UNIFYING DARK ENERGY THEORIES

EFFECTIVE FIELD THEORY OF DARK ENERGY AND CONSTRAINTS IN QUINTESSENCE MODELS

Lucía Fonseca de la Bella¹

¹Physics and Astronomy Centre, University of Sussex, United Kingdom

collaboration A. de la Cruz Dombriz ² ² Theoretical Physics I Department, Complutense University of Madrid, Spain.

IberiCOS 2015 - Xth Iberian Cosmology Meeting -

L.FdIB (University of Sussex)

Outline

Motivation

2 Effective Field Theory of Dark Energy

3 Analysis and Datasets

- Background evolution
- Cosmological perturbations

Quintessence

- Double Exponential Potential model
- Results

ACCELERATING EXPANSION OF THE UNIVERSE

Effective Field Theory of Dark Energy

EFTofDE -Action-

G. Gubitosi, F. Piazza and F. Vernizzi, JCAP 1302 (2013) 032 [arXiv :1210.0201 [hep-th]].

• FRW background

Unitary gauge :

Scalar field is taken as the time coordinate $t \equiv t(\phi)$, spatial coordinates unfixed.

Time

slicing $\phi \equiv const$, normal vector to the Cauchy hypersurfaces

$$n_{\mu} \equiv -\frac{\partial_{\mu}\phi}{\sqrt{-(\partial\phi)^2}} \to -\frac{\delta_{\mu}^0}{\sqrt{-g^{00}}}$$
(1)

and the induced spatial metric $h_{\mu\nu}\equiv g_{\mu\nu}+n_{\mu}n_{\nu}.$

• General perturbed FRW spacetime

Scalar field $\phi(t, \vec{x}) = \phi_0(t) + \delta \phi(t, \vec{x})$ Unitary gauge $\Rightarrow \delta \phi = 0$.

● Weak equivalence principle ⇒ matter fields couple to the metric through a covariant action.

EFTofDE -Action-

F. Piazza, H. Steigerwald and C. Marinoni, arXiv : 1312.6111v1.

Action in unitary gauge :

$$S = \int d^{4}x \sqrt{|g|} \frac{M^{2}(t)}{2} \left[R - 2\lambda(t) - 2C(t)g^{00} + \mu_{2}^{2}(t) \left(\delta g^{00} \right)^{2} - \mu_{3}(t) \delta K \delta g^{00} + \epsilon_{4}(t) (K^{\mu}_{\nu} K^{\nu}_{\mu} - \delta K^{2} + {}^{(3)}R \delta g^{00}/2) \right] + S_{m}[g_{\mu\nu}; \psi]$$

Structural functions, $\delta g^{00} \equiv g^{00} + 1$ lapse component, $K_{\mu\nu}$ extrinsic curvature on hypersurfaces, its trace K and ${}^{(3)}R$ the 3D Ricci scalar.

- Stückelberg diffeomorphism $t \to t + \varphi(x^{\mu})$ restores gauge invariance of the action.
- Parametrization of models such as ΛCDM , ωCDM , Quintessence, JFBD.

Theory	$\mu = \frac{d\log(M^2(t))}{dt}$	$\lambda(t)$	<i>C</i> (<i>t</i>)	$\mu_{2}^{2}(t)$	$\mu_3(t)$	$\epsilon_4(t)$
ACDM	0	const.	0	0	0	0
ω CDM	0	\checkmark	0	0	0	0
Quintessence	0	\checkmark	\checkmark	0	0	0
JFBD	\checkmark	 ✓ 	\checkmark	0	0	0

EFTofDE -Stability-

J. Gleyzes, D. Langlois and F. Vernizzi, Int. J. Mod. Phys. D 23 (2014) 3010 [arXiv :1411.3712 [hep-th]].

Linear order

$$\mathcal{L} \supseteq A\dot{arphi}^2 - {B(igtarrow arphi)^2}$$

where φ scalar field fluctuation.

