
Peter Dunsby 
Astrophysics, Cosmology and Gravity Centre, 

University of Cape Town 

Iberian Cosmology Conference, March 31 2015

The emergence of late time cosmological 
acceleration and other problems in f(R) gravity



Dominates today!!       

CurvatureMatter Cosmological 
Constant

Deceleration parameter: measures change in 
expansion rate

Negative            acceleration        

q =
1
2
⌦M � ⌦⇤

⌦M + ⌦⇤ � ⌦K = 1

⌦K = 0

Cosmic Concordance or the Boring Universe

Because we do not know what DE is, it represents a large 
measure of ignorance in the standard model.



.....geometry is RW, there is NO dark 
energy, gravity is modified and the 
universe is accelerating.

The Concordance model provides us with a 
great phenomenological description, but..........  

The simplest alternatives...



.....geometry is NOT RW, there is NO 
dark energy, gravity is not modified and 
the universe is not accelerating.

The Concordance model provides us with a 
great phenomenological description, but..........  

The simplest alternatives...



Critically: in a LCDM model, on small scales, the late-time growth of 
perturbations is also a function of H(z).

In a FRW model the complete dynamics of the universe is determined by 
a single function of time, the scale factor. Hence the key observables are 
functionals of the Hubble parameter H(z).

A cautionary tale.....of Lambda

Rigidities between different sets of independent observables that 
can be used to test the underlying hypothesis of the model.
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It is possible to construct perturbed LTB models 
with the same background light-cone structure as a 
LCDM model  that give a    significantly different 

...so it is important to make sure that the 
FRW geometry holds when applying tests of 
GR based on observations of LSS.

�

A cautionary tale.....of Lambda

However.......

• PD, Goheer, Osano and Uzan (JCAP 2010)



• PD, Goheer, Osano and Uzan (JCAP 2010)
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FIG. 1: Reconstruction of the function m(r) (black, solid line)
and k(r) (blue dashed line) entering the definition of the LTB
geometry for a spacetime reproducing both DA(z) and ρm(z)
on the past light-cone. The light dotted lines correspond to
m(0) and k(0).

remind that the time drift of cosmological redshift in a
LTB universe takes the form [10, 23]

ż = (1 + z)H0 − H⊥(z), (2.28)

which generalized the original FL-expression [24]. Indeed
in a FL-model H⊥ = H∥ = H so that ż derives from
H(z), as any other background observations. However,
in our LTB-model H⊥ ̸= H∥ = HFL. This was used to
demonstrate that ż[z] allows to fully close the reconstruc-
tion system without resorting to making assumption on
the matter energy density profile along the light cone.

Figure 2 compares the expected time drifts of the cos-
mological redshift for the LTB- and FL-models. ∆z =
ż∆tobs has a typical amplitude of order 10−9 on a time
scale of ∆tobs = 20 yr, for a source at redshift z ∼ 4.
This measurement is impossible with present-day facili-
ties. However, it was recently revisited [25] in the context
of ELT, arguing they could measure velocity shifts of or-
der 110 cm/s over a 10 yr period from the observation
of the Lyman-α forest. It is one of the science drivers
in design of the CODEX ultrastable spectrograph [26]
for the future European ELT. Indeed, many effects, such
as proper motion of the sources, local gravitational po-
tential, or acceleration of the Sun may contribute to the
time drift of the redshift. It was shown [27, 28], however,
that these contributions can be brought to a 0.1% level so
that the cosmological redshift is actually measured. The
data points and error bars of Fig. 2 follows the forecast
of Ref. [26]. Our analysis confirms the recent analysis by
Ref. [29], which also suggests to use the cosmic parallax.

E. Discussion

The result of Fig. 2 demonstrates that the information
off the light-cone allows to distinguish a Λ-CDM from a
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FIG. 2: Time drift of the cosmological redshift for the stan-
dard Λ-CDM model (black, solid line) and a LTB-model (blue,
dashed line) designed to share the same observational relation
on the past light-cone. The data points follow the estimates
of Ref. [26] for a CODEX-like spectrograph on an ELT.

LTB-model specially designed to have the same luminos-
ity (or angular) distance redshift relation and the same
mass density-redshift relation as the a Λ-CDM. In the
case of a dark energy model both DL(z) and ż are mod-
ified, and little insight is gained on the equation of state
from adding the new information on ż [30]. The case
of the large scale inhomogeneity turns out to be differ-
ent and the ż observation would provide, when available,
an interesting extra-test of these models that cannot be
performed otherwise.

Indeed, Fig. 2 was obtained by forcing DA(z) to match
the ΛCDM prediction up to z ≃ 4 while SNIa data [2] ex-
tend roughly to z ∼ 1.6. Following e.g. Ref. [31], one can
try to design density profiles such that the LTB model re-
produces the ΛCDM-DA(z) at low redshift and becomes
homogeneous on large scales. Note that reproducing ρ
and DA of a flat-ΛCDM imposes that H⊥(z) = HFL(z).
Now, assuming that it fits żFL and ρ at high redshift im-
plies that H⊥ = H∥ = HFL. While attractive, such mod-
els seem however difficult to construct since they usually
require that M ′ < 0 between these two regimes.

This example demonstrates the complementarity of
these two observables since they concern two domains
of redshift. To go further in distinguishing such a model
from its FL-twin, we shall now consider the influence of
the large scale inhomogeneity on the growth of large scale
structures.

III. EVOLUTION OF DENSITY
PERTURBATION IN A LTB UNIVERSE

A general study of the perturbation theory around
a LTB background was performed using a coordinate
based approach in Ref. [32], and the general features of
the growth of density perturbations were discussed in
Ref. [33]. The goal of this section is to investigate the
evolution of the density contrast using the 1+1+2 for-
malism, and to obtain an approximation for the evolu-
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ity (or angular) distance redshift relation and the same
mass density-redshift relation as the a Λ-CDM. In the
case of a dark energy model both DL(z) and ż are mod-
ified, and little insight is gained on the equation of state
from adding the new information on ż [30]. The case
of the large scale inhomogeneity turns out to be differ-
ent and the ż observation would provide, when available,
an interesting extra-test of these models that cannot be
performed otherwise.

Indeed, Fig. 2 was obtained by forcing DA(z) to match
the ΛCDM prediction up to z ≃ 4 while SNIa data [2] ex-
tend roughly to z ∼ 1.6. Following e.g. Ref. [31], one can
try to design density profiles such that the LTB model re-
produces the ΛCDM-DA(z) at low redshift and becomes
homogeneous on large scales. Note that reproducing ρ
and DA of a flat-ΛCDM imposes that H⊥(z) = HFL(z).
Now, assuming that it fits żFL and ρ at high redshift im-
plies that H⊥ = H∥ = HFL. While attractive, such mod-
els seem however difficult to construct since they usually
require that M ′ < 0 between these two regimes.

This example demonstrates the complementarity of
these two observables since they concern two domains
of redshift. To go further in distinguishing such a model
from its FL-twin, we shall now consider the influence of
the large scale inhomogeneity on the growth of large scale
structures.

III. EVOLUTION OF DENSITY
PERTURBATION IN A LTB UNIVERSE

A general study of the perturbation theory around
a LTB background was performed using a coordinate
based approach in Ref. [32], and the general features of
the growth of density perturbations were discussed in
Ref. [33]. The goal of this section is to investigate the
evolution of the density contrast using the 1+1+2 for-
malism, and to obtain an approximation for the evolu-

w = w(z)

A couple of key observations

Redshift drift and other 
tests of the Copernican 
principle.

Determining the DE 
equation of state.

Maybe the universe is not so boring after all........



Outline of talk

• Top-down approaches to f(R) cosmological modeling
- Reconstruction methods.
- Dynamical systems approach.
- Structure formation in f(R) gravity.
- Tensor anisotropies.
- Some problems with viable f(R) theories.
• Bottom-up approaches.
- Building "Swiss Cheese" models by embedding spherically symmetric 

solutions in an expanding FLRW background.
-  Patchwork universes and the emergence of cosmological acceleration 
- A possible cure for sudden curvature singularities if viable f(R) models. 



General 
Relativistic fluid 

dynamics

Einstein Field Equations

Evolution Constraint Evolution Constraint

Ricci 
identities

Bianchi 
identities

Our relativistic toolbox 
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If we limit ourselves it could be better ”If we focus on fourth order gravity models....” in place of ”If we limit
ourselves.....”? to fourth order and we use the Gauss Bonnet theorem [30] the action above ”above
action” isn’t it? can be written as

AG =
⌥

d4x
⌅
�g

�
� + c0R + c1R

2 + c2Rµ⇥Rµ⇥
⇥

. (6)

In situations where the metric has a high degree of symmetry, the term Rµ⇥Rµ⇥ gives upon variation the
same contributions of the R2 term. In particular, in the case of homogeneous and isotropic spacetimes
a fourth order gravity action can be written as a function of the sole Ricci sclalar scalar and, as a
consequence, the most general action for fourth order gravity can be represented by Along with referee
suggestions I would write the whole previous paragraph ”In situations........represented by..” as ”Actually, in situations
where the metric has a high degree of symmetry, the term Rµ⇥Rµ⇥ gives upon variation the same contributions of
the R2 term into the field equations. As matter of fact, in the case of homogeneous and isotropic spacetimes (i.e.
Friedmann-Robertson-Walker universes) a fourth order gravity action can be expressed as a function of the sole Ricci
scalar since more complicate actions will provide analogous evolution equations. Thus, the most general action for
fourth order gravity can be written as”

A =
⌥

d4x
⌅
�g [f(R) + Lm] , (7)

where Lm represents the matter contribution. Varying the action with respect to the metric gives the
generalization of the Einstein equations:

f �Gab = f �
⇤

Rab �
1
2

gabR

⌅
= Tm

ab +
1
2
gab (R�Rf �) +⇧b⇧af � � gab⇧c⇧cf � , (8)

where f = f(R), f � =
df(R)

dr
, and TM

µ⇥ =
2⌅
�g

�(
⌅
�gLm)
�gµ⇥

represents the stress energy tensor of standard matter.

These equations reduce to the standard Einstein field equations when f(R) = R. It is crucial for our purposes to be
able to write (8) in the form

Gab = T̃m
ab + TR

ab = T tot
ab , (9)

where T̃m
ab =

Tm
ab

f � and

TR
ab =

1
f �

⇧
1
2
gab (R�Rf �) +⇧b⇧af � gab⇧c⇧cf

⌃
, (10)

represent two e⇥ective “fluids”: the curvature “fluid” (associated with TR
ab) and the e�ective matter “fluid” (associated

with T̃m
ab). This step is important because it allows us to treat fourth order gravity as standard Einstein gravity in

the presence of two “e⇥ective” fluids. This means that once the e⇥ective thermodynamics of these fluids has been
studied, we can apply the covariant gauge invariant approach in the standard way.

