Area deficits and gravitational energy

José M M Senovilla

Department of Theoretical Physics and History of Science
University of the Basque Country, Bilbao, Spain
Traveling through Pedro's universes, Madrid, 3rd December 2018
In Memoriam, Pedro Félix González Díaz (1947-2012)

En homenaje a Pedro

Introduction

Gravity is curvature, is geometry.

- Direct detection of gravitational waves from a black-hole binary (in 2015)
- Physics Nobel Prize 2017
- Measured with a laser interferometer able to "feel" tiny geometric disturbances
- Surely, these waves carry energy and momentum!
- Equivalence Principle: the gravitational field can be made to vanish along any causal curve
- That implies that the gravitational energy-momentum can be set to zero anywhere at will
- Gravitational energy is not localizable

No $t_{\mu \nu}$!

Equivalence principle implies that there is no energy-momentum tensor for the gravitational field.

There are definitions of "total energy-momentum" for isolated systems, and other global interesting energy-momentum quantities, but how to quantify the energy that affected the LIGO/VIRGO interferometer?

Introduction

Gravity is curvature.

How does curvature affect area/volume?

Pauli:Theory of Relativity

In an arbitrary [n-dimensional] Riemannian manifold, [the volume of a hyper-sphere of radius ℓ] becomes a complicated function of ℓ. We can imagine it to be expanded in a power series in ℓ and retain only the [first non-trivial] term. This gives

$$
V=\Omega_{n} \ell^{n}\left(1+\frac{\mathcal{R}}{6(n+2)} \ell^{2}+\ldots\right)
$$

[...] Differentiating, one obtains [...] the formula for the surface of the sphere

$$
A=n \Omega_{n} \ell^{n-1}\left(1+\frac{\mathcal{R}}{6 n} \ell^{2}+\ldots\right)
$$

Here, V is the volume of the small ball, A is the "area" of its boundary, ℓ its radius, and \mathcal{R} the scalar curvature of the space at the ball's center.

$$
\Omega_{n}=\frac{2 \pi^{\frac{n+1}{2}}}{\Gamma\left(\frac{n+1}{2}\right)}
$$

is the volume of the unit n-sphere.

Introduction

Matter generates gravity (ergo curvature)

What does matter do to geometry?

The Feynman lectures, vol. 2

The rule that Einstein gave for the curvature is the following: If there is a region of space with matter in it and we take a sphere small enough that the density ϱ of matter inside it is effectively constant, then the radius excess for the sphere is proportional to the mass inside the sphere. Using the definition of excess radius, we have

$$
\left.\delta \ell\right|_{A}=\ell-\sqrt{\frac{A}{4 \pi}}=\frac{G}{3 c^{2}} M\left(=\frac{G}{3 c^{2}} \frac{4 \pi}{3} \varrho \ell^{3}\right)
$$

Here M is the mass inside the sphere, and $\left.\delta \ell\right|_{A}$ is the "excess" radius to keep the area fixed.

Spatial geodesic balls

Choose $p \in \mathcal{M}$ and then choose $u^{\mu} \in T_{p} \mathcal{M}, u^{\mu} u_{\mu}=-1$.

Spatial geodesic balls

Choose $p \in \mathcal{M}$ and then choose $u^{\mu} \in T_{p} \mathcal{M}, u^{\mu} u_{\mu}=-1$.

- Take RNC $\left\{x^{\mu}\right\}$ based at p and adapt them so that $u^{\mu}=\delta_{0}^{\mu}$

Spatial geodesic balls

Choose $p \in \mathcal{M}$ and then choose $u^{\mu} \in T_{p} \mathcal{M}, u^{\mu} u_{\mu}=-1$.

