
Possible doomsday behaviours for the
Universe: classical versus quantum

Mariam Bouhmadi-López
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Introduction-1-: A brief sketch of the universe

The universe is homogeneous and isotropic on large scales.

The matter content of the universe:

Standard matter

Dark matter

Something that accelerates the universe (broadly speaking dark

energy)

What is dark energy (DE)? No idea. But we know it implies

acceleration in a homogeneous and isotropic universe
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Introduction-2-

The effective equation of state of dark energy is roughly -1

There could be room for dark energy with w0 < −1 =⇒ phantom

energy

In phantom energy models

Null energy condition is not satisfied

Energy density is a growing function of the scale factor (in an

expanding Universe like ours)

May be a big rip singularity in the future

Starobinsky 00, Caldwell 02, Caldwell, Kamionkowski and Weinberg 03
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Cosmological singularities related to dark energy

Classification of the cosmological singularities related to dark energy

Big rip singularity

Sudden singularity, big brake singularity, big démarrage singularity

Big freeze singularity

Type IV singularity

Little rip event

Little sibling of the big rip singularity

Kamenshchik 13 (review mainly on type II sing.)

Odintsov has a lot of works on this topic
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Big rip singularity-1-

For this singularity the null

energy condition is violated.

The scale factor diverges in a

finite time. It is accompanied

with a divergence of the Hubble

rate and the cosmic derivative

of the Hubble rate.

!

tf t

a

H

Ḣ

Starobinsky 00, Caldwell 02, Caldwell, Kamionkowski and Weinberg 03
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Big rip singularity-2-

Equation of state p = wρ, w = const. and w < −1

Energy density ρ = Ãa−3(w+1)

Scale factor for a flat FLRW (C = (κ2
4/3)Ã)

a(t) =
[
a

3(w+1)/2
0 + 3(w+1)

2 C 1/2(t − t0)
]2/(3(w+1))

Big rip in the future

tmax = t0 − 2
3(w+1)C1/2 a

3(w+1)/2
0

a

tmax t
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Sudden singularity

This singularity occurs at a finite

value of the scale factor and the

Hubble rate. It is accompanied

with a divergence of the cosmic

derivative of the Hubble rate.

Barrow ’04

✸

tf
af

Hf

t

|Ḣ|
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Big freeze singularity

This extremal events happens

also at a finite scale factor. The

Hubble rate and its cosmic

derivative blow up at that scale

factor.

Nojiri, Odintsov and Tsujikawa 05’
BL, González-D́ıaz and Mart́ın-Moruno 06, 07

✸
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Ḣ
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Type IV singularity

None of the Hubble rate or Ḣ

blow up in this case. However,

second and higher derivatives

blow up at a finite value of the

scale factor.

Nojiri, Odintsov and Tsujikawa 05’

✸

tf
af

Hf

Ḣf

t

Ḧ...
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What type of matter can drive those singularities?
Example: Generalised Chaplygin gas

A sudden, big freeze and type IV singularity can emerges on the realm

of a Chaplygin gas

Chaplygin gas: α = 1 and A > 0. Kamenshchik et al 01, Bilic et al 01

Generalised Chaplygin gas: P = −A/ρα, 0 < α < 1 and A > 0.

Bento et al ’02

Motivated initially not only as a dark energy component but also as a

dark component playing the role of dark matter and dark energy
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GCG and dark energy related singulaties-1-:

The asymptotic behaviour of a universe filled with each type of a “plain”
GCG; i.e. it doesn’t violate the null, strong and weak energy conditions

A,B 1 + α a ρ Past Future

(1) no singularity/infinite future

A < 0 positive 0 ≤ a < amax 0 ≤ ρ <∞ dust-like (2) type IV singularity

(3) sudden singularity

B > 0 negative amin ≤ a <∞ 0 ≤ ρ <∞ big freeze singularity dust-like

A > 0 (2n)−1 > 0 0 ≤ a < amax 0 ≤ ρ <∞ dust-like no singularity/infinite future

B < 0 (2n)−1 < 0 amin ≤ a <∞ 0 ≤ ρ <∞ big freeze singularity dust-like

(1) and (3) correspond to −1 < α ≤ −1/2 and 0 < α, respectively.
(2) corresponds to −1/2 < α < 0, where α cannot be expressed as
α = 1/(2p)− 1/2, with p a positive integer. If −1/2 < α < 0 and α
can be expressed as α = 1/(2p)− 1/2, with p a positive integer,
there is no past singularity and the universe is born at a finite past.