The conservation properties of these e⇥ective fluids are given by the Bianchi identities T tot ;b
ab . When applied to the

total stress energy tensor, these identities reveal that if standard matter is conserved, the total fluid is also conserved
even though the curvature fluid may in general possess o⇥–diagonal terms [12, 31, 32]. In other words, no matter how
complicated the e⇥ective stress energy tensor T tot

ab is, it will always be divergence free if Tm;b
ab = 0. When applied to

the single e⇥ective tensors, the Bianchi identities read

T̃M ;b
ab =

Tm;b
ab

f � � f ��

f �2 Tm
ab R;b , (11)

TR;b
ab =

f ��

f �2 T̃M
ab R;b , (12)

with the last expression being a consequence of total energy-momentum conservation. It follows that the individual
e⇥ective fluids are not conserved but exchange energy and momentum.

It is worth noting here that even if the energy-momentum tensor associated with the e⇥ective matter source is not
conserved, standard matter still follows the usual conservation equations Tm ;b

ab = 0. It is also important to stress that
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The class of models we will consider can be derived from the 
classical action:

Varying the action with respect to the metric gives the 
following field equations:

This last step is extremely important as it allows us to treat 4th order 
gravity as standard GR in the presence of two effective fluids. 

f(R) theories of gravity
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In the following, angle brackets applied to a vector denote the projection of this vector on the tangent 3-spaces

V⇥a⇤ = ha
bVb . (15)

Instead when applied to a tensor they denote the projected, symmetric and trace free part of this object

W⇥ab⇤ =
�
h(a

chb)
d � 1

3hcdhab

⇥
Wcd . (16)

Finally the spatial curl of a variable is

(curlX)ab = ⇥cd⇥a ⇥̃cX
b⇤

d (17)

where �abc = ud⇥abcd is the spatial volume.
The general propagation equations for these kinematic variables, for any spacetime corresponds to the so called

1+3 covariant equations [34] and are given in Appendix C.

C. E�ective total energy-momentum tensors

The choice of the frame also allows us to obtain an irreducible decomposition of the stress energy momentum tensor.
In a general frame and for a general tensor Tab one obtains:

Tab = µuaub + phab + 2q(aub) + ⌅ab , (18)

where µ and p are the energy density and isotropic pressure, qa is the energy flux (qa = q⇥a⇤) and ⌅ab is the anisotropic
pressure (⌅ab = ⌅⇥ab⇤).

This decomposition can be applied to our e⇥ective energy momentum tensors. Relative to um
a we obtain

µtot = T tot
ab uaub = µ̃m + µR , ptot =

1
3
T tot

ab hab = p̃m + pR , (19)

qtot
a = �T tot

bc hb
auc = q̃ m

a + q R
a , ⌅tot

ab = T tot
cd hc

<ahd
b> = ⌅̃ m

ab + ⌅ R
ab , (20)

with

µ̃m =
µm

f � , p̃m =
pm

f � , q̃ m
a =

q m
a

f � , ⌅̃ m
ab =

⌅ m
ab

f � . (21)

Since we assume that standard matter is a perfect fluid, q m
a and ⌅ m

ab are zero, so that the last two quantities above
also vanish.

The e⇥ective thermodynamical quantities for the curvature “fluid” are

µR =
1
f �

⇤
1
2
(Rf � � f)��f ��Ṙ + f ��⇥̃2R + f �� u̇b⇥̃R

⌅
, (22)

pR =
1
f �

⇤
1
2
(f �Rf �) + f ��R̈ + 3f ���Ṙ2 +

2
3
�f ��Ṙ� 2

3
f ��⇥̃2R+

�2
3
f ���⇥̃aR⇥̃aR� 1

3
f �� u̇b⇥̃R

⌅
, (23)

qR
a = � 1

f �

⇤
f ���Ṙ⇥̃aR + f ��⇥̃aṘ� 1

3
f ��⇥̃aR

⌅
, (24)

⌅R
ab =

1
f �

⇧
f ��⇥̃⇥a⇥̃b⇤R + f ���⇥̃⇥aR⇥̃b⇤R + ⇧abṘ

⌃
. (25)

The twice contracted Bianchi Identities lead to evolution equations for µm, µR, qR
a :
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b qR
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{Note no 
background 
contribution.
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u
a

ua
R = �⇥aR

Ṙ

So one can think of this 
as a curvature “fluid” 
moving relative to  uaTaken to be the motion of 
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assuming that perturbation theory converges.
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Other reconstructions 
possible based on t(R), 
q(R)........



Dynamical systems approach

A very powerful way to study the complete cosmological 
dynamics for a given f(R) theory is to use the theory of 
dynamical systems. This provides an excellent way of 
generating cosmologically relevant exact solutions and 
how they relate to each other in phase space. 

The approach we take is largely based on a paper by 
Goliath and Ellis (PRD, 1999) and the book edited by 
Wainwright and Ellis.

• Carloni, PD, Capozziello, Troisi (CQG, 2005)
• Amendola et. al. (PRD, 2007)
• Carloni, PD, Troisi (GRG 2009)
• Abdelwahab, Goswami, PD (PRD 2012) 



• Carloni, PD, Capozziello, Troisi (CQG, 2005)
• Carloni, PD, Troisi (GRG 2009)
• Abdelwahab, Goswami, PD (PRD 2012)
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Then, (13) and (15) establish two independent con-
straint equations for our system:

1 = ⌦m + x2 + z

(16)

1 = (Q + x)2 + y

The ranges for the dynamical variables are given as
follows:

�1 x  1, 0  ⌦m  1, � 2  Q  2,

0 z  1, 0  y  1

The construction of D ensures that the dynamical vari-
ables are well defined when ⇥ = 0, thus we expect all
of static, expanding, collapsing and bounce solutions to
be included. Expanding and collapsing universes will be
connected via the non-invariant sub manifold Q = 0.

The normalized time variable, ⌧ , which is monotonic
due to the definition of a strictly positive D containing
the phase space, is defined such that
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Propagation Equations

Di↵erentiating the dynamical variables (14) with re-
spect to the the normalized time variable, ⌧ , and substi-
tuting the independent cosmological equations, (8)-(11),
produces a set of 5 autonomous di↵erential equations.
The dimensionality of the system can be reduced by us-
ing the constraint equations (16) to eliminate y and ⌦.
Below we show the general propagation equations for the
3-dimensional autonomous system:

dz

d⌧
=� 1

3
z
⇥
(Q + x)

�
2 z + 4 xQ� �1� z � x2

�
(1 + 3 w)

�

(18)
�2 Q� 4 x + 2 x� (z � 1)]

dx

d⌧
=

1
6
⇥�2 x2z� +

�
1� z � x2

�
(1� 3 w)

+2z + 4
�
x2 � 1

� �
1�Q2 � xQ

�
(19)

+x (Q + x)
��

1� z � x2
�
(1 + 3 w)� 2 z

�⇤

dQ

d⌧
=

1
6
⇥�4 xQ3 + (5 + 3 w) Qx (1� xQ)

�Q2 (1� 3 w)�Qx3 (1 + 3 w)
�3 zQ (1 + w) (Q + x) + 2 z (1� � Qx)] (20)

where � ⌘ f 0

f 00R ; this term specifies the model which is to
be input into the above general propagation equations.
In order to close the system, � must be expressible in
terms of the dynamical variables. This implies that the
above system characterizes a general dynamical system
for any modified gravity cosmology defined by a function
f(R) which is invertible in terms of the dynamical vari-
ables so as to be able to find � as a function of (x, Q, z).
It can be seen that z = 0 is an invariant sub-manifold,
solutions which originate there will remain there forever.

In this paper we consider the HS model given by (1),
for n = 1, as it turns out that for general n the HS
model is not invertible in terms of the variables defined
at (14); i.e. it is not possible to obtain � in terms of
these dynamical variables. However, it has been shown
that n remains unconstrained by current cosmological
data [13], therefore the case n = 1 does not compromise
generality at this stage. In our analysis, to benefit from
simplicity, we also set c1 = 1 to facilitate the analysis.
For this case,

� =
1
2

zy

(y � z)2
(21)

A dynamical systems analysis is then performed to
obtain the equilibrium points of the system at (18)-(20).
We combine the equilibria, as well the exact solutions of
the scale factor corresponding to the stationary points,
in Table 2.

The Hartman-Grobman theorem is used to assess the
stability of these fixed points, where possible. Some
points obtained are non-hyperbolic, and in this case we
resort to the center manifold theorem.

Stationary points, stability and exact so-
lutions

For the HS model, when n = c1 = 1, keeping an arbi-
trary equation of state, w, the fixed points for the entire
phase space, as well as the exact solution of the scale
factor at each point,are summarized in Table 2.

Considering the structure of the � term as expressed
in (21) in terms of the variables, it is clear that when
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ḟ 0

f 0

!2

+
3
2

f

f 0 (15)

Then, (13) and (15) establish two independent con-
straint equations for our system:

1 = ⌦m + x2 + z

(16)

1 = (Q + x)2 + y

The ranges for the dynamical variables are given as
follows:

�1 x  1, 0  ⌦m  1, � 2  Q  2,

0 z  1, 0  y  1

The construction of D ensures that the dynamical vari-
ables are well defined when ⇥ = 0, thus we expect all
of static, expanding, collapsing and bounce solutions to
be included. Expanding and collapsing universes will be
connected via the non-invariant sub manifold Q = 0.

The normalized time variable, ⌧ , which is monotonic
due to the definition of a strictly positive D containing
the phase space, is defined such that

d

d⌧
⌘ 1

D

d

dt
(17)

Propagation Equations

Di↵erentiating the dynamical variables (14) with re-
spect to the the normalized time variable, ⌧ , and substi-
tuting the independent cosmological equations, (8)-(11),
produces a set of 5 autonomous di↵erential equations.
The dimensionality of the system can be reduced by us-
ing the constraint equations (16) to eliminate y and ⌦.
Below we show the general propagation equations for the
3-dimensional autonomous system:

dz

d⌧
=� 1

3
z
⇥
(Q + x)

�
2 z + 4 xQ� �1� z � x2

�
(1 + 3 w)

�

(18)
�2 Q� 4 x + 2 x� (z � 1)]

dx

d⌧
=

1
6
⇥�2 x2z� +

�
1� z � x2

�
(1� 3 w)

+2z + 4
�
x2 � 1

� �
1�Q2 � xQ

�
(19)

+x (Q + x)
��

1� z � x2
�
(1 + 3 w)� 2 z

�⇤

dQ

d⌧
=

1
6
⇥�4 xQ3 + (5 + 3 w) Qx (1� xQ)

�Q2 (1� 3 w)�Qx3 (1 + 3 w)
�3 zQ (1 + w) (Q + x) + 2 z (1� � Qx)] (20)

where � ⌘ f 0

f 00R ; this term specifies the model which is to
be input into the above general propagation equations.
In order to close the system, � must be expressible in
terms of the dynamical variables. This implies that the
above system characterizes a general dynamical system
for any modified gravity cosmology defined by a function
f(R) which is invertible in terms of the dynamical vari-
ables so as to be able to find � as a function of (x, Q, z).
It can be seen that z = 0 is an invariant sub-manifold,
solutions which originate there will remain there forever.