- **1** $A \ge 0$ positive kinetic energy \Rightarrow **Ghost free**
- 2 $c_s^2 \equiv \frac{B}{4} \ge 0$ positive sound speed \Rightarrow Gradient instability free

Implement the Stückelberg trick $t \rightarrow t + \varphi(x^{\mu})$

Stability conditions :

$$A = (C + 2\mu_2^2)(1 + \epsilon_4) + \frac{3}{4}(\mu - \mu_3) \ge 0, \checkmark$$
⁽²⁾

$$B = (C + \tilde{\mu}_3/2 - \dot{H}\epsilon_4 + H\tilde{\epsilon}_4)(1 + \epsilon_4) - (\mu - \mu_3)\left(\frac{\mu - \mu_3}{4(1 + \epsilon_4)} - \mu - \tilde{\epsilon}_4\right) \ge 0. \checkmark (3)$$

Theoretical restriction on the parameter space.

- $c_s^2 > c^2$?
- Large values of $\mu_2^2(t)$ can prevent superluminal propagation of DE.

IberiCOS 2015

EFTofDE -Relevant sectors-

G. Gubitosi, F. Piazza and F. Vernizzi, JCAP 1302 (2013) 032 [arXiv :1210.0201 [hep-th]].

Unitary gauge \Rightarrow neat separation between

• **background evolution** : $M^2(t)$, $\lambda(t)$ and C(t).

$$C = \frac{1}{2}(H\mu - \dot{\mu} - \mu^2) + \frac{1}{2M^2}(\rho_{\rm DE} + \rho_{\rm DE}), \quad \lambda = \frac{1}{2}(5H\mu + \dot{\mu} + \mu^2) + \frac{1}{2M^2}(\rho_{\rm DE} - \rho_{\rm DE}).$$
(4)

• and perturbation sector : $M^2(t)$, C(t), $\mu_3(t)$ and $\epsilon_4(t)$.

$$\ddot{\delta} + 2H\dot{\delta} - \frac{3}{2} \frac{G_{eft}}{G} \Omega_m(t) \delta = 0,$$
(5)

being $\Omega_m(t)$ the matter content and

$$\frac{G_{eft}}{G} = \frac{M_{Planck}^2}{M^2(1+\epsilon_4)} \frac{2C + \tilde{\mu}_3 - 2\dot{H}\epsilon_4 + 2H\tilde{\epsilon}_4 + 2(\mu + \tilde{\epsilon}_4)^2 + Y_{IR}(t,k)}{2C + \tilde{\mu}_3 - 2\dot{H}\epsilon_4 + 2H\tilde{\epsilon}_4 + 2\frac{(\mu + \tilde{\epsilon}_4)(\mu - \mu_3)}{1+\epsilon_4} - \frac{(\mu - \mu_3)^2}{2(1+\epsilon_4)^2} + Y_{IR}(t,k)}$$
(6)

where $\tilde{\mu}_3$, $\tilde{\epsilon}_4$ and $Y_{IR}(t, k)$ are combinations of the structural functions. IR corrections relevant at scales ~ Hubble scale. Quintessence models $\Rightarrow G_{eft} = G$.

Surveys and Datasets

Background evolution -Supernovae la-

G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409]

• Distance Modulus : difference between the apparent magnitude, *m*, and the absolute magnitude, *M*,

$$\tilde{\mu}(\tau) = m - M = 5\log d_L(\tau) + 5\log \left(\frac{cH_0^{-1}}{Mpc}\right) + 25$$

$$= 5\log d_L(\tau) + \tilde{M}$$
(7)

 $\tau = H_0 t$ dimensionless cosmic time and \tilde{M} nuissance parameter which minimizes the analytical expression of χ^2 .

Directly related to the luminosity distance,

$$d_L(\tau) = \frac{a(\tau_0)}{a(\tau)} \int_{\tau}^{\tau_0} \frac{d\tau'}{a(\tau')}$$
(8)

• Union2 [1] supernovae dataset.