- Take RNC $\left\{x^{\mu}\right\}$ based at p and adapt them so that $u^{\mu}=\delta_{0}^{\mu}$
- The spatial geodesic ball lies on the hypersurface $t \equiv x^{0}=0$ and the spacelike geodesics generating it have

$$
x^{\mu}=r n^{\mu}, \quad u_{\mu} n^{\mu}=0, \quad \Longrightarrow n^{\mu}=n^{i} \delta_{i}^{\mu}
$$

where r is the affine parameter and we set $\delta_{i j} n^{i} n^{j}=1$

$$
t=x^{0}=0
$$

Spatial geodesic balls

Choose $p \in \mathcal{M}$ and then choose $u^{\mu} \in T_{p} \mathcal{M}, u^{\mu} u_{\mu}=-1$.

- Take RNC $\left\{x^{\mu}\right\}$ based at p and adapt them so that $u^{\mu}=\delta_{0}^{\mu}$
- The spatial geodesic ball lies on the hypersurface $t \equiv x^{0}=0$ and the spacelike geodesics generating it have

$$
x^{\mu}=r n^{\mu}, \quad u_{\mu} n^{\mu}=0, \quad \Longrightarrow n^{\mu}=n^{i} \delta_{i}^{\mu}
$$

where r is the affine parameter and we set $\delta_{i j} n^{i} n^{j}=1$

$$
t=x^{0}=0
$$

$$
u^{\mu}
$$

- $\left\{\theta^{A}\right\}$ are local coordinates on the ball's boundary, $n^{i}\left(\theta^{A}\right)$

Volume and Area of geodesic balls at linear order

- Define the ball at first order by $r=\ell+\delta \ell^{(1)}$.

Volume and Area of geodesic balls at linear order

- Define the ball at first order by $r=\ell+\delta \ell^{(1)}$.
- Split $\delta \ell^{(1)}$ into a spherically symmetric piece $\delta \ell_{1}$ and the part depending on the direction

$$
r=\ell+\delta \ell_{1}+\tilde{\delta} \ell_{1}\left(\theta^{A}\right)
$$

Volume and Area of geodesic balls at linear order

- Define the ball at first order by $r=\ell+\delta \ell^{(1)}$.
- Split $\delta \ell^{(1)}$ into a spherically symmetric piece $\delta \ell_{1}$ and the part depending on the direction

$$
r=\ell+\delta \ell_{1}+\tilde{\delta} \ell_{1}\left(\theta^{A}\right)
$$

- A calculation at linear order in the curvature gives, for the volume of the geodesic ball (d is the spacetime dimension)

$$
V-V^{b}=\Omega_{d-2} \ell^{d-2}\left(\delta \ell_{1}-\frac{\mathcal{R}}{6\left(d^{2}-1\right)} \ell^{3}\right):=\delta^{(1)} V
$$

where $V^{b}=\Omega_{d-1} \ell^{d-1}=\Omega_{d-2} \ell^{d-1} /(d-1)$ is the volume of a radius ℓ round ball in Euclidean space;

Volume and Area of geodesic balls at linear order

- Define the ball at first order by $r=\ell+\delta \ell^{(1)}$.
- Split $\delta \ell^{(1)}$ into a spherically symmetric piece $\delta \ell_{1}$ and the part depending on the direction

$$
r=\ell+\delta \ell_{1}+\tilde{\delta} \ell_{1}\left(\theta^{A}\right)
$$

- A calculation at linear order in the curvature gives, for the volume of the geodesic ball (d is the spacetime dimension)

$$
V-V^{b}=\Omega_{d-2} \ell^{d-2}\left(\delta \ell_{1}-\frac{\mathcal{R}}{6\left(d^{2}-1\right)} \ell^{3}\right):=\delta^{(1)} V
$$

where $V^{b}=\Omega_{d-1} \ell^{d-1}=\Omega_{d-2} \ell^{d-1} /(d-1)$ is the volume of a radius ℓ round ball in Euclidean space;

- And for the area

$$
A-A^{b}=\Omega_{d-2} \ell^{d-3}\left((d-2) \delta \ell_{1}-\frac{\mathcal{R}}{6(d-1)} \ell^{3}\right):=\delta^{(1)} A
$$

where $A^{b}=\Omega_{d-2} \ell^{d-2}$ has the same meaning. \mathcal{R} is the intrinsic scalar curvature of the $t=0$ hypersurface at p.