In this paper we consider the HS model given by (1),
for n = 1, as it turns out that for general n the HS
model is not invertible in terms of the variables defined
at (14); i.e. it is not possible to obtain � in terms of
these dynamical variables. However, it has been shown
that n remains unconstrained by current cosmological
data [13], therefore the case n = 1 does not compromise
generality at this stage. In our analysis, to benefit from
simplicity, we also set c1 = 1 to facilitate the analysis.
For this case,

� =
1
2

zy

(y � z)2
(21)

A dynamical systems analysis is then performed to
obtain the equilibrium points of the system at (18)-(20).
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factor at each point,are summarized in Table 2.
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It can be seen that z = 0 is an invariant sub-manifold,
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In this paper we consider the HS model given by (1),
for n = 1, as it turns out that for general n the HS
model is not invertible in terms of the variables defined
at (14); i.e. it is not possible to obtain � in terms of
these dynamical variables. However, it has been shown
that n remains unconstrained by current cosmological
data [13], therefore the case n = 1 does not compromise
generality at this stage. In our analysis, to benefit from
simplicity, we also set c1 = 1 to facilitate the analysis.
For this case,
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A dynamical systems analysis is then performed to
obtain the equilibrium points of the system at (18)-(20).
We combine the equilibria, as well the exact solutions of
the scale factor corresponding to the stationary points,
in Table 2.

The Hartman-Grobman theorem is used to assess the
stability of these fixed points, where possible. Some
points obtained are non-hyperbolic, and in this case we
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For the HS model, when n = c1 = 1, keeping an arbi-
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the scale factor corresponding to the stationary points,
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stability of these fixed points, where possible. Some
points obtained are non-hyperbolic, and in this case we
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ḟ 0

f 0

!2

+
3
2

f

f 0 =
3⇢

f 0 +
3
2
R +

 
3
2

ḟ
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A dynamical systems analysis is then performed to
obtain the equilibrium points of the system at (18)-(20).
We combine the equilibria, as well the exact solutions of
the scale factor corresponding to the stationary points,
in Table 2.

The Hartman-Grobman theorem is used to assess the
stability of these fixed points, where possible. Some
points obtained are non-hyperbolic, and in this case we
resort to the center manifold theorem.
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For the HS model, when n = c1 = 1, keeping an arbi-
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A dynamical systems analysis is then performed to
obtain the equilibrium points of the system at (18)-(20).
We combine the equilibria, as well the exact solutions of
the scale factor corresponding to the stationary points,
in Table 2.

The Hartman-Grobman theorem is used to assess the
stability of these fixed points, where possible. Some
points obtained are non-hyperbolic, and in this case we
resort to the center manifold theorem.
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We combine the equilibria, as well the exact solutions of
the scale factor corresponding to the stationary points,
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stability of these fixed points, where possible. Some
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where � ⌘ f 0

f 00R ; this term specifies the model which is to
be input into the above general propagation equations.
In order to close the system, � must be expressible in
terms of the dynamical variables. This implies that the
above system characterizes a general dynamical system
for any modified gravity cosmology defined by a function
f(R) which is invertible in terms of the dynamical vari-
ables so as to be able to find � as a function of (x, Q, z).
It can be seen that z = 0 is an invariant sub-manifold,
solutions which originate there will remain there forever.

In this paper we consider the HS model given by (1),
for n = 1, as it turns out that for general n the HS
model is not invertible in terms of the variables defined
at (14); i.e. it is not possible to obtain � in terms of
these dynamical variables. However, it has been shown
that n remains unconstrained by current cosmological
data [13], therefore the case n = 1 does not compromise
generality at this stage. In our analysis, to benefit from
simplicity, we also set c1 = 1 to facilitate the analysis.
For this case,

� =
1
2

zy

(y � z)2
(21)

A dynamical systems analysis is then performed to
obtain the equilibrium points of the system at (18)-(20).
We combine the equilibria, as well the exact solutions of
the scale factor corresponding to the stationary points,
in Table 2.

The Hartman-Grobman theorem is used to assess the
stability of these fixed points, where possible. Some
points obtained are non-hyperbolic, and in this case we
resort to the center manifold theorem.

Stationary points, stability and exact so-
lutions

For the HS model, when n = c1 = 1, keeping an arbi-
trary equation of state, w, the fixed points for the entire
phase space, as well as the exact solution of the scale
factor at each point,are summarized in Table 2.
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Note that incorrect and misleading results are obtained if 
one takes a one parameter                    approach to the 
analysis of this dynamical system.

m(r) ⌘ ��1
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THE FIXED POINTS AND EXACT SOLUTIONS
FOR R + αRn GRAVITY

As we have seen from the equation (19), f ′/Rf ′′ is
invertible in terms of the dynamical variables for f(R) =
R + αRn. It is interesting to note that the constant
‘n’ couples to the dynamical equations (18) only via the
quantity Γ and the constant α does not couple to the
equations at all. Hence all the fixed point of the system
are necessarily independent of α.

The coordinates of the fixed points are shown in Table
1. Note that each fixed point has an expanding (Q > 0)
and a collapsing (Q < 0) version as indicated by the sub-
scripts (+; −) respectively. Also some points only occur
in the compact state space defined by (17) for certain
ranges of n. The occurrence of the fixed points outside
the compact region for specific n and ω means that the
constraints (16) are not satisfied and consequently these
fixed points are not physical for these values of n and ω).
Fixed points that are not physical for these values of n
and ω have been excluded from the analysis.

Table 1. Coordinates of the equilibrium points for R + αRn-gravity. We will not explicitly state the expressions
for s,g1,...,g4 and f1,...,f4, which are rational functions of n and ω, however we give them at the following link [21].

Fixed points Coordinates (x,Ω, z, Q) Solution a(t)

A± (1, 0, 0,±2) a0
√
t− t0

B (±1, 0, 0, 0) a0

C (−
√
3 + 12ω + 9ω2

1 + 3ω
,−

2
1 + 3ω

, 0, 0) a0

D± (
1− 3ω
3(ω − 1)

,−
4(3ω − 2)

9(ω − 1)2
, 0,±

2
3(ω − 1)

) a0
√
t− t0

E± (0, 0, 1,±
1
√
2
) a0e

Ct

F± (f1(n,ω), g1(n,ω), l1(n,ω), n1(n,ω)) a0
√
t− t0

G± (f2(n,ω), g2(n,ω), l2(n,ω), n2(n,ω)) a0(t− t0)
s(n,ω)

I± (f3(n), g3(n), l3(n), n3(n)) a0((n− 2)t− t0)

−1 + 3n− 2n2

−2 + n

L± (f4(n,ω), g4(n,ω), l4(n,ω), n4(n,ω)) a0(3t(1 + ω)− t0)

2n
3(1 + ω)

N± (0,
2
3
,
1
3
,±

√
6
3

) a0(2t− t0)
2/3

By looking at the coordinates of the fixed points in Table
1, we can distinguish two classes; the first corresponds to
points with coordinates that are independent of n, which
means that these points are common to all f(R) theories.
This class contains the fixed points A±, B, C±, D±, E±

and N± and they all lie on the boundary of the compact
region except for the point N .

In the non - compact analysis developed in [26], non
of these boundary points appear. Furthermore, even
though N± is not a boundary point, it doesn’t appear
in [26], because of it’s special location in the phase space
- it lies exactly on the intersection of the plane x = 0 and
the surface z = y = 1 − (Q + x)2. In this case one has
to take the limit of Γ carefully as one approaches this
point and the standard techniques of finding fixed points
breaks down for this case.

The other class contains fixed points with coordinates
that depend on n and ω; this class contains the three
points L±, I± and F±. F± is the only boundary point
and it lies in the invariant sub-manifold z = 0. The
expanding versions of the points L± and I± correspond
to the equally labeled finite points in [26]. The point H

in [26] enters the compact sector, which we consider in
this paper only when n = (1 +

√
3)/2 and for this value

of n it merges with the point I. All the other points that
appear in the above mentioned reference do not appear
in the sector we are studying in this paper.

de Sitter attractor

Closure condition 

Matter dominated Friedmann 
saddle point (structure growth)

A simple example 
f(R) = R + ↵Rn

Same point present in 
gravityRn

� =
z

n(y � z)

a(t) = a0t
2n

3(1+w)

a(t) = a0e
Ct

L

E

Power-law inflation



Interesting cosmic histories 

Matter dominated era f(R) driven power-law 
inflation

"Dark Radiation" phase

• Abdelwahab, Goswami, PD (PRD 2012) 

Q > 0
Expanding

Q < 0
Contracting

de Sitter attractor
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which will characterize the evolution of the spherically symmetric part of the gradients (62-63). The evolution
equations for the first four of these variables are

�̇m = w⇥�m � (1 + w)Z , (73)

Ż =

 
Ṙf ��

f � � 2⇥
3

⌦
Z +

⌥
3(w � 1)(3w + 2)

6(w + 1)
µ

f � +
2w⇥2 + 3w(µR + 3pR)

6(w + 1)

�
�m +

⇥f ��

f � ⇥

+

↵
1
2
� 1

2
f

f �
f ��

f � �
f ��

f �
µ

f � + Ṙ⇥
⇧

f ��

f �

⌃2

+ Ṙ⇥
f (3)

f �

�
R� w

w + 1
⌅̃2�m �

f ��

f � ⌅̃
2R , (74)

Ṙ = ⇥� w

w + 1
Ṙ �m , (75)

⇥̇ = �
⇧

⇥ + 2Ṙ
f (3)

f ��

⌃
⇥� ṘZ �

⌥
(3w � 1)

3
µ

f �� + 3
w

w + 1
(pR + µR)

f �

f �� +
w

3(w + 1)
Ṙ

⇧
⇥� 3Ṙ

f (3)

f ��

⌃�
�m

+
⌥
2

K

S2
�
⇧

1
3

f �

f �� +
f (4)

f � Ṙ2 + ⇥
f (3)

f � Ṙ� 2
9
⇥2 +

1
3
(µR + 3pR) + R̈

f (3)

f �� �
1
6

f

f � +
1
2
(w + 1)

µ

f � �
1
3
Ṙ⇥

f ��

f �

⌃�
R

+⌅̃2R , (76)

Ċ = K2

�

✏ 36f ��R
S2
⇤
2⇥f � + 3Ṙf ��

⌅ � 36f ��

S2
⇤
2⇥f � + 3Ṙf ��

⌅

�

⇣+ K

�

✏ 6f �

S2
⇤
2⇥f � + 3Ṙf ��

⌅C + �
⇧

4⌅⇥
⌅ + 1

� 4f �⇥2 � 12f �µR

2⇥f � + 3Ṙf ��

⌃

� 12f ��

2⇥f � + 3Ṙf ��
⌅̃2R+

12⇥f ��

2⇥f � + 3Ṙf ��
⇥+

12Ṙ⇥f �f (3) � 2f ��
⇤
3f � 2

�
⇥2 � 3µR

⇥
f � + 6Ṙ⇥f ��

⌅

⇤
2⇥f � + 3Ṙf ��

⌅
f �

R

�

⇣

+⌅̃2

�

✏ 4⌅S2⇥
3(⌅ + 1)

� +
2S2f ��

f � ⇥�
2S2

⇤
⇥f �� � 3Ṙf (3)

⌅

3f � R

�

⇣ , (77)

together with the constraint

C

S2
+

 
4
3
⇥ +

2Ṙf ��

f �

⌦
Z � 2

µ

f � �m +
⌥
2Ṙ⇥

f (3)

f � �
f ��

f �

⇤
f � 2µ + 2Ṙ⇥f ��

⌅�
R+

2⇥f ��

f � ⇥� 2f ��

f � ⌅̃
2R = 0 . (78)

In standard GR, only the first two equations and the last one are present and the density perturbations are governed
by a second-order equation for �m whose independent solutions are adiabatic growing and decaying modes. The
presence of fourth order corrections introduces important changes to this picture. In fact, in this case the evolution of
the density perturbations is described by a closed fourth order di⇤erential equation which can be obtained form the
above first order equations. This follows clearly from our two e⇤ective fluids interpretation.