ρ = (A + B/a3(1+α))1/1+α

BL, González-D́ıaz, Mart́ın-Moruno ’06, ’07
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GCG and dark energy related singulaties-2-:

The asymptotic behaviour of a universe filled with each type of a
phantom GCG

A,B 1 + α a ρ Past Future

(1)∞ past

A > 0 positive amin ≤ a <∞ 0 ≤ ρ ≤ A1/(1+α) (2) Type IV singularity asymptotically dS

(3) Sudden singularity

B < 0 negative 0 ≤ a < amax A1/(1+α) ≤ ρ <∞ asymptotically dS/∞ past big freeze singularity

A < 0 (2n)−1 > 0 amin ≤ a <∞ 0 ≤ ρ ≤ |A|1/(1+α) ∞ past asymptotically dS

B > 0 (2n)−1 < 0 0 ≤ a < amax |A|1/(1+α) ≤ ρ <∞ asymptotically dS/∞ past big freeze singularity

(1) and (3) correspond to −1 < α ≤ −1/2 and 0 < α, respectively.
(2) corresponds to −1/2 < α < 0, where α cannot be expressed as
α = 1/(2p)− 1/2, with p a positive integer. If −1/2 < α < 0 and α
can be expressed as α = 1/(2p)− 1/2, with p a positive integer,
there is no past singularity and the universe is born at a finite past.

ρ = (A + B/a3(1+α))1/1+α

BL, González-D́ıaz, Mart́ın-Moruno ’06, ’07
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Little rip singularity-1-

For this singularity the null

energy condition is violated.

The scale factor diverges in an

infinite time (tf →∞). It is

accompanied with a divergence

of the Hubble rate and the

cosmic derivative of the Hubble

rate.

!

tf t

a

H

Ḣ
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Little rip singularity-2-

The name of little rip was introduced by Frampton, Ludwick and

Scherrer ’11

This kind of singularity corresponds to a big rip sent towards an

infinite cosmic time

Examples:

This kind of singularity can happens in a FLRW universe filled with a

perfect fluid p = −ρ− Aρ1/2

(Nojiri, Odintsov and Tsujikawa 05’, Stefançic 05’)

Also presents in some dilatonic brane-world models (BL 05’).

First example was found by Ruzmaikina and Ruzmaiki back in 1970

corresponding to a past little rip
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Little sibling of the big rip singularity

This event is much smoother than the big rip singularity. When the

little sibling of the big rip is reached, the Hubble rate and the scale

factor blow up but the cosmic time derivative of the Hubble rate does

not. This abrupt event takes place at an infinite cosmic time where

the scalar curvature explodes.

It turns out that eventhough the event seems to be harmless as it

takes place in the infinite future, the bound stuctrure in the universe

would be unavoidably destroyed in a finite cosmic time from now.

BL, Errahmani, Mart́ın-Moruno, Ouali, Tavakoli (2014)
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Motivation-1-

Einstein general relativity (GR) is an extremely successful theory

However, it is expected to break down at some point at very high

energies

GR cannot explain the current acceleration of the universe unless a

dark energy component is considered

These are some motivations for looking for possible extension of GR
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Motivation-2-

GR: (i) From a geometrical point of view, the theory is fullly
determined by the metric. (ii) From a dynamical point of view, the
theory is determined by Einstein equation or Hilbert-Einstein action.

Natural questions:

1 Is this the most general geometry?
2 Is this the most general theory of gravity?

Answers
1 Answer to (1): In principle, the connection and the metric can be

independent. This leads to Palatini type of theories. In addition, the
connection can be non symmetric (very important to incorporate spin
in the theory), this excentially leads to a non-vanishing torsion.

2 Answer to (2): Certainly not. Of course, any generalisations of GR
must incorporate the good features and achievements of GR.

We will present two examples of alternatives theories of gravity (one
with torsion and one without torsion) that have been recently
proposed as a mean to avoid the Big Bang singularity and see if the
same happens with dark energy related singularities.
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EiBI theory-1-

There have been many proposals for alternative theories of GR as old

as the theory itself

One of the oldest proposal was due to Eddington

In Eddington proposal, the connection rather than the metric plays

the fundamental role of the theory

It is equivalent to GR in vacuum

BUT does not incorporate matter

An Eddington-inspired-Born-Infeld theory has been proposed by

Bañados and Ferreira

Bañados and Ferreira (2010)
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EiBI theory-2-

SEiBI(g , Γ,Ψ) = 2
κ

∫
d4x

[√
|gµν + κRµν(Γ)| − λ

√
|g |
]

+ Sm(g , Γ,Ψ)

We consider the action under the Palatini formalism, i.e., the
connection Γαµν is not the Levi-Civita connection of the metric gµν
This Lagrangian has two well defined limits: (i) when |κR| is very
large, we recover Eddington’s theory and (ii) when |κR| is small, we
obtain the Hilbert-Einstein action with an effective cosmological
constant Λ = (λ− 1)/κ

A solution of the above action can be characterized by two different
Ricci tensors: Rµν(Γ) as presented on the action and Rµν(g)
constructed from the metric g

There are in addition three ways of defining the scalar curvature.
These are: gµνRµν(g), gµνRµν(Γ) and R(Γ). The third one is derived
from the contraction between Rµν(Γ) and the metric compatible with
the connection Γ

Therefore whenever one refers to singularity avoidance, one must
specify the specific scalar curvature(s)
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EiBI theory-3-

