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Introduction

What is a three-form?

Totally antisymmetric tensor with three indexes
Aijk = —Ajik
For example, a three-form defines the cross product

(6 X b)l = €ijk ajbk

where ¢;;, is the Levi-Civita symbol.



Introduction

Three-form action

Action for the three-form A,,,

S = /d4x¢?g <2f2 ~ Lr2a) - V(A2)>

where
Frvpe = AV, AL o1 = ViAvpe — Vo Auwp + VAo — Vi Apop
We have the equations of motion:
V- F=12V'(A*A
and due to antisymmetry we have the additional constraints:

V-V/(A»)A=0



Introduction

The dual theory

We define duals as:

1
(xF) = jieapysl 0 =@ Fopys = —€apys®
A, = L AP =B Agrs = — B®
(*xA)a 3,6(#375 = Da B8 €aBys

which allows us to write the equivalent formulations of the Lagrangians:

_ L pe +24%(V - F)V' (A*(V - F)) = V(A*(V - F))

Liy(F,V-F) 18

Lur(AVA) = —5 VAP - V(4?)
L;(B,V-B) = %(V-B)Q—V(—6BQ)
Lo(®, VD) = —%qﬂ — 12B*(V®)V' (—6B*(V®)) — V (—6B*(V®))

We recognise Ly as a p(X, @) theory with X = —-V*®V,P.



Introduction

Equivalent formulations

Equivalence between Lagrangian descriptions:

g f g f g
0 1 B-Bwec) 2 3 a-ayer 4
————— > —————>
( 7777777777
C=C(VB) F = F(VA)
l C =C(VeA) ‘ ‘ & = O(VeB) ‘
777777777 > D
4 3 A=A(VC) 2 1 B = B(V®) 0
f g f g f
Faraday formulation Gauge fixing formulation

Ly=f (FQ(ac)) - V(ac2) , Ly=yg ((V . x)2) — U(xz)



Introduction

Gauge invariance and stability

1 2 2
L= F2(A) - V(4?)

F?2 is invariant under A -+ A+ VC.
V (A?) breaks this symmetry resulting in extra degrees of freedom.

To see this we can make an expansion in Stiickelberg fields s.t.
A=A+4VY]

o= _ﬁmm ~V((A+ F(D))?)

is now invariant under A — A + [VC, ¥ =X -C/4
Expanding the potential around A

L =L—-V(AHFY(D)
Presence of ghost field for

V/(A%) <0 &  Vyx<0



Introduction

Equations of motion

Consider flat FRW cosmology:
ds® = —dt* + a*(t)dx>
Most general three-form compatible with FRW:
Agjie = a®(t)eijix(t)
Equations of motion of the field x:

Y +3HY+V,+3Hx =0

Equation of motion of background fluid:

ps = —3vHpp



Introduction

Equations of motion

Friedmann equation

9 a\® K21, . 9
H” = . T3 §(X+3HX) +V(x)+ s

can also write:
2 V +pB

2=
3 1—r2(x' +3x)%/6

with "=d/dIna.
Evolution of the Hubble rate and equation of state parameter of y

2

. K V
H=——(Vxx+7r8), wy = —1+ 2%
2 Px

Universe de Sitter with V' = 0; Superinflation when V, x < 0.
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Critical points

[Koivisto, NN (2009, 2010)]
[Felice, Karwan, Wongjun (2012)]
Rewriting the equations of motion in the form of system of first order
differential equations:

v ()

3 2 3
yo= =A@ (-t - w?) lxy - \/; + 57w’y
w o= fgw (v+ A=) (1 —¢* —w?) z — yw?)

2 2
/ o KV 2 _ K°PB :71‘/0(
WH30), =g W =g A=y

Sz

T=RKX, Y=

The Friedmann equation = ¢y + 22 +w? =1
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T Yy w | H/H? | )\ description
A 0 0 +1 | —37v/2 | any | matter domination
By | £4/2/3 +1 0 0 any | kinetic domination
C Teoxt Mmext 0 0 0 potential extrema
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The intuitive picture

= &X' +3x] <V6

V(x)
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Introduction

The intuitive picture

= &X' +3x] <V6

V(x)

V% V%
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Effective potentials

<o

‘/;H7X:VX+3HX:VX <1_

[More in Bruno Barros talk]
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Example evolutions: V = x?
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Introduction

Example evolutions: V = x"

e Epoch of tracking:

e Point of turn around:

1 2B
Ny=-————In(==
"T 311 4/2) “(w&)

where A = /2/3y;/(14+7/2) and B = x; — A.
e Epoch of inflation:
2 1

" on 2/3 — (KXinit)?

