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MOTIVATION 
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•  PBHs are a viable DM candidate, requiring no extensions to the standard 
model 

•  Many models predict a large amount of PBHs – and typically, these models 
also produce non-gaussianity 



PRIMORDIAL BLACK HOLES 
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•  Form very early on in the history of the universe from the collapse of density fluctuations 

•  They can theoretically have any mass (>MPl?), but constraints on the abundance exist for 
PBHs of mass ~108g to ~1050g 

•  A perturbation will collapse if above a certain critical value,             (Shibata and Sasaki, 
1999), when it re-enters the horizon 

•  Still a viable DM candidate – there exists a narrow range of mass scales which are not 
constrained by observations, roughly 1020g (we will assume DM is PBHs) 

•  Traditionally used to constrain the small scale power spectrum 

•  But can the very small PBHs can produce observable consequences in the very large 
CMB? 
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CALCULATING THE ABUNDANCE OF PBH’S 
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•  The abundance has can be calculated using a Press-Schechter (PS) approach, 
integrating over the probability density function (pdf) 

•  The theory of peaks can also be used (see arXiv:1405.7023) 

•  The pdf is normally assumed to be gaussian 

 

•  (The power spectrum can be used instead of the variance,      , because super-horizon 
modes can be neglected) 

•     is exponentially sensitive to the power spectrum (and non-gaussianity parameters) 
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•  Naively expect first perturbation to collapse, but not the second 

•  However, horizon is small at time of formation, and both universes look the same locally 

•  They should both collapse, or neither should collapse 

•  (Extremely) super-horizon modes can be neglected 

THE CURVATURE PERTURBATION AND SUPER-
HORIZON MODES 
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MODAL COUPLING DUE TO NON-GAUSSIANITY 
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•  In the local model of non-gaussianity 

•  Split perturbations into “peak” and “background” 

•  ζ can then be rewritten in terms of new perturbed variables 
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MODAL COUPLING 
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PBHs are biased to form at the peak (trough) of long wavelength 
modes in the presence of positive (negative) non-gaussianity  



BIAS FACTORS 
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•  Scale-independent bias: a perturbation (halo) is more likely to collapse if it is in the middle 
of a larger-scale over-density (a bigger halo) 

•  Not relevant for PBHs as larger super-horizon density modes are strongly 
suppressed 

•  Scale-dependant bias: arises from the modal coupling due to non-gaussianity 

•  Extremely relevant for PBHs 

•  To first order: 
⌦PBH = (1 + 3⇣ + b⇣)⌦̄PBH

Background value 

Adiabatic perturbation 

Isocurvature perturbation 



ISOCURVATURE MODES 
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•  In the standard picture of single field inflation, all perturbations are adiabatic – and can be 
explained by the difference in expansion of a region due to  

•                   

•                   

•  Adiabatic modes in the matter and radiation fluids are therefore related by a factor ¾ - and 
deviation from this ratio is considered to be an isocurvature perturbation 

•  Very tight constraints from Planck on fully-, or fully anti-, correlated isocurvature modes in 
CDM 
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CONSTRAINTS ON NON-GAUSSIANITY IN THE 
PBH DM SCENARIO 
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•  The scale-dependant bias therefore creates isocurvature perturbations in the primordial 
distribution of CDM in the presece of non-gaussianity  

•  Constraints from Planck:  

•  To first order in         and  

•  Very tight constraints on the non-gaussianity parameters 
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CONCLUSIONS 
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•  Detection of PBHs would effectively rule out non-gaussianity, and vice versa 

•  Constraints are (almost) independent of PBH mass, and cannot be evaded if PBHs span a 
large range of masses 

•  Most PBH producing models can be ruled out as a mechanism for producing PBH DM 

•  Calculation can be extended to exclude higher order terms as well 

•  Not accounted for scale dependant NG, but would not weaken constraints significantly 
(though distribution is free to become strongly NG on small scales) 



THANK YOU FOR LISTENING 
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•  Any questions? 

•  Here are some suggestions (of things I didn’t have time for): 

•  Why does non-gaussianity have such a strong effect on the abundance of PBHs? 

•  What if dark matter is only partially composed of PBHs? 

•  Why are the constraints on gNL so similar to the constraints on fNL? 

•  Can a positive gNL cancel the effect of a negative fNL? 

•  What about higher order terms? 
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PARTIAL PRIMORDIAL BLACK HOLE DARK 
MATTER 
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•  The bispectrum      is the fourier 
transform of the 3-point correlation 
function 

•  The trispectrum     is the fourier 
transform of the 4-point correlation 
function 

•  Non-zero non-gaussianity implies a 
coupling between modes 

•  In the local model of non-gaussianity 

WHAT IS NON-GAUSSIANITY? 
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NB. Small fNL has a large effect on 
 distribution 



THE TRISPECTRUM 

Density distribution Probability density 
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•  Small change in the parameters 
means a large change to the tail of the 
distribution 

•  The fNL term has a linear effect on the 
amplitude of perturbation  

•  (Difference has been amplified by 105) 

CONSTRAINTS ON FNL 
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•  Constraints on gNL are naively 
expected to be ~10-5 weaker 

•  gNL term has a linear effect on the fNL 
term 

CONSTRAINTS ON GNL 
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CONSTRAINTS ON THE POWER SPECTRUM 

Bringmann, Scott, Akrami, 2013 
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