Gravitational action:

SEiBI(g , Γ,Ψ) =
2

κ

∫
d4x

[√
|gµν + κRµν(Γ)| − λ

√
|g |
]

+Sm(g , Γ,Ψ)

The parameter κ has been constrained using observationally for
example from BBN (Casanellas et al 2012, Avelino 2012).
The model can avoid the Big Bang singularity, for example, in a
radiation dominated universe (Bañados and Ferreira 2012).
Has been proposed as an alternative scenario to the inflationary
paradigm (Avelino 2012)
The theory can be unstable from a perturbative point of view (See for
example Escamilla-Rivera et al 2012).
It was shown that if the null energy condition is fullfilled then the
apparent null energy condition is also fullfilled (Deslate and Steinhoff
2012).
Can this theory avoid the big rip singularity? This is the main
question, we will address
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EiBI theory-4-

The physical metric: flat FLRW metric with scale factor a(t)

The auxiliary metric: qµν = −U(t)dt2 + a2(t)V (t)dX2

Friedmann eq: H2 = H2(κ, ρt , pt ,
dpt
dρt

)

The auxiliary metric: U = U(ρt , pt) and V = V (ρt , pt).

The conservation of the energy momentum tensor holds.
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EiBI theory-5-: radiation dominated universe

A radiation dominated universe faces in the past a bounce (κ < 0) or
a loitering effect (κ > 0); i.e. it avoids the big bang singularity. The
reason behind this is that the energy density is bounded as a
consequence of the modified Friedmann equation. Notice nevertheless
the behaviour of the curvature is defined from the connection.
The curvature behaviour (al , ab minimum scale factors for κ positive
and negative, respectively)

Curvature Loitering (κ > 0) Bounce (κ < 0)

R00(g) 0 4/κ
Rij(g) 0 −4/(3κ) a2

b

gµνRµν(g) 0 −8/κ
R00(Γ) 1/κ ∞
Rij(Γ) −a2

l δij/κ −(1/κ) a2
bδij

hµνRµν(Γ) −∞ +∞
gµνRµν(Γ) −4/κ −∞

Can the big rip be avoided as well?
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The EiBI scenario filled with CDM and PE
We consider the EiBI model filled with CDM and a dark energy
component with a constant equation of state w ∼ −1.
In GR a matter component such that w < −1 (and constant) implies
a big rip singularity. Can the EiBI scenario avoid this singularity as
happens with the big bang (with respect to the metric gµν)
singularity?

Curvature Big Freeze (κ < 0) Big Rip κ > 0

R00(g) −∞ −∞
Rij(g) +∞ +∞

gµνRµν(g) +∞ +∞
R00(Γ) finite −∞
Rij(Γ) finite +∞

hµνRµν(Γ) finite 4/κ
gµνRµν(Γ) finite +∞

Notice that EiBI reduce to GR at late-time for a dust filled universe
this is no longer the case for a universe filled with phantom matter.
Nevertheless the big rip singularity is not cured BL, Chen and Chen 14
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What about the other singularities?

Singularity in GR EiBI physical metric EiBI auxiliary metric

Big Rip Big Rip expanding de-Sitter

past Sudden past Type IV (0 < α ≤ 2) contracting de-Sitter

(α > 0) past Sudden (α > 2)

future Big Freeze future Big Freeze (−3 < α < −1) expanding de-Sitter

(α < −1) future Type IV (α = −3)

future Sudden (α < −3)

past Type IV past Sudden (−2/3 < α < −1/3) past Type IV

(−1 < α < 0) (1)past Type IV

(α 6= −n/(n + 1)) (2)finite past without singularity finite past without singularity

past loitering effect (ab > amin) Big Bang

finite past without singularity finite past without singularity finite past without singularity

(α = −n/(n + 1))

(−1 < α < 0)

past loitering effect (ab > amin) Big Bang

Little Rip Little Rip expanding de-Sitter

BL, Chen and Chen 15
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The geodesic analyses of a Newtonian object in the
EiBI setup-1-

A spherical Newtonian object with mass M and a test particle
rotating around the object with a physical radius r

Both of them are embedded in a spherically symmetric FLRW
background

We will analyse the fate of the bound structure near the singularities
corresponding to the physical metric and the auxiliary metric

The evolution equation of the physical radius: r̈ = ä
a r − GM

r2 + L3

r3

conservation of angular momentum: r 2φ̇ = L

Near the Big Rip, Little Rip, Big Freeze and the Sudden singularities:
r̈ ≈ ä

a r

r1 = a(t), and r2 = r1

∫
dt
r1

2

r(t) = A1r1(t) + A2r2(t)

Faraoni, Jacques 2007
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The geodesic analyses of a Newtonian object in the
EiBI setup-2-

