9 \pm 4.5 \end{array} - \mathbf{OK} $

Systematics

• Misidentification of the lines OK

• Interval for the Gaussian fits

- Misidentification of the lines OK
- Interval for the Gaussian fits

Systematics

• Misidentification of the lines OK

• Interval for the Gaussian fits

Fit width	# QSO spectra	redshift	$\Delta \alpha / \alpha ~(\times 10^{-5})$
2σ	10, 363	0.56 ± 0.21	1.4 ± 2.3
3σ	10, 252	0.59 ± 0.20	5.5 ± 2.5
4σ	9,978	0.59 ± 0.20	7.1 ± 2.7
5σ	9,727	0.59 ± 0.20	5.3 ± 2.6

- Misidentification of the lines OK
- Interval for the Gaussian fits

Fit width	# QSO spectra	redshift	$\Delta \alpha / \alpha \; (\times 10^{-5})$
2σ	10, 363	0.56 ± 0.21	1.4 ± 2.3
3σ	10,252	0.59 ± 0.20	5.5 ± 2.5
4σ	9,978	0.59 ± 0.20	7.1 ± 2.7
5σ	9,727	0.59 ± 0.20	5.3 ± 2.6

Systematics

- Misidentification of the lines OK
- Interval for the Gaussian fits

Fit width	# QSO spectra	redshift	$\Delta \alpha / \alpha ~(\times 10^{-5})$
2σ	10, 363	0.56 ± 0.21	1.4 ± 2.3
3σ	10,252	0.59 ± 0.20	5.5 ± 2.5
4σ	9,978	0.59 ± 0.20	7.1 ± 2.7
5σ	9,727	0.59 ± 0.20	5.3 ± 2.6
ЛЛ		•	- 4 -

More affected by noise and Hbeta

Systematics

- Misidentification of the lines OK
- Interval for the Gaussian fits

Fit width	# QSO spectra	redshift	$\Delta \alpha / \alpha ~(\times 10^{-5})$	-
2σ 3σ	10, 363 10, 252	0.56 ± 0.21 0.59 ± 0.20	1.4 ± 2.3 5.5 ± 2.5	- •
4σ 5σ	9,978 9,727	0.59 ± 0.20 0.59 ± 0.20	7.1 ± 2.7 5.3 ± 2.6	UK

More affected by noise and Hbeta

- Misidentification of the lines OK
- Interval for the Gaussian fits

Fit width	# QSO spectra	redshift	$\Delta \alpha / \alpha ~(\times 10^{-5})$	-
2σ 3σ 4σ 5σ	10, 363 10, 252 9, 978 9, 727	0.56 ± 0.21 0.59 ± 0.20 0.59 ± 0.20 0.59 ± 0.20	$1.4 \pm 2.3 \\ 5.5 \pm 2.5 \\ 7.1 \pm 2.7 \\ 5.3 \pm 2.6$	- OK
Mo	ore affected by n	oise and	Hbeta	

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination

$S/N_{\mathrm{H}eta/\mathrm{[OIII]}4960}$	# QSO spectra	redshift	$\Delta \alpha / \alpha \; (\times 10^{-5})$
< 5	10, 338	0.57 ± 0.21	1.4 ± 2.3
< 2	9,831	0.57 ± 0.21	0.6 ± 2.3
< 1	8,162	0.57 ± 0.21	0.1 ± 2.5
< 0.5	5,831	0.58 ± 0.21	-0.7 ± 2.8

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination

$S/N_{\mathrm{H}eta/\mathrm{[OIII]}4960}$	# QSO spectra	redshift	$\Delta \alpha / \alpha ~(\times 10^{-5})$
< 5	10, 338	0.57 ± 0.21	1.4 ± 2.3
< 2	9,831	0.57 ± 0.21	0.6 ± 2.3
< 1	8,162	0.57 ± 0.21	0.1 ± 2.5
♥ < 0.5	5,831	0.58 ± 0.21	-0.7 ± 2.8