Using the Einstein field equations

- Note: at first order, the volume and area depend only on the spherically symmetric "excess" $\delta \ell_{1}$, and not on the direction-dependent $\tilde{\delta} \ell_{1}\left(\theta_{A}\right)$.

Using the Einstein field equations

- Note: at first order, the volume and area depend only on the spherically symmetric "excess" $\delta \ell_{1}$, and not on the direction-dependent $\tilde{\delta} \ell_{1}\left(\theta_{A}\right)$.
- Observe: we recover Pauli's remark by just setting $\delta \ell_{1}=0$ (keep the radius of the ball fixed!).

Using the Einstein field equations

- Note: at first order, the volume and area depend only on the spherically symmetric "excess" $\delta \ell_{1}$, and not on the direction-dependent $\tilde{\delta} \ell_{1}\left(\theta_{A}\right)$.
- Observe: we recover Pauli's remark by just setting $\delta \ell_{1}=0$ (keep the radius of the ball fixed!).
- We also recover Feynman's interesting remark by keeping, instead, the area A fixed $\left(A=A^{b}\right.$), noticing that ($G_{\mu \nu}$ is the Einstein tensor)

$$
\mathcal{R}=2 G_{00}
$$

and using Einstein's field equations !

Using the Einstein field equations

- Note: at first order, the volume and area depend only on the spherically symmetric "excess" $\delta \ell_{1}$, and not on the direction-dependent $\tilde{\delta} \ell_{1}\left(\theta_{A}\right)$.
- Observe: we recover Pauli's remark by just setting $\delta \ell_{1}=0$ (keep the radius of the ball fixed!).
- We also recover Feynman's interesting remark by keeping, instead, the area A fixed $\left(A=A^{b}\right)$, noticing that ($G_{\mu \nu}$ is the Einstein tensor)

$$
\mathcal{R}=2 G_{00}
$$

and using Einstein's field equations !

- Then

$$
\left.\delta \ell_{1}\right|_{A}=\frac{\ell^{3}}{3(d-1)(d-2)} G_{00}=\frac{8 \pi G}{c^{4}} \frac{\ell^{3}}{3(d-1)(d-2)} T_{00}
$$

Variations of area and the energy density

- What is to be compared?

Variations of area and the energy density

- What is to be compared?
- One can keep the radius fixed $\left(\delta \ell_{1}=0\right)$ and then the area deficit is

$$
\left.\delta^{(1)} A\right|_{\ell}=-\frac{8 \pi G}{c^{4}} \Omega_{d-2} \frac{\ell^{d}}{3(d-1)} T_{00}
$$

Variations of area and the energy density

- What is to be compared?
- One can keep the radius fixed $\left(\delta \ell_{1}=0\right)$ and then the area deficit is

$$
\left.\delta^{(1)} A\right|_{\ell}=-\frac{8 \pi G}{c^{4}} \Omega_{d-2} \frac{\ell^{d}}{3(d-1)} T_{00}
$$

- Alternatively, one can keep the volume fixed, $V-V^{b}=\delta^{(1)} V=0$, which sets $\delta \ell_{1}=\mathcal{R} \ell^{3} /\left(6\left(d^{2}-1\right)\right)$ and then

$$
\left.\delta^{(1)} A\right|_{V}=-\frac{8 \pi G}{c^{4}} \Omega_{d-2} \frac{\ell^{d}}{d^{2}-1} T_{00}
$$

Variations of area and the energy density

- What is to be compared?
- One can keep the radius fixed $\left(\delta \ell_{1}=0\right)$ and then the area deficit is

$$
\left.\delta^{(1)} A\right|_{\ell}=-\frac{8 \pi G}{c^{4}} \Omega_{d-2} \frac{\ell^{d}}{3(d-1)} T_{00}
$$