Figure: We show the behaviour of the effective potential Veff (ṙ 2 = −2Veff) for
future singularities (left figure) and past singularities (right figure). Rmax is finite
for a sudden and big freeze singularities while infinite for a big rip and little rip
singularity. Likewise Rmin is finite for a past sudden singularity. On the left figure:
the blue solid curve shows the current bound structure, the brown dashed one the
intermediate future behaviour and the red dotted one the final state. On the right
figure the colors appear in an inverted chronological order, first red dotted, then
brown dashed and finally blue solid, as the singularity takes place in the past.
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The geodesic analyses of a Newtonian object in the
EiBI setup-3-: Type IV singularity and the geodesic
defined by the auxiliary metric

Near a type IV singularity, all the terms in the evolution equation are
finite

A bound system remains bounded

As for the geodesic equations defined by the auxiliary metric, the
singularities are substituted by a de-Sitter or a type IV

the auxiliary metric and the physical connection have a much
smoother behaviour close to the singularities
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A cosmographic approach of the EiBI scenario-1-

The cosmographic approach is the Taylor expansion of the scale factor
a(t) with respect to the cosmic time t around the present time t0

a(t) ≡ 1 +
∞∑
i=1

1

i !

d ia

dt i
|t=t0(t − t0)i

It is convenient to define the following cosmographic parameters:
H(t) = 1

a
da
dt , q(t) = −1

a
d2a
dt2

1
H2 , j(t) = 1

a
d3a
dt3

1
H3 , s(t) = 1

a
d4a
dt4

1
H4 ,

l(t) = 1
a
d5a
dt5

1
H5 , which are commonly called the Hubble, deceleration,

jerk, snap and lerk parameters.
If we can measure/constrain those parameters at present we could get
the expansion of the Universe.
These parameters can be used to constrain cosmological models in an
easy way.
Unfortuntely, it is not so easy to contrain these parameters (from the
snap onward).

See for example: Capozziello, Cardone and Salzano (2008)
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A cosmographic approach of the EiBI scenario-2-

We follow this approach to have a clue of what happens in the

scenario we discussed before.

We follow two types of approach. Here we will present one of them

There are six parameters in our model: κ, α, amax (or amin), Ωm,

Ωde , and Ωr . We set the values Ωm = 0.31, Ωr = 8.48× 10−5, and

Ωκ from 10−7 to 10−4, and numerically solve the resulting α, Ωde ,

amax using the cosmographic parameters H, q, j (Ωκ ≡ 3κH0
2).

We used the cosmographic parameters obtained by Gruber and

Luongo (2014).
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A cosmographic approach of the EiBI scenario-3-

This approach is applied to the fits deviating from the ΛCDM model
and those consistent with cases in which α < −1 (future singularities)

Only fits (2) and (3) in Gruber and Luongo (2014) are consistent
(other fits are incompatible with phantom energy)

fit (2): H0 = 70.25, q0 = −0.683, j0 = 2.044

Ωκ α Ωde amax H0(tmax − t0)

0 (GR) −1.94103 0.684915 2.05115 0.621529

10−7 −1.94103 0.684915 2.05115 0.622249

10−6 −1.94103 0.684916 2.05115 0.6235

10−5 −1.94102 0.684919 2.05113 0.62681

10−4 −1.94095 0.684948 2.05102 0.635257

fit (2) with Ωm = 0.315 prefers the parameter space −3 < α < −1,
implying a big freeze singularity in the future

M. Bouhmadi-López (CMA-UBI-Portugal) Dark energy related singularities Aranjuez, 31-03-2015 34 / 68



A cosmographic approach of the EiBI scenario-3-

This approach is applied to the fits deviating from the ΛCDM model
and those consistent with cases in which α < −1 (future singularities)

Only fits (2) and (3) in Gruber and Luongo (2014) are consistent
(other fits are incompatible with phantom energy)

fit (3): H0 = 70.09, q0 = −0.658, j0 = 2.412

Ωκ α Ωde amax H0(tmax − t0)

0 (GR) −3.19514 0.684915 1.39279 0.317249

10−7 −3.19514 0.684915 1.39279 0.318152

10−6 −3.19514 0.684916 1.39279 0.31972

10−5 −3.19516 0.68492 1.39276 0.323837

10−4 −3.19532 0.68496 1.39248 0.334114

fit (3) with Ωm = 0.315 prefers the parameter space α < −3,
implying a sudden singularity in the future
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BI determinantal gravity-1-

Born-Infeld determinantal gravity has been recently proposed as a way

to smooth the Big Bang singularity

The theory is constructed within the Weitzenböck space-time and it

ensures a second order equation of motion of vielbein field.

Regular cosmological solutions were obtained for some regions of the

parameter space.

In fact, the possible divergence of the Hubble rate at high energies is

substituted by a de Sitter phase or a bounce in a FLRW.