AN

|~

¢ Oscillations:
_n—2
(wy) = nt2
Thus for n = 2 the field behaves as dust, (w,) =0 and for n =4 it
mimics radiation, (w,) = 1/3.




Inflation

Part |:

Inflation



Inflation

Cosmological perturbations

[Mulryne, Noller, NN (2012)]
General perturbations about FRW background:

ds? = —N2dt* + hy; (dz’ + N'dt) (dz/ + N7 de)
hij = azezcéij
( is the curvature perturbation, and we expand N; and N as:
Ni=1;+ N; N=1+a
Perturbations of the three-form:
Agij = a(t)eijp o, Ay = a® ()€ (x(t) + ap)

Vector perturbations are decaying and can be ignored.



Inflation

The second order action

The second order action in scalar perturbations:
Sy — [ dtdbe a3 22 9¢)?
2= Y ﬁ( — ae(9Q)

where the speed of sound

and

( is conserved on the large scales.

. 2 VP ¢
§—<¢+H>

€ a?



Inflation

Power spectrum of scalar perturbations

The 2-point correlation function

Pk
(Clha)C)) = (2770t + ko) L)
1
The power spectrum
1 H?2

1
Pr=—k|GPP= —— —
¢ on2 Gkl 2(2m)%ecs MA |,
* indicates horizon crossing csk = aH.
The spectral index ng is
é Cs

1—ng=2 —
s €+€H+(25H




Inflation

Power spectrum of tensor perturbations

Since the three-form does not generate tensor perturbations, their
evolution equation is as usual,

.. . 2
b+ 38— Y h =0
a

Tensor power spectrum:

2 H?

Pr= ——+
2072
= Mg, |,

The tensor spectral index is then

nr = —2¢



Inflation

Consistency relation

Ratio of tensor to scalar perturbations

Pr
r=-— =106cg |€
o= 16cs]d
Thus it is in principle possible to distinguish the three-form
inflation from scalar field already from the spectra of linear

perturbations.



Inflation

The third order action

The third order action of scalar perturbations:

¢3 3a3e

5, — /{dtd3x[—6aC(3C)2 (Z+2)\) 2 ¢¢?

T <3< - é) (0:0;00:010 — 90*p) — ZGIW/’@C@Q‘/’}

where A is sy
1 V XXX
12 V3

At tree level in quantum field theory, and in the interaction picture, the
In-In (equal time) three-point correlation function is given by the
expression

(C(t, k1)C(t, ko)C(t ks)) = —i/ dt([C (¢, k1)C(t, ka)C(t ks), Hine ()])

to



Inflation

The bispectrum and non-Gaussianity

The non-Gaussianity of the CMB in the WMAP observations is analyzed
by assuming

3
C=C - hadi
where (y, is the linear Gaussian part the perturbations, and fxr, is an

estimator parameterizing the size of the non-Gaussianity.
The three-point correlation function:

1
(C(k1)¢ (k)¢ (ka)) = (27)70% (kg + ko + k3)k3k3k3 *A(ky, ko, ks3)
— E; equll L
frou = 3Ic§+k§+k§“4 30K3A

where K/3: kl = kQ = kg.

a5 (1 A 35 (1
equil

N 125 ) - (5 1)+
NL 81<c§ E) 108(c§ )+



Inflation

Example I: Power law potential

In the original three-form theory

In either approach we obtain: 2=2p-1
N e-folds before the end of inflation:
, 2 4 1 1
XN=%5— oo EN A
3 18pl1+2N 142N

The spectral index for N = 60 gives
ng ~ —4e =~ 0.97



Inflation

Power law potential

Bounds from Planck in blue. Lines are for N = 50, 60, 70.




