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Cosmic Concordance or the Boring Universe

Dominates today!!
Negative === acceleration l
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Deceleration parameter: measures change in

expansion rate
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Matter Cosmological Curvature __
Constant Qi =0

Because we do not know what DE is, it represents a large J\Nk Loy
measure of ignorance in the standard model. NP AR TS,
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The simplest alternatives...

The Concordance model provides us with a
great phenomenological description, but..........

..... geometry is RWY, there is NO dark
energy, gravity is modified and the
universe is accelerating.




The simplest alternatives...

The Concordance model provides us with a
great phenomenological description, but..........

..... geometry is NOT RWY, there is NO

dark energy, gravity is not modified and
the universe is not accelerating.




A cautionary tale.....of Lambda

In a FRW model the complete dynamics of the universe is determined by
a single function of time, the scale factor. Hence the key observables are
functionals of the Hubble parameter H(z).

Critically: in a LCDM model, on small scales, the late-time growth of
perturbations is also a function of H(z).

dlnH 3 Sﬂmo dln A
AT+ I a) 2 a® A dlnajL — Qm(a)v
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Rigidities between different sets of independent observables that
can be used to test the underlying hypothesis of the model.




A cautionary tale.....of Lambda

However.......

It is possible to construct perturbed LTB models
with the same background light-cone structure as a
LCDM model that give a v significantly different

...S0 it is important to make sure that the
FRW geometry holds when applying tests of
GR based on observations of LSS.

* PD, Goheer, Osano and Uzan (JCAP 2010)




A couple of key observations

Redshift drift and other
tests of the Copernican

principle.
,7;’ — (1 —+ Z)H() — HJ_(Z),

Determining the DE
equation of state.
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* PD, Goheer, Osano and Uzan (JCAP 2010)

Maybe the universe is not so boring after all




Outline of talk

* Top-down approaches to f(R) cosmological modeling

- Reconstruction methods.

- Dynamical systems approach.

- Structure formation in f(R) gravity.

- Tensor anisotropies.

- Some problems with viable f(R) theories.

* Bottom-up approaches.

- Building "Swiss Cheese"” models by embedding spherically symmetric
solutions in an expanding FLRWV background.

- Patchwork universes and the emergence of cosmological acceleration

A possible cure for sudden curvature singularities if viable f(R) models.




Our relativistic toolbox

General
Relativistic fluid
dynamics
74
Ricci Bianchi
identities identitD

{EvolutionJ {Constrain‘a {Evolution} (Constraing
A A

< Einstein Field Equations > J\Nk A




f(R) theories of gravity

The class of models we will consider can be derived from the
classical action:

A= / 227/ "g[f (R) + L] |

Varying the action with respect to the metric gives the
following field equations:

1

1
f'Gap=f (Rab 9 gabR> Tap + 29ab (R — Rf/) +VoVaf = gaVeVOS',

Gap =T+ TH =Tt

This last step is extremely important as it allows us to treat 4th order
gravity as standard GR in the presence of two effective fluids.




The energy-momentum tensor of the curvature “fluid” can be
decomposed as follows:
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Top down approach to f(R)
cosmological modeling

This is the standard approach......

* Assume that the universe on large scale is described by a RW
geometry.

* Describe large scale structure by perturbing away from this
background model to the required order in perturbation theory
assuming that perturbation theory converges.

Various methods can be used to construct f(R)
background models.




Reconstruction methods

Field equations can be inverted to provide a way of reconstructing the
theory from the expansion history. For example fixing a(R) for an exact
LCDM expansion history:

_ 3(R — 3A)(R — 4A) f"(R)

Other reconstructions

possible based on t(R),

| (? 3A) f’(R)—k%f(R)—p(R) = 0. | R

pla) = A RN p(R) =R —4A .

as

( )
The only real-valued solution of this equation is the

Lagrangian of General Relativity with a positive
_cosmological constant.

* PD, Elizalde, Goswami, Odintsov, Saez-Gomez (PRD 2010)

 Carloni, Goswami, PD (CQG 2012). X "
* Bouhmadi-Lopez et al (arXiv: 1302.2038) ¥\




Dynamical systems approach

A very powerful way to study the complete cosmological
dynamics for a given f(R) theory is to use the theory of
dynamical systems. This provides an excellent way of
generating cosmologically relevant exact solutions and Dynamical
how they relate to each other in phase space. e

n

Cosmology J8

The approach we take is largely based on a paper by

Goliath and Ellis (PRD, 1999) and the book edited by
Wainwright and Ellis.