Fiorini (2013)
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BI determinantal gravity-2-

Gravitational action:

SBId =
λ

2

∫
dDx

[√
|gµν + 2λ−1Fµν | −

√
|gµν |

]
,

Fµν (as well as Sλµ
ρ) is constructed from the Weitzenböck torsion

which can be defined through the Weitzenböck torsion:
Γρµν = eρa∂νeaµ, Fµν = αSµ

λρTνλρ + βSλµ
ρTλ

νρ + γgµνT
In the Weitzenböck representation, the dynamical field is the vielbein
ea rather than the metric gµν . The metric relates with the vielbein
through gµν = ηabeaµebν .
The low energy limit of this theory (|λ| → ∞) recovers GR as long as
Tr(Fµ

ν) = T ; i.e. α + β + Dγ = 1. Note that the relation between
the standard Riemannian version of GR and the teleparallel version of
GR is ensured by the equation T = −R + 2e−1∂ν(eTσ

σν), where R is
the Ricci scalar constructed within the standard Riemannian
representation, e is the determinant of the vielbein field and T is the
Weitzenböck invariant T ≡ Sρ

µνT ρ
µν .
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BI determinantal cosmology-1-

Friedmann equation:

√
1− BH2

√
1− AH2

[1 + 2BH2 − 3ABH4]− 1 =
2ρ

λ
,

where A = 6(β + 2γ)/λ and B = 2(2α + β + 6γ)/λ. The low energy
limit is recoverd as long as A + 3B = 12

λ . In fact, on that regime
H2 = ρ

3 + O2(ρ).

The Raychaudhuri equation:

Ḣ = −3

2
(ρ+ p)

dH2

dρ

where dH2

dρ =
4
√

(1−AH2)3(1−BH2)

λK(H2)
, and

K (H2) = 12
λ − 14ABH2 − 6B2H2 + 9A2BH4 − 12A2B2H6.

Not at all straightforward to analyse even for a spatially flat FLRW.
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BI determinantal cosmology-2-

Constraint on the theory: 1− AH2 > 0→ 1
H2 > A,

1− BH2 > 0→ 1
H2 > B.

The previous constraint implies the signature of gµν + 2λ−1Fµν does
not change when recovering GR (i.e. |λ| → ∞).

The Big Bang singularity is avoided for any matter content fullfilling
the dominant energy condition for B = 0. The universe would be
asymptotically de Sitter in the past (Fiorini 2013).

Here again, we ask the question: is this still the case for dark energy
related singularities and even for the Big Bang singularity in other
regions of the parameter space?
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BI determinantal cosmology versus cosmological
singularities (λ > 0)

Wherever A or B are positive

there are no strong singularities

(H does not blows up)

This is the case for λ > 0:

remember 1
H2 > A and 1

H2 > B

+ see Fig.

We can however have weaker

singularities: Ex. if A > 0 there

is a sudden singularity at

ρ = (
√

2− 1)λ/2

BL, Chen and Chen 14
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BI determinantal cosmology versus cosmological
singularities (λ < 0)

The constant A and B can be

simultaneously negative this might

allow the existence of strong

singularities. Indeed this is the case.

If B = 0, any matter content whose

pressure is finite when ρ→ |λ|/2 for

a finite scale factor, there is a big

freeze from purely geometrical

effects.

If A = 0, at the high energy regime

H ∝ ρ1/3, therefore for a constant

equation of state different from -1 a

Big Rip or a Big Bang can happen.
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On the quantum fate of singularities in a
dark-energy dominated universe-1-

On the previous part of the talk, we tackled the issue of

cosmological singularities in the context of modified theories

of gravity which in certain regimes could be thought as

effective description of a more fundamental theory which

could incorporate some aspect of the quantum realm in it.

There is no final quantum gravity theory so far that would

lead to THE theory of quantum cosmology

There are, however, several approaches in this direction (Talk

by Calcagni).

Here we will follow the most conservative one which

corresponds to the Wheeler deWitt approach.
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On the quantum fate of singularities in a
dark-energy dominated universe-2-

We will use this approach which is based in the quantum

geometrodynamical framework, where we have only one

degree of freedom corresponding to the scale factor or two

degrees of freedom corresponding to the scale factor and the

the matter content.

Within the first approach we will analyse the Big Rip

singularity while the second approach will be used to analyse

the Sudden, Big Freeze and type IV singularities.

We have seen at the beginning of the talk that a mGCG may

induce almost any kind of DE singularity but not a Big Rip. In

order to carry the quantisation in this case, we need another

classical model. For simplicity we will choose the Holographic

Ricci Dark energy model.
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The holographic dark energy scenario

Bekenstein proposal: The entropy of a system of volume L3 is
bounded by a quantity proportional to its area L2 (Bekenstein 73, 81)

It was proposed as well a bound on the energy density of such a
system (Cohen et al 99)

This idea was applied to cosmology given rise to the holographic dark
energy model (Li 04, Hsu 04)

ρH =
3c2

κ2
4L2

(1)

There are several choices for the scale: the Hubble scale, the event
horizon, the particle horizon, a scale related to the curvature ...