Inflation

Power law potential

Amplitude dominant in the equilateral shape.



Inflation

Example Il: Exponential potential

In the original three-form theory
1
L=—2F? = Voexp(84%)
and in the p(X, ¢) theory:

Lo = (W)~ ) Voesp (3W(0)) - 5

where W (z) is the Lambert-W function and = = X/128V{.
N e-folds before the end of inflation

21
3 188 146N

and the spectral index gives for N = 60

Xy =

ns ~ 0.97



Inflation

Exponential potential

-0.15¢

equil

NL —0.2+

-0.25¢




Inflation

Exponential potential

Amplitude dominant in the equilateral shape.



Inflation

Multifield three-form inflation

[Kumar, Marto, NN, Moniz (2014)]

S = —/d4:c\/?g [222}2 §(48F5+V (A2)>

For two fields:

¥y = 3( 2/3wy — xl)
w’l = g (1 — (w% + wz)) ()\1 (x1w1 — M) + A2$2w1>

and a similar equation for 25, wh. Ay = Vip) 4. /V.
Critical points: - extrema of the potential and
- for w? + w5 =1 and 27 + 23 = 2/3.



Inflation

Multifield three-form inflation

1.0

0.8

0.6
X2

0.4

0.2

X1

V =22+ 13




Inflation

Entropy perturbations

@ Curved trajectories in field space usually lead to the growth of
entropy perturbations.

@ Curvature perturbations are sourced by entropy perturbations
=

Corrections to spectral index and ratio of tensor to scalar
perturbations.

_ dlnPr 1 (0Trs) .
ns = oy oT = ns(ts) + i ( e (2A)
r = 77;1; = 16ec,| cos® A




Inflation

Comparison with Planck (2013)

V = Vio(@? + bal) + Vao(23 + bad)

Q4T
| —— Planck+WP+BAO:ACDM+r
t ==== Planck+WP+BAO:ACDM-+r+w
0.3 [==e=e- Planck+WP+BAO:ACDM+r+ > m, ]

r

0.99 1.00

Ns



Inflation

Three-form couplings with curvature

[Germani, Kehagias (2009)]
S = ld4 N ! R ! Foppo 1P ! 2A,, AP
- Ty —g 27‘%2 - ZS pnvpo - Em nrp +
1 pvp 1 KA AV
g RA L AP — S A, R A )

This is equivalent to a scalar field theory with non-minimal kinetic terms
coupled to gravity.

1 1 1
= _—R— A9, 0050 — —m>d?
L 2ﬁ2R 5 0. P03 5™
with R )
A“”[(l -t w) - W] = g1
+ om2? m2R v

For de Sitter, A = ¢,



Inflation

Three-form couplings with curvature

The second order action:

9 12 X m2
0S ~ /d4:v;:;2 [a3C2 —a®3H?¢? - @a(&C)Q

Curvature perturbation at super-horizon scales

CN (173/2

@ ( decays at super-horizon scales;

o Adiabaticity of linear perturbations is lost due to the
non-minimal couplings;

@ This three-form action cannot be responsible for the CMB
temperature fluctuations;
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Reheating and Preheating



Re/Pre-heating

The action

[Felice, Karwan, Wongjun (2012)]

S— /d%\/fg(;; —41—8F2(A) —V(A2)

1 1 A
= 5(09)* = Smge” — 2¢F2>

The reheating temperature can be estimated as

9g. 14, N 1/2
Tin S A — M,
rh S <6407r4> Mor Pl;

It is 10° times larger than T}y, for f(R) = R + R%/(6m?)!




Re/Pre-heating

Parametric resonance

One can write the equation for ¢ in the form of a Mathieu
equation for yj, = a®/2¢y,

Py
—% + (Ax —2qcos(22)) yp = 0
dz
with )
4k2 4m¢ _ 4+/8AMpy

A =

a2m2 T m2

’ T Bm2(t — 1)

Instability bands in which the y; grows exponentially. To guarantee
enough efficiency in the production of particles we must have
broad-resonance (A; ~ 1,2,3,... and ¢ > 1).

e For 3-forms this is easily achieved as g oc AMpyj/m.
e Also, broad resonance lasts longer than for scalar field inflation.