C. Harmonic analysis

The system (73)-(76) is a system of four partial di⇤erential equations which is far too complicated to be solved
directly. For this reason, following a standard procedure we perform an harmonic decomposition. This allows one to
reduce equations (73)-(76) to ordinary di⇤erential equations which are somewhat easier to solve.

In the covariant approach the harmonic decomposition is performed using the trace-free symmetric tensor eigen-
functions of the spatial the Laplace-Beltrami operator defined by [24]:

⌅̃2Q = �k2

a2
Q , (79)

where k = 2⇤S/� is the wavenumber and Q̇ = 0. Using these harmonics we can expand every first order quantity in
the equations above [? ],

X(t,x) =
⌘

X(k)(t) Q(k)(x) (80)
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12Ṙ⇥f �f (3) � 2f ��
⇤
3f � 2

�
⇥2 � 3µR

⇥
f � + 6Ṙ⇥f ��
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Ċ = K2

�

✏ 36f ��R
S2
⇤
2⇥f � + 3Ṙf ��
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12Ṙ⇥f �f (3) � 2f ��
⇤
3f � 2

�
⇥2 � 3µR

⇥
f � + 6Ṙ⇥f ��
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In standard GR, only the first two equations and the last one are present and the density perturbations are governed
by a second-order equation for �m whose independent solutions are adiabatic growing and decaying modes. The
presence of fourth order corrections introduces important changes to this picture. In fact, in this case the evolution of
the density perturbations is described by a closed fourth order di⇤erential equation which can be obtained form the
above first order equations. This follows clearly from our two e⇤ective fluids interpretation.

C. Harmonic analysis

The system (73)-(76) is a system of four partial di⇤erential equations which is far too complicated to be solved
directly. For this reason, following a standard procedure we perform an harmonic decomposition. This allows one to
reduce equations (73)-(76) to ordinary di⇤erential equations which are somewhat easier to solve.

In the covariant approach the harmonic decomposition is performed using the trace-free symmetric tensor eigen-
functions of the spatial the Laplace-Beltrami operator defined by [24]:
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Q , (79)

where k = 2⇤S/� is the wavenumber and Q̇ = 0. Using these harmonics we can expand every first order quantity in
the equations above [? ],

X(t,x) =
⌘

X(k)(t) Q(k)(x) (80)
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Scalar perturbations governed by the 4th order system:

Growth of large scale structure  

• Carloni, PD, Troisi (PRD, 2008)
• Ananda, Carloni, PD (CQG, 2009)



General evolution of the background
A single fluid description is not enough to make a meaningful comparison 
to the standard LCDM model [in this case                         ]

Expansion history obtained by integrating dynamical 
systems equations along the best fit orbit

• Abebe, Abdelwahab, de la Cruz-Dombriz, PD (CQG, 2012)
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Rk = (1− 3w)µm∆k
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and one can easily see that the linear evolution of CDM
density perturbations for sub-Hubble (k ≫ aH) scales in
ΛCDM is given by the well-known result:

∆
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′k
m −
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where H = a′/a and prime (only for this equation) de-
notes derivative with respect to conformal time.
Notice that according to (15) the evolution of the

Fourier modes does not depend upon k. This means
that for ΛCDM on sub-Hubble scales, once the density
contrast starts to grow after matter-radiation equality,
evolution only changes the overall normalisation of the
matter power-spectrum P (k), but not its shape.

III. DETERMINING THE EXPANSION
HISTORY FOR Rn-GRAVITY

To proceed, we need to fix our theory of gravity. The
simplest and most widely studied form of f(R) gravita-
tional theories is f(R) = αH2

0 (R/H2
0 )

n, where α = α(n)
is a non-dimensional coupling constant and H0 is the
ΛCDM value of the Hubble parameter today. For this
class of models the cosmological equations associated
with a FLRW universe are particularly easy to analyse.
However the aim of this investigation is to show that

studies of different f(R)-gravity models that share sim-
ilar background expansion history with ΛCDM can in
principle provide useful constraints on the viability of
these models via the power spectra of matter density per-
turbations they produce.
The first step in the implementation of the Dynamical

Systems (DS) approach for determining the expansion
history for Rn gravity is the definition of the key DS
variables. Following [17], we introduce the dimensionless
variables:

x =
Ṙ(n− 1)

HR
, y =

R(1− n)

6nH2
, Ωd =

µd

3nαH2Rn−1
.(16)

In terms of these variables, the Friedmann equation (6)
takes the form

1 + x+ y − Ωd = 0 . (17)

An autonomous system of ordinary differential equations,
which are equivalent to cosmological equations (5-8) can

be obtained by differentiating (16) with respect to red-
shift z. Here we give the equations for dust (w = 0),
while those for a general barotropic equation of state w
are presented in [17]:
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The dimensionality of the resultant system (18) can be re-
duced further using the Friedmann constraint (17). The
evolution of the Hubble parameter can then be deter-
mined by writing (3) in terms of the DS variables:

(1 + z)
dh

dz
=

h(2 + ny)

n− 1
, (19)

where h = H/H0. Furthermore the deceleration param-
eter can be determined directly from y:

q =
ny

(n− 1)
+ 1 . (20)

In [17] it was shown that these equations admit a number
of fixed points of which two are particularly interesting.
The points, labeled G and C in [17] correspond to two
cosmologically interesting exact solutions: G corresponds
to a matter dominated saddle point which in the case of
dust has a = a0t2n/3 and C is the late-time attractor

with a = a0t
(1−n)(2n−1)

n−2 . In [17] it was also shown that C
and G respectively represent decelerated and accelerated
phases of the Universe with positive energy density if n
lies in the range 1.36 < n < 1.5.
With this in mind let us integrate (18), by fixing the

initial conditions for the DS variables (16) to be identi-
cal to their ΛCDM values deep in the dust dominated
era (at a redshift z0 = 2000) and determine the expan-
sion history for Rn models with eight different values for
the exponent n > 1 between n = 1.1 and 1.4 in order
to allow the possibility of late-time acceleration. In this
way we can determine for which values of n we obtain
present day values for q(z) and H(z) consistent with the
ΛCDM model. It is clear from the results in Table I that

n 1.1 1.2 1.27 1.29 1.3 1.31 1.33 1.4
h0 0.63 0.73 0.94 0.95 1.08 1.44 3.27 45.03
q0 0.38 0.21 0.15 0.13 0.22 0.27 0.21 −0.17

Table I: Present-day values of the Hubble h0 ≡ H(today)/H0

and deceleration (q0) parameters for the Rn models under
consideration. H0 corresponds to the ΛCDM Hubble param-
eter value today. Only n = 1.4 provides acceleration at the
present time, whereas n = 1.29 gives the closest value for h0

to ΛCDM.
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mined by writing (3) in terms of the DS variables:

(1 + z)
dh

dz
=

h(2 + ny)

n− 1
, (19)

where h = H/H0. Furthermore the deceleration param-
eter can be determined directly from y:

q =
ny

(n− 1)
+ 1 . (20)

In [17] it was shown that these equations admit a number
of fixed points of which two are particularly interesting.
The points, labeled G and C in [17] correspond to two
cosmologically interesting exact solutions: G corresponds
to a matter dominated saddle point which in the case of
dust has a = a0t2n/3 and C is the late-time attractor

with a = a0t
(1−n)(2n−1)

n−2 . In [17] it was also shown that C
and G respectively represent decelerated and accelerated
phases of the Universe with positive energy density if n
lies in the range 1.36 < n < 1.5.
With this in mind let us integrate (18), by fixing the

initial conditions for the DS variables (16) to be identi-
cal to their ΛCDM values deep in the dust dominated
era (at a redshift z0 = 2000) and determine the expan-
sion history for Rn models with eight different values for
the exponent n > 1 between n = 1.1 and 1.4 in order
to allow the possibility of late-time acceleration. In this
way we can determine for which values of n we obtain
present day values for q(z) and H(z) consistent with the
ΛCDM model. It is clear from the results in Table I that

n 1.1 1.2 1.27 1.29 1.3 1.31 1.33 1.4
h0 0.63 0.73 0.94 0.95 1.08 1.44 3.27 45.03
q0 0.38 0.21 0.15 0.13 0.22 0.27 0.21 −0.17

Table I: Present-day values of the Hubble h0 ≡ H(today)/H0

and deceleration (q0) parameters for the Rn models under
consideration. H0 corresponds to the ΛCDM Hubble param-
eter value today. Only n = 1.4 provides acceleration at the
present time, whereas n = 1.29 gives the closest value for h0

to ΛCDM.
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Obtained by solving the exact linear structure growth equations along the 
best fit orbit  for a given f(R) [in this case                    ] to get T(k)

n exponent 1.1 1.2 1.27 1.29 1.3 1.31 1.33 1.4
χ2 15.1394 13.1839 13.0184 13.0093 13.0104 13.0098 13.0102 13.0128

σ exclusion 1.9849 1.4086 1.3486 1.3452 1.3457 1.3454 1.3456 1.3465

% suppression 29.5 7.94 4.75 4.45 4.37 4.33 4.35 4.47

Table II: Fits to the SDSS data for Rn cosmology by using set of initial conditions III: eight different values of exponent n
were investigated from n = 1.1 to 1.4. Values for χ2 and the confidence region σ are presented in the second and third rows
respectively. The data to be fitted by the theoretical spectra are taken from [33] and normalisation from WMAP7 was imposed
for all the studied models. The fit provided by ΛCDM (χ2 = 11.1996) is not improved by any of these parameter values. The
final row gives the suppression in the overall initial amplitude required to get the best fits. For all the values, this suppression
turns out to be smaller than 30% and is therefore in the experimental uncertainty interval for this quantity. One can see that
the best fit corresponds to the value n = 1.29 with a suppression of 4.45% and good fits are also obtained for n = 1.3, 1.31 and
1.33 with similar suppressions.

histories that simultaneously have present-day values of
the Hubble and deceleration parameters which are close
to their ΛCDM values today if initial conditions are cho-
sen in order that the expansion history is close to the
ΛCDM model at early times. Even without considering
LSS data, this already put severe constraints on these
models.