Here, we will consider an holographic Ricci dark energy model (Gao,
Wu, Chen, Shen ’09).
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The holographic Ricci dark energy model

After using the Friedmann equation for a universe filled with rad. and
matter, the energy density of HRDE reads

ρR =
3H2

0

8πG

( β

2− β

)
Ωm0

(
a

a0

)−3

+ Ωp0

(
a

a0

)−2
(

2− 1
β

)
where Ωp0 is an integration constant that quantifies the effective
amount of DE in the HRDE.

1 If 1 < β , the cosmic acceleration is negative.
2 If 1/2 < β < 1, the Universe enters in an accelerating state when the

HRDE dominates. The Universe is asymptotically flat in the future.
3 If β = 1/2 , the model is asymptotically de Sitter.
4 If 0 < β < 1/2, the Universe not only enters in an accelerated state,

but also super accelerates (Ḣ > 0) in the future hitting a Big Rip. The
universe hits a singularity at a finite cosmic time.

Obsevertional constraints on the HRDE favours the case 0 < β < 1/2
(Xu and Wang 2010 and Suwa, Kobayashi, Oshima 2014).
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Example on how to obtain the Wheeler deWitt
Eq.-1-

We start assuming a FLRW universe, then the gravitational
Lagrangian reads

L = N

[
3π

4G

(
−aȧ2

N2
+ ka− Λ(a)

a3

3

)]
.

where Λ(a) encodes the matter content of the universe

We next obtain the Hamiltonian

H = N

[
− G

3π

p2
a

a
+

π

4G
Λ (a) a3

]
where pa is the canonical momentum of a.

So far everything is classical
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Example on how to obtain the Wheeler deWitt-2-

In the quantum framework, the term p2
a/a generates the operator

p2
a

a
= −~2

[
a−

1
2∂a

] [
a−

1
2∂a

]
Then, the quantum Hamiltonian operator can be written as

Ĥ = N

{
3G~2

4πa3
0
∂2
x +

3πH2
0a

3
0

4G

[
Ωr0x−

2
3 +

(
2

2−β

)
Ωm0 + Ωp0x

− 2
3

(
1− 2

β

)]}
where x =

(
a
a0

) 3
2
.

Finally, the WDW equation comes from the variation of the
Hamiltonian with respect to the lapse function N which produces the
Hamiltonian constraint

ĤΨ (x) = 0.
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Quantisation of the holographic Ricci dark energy
model

We devided the expanssion of the universe in 3 different regions.

A purely initial radiation domintes epoch
An epoch where the main components are radiation and matter
A final epoch where matter and DE on the form of the HRDE are
present

We solved the Wheeler DeWitt equation on the different regions and
connected them smoothly

It is possible to impose the DeWitt argument for small and very large
factors which can be seen as a quantum avoidance of the big bang in
the past and big rip in the future

We next tackle the other DE related singularities using the WdW
formalism within the BO approximation.

Albarran, BL 2015 (To appear soon)
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More on the quantum fate of singularities in a
dark-energy dominated universe

Within the framework of quantum geometrodynamics and a Born
Oppenheimer approximation

It was shown by Dabrowski, Kiefer and Sandhöfer 06’ that the

big rip can be removed.

It was shown by Kamenshchik, Kiefer and Sandhöfer 07’ the

avoidance of a big brake singularity.

It was shown by BL, Kiefer, Sandhöfer and Vargas Moniz 09’

the avoidance of a big démarrage singularity and a big freeze.

Type IV singularity are partially removed (BL, Krämer and

Kiefer 2014).
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The BF singularity driven by a phantom scalar field
Phantom scalar field φ: ρφ = −1

2 φ̇
2 + V (φ) , pφ = −1

2 φ̇
2 − V (φ)

φ̈+ 3Hφ̇−V ′(φ) = 0, V (φ) ' V−1

(√
3

2 κ|1 + β||φ|
)− 2β

1+β

Identify φ and GCG; i.e. ρφ = ρ, pφ = P (with P = −A/ρβ, 0 < A
and β < −1)

V−1 = A1/(1+β)/2 , α = ln(a/amax)

10

20
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40

0.4 0.6 0.8 1 1.2 1.4 1.6√
3κ|φ|

V
(φ
)/
V
−
1

✸ KE = ∞

➠
➠

➠
➠

KE = 0

–1.5
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0
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1
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−3/2(1 + β)α

√
3/2κ|1

+
β|φ

BL, Kiefer, Sandhöfer, Vargas Moniz, 09
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The BF singularity driven by a standard scalar field

Standard scalar field φ: ρφ = + 1
2 φ̇

2 + V (φ) , pφ = + 1
2 φ̇

2 − V (φ)

φ̈+ 3Hφ̇+V ′(φ) = 0, V (φ) ' −V1

(√
3

2 κ|1 + β||φ|
)− 2β

1+β

Identify φ and GCG; i.e. ρφ = ρ, pφ = P (with P = −A/ρβ, A < 0
and β < −1)

V1 = |A|1/(1+β)/2 , α = ln(a/amin)

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

1 1.5 2 2.5 3 3.5√
3κ|φ|V

(φ
)/
V
1

✸ KE = ∞

➠
➠

➠

➠
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–2

0

2

4
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3/2|1 + β|α

√
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2κ
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β
|φ
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The Wheeler-DeWitt equation

Quantisation of the classical scenario in the quantum
geometrodynamical framework

The Wheeler-DeWitt equation in quantum cosmology is the
analogous to Schrödinger equation in quantum mechanics.