Re/Pre-heating

Still to do...

@ Backreaction on the inflaton background field;
o Consider the coupling to another 3-form instead of a scalar
field:
2 2



Dark Energy

Part |11

Dark Energy



Dark Energy

Three-form action, couplings to dark matter

Action for the three-form A,,,,

ELVPO = 4V[MAVPU'] = vuAupa - vaAuup + v[)AO',ul/ - vyApou

We have the equations of motion:

V.F=12 (V’(AQ) + 2pm/(A2)> A

m(A?)

and due to antisymmetry we have the additional constraints:

v. (V’(AQ) + 2/)7::;/((;1422))) A=0



Dark Energy

Equations of motion

Consider flat FRW cosmology:
ds® = —dt* + a*(t)dx>
Most general three-form compatible with FRW:
Ayje = a®(t)eijrx (t)
Equations of motion of the field x with f = 2m . /m

X+ 3HX +Vy +3Hx = —kpnf

Equation of motion of dark matter fluid:

Pm +3Hpy = kpp |



Dark Energy

Equations of motion

Friedmann equation

H? = (a)Q = ”; (;(m 3Hx)? +V(x) +pm>

a
can also write:
2 _ ’f V+pm
3 1—r2(} +3x)%/6
Evolution of the Hubble rate:

2
. K
H = =% (Vx+ (L4 5 0pm)

Equation of state parameter of x:

V,x + Kfpm
— X
Px

wy = —1+



Dark Energy

Effective potential

X+ 3HX +Vy +3Hx = —kpnf

3 3 3
Vet x = Vix (1 - (mx)2> — SK20mX + KfPm (1 - 2(/<;X)Q>

2 2
We are going to study 4 cases:
V=0 f=0
(i) V=0, f#0;
(i) V#0, f=0;
(iv) V40, f#0.



Dark Energy

Case: V=0, f =0;

Yi = X; + 3xi # 0 otherwise p, = 0.

wy = —1

It is a cosmological constant!

1 1
X 0 L _/ Yo
-1 -1
10 5 0 10 5 0
log(1 + 2) log(1 + z)
8 NN 1
3 e
3 . . wx
) S
210 NS -1
) S
10 5 0 10 5 0

log(1 + z) log(1 + z)

i)



Dark Energy

Case: V=0, f #0;

K pm
Wy = —1 + —
Px
1 1
X 0 Yo
-1 -1
10 1] 10 5 0
log(1 + 2) log(1 + 2)
» <
2 1
3 -
c S
g \\ wxo
> S
=g S
2107 < -1
9] N
10 0 10 5 0
log(1 + 2) log(1 + 2)




Dark Energy

Case: V #£0, f=0;

With V = V5x?;
wy = —1+ Xy
X Py
1 1
XO Y 0

5 0
log(1 + 2)
[}
2
.‘5
c
@
©
>
o
9]
c
5]
5 0




Dark Energy

Case: V #£0, f#0;

With V = Vox?;
w, =1+ Vix er:fpm
1 1
Xo Yo

energy densities

5
log(1 + z)



Dark Energy

Case: V #£0, f#0;

With V = Vpx? and x; = x; =0

Vix +6fpm
4l fp X

wy = —1
Px
1 1
N
-1 -1
10 5 0 10 5 0
log(1 + 2) log(1 + z)
" N
g NN 1
5 .
3 " wxg
> i
< RS
210 TN 4
@ .

10 5 0 10
log(1 + z) log(1 + z)

o
o

]



Dark Energy

Newtonian limit of linear perturbations

Linear evolution of matter density perturbations

. 2F . 2 ]{32
5m + <2H + HfX - 1—F> (5m = <K§Hpm - agcgﬁ> 5m

2 2
, K . o K Vo
1 F 2H F—- s
2= F P
¢ 1—-F’ Vix + Efxpm

F<0=c3<0=>
for sufficiently large modes there is extra source term for growth of
perturbations!



Dark Energy

Growth at a given time

Sm(z =0)/6m(z = 10%)

480 ‘
—f=17x107"

e f o -20
azol =~ F=17x10

460

450/
440"

430

420 :
5 10 10 102

10° 10 10
k’/aoHQ



Dark Energy

Growth for a given mode

Om(2)/6m(z = 10%)
500

—f=1.7x10"2
---f=17x1072° :
400!

