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The universe is dark, isn’t it?

The main topic and message of this talk:

Genuine modifications of gravity can be detected in a model-independent way
at the linear level, and their effect fundamentally connected with the
(modified) propagation of gravitational waves.
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The universe perturbed

• The evolution of large scale structure of spacetime can be well described by small
scalar fluctuations around a flat, Friedman–Lemaitre–Robertson–Walker
spacetime

ds2 = −
(

1 + 2 Ψ(t, x )
)

dt2 + a(t)2
(

1 + 2 Φ(t, x )
)

dx2

• The matter content is pressureless dark matter and baryons, with their density
fractions δi ≡ δρi/ρi related through the bias function b(z, k):

δb(z, k) = b(z, k) δm(z, k)

• The relation between the potential Φ and the total matter density is described by

The Poisson equation: k2 Φ(t, k) = 4πa2G × δρtotal ≡ 4πa2 Geff × δρm

• The relation between the two gravitational potentials Φ and Ψ is described by

The anisotropy equation: Φ − Ψ = σ (αi (t))× Π(t, k)
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(Un)Observables

• The galaxy density field δgal (z, k) ≡ δρgal/ρgal is an observable. It is usually related to the

dark matter one through the a priori unknown bias function b(z, k)

δgal (z, k) = b(z, k) δm(z, k)

• The galaxy velocity field vgal (z, k) is also an observable1 . Assuming no equivalence
principle violations it equals to the dark matter one

vgal (z, k) = vm(z, k) ≈ −δ′m/k2 [k ≡
kcomov.

aH
,
′ ≡

d

dlna
]

• Weak lensing is another important observable on the sky: Light reaching us from distant
sources responds to the lensing potential Φlens produced by large inhomogeneities and/or
modified gravity

Φlens (z, k) ≡ Ψ + Φ =
3H2

0 (1 + z)3

2H(z)2
Ωm,0 · (1 + η) · Geff (z, k) · δm(z, k) [η ≡ −

Φ

Ψ
]

• In a model/parametrisation independent way: 2

The bias b(z, k) and effective Newton’s coupling Geff are unknown.

The initial condition δm(0, k) on some initial spatial hyper surface is unknown.

1
N. Kaiser, MNRAS 227 (1987) / R. Scorcimarro, H. Couchman, J. A. Frieman, Astrophys. J 517 (1999)

2
L. Amendola, M. Kunz, I. D. Saltas, I. Sawicki, PRD 87, 023501 (2013)
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A different path: Reconstructing the metric

• Linear scalar fluctuations around flat Friedman–Lemaitre–Robertson–Walker background,

ds2 = − (1 + 2Ψ(t, x)) dt2 + a(t)2 (1 + 2Φ(t, x)) dx2

• Assume that sub horizon, galaxies move on geodesics: Geodesic equation then provides a
measurement of the the metric potential Ψ(z, k) 3

(
a2
θgal

)′
= a2Hk2Ψ ⇒

θgal (z,k)

H(z) = (a2H)−1
∫

a2Hk2Ψdlna [k ≡ kcomov.
aH , θgal ≡ ∇ugal]

• Complementing velocity field measurements with lensing experiments: Light responds to
the lensing potential Φlens producing a lensing effect on the sky

Φlens (z, k) ≡ Ψ(z, k) + Φ(z, k)

 From observables θgal/H, Φlens (or L) we can reconstruct the evolution of the

metric potentials Φ(z, k), Ψ(z, k) in redshift and scale, given a known background evolution
H(z).

3
M. Motta, I. Sawicki, I. D. Saltas, L. Amendola, M. Kunz, PRD 88, 124035 (2013)
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Is it modified gravity or dark energy?
• A model independent relation for the gravitational slip η exists, based only on

observable quantities 4

η(z, k) ≡ −
Φ(z, k)

Ψ(z, k)
=

3(1 + z)3

2E 2
(
O′θ/Oθ + E ′/E + 2

) Φlens

Oθ
− 1 [E(z) ≡ H(z)/H0, Oθ ≡ −θgal/H]

• Parameter η is a crucial discriminator among scalar–tensor models: η = 1 for
minimal coupling to gravity (zero anisotropic stress, σ = 0), η 6= 1 otherwise
(non–zero anisotropic stress σ 6= 0).