IV. THE MATTER POWER SPECTRUM AND
SDSS CONSTRAINTS

Let us now turn to the matter power spectrum.

Taking the dominant component to be dust, the system
(11) can be written in terms of the dynamical variables:
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where prime denotes derivative with respect to redshift
and the dimensionless quantities R̂k = Rk/H2

0 and k̂ =
k/H0 have been introduced. Note that equations (21)
are valid only for n ̸= 1.
SDSS correlation data from LRG have been used to

test the predictions from the ΛCDM power spectrum ob-
tained from linear perturbation theory with WMAP cos-
mological data to high accuracy (χ2 ≈ 11.2, degrees of
freedom (d.o.f.) = 14) [33]. In what follows, we will do
the same for this class of f(R) theories of gravity.
To do this we first determine the cosmological back-

ground evolution as described in the previous section
and then use these results to solve the system of equa-
tions (21) in order to obtain the density contrast today.
Then, by applying expression (12) to these results, one

can obtain the fully processed power spectra P f(R)
k for

the above models, which can be compared to the ΛCDM
predictions and the LRG data.

Before proceeding, let us mention that three sets of
different initial conditions were considered for the sys-
tem (21) in order to determine how sensitive the final
processed power spectrum is to changes in these values:

• I: ∆k
m|0 = R̂k|0 = 10−5, ∆k′

m|0 = R̂k′ |0 = 10−5,

• II: ∆k
m|0 = R̂k|0 = 10−5, ∆k′

m|0 = R̂k′ |0 = 10−8,

• III: ∆k
m|0 = R̂k|0 = 10−5, ∆k′

m|0 = R̂k′ |0 = 0,

where the subscript 0 refers to the initial redshift z0 = 2000. The choice of sets I and II as initial conditions for
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The matter power spectrum

k = 2πa/λ is the wavenumber and Q̇ = 0, we can expand
every first order quantity in the above equations, so for
example in the case of ∆m we have

∆m(t,x) =
∑

∆(k)
m (t) Q(k)(x) , (10)

where
∑

stands for both a summation over a discrete
index or an integration over a continuous one. In this

way, it is straightforward, although lengthy, to derive a
pair of second order equations describing the kth mode
for density perturbations in f(R) gravity. They are:

∆̈k
m −

[

(3w − 2)H +
Ṙf ′′

f ′

]

∆̇k
m +

[

w
k2

a2
+ (w − 1)

µm

f ′
− w

f

f ′

]

∆k
m

=
1 + w

2

[

−1−
2k2

a2
f ′′

f ′
+ (f − 2µm + 6ṘHf ′′)

f ′′

f ′2
− 6ṘH

f ′′′

f ′

]

R−
3(1 + w)

f ′
Hf ′′Ṙk,

R̈k +

(

2Ṙ
f ′′′

f ′′
+ 3H

)

Ṙk +

[

k2

a2
+ R̈

f ′′′

f ′′
+ Ṙ2 f

(iv)

f ′′
+ 3HṘ

f ′′′

f ′′
+

f ′

3f ′′
−

R

3

]

Rk

= −
[

1

3
(3w − 1)

µm

f ′′
+

w

1 + w

(

2R̈+ 2Ṙ2 f
′′′

f ′′
+ 6ṘH

)]

∆k
m +

1− w

1 + w
Ṙ∆̇k

m . (11)

Already on super-Hubble scales, k/aH ≪ 1, a number
of important features can be found which allow one to
differentiate from what is obtained in GR [29]. Firstly,
it is clear that the evolution of density perturbations is
determined by a fourth order differential equation rather
than a second order one. This implies that the evolu-
tion of the density fluctuations contains, in general, four
modes rather that two and can give rise to a more com-
plex evolution than the one of GR. Secondly, the pertur-
bations are found to depend on the scale for any equa-
tion of state for standard matter (while in GR the evolu-
tion of the CDM perturbations are scale-invariant). This
means that even for dust, the evolution of super-horizon
and sub-horizon perturbations are different. Thirdly, it
is found that the growth of large density fluctuations can
occur also in backgrounds in which the expansion rate
is increasing in time. This is in striking contrast with
what one finds in GR and would lead to a time-varying
gravitational potential, putting tight constraints on the
ISW for these models.

Let us now turn to the case of a general wave mode
k. One of the most instructive ways of understanding
the details of the evolution of density perturbations for
a general k is to compute the matter transfer function
T (k), defined by the relation [35] ⟨∆m(k1)∆m(k2)⟩ =
T (k1)∆(k1 + k2), where ki are two wavevectors charac-
terizing two Fourier components of the solutions of (11)
and T (k1) = T (k1) because of isotropy in the distribu-
tion of the perturbations. This quantity tells us how the
fluctuations of matter depend on the wavenumber at a
specific time and carries information about the amplitude
of the perturbations (but not on their spatial structure).

In GR, the transfer function on large scales is constant,
while on small scales it is suppressed in comparison with
the large scales (i.e., modes which entered the horizon
during the radiation era) [36]. In the case of pure dust in
GR the transfer function is scale invariant. Substituting
the details of the background, the values of the param-
eter n, the barotropic factor w and the wavenumber k
into (11) one is able to obtain T (k) numerically.
One can easily see from expressions (11) that the mat-

ter power-spectrum in f(R) gravity theories is further
processed after equality and would differ from the stan-
dard ΛCDM power spectrum PΛCDM

k when evaluated to-
day. The latter is widely assumed to represent accurately
the evolution of perturbations till radiation-matter equal-
ity, since before that the effects of any modification to the
usual Concordance Model needs to be negligible in order
to preserve the cosmological standard model predictions
in the radiations-dominated epoch such as the primordial
light elements abundances during Big Bang Nucleosyn-
thesis.
Therefore, these two power spectra, when evaluated

today, would be related linearly by a transfer function
T (k) given by

P f(R)
k = T (k)PΛCDM

k |eq (12)

where T (k) ∝ |∆k
m|2today and ∆k

m is obtained from the
system of equations (11).

On linear scales, P f(R)
k will in general depend on both

the f(R)-model and the scale k, therefore differing from
the ΛCDM model, where it is scale-invariant.
In the GR limit: f(R) = R, (11) reduces to the stan-

dard equations for the evolution density perturbations in
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Figure 1: The left panels show the transfer function T (k) = |∆k/∆
ΛCDM
k

(z = 2000)|2 evaluated today (z = 0) for wavenumber k (in
hMpc−1 units) in the range 0.005 to 0.3 for the initial conditions sets I, II and III as described in the bulk of this investigation. The
transfer functions T (k) on left panels have been normalised in such a way that the curves coincide on large scales. On the central and right
panels we present the corresponding linear matter power-spectra P (k) for ΛCDM and Rn models for n = 1.1, 1.2, 1.27, 1.29, 1.3, 1.31,
1.33 and 1.4. Data correspond to SDSS 2006 [37] (central panel) and SDSS-III data [38] (right panel) respectively. All the power spectra
were assumed to have an arbitrary overall normalisation at the scale k = 0.01hMpc−1 (central panel) and k = 0.02hMpc−1 (right panel)
in order to find the best fit to the data. Conditions I and II lead to power spectra in complete disagreement with the observed data.
Conditions III, due to the almost flatness of the spectra in the range covered by data present a good fit to the data. On the bottom panels
(central and right) we show in a window the relative discrepancy between the ΛCDM and the Rn fits power-spectra for every studied
exponent. For SDSS 2006 data, the smallest discrepancy in scales k > 3× 10−2 hMpc−1 happens for n = 1.1 whereas for smaller scales,
all the remaining values of n provide similar relative error around 5×10−2. For DR9 SDSS-III data, the smallest discrepancy (order 10−5)
happens for n = 1.3 in the whole scale-range despite some punctual values of k where other exponents may present smaller relative errors
with respect to ΛCDM. whereas for smaller scales, all the remaining values of n provide similar relative error around 5× 10−2.

n exponent 1.1 1.2 1.27 1.29 1.3 1.31 1.33 1.4
χ2 15.1394 13.1839 13.0184 13.0093 13.0104 13.0098 13.0102 13.0128

σ exclusion 1.9849 1.4086 1.3486 1.3452 1.3457 1.3454 1.3456 1.3465

% suppression 29.5 7.94 4.75 4.45 4.37 4.33 4.35 4.47

Table II: Fits to the SDSS 2006 data for Rn cosmology by using set of initial conditions III: eight different values of exponent
n were investigated from n = 1.1 to 1.4. Values for χ2 and the confidence region σ are presented in the second and third rows
respectively. The data to be fitted by the theoretical spectra are taken from [37]. The fit provided by ΛCDM (χ2 = 11.1996)
is not improved by any of these parameter values. The final row gives the suppression in the overall initial amplitude required
to get the best fits. For all the values, this suppression turns out to be smaller than 30% and is therefore in the experimental
uncertainty interval for this quantity. One can see that the best fit corresponds to the value n = 1.29 with a suppression of
4.45% and good fits are also obtained for n = 1.3, 1.31 and 1.33 with similar suppressions.
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Figure 1: The left panels show the transfer function T (k) = |∆k/∆
ΛCDM
k

(z = 2000)|2 evaluated today (z = 0) for wavenumber k (in
hMpc−1 units) in the range 0.005 to 0.3 for the initial conditions sets I, II and III as described in the bulk of this investigation. The
transfer functions T (k) on left panels have been normalised in such a way that the curves coincide on large scales. On the central and right
panels we present the corresponding linear matter power-spectra P (k) for ΛCDM and Rn models for n = 1.1, 1.2, 1.27, 1.29, 1.3, 1.31,
1.33 and 1.4. Data correspond to SDSS 2006 [37] (central panel) and SDSS-III data [38] (right panel) respectively. All the power spectra
were assumed to have an arbitrary overall normalisation at the scale k = 0.01hMpc−1 (central panel) and k = 0.02hMpc−1 (right panel)
in order to find the best fit to the data. Conditions I and II lead to power spectra in complete disagreement with the observed data.
Conditions III, due to the almost flatness of the spectra in the range covered by data present a good fit to the data. On the bottom panels
(central and right) we show in a window the relative discrepancy between the ΛCDM and the Rn fits power-spectra for every studied
exponent. For SDSS 2006 data, the smallest discrepancy in scales k > 3× 10−2 hMpc−1 happens for n = 1.1 whereas for smaller scales,
all the remaining values of n provide similar relative error around 5×10−2. For DR9 SDSS-III data, the smallest discrepancy (order 10−5)
happens for n = 1.3 in the whole scale-range despite some punctual values of k where other exponents may present smaller relative errors
with respect to ΛCDM. whereas for smaller scales, all the remaining values of n provide similar relative error around 5× 10−2.