Carloni, PD, Capozziello, Troisi (CQG, 2005)
Amendola et. al. (PRD, 2007)

Carloni, PD, Troisi (GRG 2009)
Abdelwahab, Goswami, PD (PRD 2012)




A compact dynamical system

g o\ 2 A N2
Friedmann constraint 31 31 _sp 3 31
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 Carloni, PD, Capozziello, Troisi (CQG, 2005)
* Carloni, PD, Troisi (GRG 2009)
* Abdelwahab, Goswami, PD (PRD 2012)
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dT
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dt

dQ

dT

A compact dynamical system
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Note that incorrect and misleading results are obtained if
one takes a one parameter m(r) = I' 'approach to the
analysis of this dynamical system.




A simple example
f(R) = R+ aR" i
Closure condition » "= n(y _ Z)

Fixed points | Coordinates (z,, z, Q) | Solution a(t)
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a(t) = apeCt ) de Sitter attractor

g: Matter dominated Friedmann
) =at™ | saddle point (structure growth)




Interesting cosmic histories

"Dark Radiation" phase

de Sitter attractor

Q>0
Expanding

Q<0

Contracting

f(R) driven power-law
inflation

Matter dominated era

* Abdelwahab, Goswami, PD (PRD 2012)




Growth of large scale structure

Scalar perturbations governed by the 4th order system:

A, = wOA,, — (14+w)Z,
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General evolution of the background

A single fluid description is not enough to make a meaningful comparison
to the standard LCDM model [in this case f(R) = aR" ]

Expansion history obtained by integrating dynamical
systems equations along the best fit orbit

(1-n)(2n—-1)
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+ Abebe, Abdelwahab, de la Cruz-Dombriz, PD (CQG, 2012) |




The matter power spectrum

Obtained by solving the exact linear structure growth equations along the
best fit orbit for a given f(R) [in this case f(R) = aR"] to get T(k)

(1) (A +2) 5 3R [(1+n)(1+ (=24 n)Q) + (=24 n)y] + (=1 +n)*(1+ 2)* sk
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Initial conditions o TI: AF |o = RF|g = 105, AF |y = R¥ |y = 10-8,

o III: AF |g = RF|p = 1075, AF |y =RF |y =0,
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ACDM fit, Anderson et al.
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DR9 CMASS galaxy sample observed by SDSS-I|I | T

ACDM fit, Anderson et al.

10° }

n|l11]|1.21.27(1.29| 1.3 |1.31|1.33| 1.4
ho|0.65(0.7510.9410.99|1.44|2.43|7.34[159.67
qo {0.39]0.20(0.10]0.25(0.36|0.35|0.22| —0.17

_P(k) ("""Mpc)®

Table I: Present-day values of the Hubble ho = H (today)/Ho
and deceleration (qo) parameters for the R™ models under
consideration. Hg corresponds to the ACDM Hubble param-

eter value today. Only n = 1.4 provides acceleration at the 107 bl
present time, whereas n = 1.29 gives the closest value for 105 o5 ———s 530
ho to ACDM . . k [h Mpc'1]. .

n exponent 1.1 1.2 1.27 | 1.29 1.3 1.31 | 1.33 1.4
%% 4.5463 |1.0507]1.0366 |1.0357|{1.0355|1.0458|1.0360|1.0357
o exclusion | 1.874 | 0.123 [0.0316| 0.012 | 0.002 | 0.101 | 0.020 | 0.001

% suppression| 13 1.5 0.1 | 0.01 | 0.001 1 0.04 | 0.009

Table III: Fits to the SDSS CMASS DR9 data for R™ cosmology by using set of initial conditions III: eight different values
of exponent n were investigated from n = 1.1 to 1.4. Values for x* and the confidence region o are presented in the second
and third rows respectively. The data to be fitted by the theoretical spectra are taken from [38]. The fit provided by ACDM
(X2 = 61.1/59 =~ 1.03559) is slightly improved by the n = 1.3 parameter value. The final row gives the suppression in the
overall initial amplitude required to get the best fits. For all the values, this suppression turns out to be smaller than 15% and
is therefore in the experimental uncertainty interval for this quantity. For the best fit n = 1.3 the corresponding suppression is
10~2% and very good fits are also obtained for n = 1.27, 1.29, 1.33 and 1.4 with similar suppressions.

* Abebe, de la Cruz-Dombriz, PD (PRD, 2014)




CMB Tensor anisotropies

The k-modes for tensor perturbations for a general f(R) theory satisfy:

——mH— — + a2B> ur = 0.
Initial conditions for CAMB
UL — CLmO'k

Obtained deep in the radiation dominated era.