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination

$S/N_{\mathrm{H}eta/[\mathrm{OIII}]4960}$	# QSO spectra	redshift	$\Delta \alpha / \alpha ~(\times 10^{-5})$		
< 5	10, 338	0.57 ± 0.21	1.4 ± 2.3		
< 2	9,831	0.57 ± 0.21	0.6 ± 2.3		
< 1	8,162	0.57 ± 0.21	0.1 ± 2.5		
↓ < 0.5	5,831	0.58 ± 0.21	-0.7 ± 2.8		

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination

	$S/N_{\mathrm{H}eta/[\mathrm{OIII}]4960}$	# QSO spectra	redshift		$\Delta \alpha / \alpha$ (×10)	-5)	
_	< 5 < 2 < 1	10, 338 9, 831 8, 162	0.57 ± 0.21 0.57 ± 0.21 0.57 ± 0.21		1.4 ± 2.3 0.6 ± 2.3 0.1 ± 2.5]	- OK
	< 0.5	5, 831	0.57 ± 0.21 0.58 ± 0.21	J	0.1 ± 2.3 -0.7 ± 2.8	J	

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination OK

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination OK
- Continuum subtraction

Pol. order (continuum)	# QSO spectra	redshift	$\Delta \alpha / \alpha ~(\times 10^{-5})$
3	10, 529	0.57 ± 0.21	1.0 ± 2.3
5	10,550	0.57 ± 0.21	1.3 ± 2.3
7	10, 363	0.56 ± 0.21	1.4 ± 2.3
9	10,471	0.56 ± 0.21	-1.1 ± 2.3

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination OK
- Continuum subtraction

Pol. order (continuum)	# QSO spectra	redshift	$\Delta \alpha / \alpha \; (\times 10^{-5})$
3	10, 529	0.57 ± 0.21	1.0 ± 2.3
5	10, 550	0.57 ± 0.21	1.3 ± 2.3
7	10, 363	0.56 ± 0.21	1.4 ± 2.3
V 9	10,471	0.56 ± 0.21	-1.1 ± 2.3

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination OK
- Continuum subtraction

Pol. order (continuum)	# QSO spectra	redshift	$\Delta \alpha / \alpha \; (\times 10^{-5}$)
3 5	10, 529 10, 550	0.57 ± 0.21 0.57 ± 0.21	1.0 ± 2.3 1.3 ± 2.3	
7	10,363	0.56 ± 0.21	1.4 ± 2.3 1.1 + 2.3	- OK

Systematics

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination OK
- Continuum subtraction OK

Different methods

Method	# QSO spectra	redshift	$\Delta \alpha / \alpha \; (\times 10^{-5})$
Gaussian (weighted)	4,537	0.58 ± 0.20	-0.4 ± 2.8
Gaussian	4,537	0.58 ± 0.20	1.2 ± 4.5
Integration	4,537	0.58 ± 0.20	3.6 ± 4.8
Modified Bahcall	4,537	0.58 ± 0.20	0.8 ± 4.4
Median	4,537	0.58 ± 0.20	1.8 ± 1.4

Systematics

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination OK
- Continuum subtraction OK

• Different methods

		Method	# Q\$	SO spectra	redshift	$\Delta \alpha / \alpha$ (×1	(0^{-5})
	G	aussian (weighte	d)	4,537	0.58 ± 0.20	-0.4 ± 2.8	8
		Gaussian		4,537	0.58 ± 0.20	1.2 ± 4.5	5
		Integration		4,537	0.58 ± 0.20	3.6 ± 4.8	8
		Modified Bahcal	1	4,537	0.58 ± 0.20	0.8 ± 4.4	4
N		Median		4,537	0.58 ± 0.20	1.8 ± 1.4	4

Systematics

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination OK
- Continuum subtraction OK