- Alternatively, one can keep the volume fixed, $V-V^{b}=\delta^{(1)} V=0$, which sets $\delta \ell_{1}=\mathcal{R} \ell^{3} /\left(6\left(d^{2}-1\right)\right)$ and then

$$
\left.\delta^{(1)} A\right|_{V}=-\frac{8 \pi G}{c^{4}} \Omega_{d-2} \frac{\ell^{d}}{d^{2}-1} T_{00}
$$

- The area deficit is in both cases proportional to the energy density (at the center of the ball), but the proportionality factor is different. What is the correct factor?

Variations of area and the energy density

- In a recent interesting paper (Phys. Rev. Lett. 116 (2016) 201101) T. Jacobson argued that the correct expression is the second one

Variations of area and the energy density

- In a recent interesting paper (Phys. Rev. Lett. 116 (2016) 201101) T. Jacobson argued that the correct expression is the second one
- This correctness is based on the use of a Bekenstein-Hawking entropy $A c^{3} / 4 G \hbar$, and on an entanglement entropy which is stationary for a conformal field theory when the Einstein equations hold.

Variations of area and the energy density

- In a recent interesting paper (Phys. Rev. Lett. 116 (2016) 201101) T. Jacobson argued that the correct expression is the second one
- This correctness is based on the use of a Bekenstein-Hawking entropy $A c^{3} / 4 G \hbar$, and on an entanglement entropy which is stationary for a conformal field theory when the Einstein equations hold.
- He even argued that Einstein's field equations could be deduced from the above expressions by assuming an equilibrium condition for the vacuum entanglement entropy!

A relationship between area deficit and energy density!

- Thus, the right relation between area deficit and energy density at first order is taken to be

$$
\left.\delta^{(1)} A\right|_{V}=-\frac{8 \pi G}{c^{4}} \Omega_{d-2} \frac{\ell^{d}}{d^{2}-1} T_{00}
$$

A relationship between area deficit and energy density!

- Thus, the right relation between area deficit and energy density at first order is taken to be

$$
\left.\delta^{(1)} A\right|_{V}=-\frac{8 \pi G}{c^{4}} \Omega_{d-2} \frac{\ell^{d}}{d^{2}-1} T_{00}
$$

- Can this relationship between area deficit and energy density be taken as a guiding principle, valid in more general situations?

Vacuum!

What does pure gravity do to geometry?

T Jacobson, JMM Senovilla, A Speranza, Class. Quantum Grav 35 (2018) 085005

Area deficit in vacuum

- If $G_{\mu \nu}=0$ the area deficit $\left.\delta A^{(1)}\right|_{V}$ vanishes.

Area deficit in vacuum

- If $G_{\mu \nu}=0$ the area deficit $\left.\delta A^{(1)}\right|_{V}$ vanishes.
- However, the gravitational field is non-vanishing outside the material sources and also itself a source of curvature, so that this "purely gravitational" curvature affects the area too.

Area deficit in vacuum

- If $G_{\mu \nu}=0$ the area deficit $\left.\delta A^{(1)}\right|_{V}$ vanishes.
- However, the gravitational field is non-vanishing outside the material sources and also itself a source of curvature, so that this "purely gravitational" curvature affects the area too.
- If the relationship between area deficit and energy density is solid, such a change in area should be related, in one way or another, to the gravitational energy density

Area deficit in vacuum

- If $G_{\mu \nu}=0$ the area deficit $\left.\delta A^{(1)}\right|_{V}$ vanishes.
- However, the gravitational field is non-vanishing outside the material sources and also itself a source of curvature, so that this "purely gravitational" curvature affects the area too.
- If the relationship between area deficit and energy density is solid, such a change in area should be related, in one way or another, to the gravitational energy density
- Alternatively, area deficits could help provide a notion of quasilocal energy for the gravitational field.