n exponent 1.1 1.2 1.27 1.29 1.3 1.31 1.33 1.4
χ2 15.1394 13.1839 13.0184 13.0093 13.0104 13.0098 13.0102 13.0128

σ exclusion 1.9849 1.4086 1.3486 1.3452 1.3457 1.3454 1.3456 1.3465

% suppression 29.5 7.94 4.75 4.45 4.37 4.33 4.35 4.47

Table II: Fits to the SDSS 2006 data for Rn cosmology by using set of initial conditions III: eight different values of exponent
n were investigated from n = 1.1 to 1.4. Values for χ2 and the confidence region σ are presented in the second and third rows
respectively. The data to be fitted by the theoretical spectra are taken from [37]. The fit provided by ΛCDM (χ2 = 11.1996)
is not improved by any of these parameter values. The final row gives the suppression in the overall initial amplitude required
to get the best fits. For all the values, this suppression turns out to be smaller than 30% and is therefore in the experimental
uncertainty interval for this quantity. One can see that the best fit corresponds to the value n = 1.29 with a suppression of
4.45% and good fits are also obtained for n = 1.3, 1.31 and 1.33 with similar suppressions.
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phases of the Universe with positive energy density if n
lies in the range 1.36 < n < 1.5.
With this in mind let us integrate (18) by fixing the

initial conditions for the DS variables (16) to be identical
to their ΛCDM values in the radiation dominated era
(at a redshift z = 6000) and determine the expansion
history for Rn models with eight different values for the
exponent n > 1 between n = 1.1 and 1.4 in order to
allow the possibility of late-time acceleration. In this
way we can determine for which values of n we obtain
present day values for q(z) and H(z) consistent with the
ΛCDM model. It is clear from the results in Table I that
it is not possible for Rn gravity to admit FLRW cosmic
histories that simultaneously have present-day values of
the Hubble and deceleration parameters close to their
ΛCDM values today if initial conditions are chosen in
order that the expansion history is close to the ΛCDM
model at early times.

n 1.1 1.2 1.27 1.29 1.3 1.31 1.33 1.4
h0 0.65 0.75 0.94 0.99 1.44 2.43 7.34 159.67
q0 0.39 0.20 0.10 0.25 0.36 0.35 0.22 −0.17

Table I: Present-day values of the Hubble h0 ≡ H(today)/H0

and deceleration (q0) parameters for the Rn models under
consideration. H0 corresponds to the ΛCDM Hubble param-
eter value today. Only n = 1.4 provides acceleration at the
present time, whereas n = 1.29 gives the closest value for
h0 to ΛCDM. With regard to the χ2 analysis for BAO to be
studied in the Section IV n = 1.29 provided the best value
(χ2

BAO = 16.11) but well above the one provided by ΛCDM
(χ2

BAO = 4.51). The remaining values of exponent n give
χ2
BAO values showing incorrect fits to BAO data.

IV. BAO CONSTRAINTS

As standard rulers, BAO constraints provide an ideal
arena in the analysis of cosmic expansion history. This is
mainly because these oscillations correspond to a pre-
ferred length scale in the early universe that can be
predicted from CMB measurements [42]. Some relevant
quantities for these analyses are the comoving distance
from an observer to some redshift z which is given by

r(z) =
1

H0

∫ z

0

dz

h(z)
, (21)

the scaled distance to recombination, the comoving sound
horizon at recombination and the dilation scale respec-
tively are given by [43]

R = H0

√

Ω0d r(zCMB) , (22)

rs(zCMB) =
1

H0

∫ zCMB

∞

cs(z)

h(z)
dz , (23)

DV (zBAO) =

[

(
∫ zBAO

0

dz

H(z)

)2 zBAO

H(zBAO)

]1/3

(24)

where cs(z) =
[

3
(

1 + R̄b

1+z

)]−1/2
is the sound speed

of the photon-baryon relativistic plasma with photon-
baryon density ration

R̄b =
3

4

Ωbh̃2

Ωγ h̃2
= 3.15× 104Ωbh̃

2

(

TCMB

2.7K

)−4

. (25)

Here h̃ is the Hubble uncertainty parameter defined by
H0 = 100h̃ and we have used the Planck result of h̃ =
0.6711 [44] for this analysis, as well as zCMB = 1021.44.

Following the methods presented in [43] we study, for
the different n values considered, the BAO data likeli-
hood corresponding to recent measurements [45] of the
6dF Galaxy Survey at z = 0.1 [46], the SDSS DR7 at
z = 0.2, 0.35 [47, 48], the WiggleZ at z = 0.44, 0.60, 0.73
[42]. Thus we define

XBAO =
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⎜

⎜

⎜
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. (26)

to calculate the χ2 from the BAO as

χ2
BAO = XBAO

T CBAO
−1 XBAO . (27)

where CBAO
−1 corresponds to the inverse covariance

matrix as given in [42]. The results found for the mod-
els under study showed that the χ2

BAO analysis proves
that the cosmological evolution as provided by the mod-
els under study cannot achieve the goodness of ΛCDM
(χ2

BAO = 4.51) and that only for n = 1.29 (χ2
BAO =

16.11) the fit to BAO data can be considered of the same
order of magnitude, though much bigger, than ΛCDM.
In fact, for the model interval n = [1.1, 1.4] the χ2

BAO
minimum lies at n = 1.29 being the χ2

BAO value strongly
dependent on the exponent n so that for other values of
n the obtained χ2’s rapidly departed from this minimum.

V. THE MATTER POWER SPECTRUM AND
SDSS CONSTRAINTS

Let us now turn to the matter power spectrum. Taking
the dominant component to be dust, the system (11) can
be written in terms of the dynamical variables:
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n the obtained χ2’s rapidly departed from this minimum.

V. THE MATTER POWER SPECTRUM AND
SDSS CONSTRAINTS

Let us now turn to the matter power spectrum. Taking
the dominant component to be dust, the system (11) can
be written in terms of the dynamical variables:
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n exponent 1.1 1.2 1.27 1.29 1.3 1.31 1.33 1.4
χ2 4.5463 1.0507 1.0366 1.0357 1.0355 1.0458 1.0360 1.0357

σ exclusion 1.874 0.123 0.0316 0.012 0.002 0.101 0.020 0.001

% suppression 13 1.5 0.1 0.01 0.001 1 0.04 0.009

Table III: Fits to the SDSS CMASS DR9 data for Rn cosmology by using set of initial conditions III: eight different values
of exponent n were investigated from n = 1.1 to 1.4. Values for χ2 and the confidence region σ are presented in the second
and third rows respectively. The data to be fitted by the theoretical spectra are taken from [38]. The fit provided by ΛCDM
(χ2 = 61.1/59 ≈ 1.03559) is slightly improved by the n = 1.3 parameter value. The final row gives the suppression in the
overall initial amplitude required to get the best fits. For all the values, this suppression turns out to be smaller than 15% and
is therefore in the experimental uncertainty interval for this quantity. For the best fit n = 1.3 the corresponding suppression is
10−3% and very good fits are also obtained for n = 1.27, 1.29, 1.33 and 1.4 with similar suppressions.

For completeness and in order to emphasise the im-
portance of using the complete expansion history for the
background, we have also given |∆k

m|2 for models whose
background evolution is given by the exact saddle point
solution G in the case of dust (w = 0). We do this
for the same parameter values n and initial conditions
I, II and III as shown in Fig. 2. These results agree
with previous investigations [30] that showed how when
this background scale factor is assumed the spectrum is
composed of three parts corresponding to three different
evolution regimes for the perturbations. In this scenario,
on intermediate scales the interaction between the two
fluids (dust and curvature) is maximised and the curva-
ture fluid acts as a relativistic component whose pressure
is responsible for the oscillations and the dissipation of
the small scale perturbations in the same way in which
the photons operate in a baryon-photon system [30]. If
we compare these results to the left panel in Fig. 1,
we conclude that the scale-dependent features in Fig. 2
are washed out when the complete background expansion
history is considered, however the main large and small
scale features of the power spectrum found in [30] are
retained.

VI. DISCUSSION AND FUTURE WORK

In this paper we presented a complete analysis of the
background and matter perturbations for one of the most
widely studied modified gravity theories: Rn gravity with
n ! 1. Both the cosmological background evolution and
linear perturbation equations were solved by combining
the dynamical systems approach for the background and
using the 1 + 3 covariant approach to evolve the mat-
ter perturbations, without assuming any intermediate
(quasi-static) approximation.
We solved the background equations for different val-

ues of the parameter n using initial conditions in the ra-
diation dominated epoch, with Hubble and deceleration
parameters equal to their ΛCDM values. For such initial
conditions, we performed a baryon acoustic oscillations
analysis. By using this tool we found that it is impos-

sible to obtain fits as good as ΛCDM. We also proved
the impossibility of having cosmic histories that simul-
taneously have present day values of these cosmological
parameters close to their ΛCDM values today. In fact,
of the ten models considered, only n = 1.4 provided a
negative deceleration parameter today, but gave a Hub-
ble parameter completely incompatible with its observed
value, while values around n = 1.29 gave the closest value
for the present-day Hubble parameter to ΛCDM but ex-
hibits no late time acceleration. The value n = 1.29
provided the best χ2 when its cosmological evolution is
compared with BAO data but well above the ΛCDM one.

We then used the observed matter power spectrum
based on both luminous red galaxies (2006) and the DR9
CMASS galaxy sample (2012) in the Sloan Digital Sky
Survey to further constrain these models. For the stud-
ied exponents, we found that all the models gave rise to
almost-flat transfer functions in the Sloan wavenumber
interval provided very special initial conditions are cho-
sen. In this case the best fit to the data for 2006 data
was found for the value n = 1.29 with a suppression of
4.45% and good fits and good fits were also obtained for
n = 1.3, 1.31 and 1.33. The exponent n = 1.4 (the only
one providing acceleration today) required a suppression
slightly bigger (4.47%). With regard to DR9 2012 data
and partially thanks to the accuracy in this catalogue,
most of the studied Rn models provided good fits to the
data being n = 1.3 with a suppression of 10−3% the best
fit slightly improved by ΛCDM. Other exponents (1.27,
1.29, 1.33 and 1.4) also provided good fits with slightly
bigger suppressions.