The Wheeler-DeWitt equation for the space variables (a,φ)

~2

2

(
κ2

6

∂2

∂α2
− ` ∂

2

∂φ2

)
Ψ (α, φ) + a6

0e6αV (φ)Ψ (α, φ) = 0, α := ln

(
a

a0

)
Standard scalar field ` = 1, a0 = amin

Phantom scalar field ` = −1, a0 = amax

Notice that in the quantum case φ is no longer a function of a

General remark: the Wheeler-DeWitt equation does not depend on
time (!)
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Decomposing the Wheeler-DeWitt equation
We use the ansatz

Ψ(α, φ) = ϕk(α, φ)Ck(α)

We require the matter part of the Wheeler-DeWitt equation to satisfy

−`~
2

2

∂2ϕk

∂φ2
+ a6

0e6αV (φ)ϕk = Ek(α)ϕk

Such a Born–Oppenheimer-type of ansatz was first used in quantum
cosmology in Kiefer 88

Schrödinger type of equation and in the vicinity the singularity reads

ϕ′′k +
[
`k2 + Ṽα|φ|−

2β
1+β

]
ϕk = 0

where k2 := 2Ek
~2 , Ṽα := 2Vα

~2

Vα := a6
0e6αV`

[√
3κ

2
|1 + β|

]− 2β
1+β

M. Bouhmadi-López (CMA-UBI-Portugal) Dark energy related singularities Aranjuez, 31-03-2015 54 / 68



Singular potentials-1-

The matter part of the wave function satisfies

ϕ′′k +
[
`k2 + Ṽα|φ|−

2β
1+β

]
ϕk = 0

This equation is formally the same as the radial part of the stationary
Schrödinger equation for an attractive potential of inverse power

V ∼ r−
2β

1+β , where |φ| plays the role of the radial coordinate r , and
the angular momentum vanishes.

The potential corresponds to a singular potential; i.e. a potential that
approaches (plus or minus) infinity faster than r−2 for r → 0. For an
attractive r−2-potential there exists a transitional case: if the
coupling is more negative than a critical value, the potential is
singular, otherwise regular.
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Singular potentials-2-

Analytical solutions for polynomial singular potentials are known for
the inverse square, inverse fourth-power, and inverse sixth-power
potentials.

The inverse square potential is realized for β � −1, where β is chosen
such that |1 + β||φ| is still small
The inverse fourth-power potential corresponds to β = −2
The inverse sixth-power potential corresponds to β = − 3

2

We focus on the case β � −1. We thus deal with the case of the

inverse-square potential Ṽα
|φ|2 with

Ṽα =
2a6

0e6αV`
~2

[√
3κ|β|
2

]−2

> 0

This case is sufficiently generic to accommodate also the features of
other singular potentials.
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More on the matter part of the wave function
For the least singular potential, which is realized for β � −1, we have
to solve the equation

ϕ′′k +

[
`k2 +

Ṽα

|φ|2

]
ϕk = 0, Ṽα =

2a6
0e6αV`
~2

[√
3κ|β|
2

]−2

> 0

The phantom and scalar matter have to obey the same quantum
equation, where the realm of positive energy for the ordinary scalar
field k2 > 0 corresponds to the realm of negative energy for the case
of the phantom field, k2 < 0

The general solution is

ϕk(α, |φ|) =
√
|φ|
[
c1Jν(

√
`k|φ|) + c2Yν(

√
`k |φ|)

]
, ν :=

√
1

4
− Ṽα

There are four cases to distinguish: k can be real or imaginary,
depending on whether the energy entering k2 is positive or negative.
Furthermore, ν can be real or imaginary, depending on the parameters
β, A, and the value of α
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The gravitational part of the wave function

The gravitational part of the wave function fulfils

κ2

6

(
2Ċk ϕ̇k + Ck ϕ̈k

)
+

(
κ2

6
C̈k + k2Ck

)
ϕk = 0

The Born–Oppenheimer approximation: Ċk ϕ̇k and Ck ϕ̈k can be
neglected.

Ck varies much more rapidly with α than ϕk

Neglect the back reaction of the matter part on the gravitational part
The change in the matter part does not influence the gravitational part

The matter part simply contributes its energy through k2

(
κ2

6
C̈k + k2Ck

)
ϕk = 0 =⇒ Ck(α) = b1e i

√
6k
κ
α + b2e−i

√
6k
κ
α

Same solution for a phantom or a scalar field.
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The wave function at the singularity

It can be shown that the matter part of the wave function always

vanishes at φ = 0. Notice that we have not used any boundary

condition

What does it mean that the matter wave function vanishes at the

singularity? Singularity avoidance but not yet we have to make sure

that the gravitational part of the wave function is bounded at the

singularity

The gravitational part of the wave function remains finite at the

respective singularities and we can safely speak of singularity

avoidance.