Background evolution

To illustrate how this works, again take f(R) = R"

a d_QZ‘ — —p — 5132 (4 —2n + nx)y + Qg4 Point Coordinates [z, y, Q%, Q"]
da n—1 A L0.¢
4—2n 5—4n
CL% — +2ny Y, B 1—2n’2n—1’0’0]
da n—l %
d? 2 D  [0,0,0,0]
a—d: 1—£U—|— e g, E [2—2n,-2(—1+n)?,0,0]
da —1 .
de,« ) -3+ (7T—4n)n —3+ (13 — 8n)n
a = |—x + e Q,, G 2n? ’O]
da n—1 H 1,0
I [1,0,2,0]
dH o4 2n—1)° o 8n—2
a—:—H(Z ny ) J 44— =0, -5+ —— }
da n —




Initial conditions close to |

Deep in the radiation dominated epoch we can assume that the
expansion history is well described by the solution described by the
equilibrium point |.....




Power spectra: the various combinations
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Figure 4: The temperature (left panel) and electrical (right panel) power spectra for tensor perturbations in all the possible background
and perturbations scenarios. R™ model for n = 1.28: Power spectra for GR background and GR perturbations are depicted in red
continuous, with no dependence on the R™ model and shown just for comparison ; GR background and f(R) perturbations pink dotted
line; f(R) background and GR perturbations in dotted-dashed blue line; f(R) both background and perturbations in dashed green line.

The effect on the power spectrum is affected most by changes to the
background model.

* Abdelwahab, Bishop, de la Cruz-Dombriz, PD (arXiv: 1412.6350)




Viable f(R) theories of gravity

Probably the best known f(R) theories that fall into this
class are given by: f = aR + F, with:

2 —nNn
F = \Rg ((1 — %) - l) Starobinskiy arXiv: 0706.204 |
1o
, 2 c1(R/m?)" e
F =—m R/ m2)" + 1 Hu & Sawicki, arXiv: 0705.1158

1 , |
F = —log [C(_)sh(a]?) — tanh(b) 511111((1]?)} Appleby & Battye, arXiv: 0705.3199

(1 "

* These theories require a screening mechanism, to hide
the extra dynamical degree of freedom on small scales

* They provide expansion histories that are in excellent
agreement with LCDM....BUT




Some problems with viable f(R) theories

* Energetically accessible curvature singularity (A) exists at finite
redshifts if initial conditions are taken to be the same as LCDM today.

V/Ry

| 4 V/R,
1.4 q —0.10
1.2 —0.12 -
1.0 ] o
| —-0.14 1 2
f | . 2
0.8 i =
i —0.16 po
0.6 ; 2.
—0.18 i
0.4 | | 5.
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Frolov, arXiv: 0803.2500




h(z)

w\<)

* So while H(z) seems to be well behaved, oscillations develop in the
second derivative of the scale factor, leading to singular deceleration and
EOS parameters.

L] L] L} L} 0-6 L] L]
° HS Hubble parameter HS Deceleration parameter
28 F LCDM Hubble parameter =------ 04k LCDM Deceleration parameter ---7%-
In this case we have a Hu
02F . . .
and Sawicki model with
T n=3, with LCDM initial
T o2} conditions taken at z=0.
The curvature singularity
04 F
occurs at z~2.1.
-0.6
i i L ' _08 | A 'l L 2
0 0.5 1 1.5 2 0 0.5 1 1.5 2

Z

1 ————————— ¢ Problem can be circumvented, by choosing
ot A initial conditions at high redshifts (R>>m"2),
. leading to a singularity-free region of

2f 1 parameter space (see Kandhai’s talk).
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Bottom up approach to
cosmological modeling

* Very little has been done on trying to understand how weak field
systems can be embedded into expanding cosmological backgrounds.

* | ook at two cases

- The Einstein-Strauss like constructions used for example to build
"Swiss Cheese" inhomogeneous cosmological models.

- Solve for the geometry of spacetime in the vicinity of astrophysical
objects and then patch together a large number of such regions.

é 1

° . - - -+ L
Israel junction Yab) 0. RT =0,
conditions K, 0 :(:-)yer_r —0.

— i} J

4+ 1+




Einstein-Strauss like constructions

* The FLRW region can only be Minkowski spacetime (in Milne
coordinates if (k=-1)

* This is because the conditions that the Ricci scalar and its first
derivative should match across the boundary make the non-trivial
f(R) theories qualitatively different from general relativity, where R
can be discontinuous

* If a spherically symmetric object is joined to a FLRW geometry in
f(R) theories, then one must expect an evolution of the boundary
values of R and R’ , which is something that pure Schwarzschild or
Schwarzschild-de Sitter solutions cannot satisfy.