Background evolution -CMB-

W. Hu and N. Sugiyama, Astrophys. J. 471 (1996) 542 [astro-ph/9510117].

- The distance prior method uses two distances ratios measured by means of the CMB temperature power spectrum
 - **1** the acoustic scale, I_A , which is defined as the ratio of the angular diameter distance, $d_A(z)$ the comoving sound horizon, $r_s(z)$, evaluated at the decoupling epoch, z_* ,

$$I_A \equiv \frac{d_A(z_*)}{r_s(z_*)},\tag{9}$$

2 and the shift parameter, R, given by

$$R = \sqrt{\Omega_m} H_0 d_A(z_*). \tag{10}$$

• $\chi^2 = \chi^T C^{-1} \chi$, where the vector χ saves the difference between the theoretical values and the observed ones of I_A , R and z_* .

$$\begin{pmatrix} I_A \\ R \\ z_* \end{pmatrix} = \begin{pmatrix} 302.10 \pm 0.86 \\ 1.710 \pm 0.019 \\ 1090.04 \pm 0.93 \end{pmatrix}, \quad C^{-1} = \begin{pmatrix} 1.800 & 27.968 & -1.103 \\ 27.968 & 5667.577 & -92.263 \\ -1.103 & -92.263 & 2.923 \end{pmatrix}$$

Cosmological perturbations

- H. Steigerwald, J. Bel and C. Marinoni, JCAP 1405 (2014) 042 [arXiv :1403.0898 [astro-ph.CO]]
- S. Basilakos, S. Nesseris and L. Perivolaropoulos, Phys. Rev. D 87 (2013) 12, 123529 [arXiv :1302.6051 [astro-ph.CO]].
 - Growth structure function defined as $f(z)\sigma_{0,8}\delta(z)$, being $f(z) = \frac{d\ln\delta}{d\ln a}$ the growth rate.
 - Galaxy power spectra observational datasets

Survey	Redshift, z	$f\sigma_8(z)$	Reference	
THF	0.02	0.360 ± 0.040	[2]	
6dFGS	0.067	0.423 ± 0.055	[4]	
2dFGRS	0.17	0.510 ± 0.060	[5, 6]	
SDSS	0.35	0.440 ± 0.050	[7]	
VVDS	0.77	0.490 ± 0.180	[6, 15]	
	0.25	0.351 ± 0.058	[10]	
SDSS LKG	0.37	0.460 ± 0.036	[12]	
	0.22	0.420 ± 0.070	[0]	
WiggleZ	0.41	0.450 ± 0.040	[0]	
	0.78	0.380 ± 0.040	1	
BOSS	0.57	0.43 ± 0.07	[13]	
CDCC	0.30	0.407 ± 0.055	[9]	
3033	0.50	0.427 ± 0.043	1	
	0.20	0.40 ± 0.13		
WiggleZ	0.40	0.40 0.39 ± 0.08		
	0.60	0.40 ± 0.07	1	
	0.76	0.48 ± 0.09	1	
2SLAQ	0.55	0.45 ± 0.05	[10]	
VIPERS	0.80	0.47 ± 0.08	[16]	

- S. Tsujikawa, Class. Quant. Grav. 30 (2013) 214003 [arXiv :1304.1961 [gr-qc]].
- G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409]

Action

$$S_{\phi} = \int d^4 x \sqrt{|g|} \left[\frac{M_{Pl}^2}{2} R + \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) - V(\phi) \right]$$
(11)

Background and field equations

$$\left(\frac{\mathbf{a}'(\tau)}{\mathbf{a}(\tau)}\right)^2 = \frac{\tilde{\phi}'^2}{6} + \tilde{\mathbf{V}}(\tilde{\phi}) + \Omega_{\mathrm{m},0}\mathbf{a}^{-3}(\tau), \qquad \tilde{\phi}'' + 3\frac{\mathbf{a}'}{\mathbf{a}}\tilde{\phi}' + \frac{\partial\tilde{\mathbf{V}}(\tilde{\phi})}{\partial\tilde{\phi}} = 0$$
(12)

Matter density perturbation $G_{eft} = G$

$$\delta^{\prime\prime} + 2\mathrm{H}\delta^{\prime} - \frac{3}{2}\Omega_{\mathrm{m}}(\tau)\delta = 0 \tag{13}$$

$$\tilde{\mathsf{V}}(\tilde{\phi}) = \mathsf{A}(\mathbf{e}^{\alpha\tilde{\phi}} + \mathbf{e}^{\beta\tilde{\phi}}) \tag{14}$$