Area deficit in vacuum

- If $G_{\mu \nu}=0$ the area deficit $\left.\delta A^{(1)}\right|_{V}$ vanishes.
- However, the gravitational field is non-vanishing outside the material sources and also itself a source of curvature, so that this "purely gravitational" curvature affects the area too.
- If the relationship between area deficit and energy density is solid, such a change in area should be related, in one way or another, to the gravitational energy density
- Alternatively, area deficits could help provide a notion of quasilocal energy for the gravitational field.
- At second order, the volume of a geodesic ball and the area of its boundary receive corrections depending quadratically on the curvature.

Electric-magnetic decomposition of $C_{\alpha \beta \mu \nu}$

- Given that $R_{\mu \nu}=0, R_{\alpha \beta \mu \nu}=C_{\alpha \beta \mu \nu}$ at p.

Electric-magnetic decomposition of $C_{\alpha \beta \mu \nu}$

- Given that $R_{\mu \nu}=0, R_{\alpha \beta \mu \nu}=C_{\alpha \beta \mu \nu}$ at p.
- $C_{\alpha \beta \mu \nu}$ may be decomposed into their electric and magnetic parts with respect to u^{μ} (we only need them at p)

$$
\begin{array}{rll}
E_{i j} & =C_{0 i 0 j} & \\
H_{i j k} & =C_{0 i j k} & \text { "electric-electric" } \\
D_{i j k l} & =C_{i j k l} & \text { "magnetic-magnetic" }
\end{array}
$$

Electric-magnetic decomposition of $C_{\alpha \beta \mu \nu}$

- Given that $R_{\mu \nu}=0, R_{\alpha \beta \mu \nu}=C_{\alpha \beta \mu \nu}$ at p.
- $C_{\alpha \beta \mu \nu}$ may be decomposed into their electric and magnetic parts with respect to u^{μ} (we only need them at p)

$$
\begin{array}{rll}
E_{i j} & =C_{0 i 0 j} & \text { "electric-electric" } \\
H_{i j k} & =C_{0 i j k} \quad & \text { "electric-magnetic" } \\
D_{i j k l} & =C_{i j k l} \quad \text { "magnetic-magnetic" }
\end{array}
$$

- Note that $h^{i j} D_{i k j l}=E_{k l}$ and thus

$$
D_{i j k l}=F_{i j k l}+\frac{1}{d-3}\left(E_{i k} h_{j l}-E_{j k} h_{i l}-E_{i l} h_{j k}+E_{j l} h_{i k}\right)
$$

where $F_{i j k l}$ is spatially traceless ($h_{i j}$ is the metric on the hypersurface $t=0$)

Electric-magnetic decomposition of $C_{\alpha \beta \mu \nu}$

- Given that $R_{\mu \nu}=0, R_{\alpha \beta \mu \nu}=C_{\alpha \beta \mu \nu}$ at p.
- $C_{\alpha \beta \mu \nu}$ may be decomposed into their electric and magnetic parts with respect to u^{μ} (we only need them at p)

$$
\begin{array}{rll}
E_{i j} & =C_{0 i 0 j} & \\
H_{i j k} & =C_{0 i j k} & \text { "electric-electric" } \\
D_{i j k l} & =C_{i j k l} \quad & \text { "magnetic-magnetic" }
\end{array}
$$

- Note that $h^{i j} D_{i k j l}=E_{k l}$ and thus

$$
D_{i j k l}=F_{i j k l}+\frac{1}{d-3}\left(E_{i k} h_{j l}-E_{j k} h_{i l}-E_{i l} h_{j k}+E_{j l} h_{i k}\right)
$$

where $F_{i j k l}$ is spatially traceless ($h_{i j}$ is the metric on the hypersurface $t=0$)

- Observe: $F_{i j k l}$ vanishes in $d=4$, in which case $D_{i j k l}$ is equivalent to $E_{i j}$, and $E_{i j}$ and $B_{i j} \equiv \frac{1}{2} \epsilon_{j k l} H_{i}{ }^{k l}$ are simply referred to as the electric and magnetic parts relative to u^{α}.

