Gravitational contraction in f(R) theories: curvature singularities, particle production and repulsive gravity

Lorenzo Reverberi

UNIVERSITY OF FERRARA AND INFN FERRARA (ITALY)

IBERICOS 2015

Aranjuez, 30 March - 1 April 2015

- ► E.V. Arbuzova, A.D. Dolgov and LR, Eur. Phys. J. C 72, 2247 (2012) [arXiv:1211.5011]
- LR, Phys. Rev. D 87, 084005 (2013) [arXiv:1212.2870]
- ► E.V. Arbuzova, A.D. Dolgov and LR, Phys. Rev. D 88 024035 (2013) [arXiv:1305.5668]
- ► E.V. Arbuzova, A.D. Dolgov and LR, Astrop. Phys. 54, 44 (2014) [arXiv:1306.5694]

ACTION

$$\mathcal{S}_{
m grav} = \int d^4x \, \sqrt{-g} \, \left(R + 2\Lambda
ight) \quad
ightarrow \quad \mathcal{S}_{
m grav} = \int d^4x \, \sqrt{-g} \, f(R)$$

FIELD EQUATIONS

$$R_{\mu\nu} - \frac{R}{2} g_{\mu\nu} - \Lambda g_{\mu\nu} = T_{\mu\nu}$$

$$\downarrow$$

$$f_{,R}(R) R_{\mu\nu} - \frac{f(R)}{2} g_{\mu\nu} + (g_{\mu\nu}\Box - \nabla_{\mu}\nabla_{\nu}) f_{,R}(R) = T_{\mu\nu}$$

- ▶ one new scalar degree of freedom: SCALARON $\xi \sim f_{,R}$
- equations are 4th order in $\partial g_{\mu\nu}$, but:
- theory free of Ostrogradski ghost(s)

VIABILITY CONDITIONS

$$\begin{array}{ll} f_{,R} > 0 & \text{ no ghosts} \\ f_{,RR} < 0 & \text{ no tachyons} \end{array} \quad \begin{cases} f \to R \\ f_{,R} \to 1 & \text{ for } |R| \gg |R_c| \\ f_{,RR} \to 0 \end{cases}$$

This usually corresponds to finite values of the scalaron field ξ and of its potential at the singular point $R \to \infty$.

Several models have been proposed that meet early Universe and Solar System constraints, and that have a stable de Sitter attractor at late times, e.g. Starobinsky 2007, Hu-Sawicki 2007, Appleby-Battye 2007, etc.

Too good?

Models fulfilling these conditions may be indistinguishable from Λ CDM using just cosmological expansion tests. New probes are necessary!

Curvature Evolution in Contracting Systems

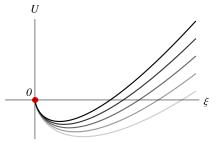
Consider an astronomical cloud under the following assumptions:

• "High" Density: $\rho_m \gg \rho_c$

• "Low" Gravity:
$$|g_{\mu\nu} - \eta_{\mu\nu}| \ll 1$$

- Sph. Symmetry + Homogeneity
- Pressureless Dust: $T \propto \rho$

$$\ddot{\xi} + R(\xi) + T = 0 \qquad \Leftrightarrow \qquad \ddot{\xi} + U'(\xi, T) = 0$$



- GR solution: $U'(\xi) = R + T = 0$
- $\xi = \xi(R = R_{GR}) + |\boldsymbol{\xi}_{osc}| \sin \omega t$
- ► Starobinsky/Hu-Sawicki: $\xi \sim R^{-(2n+1)}$
- **Oscillations** may allow $\xi = 0$:

SINGULARITY $R \rightarrow \infty$

High-Curvature Corrections

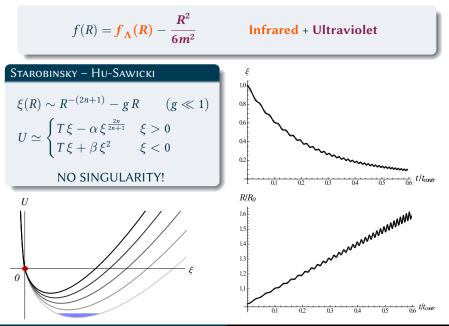
$$f(R) = \boldsymbol{f}_{\boldsymbol{\Lambda}}(\boldsymbol{R}) - \frac{\boldsymbol{R}^2}{6m^2}$$

Infrared + Ultraviolet

Starobinsky – Hu-Sawicki

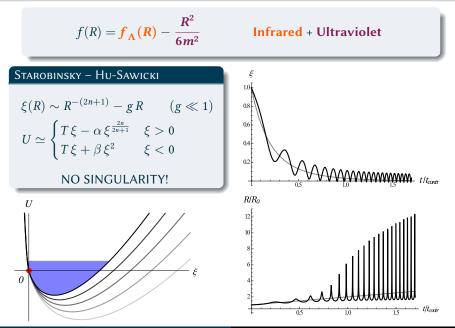
$$\begin{split} \xi(R) &\sim R^{-(2n+1)} - g R \qquad (g \ll 1) \\ U &\simeq \begin{cases} T \, \xi - \alpha \, \xi^{\frac{2n}{2n+1}} & \xi > 0 \\ T \, \xi + \beta \, \xi^2 & \xi < 0 \end{cases} \\ & \text{NO SINGULARITY!} \end{split}$$

High-Curvature Corrections



IberiCOS 2015 - L. Reverberi

High-Curvature Corrections

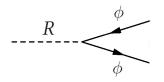


IberiCOS 2015 - L. Reverberi

Gravitational contraction in f(R) theories

Gravitational Particle Production

- Massless ($m_{\phi} \ll m_{\xi}$) scalar field ϕ
- Minimal coupling to gravity: $\mathcal{L}_{\phi} = (1/2) g^{\mu\nu} \nabla_{\mu} \phi \nabla_{\nu} \phi$
- Coupling with curvature in e.o.m: $(\Box + R/6) \phi = 0 \rightarrow V_{int} \sim R \phi^2$