- S. Tsujikawa, Class. Quant. Grav. 30 (2013) 214003 [arXiv :1304.1961 [gr-qc]].
- G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409]

Action

$$S_{\phi} = \int d^{4} \times \sqrt{|g|} \left[\frac{M_{Pl}^{2}}{2} R + \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) - V(\phi) \right]$$
(11)

Background and field equations

$$\left(\frac{\mathbf{a}'(\tau)}{\mathbf{a}(\tau)}\right)^2 = \frac{\tilde{\phi}'^2}{\mathbf{6}} + \tilde{\mathbf{V}}(\tilde{\phi}) + \Omega_{\mathrm{m},\mathbf{0}}\mathbf{a}^{-3}(\tau), \qquad \tilde{\phi}'' + 3\frac{\mathbf{a}'}{\mathbf{a}}\tilde{\phi}' + \frac{\partial\tilde{\mathbf{V}}(\tilde{\phi})}{\partial\tilde{\phi}} = \mathbf{0}$$
(12)

Matter density perturbation $G_{eft} = G$

$$\delta^{\prime\prime} + 2\mathrm{H}\delta^{\prime} - \frac{3}{2}\Omega_{\mathrm{m}}(\tau)\delta = 0 \tag{13}$$

$$\tilde{\mathsf{V}}(\tilde{\phi}) = \mathsf{A}(\mathbf{e}^{\alpha\tilde{\phi}} + \mathbf{e}^{\beta\tilde{\phi}}) \tag{14}$$

- S. Tsujikawa, Class. Quant. Grav. 30 (2013) 214003 [arXiv :1304.1961 [gr-qc]].
- G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409]

Action

$$S_{\phi} = \int d^{4} \times \sqrt{|g|} \left[\frac{M_{Pl}^{2}}{2} R + \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) - V(\phi) \right]$$
(11)

Background and field equations

$$\left(\frac{\mathbf{a}'(\tau)}{\mathbf{a}(\tau)}\right)^2 = \frac{\tilde{\phi}'^2}{\mathbf{6}} + \tilde{\mathbf{V}}(\tilde{\phi}) + \Omega_{\mathrm{m},\mathbf{0}}\mathbf{a}^{-3}(\tau), \qquad \tilde{\phi}'' + 3\frac{\mathbf{a}'}{\mathbf{a}}\tilde{\phi}' + \frac{\partial\tilde{\mathbf{V}}(\tilde{\phi})}{\partial\tilde{\phi}} = \mathbf{0}$$
(12)

Matter density perturbation $G_{eft} = G$

$$\delta^{\prime\prime} + 2\mathsf{H}\delta^{\prime} - \frac{3}{2}\Omega_{\mathsf{m}}(\tau)\delta = \mathbf{0}$$
⁽¹³⁾

$$\tilde{\mathsf{V}}(\tilde{\phi}) = \mathsf{A}(\mathbf{e}^{\alpha\tilde{\phi}} + \mathbf{e}^{\beta\tilde{\phi}}) \tag{14}$$

- S. Tsujikawa, Class. Quant. Grav. 30 (2013) 214003 [arXiv :1304.1961 [gr-qc]].
- G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409]

Action

$$S_{\phi} = \int d^{4} \times \sqrt{|g|} \left[\frac{M_{Pl}^{2}}{2} R + \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) - V(\phi) \right]$$
(11)

Background and field equations

$$\left(\frac{\mathbf{a}'(\tau)}{\mathbf{a}(\tau)}\right)^2 = \frac{\tilde{\phi}'^2}{\mathbf{6}} + \tilde{\mathbf{V}}(\tilde{\phi}) + \Omega_{\mathsf{m},\mathbf{0}}\mathbf{a}^{-3}(\tau), \qquad \tilde{\phi}'' + 3\frac{\mathbf{a}'}{\mathbf{a}}\tilde{\phi}' + \frac{\partial\tilde{\mathbf{V}}(\tilde{\phi})}{\partial\tilde{\phi}} = \mathbf{0}$$
(12)