η = 1 η 6= 1

L ⊂ R − 2Λ, L ⊂ f (R)

L ⊂ R + K (X , φ) , L ⊂ g(φ)R + U(φ)

L ⊂ K (X , φ) + G (X , φ)�φ L = LHordenski

[X ≡ −
1

2
gµν∇µ∇νφ]

4
L. Amendola, M. Kunz, I. D. Saltas, I. Sawicki, PRD 87, 023501 (2013)

M. Motta, I. Sawicki, I. D. Saltas, L. Amendola, M. Kunz, PRD 88, 124035 (2013)
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Connecting cosmological with astrophysical observations: The link between

propagation of gravitational waves and anisotropic stress

• In GR, the only propagating field is the massless graviton hij , travelling with the speed of
light cT = 1

• Modified gravity models in principle affect the propagation of tensors in a non–trivial way

h′′ij + (2 + ν )Hh′ij + c2
T k2hij + a2

µ
2 hij = a2 Γγij

Parameter Modified in . . . . . .

Planck mass rate: ν ≡ H(t)−1 d ln M2
p

dt Hordenski

Speed of tensors: c2
T Hordenski, Einstein–Aether

Graviton’s mass: µ2 Massive bi–metric gravity

Source term: Γγij Massive bi–metric gravity
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The link between propagation of tensors and anisotropic stress

• Given the anisotropy equation and tensor evolution at the linear level

Φ(z, k)− Ψ(z, k) = σ(ν, µ2, cT , Γ)Π(z, k)

h′′ij + (2 + ν )Hh′ij + c2
T k2hij + a2 µ2 hij = a2 Γγij

. . . and for the most popular large classes of modified gravity models in the literature5,

• The most general second–order, scalar–tensor Hordenski theories (one extra scalar field φ),

• The massive bi–metric theories (one extra spin–two field),

• The Einstein–Aether theories (one extra vector field),

. . . the coupling σ controlling the amplitude of the linear anisotropic stress at large scales, depends
on exactly those theory parameters which modify the propagator of tensor waves.

Conjecture
This underlying relation between scalar anisotropic stress and tensor propagation is a
feature of all models on general configurations

5
I. D. Saltas, I. Sawicki, L. Amendola, M. Kunz PRL 113, 191101 (2014)
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Tensor evolution and scalar shear in Hordenski’s theory
The Hordenski theory is the most general scalar–tensor theory yielding second order equations of
motion 6:

L =
4∑

i=2

L2 + Lm

X ≡ −
1

2
(∇φ)2

, Gµν ≡ Rµν −
1

2
gµνR

• Around a cosmological background, Hordenski theories modify the graviton’s evolution
through the friction (ν) and sound speed (cT ) terms

h′′ij + (2 + ν )Hh′ij + c2
T k2hij = 0

• The anisotropy equation takes the form

Φ(z, k)− Ψ(z, k) = σ(αi (t)) × Π(z, k)

σ(αi (t)) = ν + ( c2
T − 1) Π(z, k) = δφ

φ′ +
c2
T−1

ν+
(

1−c2
T

)Φ

6
G. W. Hordenski, Int. J. Theor. Phys. 10 (1974)
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Observational implications and summary
• The gravitational slip can be re-constructed from observations in a model

independent way. Any detection of η 6= 1 would be the smoking gun for a
modification of gravity at late times

• A fundamental link between anisotropic stress at large scales and the
propagation of tensors on a cosmological background: the theory
parameters controlling the amplitude of the linear anisotropic stress at
large scales, are exactly those which modify also the propagator of tensor
waves. The link opens a way to bridge observations of large scale
structure with measurements of gravitational waves at cosmological and
astrophysical scales7

• A possible future detection of non–zero anisotropic shear (η 6= 1) at large
scales would imply a modification of tensor propagation at both
cosmological and astrophysical scales

7
For example, for measurements of cT using supernovae see A.Nishizawa, T. Nakamura, arXiv:1406.5544
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