Regardless of the Large Structure Constraints none
of the studied exponents were however able to fit the
baryon acoustic oscillations data as well as the ΛCDM
model and the obtained χ2 were much bigger than
the best-fit model as provided by ΛCDM. It is clear
from this analysis that Rn gravity does not successfully
meet any of the cosmology requirements for it to be
considered as a viable alternative to the standard model.
This work does however illustrate in depth the utility
of our approach and it should be possible to use these
techniques with the most updated available data to
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CMB Tensor anisotropies

 The k-modes for tensor perturbations for a general f(R) theory satisfy:

5

A. The initial conditions

In the radiation dominated era, the anisotropic stress π is dominated by the radiation fluid contribution. Therefore,
in this scenario π = πγ and consequently, equation (26) reduces to

σ̈k +Aσ̇k +Bσk =
a

k

µ

f ′

[
π̇γ
k −

(
H + 3Hω +

f ′′

f ′

)
πγ
k

]
, (28)

where the quantities A and B are defined as

A ≡ 3H +
f ′′

f ′
Ṙ, B ≡

k2

a2
+ 2

ä

a
+ Ṙ2

[
f ′′′

f ′
−
(
f ′′

f ′

)2
]

+
f ′′

f ′
R̈+H

f ′′

f ′
Ṙ . (29)

Thanks to the homogeneity of the early universe, equation (28) can be further simplified by assuming that the radiation
anisotropic stress vanishes. Thus,

d2σk

dτ2
+ (aA−H)

dσk

dτ
+ a2Bσk = 0 , (30)

where τ hods for conformal time and H ≡ aH . In order to remove the damping term in the previous equation, we
perform the variable change uk = amσk and choose m = Aa−H

2H . After this redefinition, equation (30) reads

d2uk

dτ2
+

(
−
1

2
mH

f ′′

f ′
−

m

a

d2a

dτ2
+ a2B

)
uk = 0 . (31)

Note that in the previous equation derivation, the exponent m has been assumed to be constant. This in fact the
case of Rn models that will be studied in the following section.

IV. DYNAMICS OF Rn MODELS: BACKGROUND AND TENSOR PERTURBATIONS EVOLUTION

In order to illustrate the formalism described in the previous sections, we considered a one-dependent parameter
kind of f(R) models, the f(R) = Rn models.

A. Background setup and the evolution equations

Let us define the following set of dynamical variables :

x =
Ṙ(n− 1)

HR
, y =

R(1− n)

6nH2
, Ωd =

µd

3H2nRn−1
Ωr =

µr

3H2nRn−1
. (32)

In terms of these variables, the Friedmann equation (13) takes the simple form ,

1 + x+ y − Ωd − Ωr = 0 . (33)

At this stage, an autonomous system, which is equivalent to cosmological equations (13)-(15) can be derived by
differentiating the dynamical variables defined in (32). Thus,

a
dx
da

= −x− x2 +
(4 − 2n+ nx)y

n− 1
+ Ωd ,

a
dy
da

=

[
4 +

(x + 2ny)

n− 1

]
y ,

a
dΩd

da
=

[
1− x+

2ny

n− 1

]
Ωd , (34)

a
dΩr

da
=

[
−x+

2ny

n− 1

]
Ωr ,
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ä

a
+ Ṙ2
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Ṙ(n− 1)

HR
, y =

R(1− n)

6nH2
, Ωd =

µd

3H2nRn−1
Ωr =

µr

3H2nRn−1
. (32)

In terms of these variables, the Friedmann equation (13) takes the simple form ,

1 + x+ y − Ωd − Ωr = 0 . (33)

At this stage, an autonomous system, which is equivalent to cosmological equations (13)-(15) can be derived by
differentiating the dynamical variables defined in (32). Thus,

a
dx
da

= −x− x2 +
(4 − 2n+ nx)y

n− 1
+ Ωd ,

a
dy
da

=

[
4 +

(x + 2ny)

n− 1

]
y ,

a
dΩd

da
=

[
1− x+

2ny

n− 1

]
Ωd , (34)

a
dΩr

da
=

[
−x+

2ny

n− 1

]
Ωr ,

} Initial conditions for CAMB

Obtained deep in the radiation dominated era. 
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Ṙ . (29)

Thanks to the homogeneity of the early universe, equation (28) can be further simplified by assuming that the radiation
anisotropic stress vanishes. Thus,

d2σk

dτ2
+ (aA−H)

dσk

dτ
+ a2Bσk = 0 , (30)

where τ hods for conformal time and H ≡ aH . In order to remove the damping term in the previous equation, we
perform the variable change uk = amσk and choose m = Aa−H

2H . After this redefinition, equation (30) reads

d2uk

dτ2
+

(
−
1

2
mH

f ′′

f ′
−

m

a

d2a

dτ2
+ a2B

)
uk = 0 . (31)

Note that in the previous equation derivation, the exponent m has been assumed to be constant. This in fact the
case of Rn models that will be studied in the following section.

IV. DYNAMICS OF Rn MODELS: BACKGROUND AND TENSOR PERTURBATIONS EVOLUTION

In order to illustrate the formalism described in the previous sections, we considered a one-dependent parameter
kind of f(R) models, the f(R) = Rn models.

A. Background setup and the evolution equations

Let us define the following set of dynamical variables :

x =
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Table I: Coordinates of the fixed points forRn-gravity.

Point Coordinates [x, y, Ωd, Ωr]

A [−1, 0, 0, 0]

B

[

4− 2n
1− 2n

,
5− 4n
2n− 1

, 0, 0

]

C [−2, 0, 0,−2]

D [0, 0, 0, 0]

E
[

2− 2n,−2(−1 + n)2, 0, 0
]

F [0, 0, 0, 1]

G

[

−3 +
3
n
,
−3 + (7− 4n)n

2n2
,
−3 + (13− 8n)n

2n2
, 0

]

H [−1, 0,−1, 0]

I [1, 0, 2, 0]

J

[

−4 +
4
n
,−

2(n− 1)2

n2
, 0,−5 +

8n− 2
n2

]

The constraint equation (33) can be used to reduce the dimensionality of the system above. The evolution equation
of Hubble parameter H is given in terms of the dynamical variables (32) by ,

a
dH
da

= −H

(
2 +

ny

n− 1

)
. (35)

The fixed points of the system (34) are shown in Table I. In order to study the stability of these fixed points we
use the well-known techniques, which involve linearizing the dynamical equations around the equilibrium points and
then finding the eigenvalues of the linearization matrix – the Jacobian – at the equilibrium points. There are two
interesting points in the phase space of the Rn-gravity models: the points J which is a transient decelerated power
law expansion phase and the point B which represents an accelerated expansion phase. A huge number of orbits
connecting these two points can be found. Since we are interested in a background evolution that is similar to ΛCDM,
we used a numerical procedure to single out the orbit which gives the best fit to ΛCDM evolution.

B. Perturbations setup

When f(R) = Rn and for the case n ̸= 2 equation (31) reduces to [29],

d2uk

dτ2
+
(
k2 − 2 τ−2

)
uk = 0 , (36)

where m = 2?n
n

due to the fact that for Rn models, the scale factor in the radiation dominated era satisfies a(τ) = τ
n

2?n

[30] and therefore the parameter m is constant as it was assumed in order to obtain (31). The result in (36) is exactly
the same as the one for tensor perturbations in GR obtained in [31]. On the other hand, equation (27) becomes,

πR
k = −

k

a2
(n− 1)

µR

dR
dτ

σk. (37)

whose importance was stressed after (27).

V. CMB TENSOR POWER SPECTRA FOR Rn MODELS

In the latest and free software version of CAMB, the so-called parameterized post-Friedmann, ppf-CAMB [34], there
exists the possibility of feeding in the equation of state parameter of the dark energy contribution through a data
file. Since the curvature fluid (4) is expected to play the role of dark energy in the f(R) theories, then equation (21)
can be used to generate the required equation of state parameter data file for the curvature fluid. By supplying the
ppf-CAMB code with this data file and using the effective matter density µeff ≡ µ/f ′, together with equation (37),
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Ṙ , B ≡

k2

a2
+ 2

ä
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Initial conditions close to J

Deep in the radiation dominated epoch we can assume that the 
expansion history is well described by the solution described by the 
equilibrium point J..... 

.....so initial conditions the same as GR!!
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= −H

(
2 +

ny

n− 1

)
. (35)

The fixed points of the system (34) are shown in Table I. In order to study the stability of these fixed points we
use the well-known techniques, which involve linearizing the dynamical equations around the equilibrium points and
then finding the eigenvalues of the linearization matrix – the Jacobian – at the equilibrium points. There are two
interesting points in the phase space of the Rn-gravity models: the points J which is a transient decelerated power
law expansion phase and the point B which represents an accelerated expansion phase. A huge number of orbits
connecting these two points can be found. Since we are interested in a background evolution that is similar to ΛCDM,
we used a numerical procedure to single out the orbit which gives the best fit to ΛCDM evolution.

B. Perturbations setup

When f(R) = Rn and for the case n ̸= 2 equation (31) reduces to [29],

d2uk

dτ2
+
(
k2 − 2 τ−2

)
uk = 0 , (36)

where m = 2?n
n

due to the fact that for Rn models, the scale factor in the radiation dominated era satisfies a(τ) = τ
n

2?n

[30] and therefore the parameter m is constant as it was assumed in order to obtain (31). The result in (36) is exactly
the same as the one for tensor perturbations in GR obtained in [31]. On the other hand, equation (27) becomes,

πR
k = −

k

a2
(n− 1)

µR

dR
dτ

σk. (37)

whose importance was stressed after (27).

V. CMB TENSOR POWER SPECTRA FOR Rn MODELS

In the latest and free software version of CAMB, the so-called parameterized post-Friedmann, ppf-CAMB [34], there
exists the possibility of feeding in the equation of state parameter of the dark energy contribution through a data
file. Since the curvature fluid (4) is expected to play the role of dark energy in the f(R) theories, then equation (21)
can be used to generate the required equation of state parameter data file for the curvature fluid. By supplying the
ppf-CAMB code with this data file and using the effective matter density µeff ≡ µ/f ′, together with equation (37),

In this case we have for             .....
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Figure 2: The temperature (left panel) and electrical (right panel) power spectra for tensor perturbations using correct background
and perturbations equations. Rn models are shown with n = 1.22, 1.23, 1.24, 1.25, 1.26, 1.27 and 1.28. We also plot n = 1, i.e. GR for
comparison. The initial tensor power spectra are scale invariant and we have adopted an absolute normalisation to the power in the

primordial gravity wave background. The GR (n = 1) cosmology is the spatially flat CDM (concordance) model, i.e. GR, with density
parameters Ωb = 0.035, Ωc = 0.315, ΩΛ = 0.65, no massive neutrinos, and the Hubble constant H0 = 65 km s−1Mpc−1.