* Worse still.... other well know spherically symmetric solutions of f(R)
gravity also can't be embedded in FLRVV spacetimes.

Clifton, PD, Goswami, Nzioki , PRD 2013




Patchwork universes

* Divide the universe up into a patchwork of regions, each of which
can be described using post-Newtonian gravity:

1
rrl’EL )

* Match these regions together using junction conditions applied at
their boundaries:

Clifton, PD, arXiv: 1501.04004




Patchwork universes

* Cosmological expansion can be seen as an emergent phenomenon

Image from Green and Wald, arXiv: 1407.8084




Construction of a patchwork
universe in f(R) gravity

* Consider the geometry inside a single cell:

* Each cell contains a galaxy sized amount of mass and a spatial extent
similar to intergalactic separation.

* Assume that the rate of expansion is of similar order of magnitude
to the real universe - H,

f G 2 N
v~ Hd ~107%¢ ¢~ —= ~5%x1078 ¢~‘;—2~0<62>

c2d
r A

ds®* = —(1 — 2¢)dt* + (1 + 2¢)(dx® + dy* + d=?)

\

o~ o~ O 2 )




Construction of a patchwork
universe in f(R) gravity

* For general f(R) theories, can't make any assumptions about
smallness of f and fz but assume that we can expand the function
the Lagrangian in terms of our smallness parameter:

F=fO L@ Lot and  fr=rY + 1P +0(H
(0)
* The field equations and f =0
o o . 1 O
junction conditions give . fo = a(t)

(. Class || @ —=constant , f(R) —aR + F(R)‘\

e Class Il: a=a(R) R = Ry+ O(e*)
\ .

where Fr~ O(e?) and Ry(t) ~ O(e). J\’Vk |




Class | theories

* The field equations and junction conditions give:

1/ 1 1 1
o= = (l _ —FR> and ¢ = — ((' T ._FR)
9 a 2 ’

a

] |
where AU = —47r/)—|—IFD
| 1 and Fy =constant.
Al = —4mp — —)F()

* The new scalar degree of freedom must also obey

AFp= R+ 2R, -2,
~HR=gR TR g

4 . . . .
* These equations, together with the junction
condition [0, fr]” = 0 , mean that the large-scale

expansion must proceed in the same way as in
the LCDM model of GR. ) J\v\x Y

\




Class Il theories

* In this case f

f@ L0t where a=a(t)~ O(1)

IR

|
-

I
i N
T

l

‘o)
\/l
N

W

* The field equations then show that inhomogeneous cosmological

solutions in this class cannot obey the chameleon mechanism and
must have 7ppn = 1/2 .

* Solutions of this class are therefore are unable to both reproduce

the correct cosmological expansion history and give the correct
weak field limit.




Some consequences

* When non-linear structure forms, the large scale evolution of all viable
models approaches that of the LCDM model of GR. Should be possible
to also show this by doing an order by order perturbative approach
starting with a FLRWV background.

* If this is the case, the sudden curvature singularities that exist in the
FLRW solutions of many f(R) theories are suppressed after the
formation of Large Scale Structure.

* In Class | theories the effective cosmological constant must be constructed
from the parameters of the theory. In the case of the Hu & Sawicki model,

this is related to the height of the plateau of F(R).




-

Gptomisic S

* Provided viable f(R) phenomenology can be motivated
from a more fundamental theory, late time acceleration

can be seen as an emergent phenomenon determined by

the parameters of this theory.
* Curvature singularities removed with the onset of
structure formation.

~

. J
(- “ : ’ . )
* It appears therefore that these “designer” theories do
not solve any of the problems associated with the
— cosmological constant.
* * The difficulties created by introducing a new light
degree of freedom on small scales seem to have any
_ obvious benefit. )




Conclusions and future work

* f{(R) theories give rise to rich cosmological dynamics able to explain
the late time accelerated expansion of the universe.

* Simple extensions to GR such as f(R) = R+ aR" while able to

provide a good fit to LSS data, appear unable to simultaneously

brovide the correct values of the Hubble and deceleration
barameters.

* Viable f(R) theories suffer from a curvature singularity at finite
redshifts when initial conditions are taken to the the same as
LCDM today.

* The standard Einstein-Strauss construction appears not to be
possible in f(R) gravity and other known spherically symmetric
solutions appear not to be embeddable in an expanding FLRW
background.

* A bottom up approach to cosmological modeling seems to remove
problematic curvature singularities, but suggest that designer f(R)
gravity is unable to provide a more attractive alternative to LCDM

* Future work should focus on trying to reconstruct the theory of
gravity from observational data.