Finally, as the total wave function vanishes, we can interpret this as a

singularity avoidance.

What about if we impose some boundary condition?
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A Wise Boundary condition for the wave function-1

Nobody knows what the correct boundary condition for the quantum
universe are.

There have been several proposals, most of them using the boundary
condition with the ambition to lead to singularity avoidance

We impose the BC: The wave function decreases in the classically
forbidden region.

Why? Because then it is possible to construct wave packets that
follow classical trajectories with turning point in configuration space.

Namely, one has to require that the wave packet decays in the
classically forbidden region. This allows the interference of wave
packets following the two branches of the classical solution behind the
classical turning point.

In general, out of solutions to the Wheeler–DeWitt equation which
grow in the classically forbidden region, no wave packet can be
constructed that follows the classical path

Kiefer 88
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A Wise Boundary condition for the wave function-2

How do we impose this boundary conditions?
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Imposing the BC: standard scalar field-1-

The region a < amin is a forbidden region =⇒ we impose the
boundary condition that the wave function decay there.

Then, Ψ→ 0 as α→ −∞. The total wave function has to vanish
well inside the forbidden region. This happens whenever the matter
(or gravitational part) vanishes while the other part is bounded.

The physical solutions read

Ψk(α, φ) = c1

√
|φ|Jν(k|φ|)

[
b1e i

√
6k
κ
α + b2e−i

√
6k
κ
α
]
, k2 > 0

Ψk(α, φ) = b2e
√

6k
κ
α
[
c1Jν(ik̄ |φ|) + c2Yν(ik̄ |φ|)

]
, k2 < 0
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Imposing the BC: phantom scalar field

The region a > amax is a forbidden region =⇒ we impose the
boundary condition that the wave function decay there.

Then, Ψ→ 0 as α→∞. The total wave function has to vanish well
inside the forbidden region. This happens whenever the matter (or
gravitational part) vanishes while the other part is bounded.

The physical solutions are

Ψk(α, φ) =
(

b1e i
√

6k
κ
α + b2e−i

√
6k
κ
α
) √
|φ|Kiν(k |φ|), k2 > 0

Ψk(α, φ) = d2 exp

(
−
√

6

κ
k̃α

)√
|φ|H(2)

iν (k̃|φ|), k2 < 0.
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Type IV singularity driven by a phantom scalar field
Phantom scalar field φ: ρφ = −1

2 φ̇
2 + V (φ) , pφ = −1

2 φ̇
2 − V (φ)

φ̈+ 3Hφ̇−V ′(φ) = 0, V (φ) ' V−1

(√
3

2 κ|1 + β||φ|
)− 2β

1+β

Identify φ and GCG; i.e. ρφ = ρ, pφ = P (0 < A, −1/2 < β < 0,
β 6= 1/(2p)− 1/2)

V−1 = A1/(1+β)/2 , α = ln(a/amin)
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Type IV singularity driven by a standard scalar field

Standard scalar field φ: ρφ = + 1
2 φ̇

2 + V (φ) , pφ = + 1
2 φ̇

2 − V (φ)

φ̈+ 3Hφ̇+V ′(φ) = 0, V (φ) ' −V1

(√
3

2 κ|1 + β||φ|
) 2β

1+β

Identify φ and GCG; i.e. ρφ = ρ, pφ = P (A < 0, −1/2 < β < 0,
β 6= 1/(2p)− 1/2)

V1 = |A|1/(1+β)/2 , α = ln(a/amax)
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The quantum analysis of type IV singularity

We follow a Born-Oppenheimer (BO) approximation

We can solve exactly the matter part in same cases β → −1/2 and
l = ±1: it involves Heun functions.

The gravitational part can be as well be solved within a WKB
approximation

Singularity avoidance for type IV singularities occurs only in special
cases. In general, the singularity is not avoided; i.e. only a subset of
the solutions of the Wheeler DeWitt equation vanishes at the
singularity.
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Conclusions

In this talk, we have reviewed the cosmological singularities that have

appeared on the literature over the last few years, motivated (initially)

from the possible presence of an exotic dark energy component

Then we have shown how these singularities could be appeased or

removed either through some modified theories of gravity or within a

quantum approach

We have chosen some BI theories as an example of modified theory of

gravity (with or without torsion)

The Quantum approach has been carried out in the quantum

geometrodynamics setup and within the Wheeler DeWitt formalism

Funding from FCT (Portugal): Investigador FCT Research contract
IF/01442/2013/, the Portuguese Grants PTDC/FIS/111032/2009 and
PEst-OE/MAT/UI0212/2014.
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