Given an arbitrary external R(t) with Fourier transform $\mathcal{R}(\omega)$, the production of ϕ particles is

$$\dot{\varrho}_{\phi} = rac{1}{576\pi^2 \Delta t} \int d\omega \, \omega \left| \mathcal{R}(\omega) \right|^2 \sim \omega_{\xi} \, \Delta_R^2$$

HARMONIC REGION

$$\frac{L}{\text{GeV s}^{-1}} \simeq 7.3 \times 10^{-74} \,\widetilde{C}_1(n) \, N_s \left[\frac{M}{10^{11} M_{\odot}}\right] \left[\frac{\varrho}{\varrho_0}\right]^{4n+3} \left[\frac{\varrho_c}{\varrho_0}\right]^n \left[\frac{10^{10} \, \text{ys}}{t_{contr}}\right]^2$$

Even for high density and short contraction times, this value is practically always negligible. However, the produced particles are \sim monochromatic, perhaps detectable signal in some range of parameters.

Spike Region

$$\frac{L}{\text{GeV s}^{-1}} \simeq 6.0 \times 10^{20} \, \widetilde{C}_2(n) \, N_s \left[\frac{m}{10^5 \text{GeV}}\right]^2 \left[\frac{M}{10^{11} M_{\odot}}\right] \left[\frac{\varrho}{\varrho_0}\right]^{2n+1} \left[\frac{\varrho_c}{\varrho_0}\right]^{3n+2} \left[\frac{10^{10} \text{ys}}{t_{contr}}\right]^2$$
Potentially large luminosity, particles produced at energies up to
 $10^5 \, \text{GeV} \lesssim m \lesssim m_{Pl}$

 \Rightarrow implications for the UHECR "ankle" problem?

"Ankle" in UHECR Spectrum



A spherically-symmetric metric can always be cast in the simple form

$$ds^{2} = [1 + A(t, r)] dt^{2} - [1 + B(t, r)] dr^{2} - r^{2} d\Omega$$

We assume small perturbations from Minkowski ($A, B \ll 1$), finding

$$\begin{cases} A'' - \frac{A'}{r} = -\frac{3B}{r^2} + \ddot{B} + T_{00} - 2T_{rr} + \frac{T_{\theta\theta}}{r^2} + \frac{T_{\phi\phi}}{r^2 \sin^2 \theta} \equiv S_A(T_{\mu\nu}, B; t, r) \\ B' + \frac{B}{r} = T_{00}r \end{cases}$$

The corresponding solutions are:

•
$$A(t,r) = C_{A1}(t)r^2 + C_{A2}(t) + \int_r^R dr_1 r_1 \int_{r_1}^R \frac{dr_2}{r_2} S_A(t,r_2)$$

• $B(t,r) = \frac{C_B(t)}{r} + \frac{1}{r} \int_0^r dr_1 r_1^2 T_{00}(t,r_1) = B_{GR}(t,r) = \frac{2GM(r,t)}{r}$

Schwarzschild Limit

External Solution: $r > r_M$

$$A = -\frac{2GM}{r} + \left[C_{A1}(t) - \frac{2GM}{2r_M^3}\right]r^2 + \left[C_{A2}(t) + \frac{6GM}{2r_M}\right]$$
$$A \to A_{GR}(r > r_M) = -\frac{2GM}{r}$$

Internal Solution: $r < r_M$

Analogous solution, but this time

$$R \approx A'' + \frac{2A'}{r} \quad \Rightarrow \quad C_{A1} \approx \frac{R}{6}$$

which yields

$$A \rightarrow A_{\mathrm{GR}}(r < r_{M}) + rac{Rr^{2}}{6} pprox rac{GM(r)r^{2}}{r_{M}^{3}} + rac{Rr^{2}}{6}$$

Dynamics of test particle governed by

$$\ddot{r} = -\frac{A'}{2} = -\frac{1}{2} \left[\frac{2G_N M(r)r}{r_M^3} + \frac{Rr}{3} \right]$$

GRAVITATIONAL REPULSION FOR

$$|R| > 8\pi G \varrho = |R_{GR}|$$

- ► In the derivation of this result we have assumed that $|R| \gg 8\pi G\rho$, so this is not truly a limit value
- ► still, time-dependent repulsive behaviour is possible
- (how) does this affect structure formation?

Conclusions

- f(R) theories are a viable alternative to ΛCDM
 - cosmological viability conditions well understood, but:
 - hard to distinguish between viable f(R) and GR
 - Finding alternative ways to test these theories is paramount
- The possibility of curvature singularities in contracting systems is rather general
- ► Ultraviolet corrections protect from such singularities, but still allow $R \gg R_{GR}$
- Large amplitude oscillations lead to potentially detectable gravitational particle production. UHECR "ankle"?
- Spherically symmetric solutions are modified accordingly: repulsive behaviour?

Conclusions

- f(R) theories are a viable alternative to ΛCDM
 - cosmological viability conditions well understood, but:
 - hard to distinguish between viable f(R) and GR
 - Finding alternative ways to test these theories is paramount
- The possibility of curvature singularities in contracting systems is rather general
- ► Ultraviolet corrections protect from such singularities, but still allow $R \gg R_{GR}$
- Large amplitude oscillations lead to potentially detectable gravitational particle production. UHECR "ankle"?
- Spherically symmetric solutions are modified accordingly: repulsive behaviour?

THANK YOU! ¡GRACIAS!