• Different methods

		Method	# QSO spectr	a redshift	$\Delta \alpha / \alpha \; (\times 10^{-5}$)
	G	aussian (weighte	ed) 4,537	0.58 ± 0.20	-0.4 ± 2.8	
		Gaussian	4,537	0.58 ± 0.20	1.2 ± 4.5	
		Integration	4,537	0.58 ± 0.20	3.6 ± 4.8	- OK
		Modified Bahcal	1 4,537	0.58 ± 0.20	0.8 ± 4.4	
N	/	Median	4,537	0.58 ± 0.20	1.8 ± 1.4	

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination OK
- Continuum subtraction OK
- Different methods OK
- And more...(simulations) "F. D. Albareti *et al.*, arXiv: 1501.00560"

Results

$\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

• Misidentification of the lines?

Results

$\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

Misidentification of the lines OK

Results

$\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

Misidentification of the lines OK

• Interval for the Gaussian fit?

Results

$\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

Misidentification of the lines OK

Systematics?

• Interval for the Gaussian fits OK

Results

$\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

Misidentification of the lines OK

- Interval for the Gaussian fits OK
- 250 • Hbeta contamination? [OIII] 200 Flux 150 $\Delta \alpha / \alpha$ 100 50 4800 4850 4900 4950 5000 5050 λ

Results

$\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination OK

Results

$\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination OK

Systematics?

• Continuum subtraction?

Results

$\Delta \alpha / \alpha = (1.4 \pm 2.3) \times 10^{-5}$

- Misidentification of the lines OK
- Interval for the Gaussian fits OK
- Hbeta contamination OK

Systematics?

• Continuum subtraction OK

Systematics

 $\Delta \alpha / \alpha_{\text{[NeIII]}} = (36 \pm 1) \times 10^{-4}$

Gutiérrez & López-Corredoira (2010)

Systematics

Gutiérrez & López-Corredoira (2010)

Gutiérrez & López-Corredoira (2010)

This work (2014)

Systematics

- Errors in absolute wavelengths (~1 A)?
- Bad SDSS calibration?

 $\Delta \alpha / \alpha_{\text{[NeIII]}} = (34 \pm 1) \times 10^{-4}$

This work (2014)

Systematics

- Errors in absolute wavelengths (~1 A)?
- Bad SDSS calibration?

It is unlikely...

We don't know yet...

 $\Delta \alpha / \alpha_{\text{[NeIII]}} = (34 \pm 1) \times 10^{-4}$

This work (2014)

Systematics

Final results

Reference	# QSO spectra	$\Delta \alpha / \alpha \; (\cdot 10^{-5})$
Bahcall et al. (2004)	42	7 ± 14
Gutiérrez & López-Corredoira (2010) 1,568	2.4 ± 2.5
Rahmani et al. (2014)	2,347	-2.1 ± 1.6
This work (2014)	10, 363	1.4 ± 2.3

Systematics

Final results

Reference	# QSO spectra	$\Delta \alpha / \alpha \; (\cdot 10^{-5})$
Bahcall et al. (2004)	42	7 ± 14
Gutiérrez & López-Corredoira (2010)	1,568	2.4 ± 2.5
Rahmani et al. (2014)	2,347	-2.1 ± 1.6
This work (2014)	↓ 10, 363	1.4 ± 2.3

Franco D. Albareti 30th March 2015 IberiCOS

Systematics

Final results

Reference	# QSO spectra	$\Delta \alpha / \alpha \; (\cdot 10^{-5})$
Bahcall et al. (2004)	42	7 ± 14
Gutiérrez & López-Corredoira (2010)	1,568	2.4 ± 2.5
Rahmani et al. (2014)	2,347	-2.1 ± 1.6
This work (2014)	↓ 10,363	1.4 ± 2.3

A factor 2.5 of improvement is expected...?

Franco D. Albareti 30th March 2015 IberiCOS