Matter density perturbation $G_{eft} = G$

$$\delta^{\prime\prime} + 2\mathsf{H}\delta^{\prime} - \frac{3}{2}\Omega_{\mathsf{m}}(\tau)\delta = \mathbf{0}$$
(13)

$$\tilde{\mathbf{V}}(\tilde{\phi}) = \mathbf{A}(\mathbf{e}^{\alpha\tilde{\phi}} + \mathbf{e}^{\beta\tilde{\phi}}) \tag{14}$$

Results Preliminary plot

 χ^2 contourplots, marginalized over $\alpha.$ Supernovae blue, perturbations green. Black contours refers total analysis. Up to 3 σ of confidence level.

L.FdIB (University of Sussex)

IberiCOS 2015

Results

Theory	χ^2_{red}	$\Omega_{m,0}$	Second parameter	Third parameter	
ΛCDM	0.9898	$0.270^{+0.013}_{-0.012}$	$\omega = -1$	_	
$\omega { m CDM}$	0.9911	$0.300\substack{+0.070\\-0.070}$	$\omega = -1.007^{+0.090}_{-0.091}$	_	
2EP	1.158	$0.236\substack{+0.064\\-0.016}$	lpha= 0.1	$\beta = 22.8^{+7.2}_{-17.3}$	

Total χ^2 values and the best range of parameters at one $\sigma.$

Conclusions

Effective Field Theory of Dark Energy formalism

- gathers Modified Gravity and Dark Energy theories creating a parameter space,
- neat separation between background and perturbation sectors,
- controls any kind of instabilities.
- It constrain the parameter space
 - We focus on **Double Exponential Potential** model of Quintessence.
 - We perform a χ^2 analysis using supernovae, CMB and growth structure datasets.
 - We compare results with ΛCDM and ωCDM . ΛCDM the best model.

Prospects :

- To expand the analysis to further models of Quintessence and Brans-Dicke theory.
- The analysis can be done in a more general way by constraining the EFT parameter space.

References

- R. Amanullah, C. Lidman, D. Rubin, G. Aldering, P. Astier, K. Barbary, M. S. Burns and A. Conley *et al.*, Astrophys. J. 716 (2010) 712 [arXiv:1004.1711 [astro-ph.CO]].
- [2] S. J. Turnbull, M. J. Hudson, H. A. Feldman, M. Hicken, R. P. Kirshner and R. Watkins, Mon. Not. Roy. Astron. Soc. 420 (2012) 447 [arXiv:1111.0631 [astro-ph.CO]].
- [3] M. Davis, A. Nusser, K. Masters, C. Springob, J. P. Huchra and G. Lemson, arXiv :1011.3114 [astro-ph.CO].
- [4] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, G. B. Poole, L. Campbell and Q. Parker *et al.*, Mon. Not. Roy. Astron. Soc. 423 (2012) 3430 [arXiv:1204.4725 [astro-ph.CO]].
- [5] W. J. Percival et al. [2dFGRS Collaboration], Mon. Not. Roy. Astron. Soc. 353 (2004) 1201 [astro-ph/0406513].
- [6] Y. -S. Song and W. J. Percival, JCAP 0910 (2009) 004 [arXiv :0807.0810 [astro-ph]].
- [7] M. Tegmark et al. [SDSS Collaboration], Phys. Rev. D 74 (2006) 123507 [astro-ph/0608632].
- [8] C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, S. Croom, T. Davis and M. J. Drinkwater et al., Mon. Not. Roy. Astron. Soc. 415 (2011) 2876 [arXiv:1104.2948 [astro-ph.CO]].
- [9] R. Tojeiro, W. J. Percival, J. Brinkmann, J. R. Brownstein, D. Eisenstein, M. Manera, C. Maraston and C. K. McBride et al., Mon. Not. Roy. Astron. Soc. 424 (2012) 2339 [arXiv:1203.6565 [astro-ph.CO]].
- [10] J. da Angela, T. Shanks, S. M. Croom, P. Weilbacher, R. J. Brunner, W. J. Couch, L. Miller and A. D. Myers et al., Mon. Not. Roy. Astron. Soc. 383 (2008) 565 [astro-ph/0612401].
- [11] A. Cabre and E. Gaztanaga, Mon. Not. Roy. Astron. Soc. 393 (2009) 1183 [arXiv :0807.2460 [astro-ph]].
- [12] L. Samushia, W. J. Percival and A. Raccanelli, Mon. Not. Roy. Astron. Soc. 420 (2012) 2102 [arXiv :1102.1014 [astro-ph.CO]].
- [13] B. A. Reid, L. Samushia, M. White, W. J. Percival, M. Manera, N. Padmanabhan, A. J. Ross and A. G. Sanchez et al., arXiv :1203.6641 [astro-ph.CO].
- [14] C. Contreras et al. [WiggleZ Collaboration], Monthly Notices of the Royal Astronomical Society, Advance Access. 10 pp. Feb 2013 [arXiv :1302.5178 [astro-ph.CO]].
- L.FdlB
 Curzo
 M. Pierleoni
 R. Meneux
 F. Branchini
 O. L. Feure
 C. Marinoni
 R. Savilli and
 Blaizot
 et al.
 Nature
 451