V. CMB TENSOR POWER SPECTRA FOR Rn MODELS

In the latest and free software version of CAMB, the so-called parameterized post-Friedmann, ppf-CAMB [31],
there exists the possibility of feeding in the equation of state parameter of the dark energy contribution through a
data file. Since the curvature fluid (4) is expected to play the role of dark energy in the f(R) theories, equation
(21) can be used to generate the required equation of state parameter data file for the curvature fluid. By supplying
the ppf-CAMB code with this data file and using the effective matter density µeff ≡ µ/f ′, together with equation
(37), we managed to implement the correct background evolution in CAMB. This procedure was usually missing in
previous investigations that for the sake of simplicity assumed GR background when studying the tensor perturbations
of modified gravity theories.

We considered different values of n to illustrate the general procedure. First, we considered values of n very close
to unity to test that our method converges to the usual GR calculations (n = 1). Then, the studied values of n were
n = 1.22, 1.23, 1.24, 1.25, 1.26, 1.27, 1.28. This choice was motivated by the fact that the best fit for Rn models to
SN-Ia data was obtained for n ≃ 1.28 (Shosho, was this result presented elsewhere in any of your papers?). Once that
the correct background and perturbations evolution have been implemented in the CAMB simulation, distinct features
depending on the value of n can be noticed. There are notable effects that the modifications in the background and
tensor perturbations produce in both cTT

l and cEE
l coefficients with respect to the usual results obtained from GR

plus cosmological constant as the underlying theory. Let us summarize these results as follows:
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Figure 3: Power spectra with GR background and f(R) perturbations: The temperature (left panel) and electrical (right panel) power
spectra for tensor perturbations. Rn models are shown with n = 1.22, 1.23, 1.24, 1.25, 1.26, 1.27 and 1.28. We also plot n = 1, i.e. GR
for comparison. The initial tensor power spectrum is scale invariant and we have adopted an absolute normalisation to the power in the

primordial gravity wave background. The background cosmology is again the one considered in Figure 2.
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Figure 4: The temperature (left panel) and electrical (right panel) power spectra for tensor perturbations in all the possible background
and perturbations scenarios. Rn model for n = 1.28: Power spectra for GR background and GR perturbations are depicted in red

continuous, with no dependence on the Rn model and shown just for comparison ; GR background and f(R) perturbations pink dotted
line; f(R) background and GR perturbations in dotted-dashed blue line; f(R) both background and perturbations in dashed green line.

A. cTT
l features

In all the studied cases we have remarked that the amplitude for fully modified cTT
l coefficients is suppressed for

large l’s with respect to the usual GR simulations. The suppression increases with increasing values of parameter n.
For small l’s, a small reduction is also remarked. All these features can be seen in Figure 2. For n = 1.24, 1.25, 1.26
the maximum amplitude suppression was two orders of magnitude at largest l ≈ 2000 whereas for n = 1.27 and 1.28
this suppression attained three orders of magnitude as can be seen in Figure 2. Thus, the amplitudes at high l’s
moved from numerical values of 2 · 10−3 (GR) to 2 · 10−6 (n = 1.28).

For n = 1.22 we observe a horizontal shift to the right for the modified cTT
l with respect to the GR simulations at

intermediate scales (l ≈ 100− 200). For the rest n values considered, this shift now moves towards the left as can be
seen in Figure 2. For n ≃ 1.27 the horizontal shift has been cancelled and finally for n = 1.28 the shift is now towards

Power spectra: the various combinations 

• Abdelwahab, Bishop, de la Cruz-Dombriz, PD (arXiv: 1412.6350)
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Figure 3: Power spectra with GR background and f(R) perturbations: The temperature (left panel) and electrical (right panel) power
spectra for tensor perturbations. Rn models are shown with n = 1.22, 1.23, 1.24, 1.25, 1.26, 1.27 and 1.28. We also plot n = 1, i.e. GR
for comparison. The initial tensor power spectrum is scale invariant and we have adopted an absolute normalisation to the power in the

primordial gravity wave background. The background cosmology is again the one considered in Figure 2.
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Figure 4: The temperature (left panel) and electrical (right panel) power spectra for tensor perturbations in all the possible background
and perturbations scenarios. Rn model for n = 1.28: Power spectra for GR background and GR perturbations are depicted in red

continuous, with no dependence on the Rn model and shown just for comparison ; GR background and f(R) perturbations pink dotted
line; f(R) background and GR perturbations in dotted-dashed blue line; f(R) both background and perturbations in dashed green line.

A. cTT
l features

In all the studied cases we have remarked that the amplitude for fully modified cTT
l coefficients is suppressed for

large l’s with respect to the usual GR simulations. The suppression increases with increasing values of parameter n.
For small l’s, a small reduction is also remarked. All these features can be seen in Figure 2. For n = 1.24, 1.25, 1.26
the maximum amplitude suppression was two orders of magnitude at largest l ≈ 2000 whereas for n = 1.27 and 1.28
this suppression attained three orders of magnitude as can be seen in Figure 2. Thus, the amplitudes at high l’s
moved from numerical values of 2 · 10−3 (GR) to 2 · 10−6 (n = 1.28).

For n = 1.22 we observe a horizontal shift to the right for the modified cTT
l with respect to the GR simulations at

intermediate scales (l ≈ 100− 200). For the rest n values considered, this shift now moves towards the left as can be
seen in Figure 2. For n ≃ 1.27 the horizontal shift has been cancelled and finally for n = 1.28 the shift is now towards

The effect on the power spectrum is affected most by changes to the 
background model.



Viable f(R) theories of gravity  
Probably the best known f(R) theories that fall into this 
class are given by:                     with:

Hu & Sawicki, arXiv: 0705.1158 

Starobinskiy arXiv: 0706.2041 

Appleby & Battye, arXiv: 0705.3199 

• These theories require a screening mechanism, to hide 
the extra dynamical degree of freedom on small scales 

• They provide expansion histories that are in excellent 
agreement with LCDM…. BUT



Some problems with viable f(R) theories  
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Frolov, arXiv: 0803.2500 

• Energetically accessible curvature singularity (A) exists at finite 
redshifts if initial conditions are taken to be the same as LCDM today.  



In this case we have a Hu 
and Sawicki model with 
n=3, with LCDM initial 
conditions taken at z=0. 
The curvature singularity 
occurs at z~2.1.

• So while H(z) seems to be well behaved, oscillations develop in the 
second derivative of the scale factor, leading to singular deceleration and 
EOS parameters.  

• Problem can be circumvented, by choosing 
initial conditions at high redshifts (R>>m^2), 
leading to a singularity-free region of 
parameter space (see Kandhai’s talk).



Bottom up approach to 
cosmological modeling 

• Very little has been done on trying to understand how weak field 
systems can be embedded into expanding cosmological backgrounds.

• Look at two cases

- The Einstein-Strauss like constructions used for example to build 
"Swiss Cheese" inhomogeneous cosmological models.

- Solve for the geometry of spacetime in the vicinity of astrophysical 
objects and then patch together a large number of such regions.

Israel junction 
conditions



Einstein-Strauss like constructions
• The FLRW region can only be Minkowski spacetime (in Milne 

coordinates if (k=-1)

• This is because the conditions that the Ricci scalar and its first 
derivative should match across the boundary make the non-trivial 
f(R) theories qualitatively different from general relativity, where R 
can be discontinuous

• If a spherically symmetric object is joined to a FLRW geometry in 
f(R) theories, then one must expect an evolution of the boundary 
values of R and R’ , which is something that pure Schwarzschild or 
Schwarzschild-de Sitter solutions cannot satisfy.

• Worse still.... other well know spherically symmetric solutions of f(R) 
gravity also can't be embedded in FLRW spacetimes.  

Clifton, PD, Goswami, Nzioki , PRD 2013



Patchwork universes

• Divide the universe up into a patchwork of regions, each of which 
can be described using post-Newtonian gravity:

• Match these regions together using junction conditions applied at 
their boundaries:

Cell 1 Cell 2

Clifton, PD, arXiv: 1501.04004



• Cosmological expansion can be seen as an emergent phenomenon 

Image from Green and Wald, arXiv: 1407.8084

Patchwork universes



• Consider the geometry inside a single cell: 

Construction of a patchwork 
universe in f(R) gravity

• Each cell contains a galaxy sized amount of mass and a spatial extent  
similar to intergalactic separation. 

• Assume that the rate of expansion is of similar order of magnitude 
to the real universe -  



and

• The field equations and 
junction conditions give  

andwhere

• Class I:

• Class II:

• For general f(R) theories, can't make any assumptions about 
smallness of f and    but assume that we can expand the function 
the Lagrangian in terms of our smallness parameter: 

Construction of a patchwork 
universe in f(R) gravity



Class I theories
• The field equations and junction conditions give:

and

and
where

• The new scalar degree of freedom must also obey

• These equations, together with the junction 
condition                  , mean that the large-scale 
expansion must proceed in the same way as in 
the LCDM model of GR.



Class II theories

• In this case  where

• The field equations then show that inhomogeneous cosmological 
solutions in this class cannot obey the chameleon mechanism and 
must have   

• Solutions of this class are therefore are unable to both reproduce 
the correct cosmological expansion history and give the correct 
weak field limit. 



Some consequences

• When non-linear structure forms, the large scale evolution of all viable 
models approaches that of the LCDM model of GR. Should be possible 
to also show this by doing an order by order perturbative approach 
starting with a FLRW background.

• If this is the case, the sudden curvature singularities that exist in the 
FLRW solutions of many f(R) theories are suppressed after the 
formation of Large Scale Structure.  

• In Class I theories the effective cosmological constant must be constructed 
from the parameters of the theory. In the case of the Hu & Sawicki model, 
this is related to the height of the plateau of F(R).



• It appears therefore that these “designer” theories do 
not solve any of the problems associated with the 
cosmological constant.

• The difficulties created by introducing a new light 
degree of freedom on small scales seem to have any 
obvious benefit.

Pessimistic

• Provided viable f(R) phenomenology can be motivated 
from a more fundamental theory, late time acceleration 
can be seen as an emergent phenomenon determined by 
the parameters of this theory. 

• Curvature singularities removed with the onset of 
structure formation.

Optomistic



Conclusions and future work
• f(R) theories give rise to rich cosmological dynamics able to explain 

the late time accelerated expansion of the universe.
• Simple extensions to GR such as                         while able to 

provide a good fit to LSS data, appear unable to simultaneously 
provide the correct values of the Hubble and deceleration 
parameters. 

• Viable f(R) theories suffer from a curvature singularity at finite 
redshifts when initial conditions are taken to the the same as 
LCDM today. 

• The standard Einstein-Strauss construction appears not to be 
possible in f(R) gravity and other known spherically symmetric 
solutions appear not to be embeddable in an expanding FLRW 
background. 

• A bottom up approach to cosmological modeling seems to remove 
problematic curvature singularities, but suggest that designer f(R) 
gravity is unable to provide a more attractive alternative to LCDM

• Future work should focus on trying to reconstruct the theory of 
gravity from observational data. 

f(R) = R + ↵Rn