3001
2001

1001




Dark Energy

Other couplings

[Ngampitipana, Wongjuna (2011)]

i} : ' Q
X+3HX+3HX+V7X = m

° Q1 =/2/3rBpc(X + 3HX)

° Q2 =aHp,

° Q3 ="Ipc

® Q4= /6/r*I'(X +3Hx)
They study of dynamical systems for V' = Ve X, V = Voe_"XQ,
V =VWx "
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Magpnetic Fields

The issue

Evidence for magnetic fields from galaxies, clusters, filaments;
Origin and nature of these magnetic fields is still unclear;
Possibility I: Magnetogenesis during scalar field inflation;

Backreaction problem: EM energy density catches up with
energy density of inflation and brings inflation to an end;

Possibility I1: Three-Magnetogenesis [Koivisto, Urban (2012)].



Magpnetic Fields

The action

[Koivisto, Urban (2012)]

1 1 1 »
L= —ZFQ(A) — @FQ(A) —V(A?) - 50 (A)F"(B)

AH = photon vector potential,
A%BY = three-form,
B, = dual of three-form.

In Fourier space, the solution for A is
A(n) = Aj cos(kn) + Agsin(kn) + Asel™ ™ 4 AyeTkn

If I'? > 0, we have exponentially growing/decaying solution.



Magpnetic Fields

Stability

V = Voexp(—px*/Mp1)
e 3> 0, critical points at x = ++/2/3:

AQK?\ + K2

with k = k/H. and A =~ 8a?/3 and r3 ~ BV/(a®>M3)).
Instability for k < kp.

e 3 < 0, critical points at the minima of the potential:
Vi
M=-—-"""_—-1<0

There is no instability.



Magpnetic Fields

Allowed parameter space

log 6g @ 3/ Gpc

green: magnetic fields
observed in intergalactic
medium;

yellow:  for successful
seed to be fed to the
magnetohydrodynamic
plasma.

10g (kx /Kmin)

151 =

log A



Magpnetic Fields

Power spectrum

6% (Gauss), A = 1072, kp/kmin = 102,

102

10-%

107%

g

10°%

1078

102t ‘ ‘ ‘ ‘ ‘ J
0001  0.002 0005 0010  0.020

k (1/Mpc)

Only a few orders of magnitude in k are efficiently magnified.
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Screening

Screening with vector fields

[Beltrdn-Jiménez, Frées, Mota (2012)]
Massive vector field with a gauge fixing term

R 1

2
S = /d%\/fg [— “F? - %(quﬂ)2 _ M

_ B2
2r% 4 2 ] +

+ / A* 2 Lo [y, Y]

Matter fields couple to gravity via g, = Q*(B?)g,
Equations of motion give

206p 2 /072

2 B</M

DBH_<M + 2 ef /p>BH
p



Screening

Screening with vector fields




Screening

Screening with vector fields

1.0F

0.8

A/ Acosm

0.6
0.4

0.2 [

0.1 0.2 0.5 1.0 2.0 5.0 10.0
r/ R



Screening

Screening with three-form fields

[Barreiro, Bertello, NN (in progress)]

S = /d%ﬁ[ R——FQ (A2)] +/d4m£m

48
Conformal coupling g = Q2(A2)gH

Going to the vector field in the gauge fixing description

oV 00
Vao(VFB,) = (332 + paBz) Ba

(cf. for vectors we had, OB, = ...)



Screening with three-form fields

- — t/r.
05 1.0 1.5 20 25 30






Summary

Summary

e Three-forms possess accelerating attractors and saddle points
which can describe three-form driven inflation or dark energy;

e Scalar spectral index predicted to be n; ~ 0.97 for N = 60.

e Some models are within non-Gaussianity, and ratio of tensor
to scalar perturbations bounds;

e Efficient reheating/preheating:
e Efficient generation of magnetic fields;

e In the presence of a coupling to dark matter, growth of
structure is enhanced for small scales.

e New fifth-force screening solution.
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