 L.FdlB
 (University of Sussex)
 IberiCOS 2015
 13 / 13
 13 / 13

Appendices

Ostrogradski instability

Euler-Lagrange equation

$$\mathcal{L} = \mathcal{L}(\phi, \dot{\phi}, \ddot{\phi}) \Rightarrow \frac{\partial \mathcal{L}}{\partial \phi} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\phi}} + \frac{\mathrm{d}^2}{\mathrm{d}^2 t} \frac{\partial \mathcal{L}}{\partial \ddot{\phi}} = 0$$
(15)

Define new variables and their conjugate momenta

Ostrogradski instability implies no lower limit of the energy of a

system.

$$\begin{aligned} \phi_1 &\equiv \phi & \Pi_1 = \frac{\partial \mathcal{L}}{\partial \dot{\phi}} + \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \ddot{\phi}} \\ \phi_2 &\equiv \dot{\phi} & \Pi_2 = \frac{\partial \mathcal{L}}{\partial \ddot{\phi}} \end{aligned}$$

Hamiltonian $\mathcal{H} = \Pi_1 \dot{\phi}_1 + \Pi_2 \dot{\phi}_2 - \mathcal{L}(\phi, \dot{\phi}, \ddot{\phi})$ assume $\ddot{\phi} = \dot{\phi}_2 = F(\phi_1, \phi_2, \Pi_2)$ (*F* invertible) Then

$$\mathcal{H} = \Pi_1 \dot{\phi}_1 + \Pi_2 F(\phi_1, \phi_2, \Pi_2) - \mathcal{L}(\phi_1, \phi_2) - \mathcal{L}$$

Cosmological perturbations in GR

V. Mukhanov, Cambridge University Press.18 (2005).

• The matter density perturbation equation. Density contrast $\delta = \frac{\rho - \rho_0}{\rho_0}$.

RW metric in longitudinal gauge

$$ds^{2} = a^{2}(\eta)\{(1+2\Phi)d\eta^{2} - (1-2\Psi)[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})]\}, \quad (17)$$

 Φ and Ψ Bardeen's potentials.

We obtain the perturbed equations of motions up to linear order :

$$\delta G^{\mu}_{\nu} = -8\pi G \delta T^{\mu}_{\nu}. \tag{18}$$

We assume :

- Perfect fluid behavior.
- Adiabatic perturbations (entropy is constant).
- Quasi-static approximation (QSA). Time derivatives are small with respect to spatial derivatives.

Fourier space :

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho_m(t)\delta = 0.$$
⁽¹⁹⁾

Valid for sub-Hubble modes, k >> H.

• The growth structure function is defined as $f(z)\sigma_{0,8}\delta(z)$, being $f(z) = \frac{d\ln\delta}{d\ln a}$ the growth rate and $\sigma_{0,8} \equiv 0.8$.