The ball at second order

- Define the ball at second order by

$$
r=\ell+\underbrace{\delta \ell_{1}+\tilde{\delta} \ell_{1}\left(\theta^{A}\right)}_{O(1)}+\underbrace{\delta \ell_{2}}_{O(2)} .
$$

The ball at second order

- Define the ball at second order by

$$
r=\ell+\underbrace{\delta \ell_{1}+\tilde{\delta} \ell_{1}\left(\theta^{A}\right)}_{O(1)}+\underbrace{\delta \ell_{2}}_{O(2)} .
$$

- $\delta \ell_{2}$ is the spherically symmetric piece of the 2 nd-order perturbation to r : one can prove that this is the only relevant part for the volume and area at quadratic order in curvature.

The ball at second order

- Define the ball at second order by

$$
r=\ell+\underbrace{\delta \ell_{1}+\tilde{\delta} \ell_{1}\left(\theta^{A}\right)}_{O(1)}+\underbrace{\delta \ell_{2}}_{O(2)} .
$$

- $\delta \ell_{2}$ is the spherically symmetric piece of the 2 nd-order perturbation to r : one can prove that this is the only relevant part for the volume and area at quadratic order in curvature.
- As a function defined on the $(d-2)$-sphere, $\tilde{\delta} \ell_{1}$ can be expanded in spherical harmonics. Letting s denote the "spin," we have

$$
\tilde{\delta} \ell_{1}=\sum_{s=1}^{\infty} Y_{i_{1} \ldots i_{s}} n^{i_{1}} \ldots n^{i_{s}}
$$

where $Y_{i_{1} \ldots i_{s}}$ are totally symmetric and traceless for $s>1$.

Volume of geodesic balls at quadratic order

The volume of the ball at this order (with $R_{\mu \nu}=0$ and $\delta \ell_{1}=0$) is

$$
\begin{gathered}
V=V^{b}+\underbrace{\frac{\Omega_{d-2} \ell^{d+3}}{15\left(d^{2}-1\right)(d+3)}\left[-\frac{D^{2}}{8}-\frac{H^{2}}{2}+\frac{E^{2}}{3}\right]}_{O(2)} \\
+\underbrace{\Omega_{d-2} \ell^{d-3}\left[\ell \delta \ell_{2}+(d-2) \sum_{s=1}^{\infty} c_{s} Y_{[s]}^{2}-\frac{\ell^{3}}{3\left(d^{2}-1\right)} Y^{i j} E_{i j}\right]}_{O(2)}
\end{gathered}
$$

where c_{s} are known constant factors depending on d and s.

$$
\left(Y_{[s]}^{2} \equiv Y_{i_{1} \ldots i_{s}} Y^{i_{1} \ldots i_{s}}, E^{2} \equiv E_{i j} E^{i j}, \text { and so on }\right)
$$

Area of geodesic balls at quadratic order

Similarly, the area of the ball's boundary at this order is

$$
\begin{gathered}
A=A^{b}+\underbrace{\frac{\Omega_{d-2} \ell^{d+2}}{15\left(d^{2}-1\right)}\left[-\frac{D^{2}}{8}-\frac{H^{2}}{2}+\frac{E^{2}}{3}\right]}_{O(2)} \\
+\underbrace{\Omega_{d-2} \ell^{d-4}\left[(d-2) \ell \delta \ell_{2}+\sum_{s=1}^{\infty} b_{s} Y_{[s]}^{2}-\frac{\ell^{3} d}{3\left(d^{2}-1\right)} Y^{i j} E_{i j}\right]}_{O(2)}
\end{gathered}
$$

where b_{s} are known constant factors depending on d and s.

Only spin $s=2$ is relevant

- Only the spin-2 deformation gives a different contribution to the area in curved space than in flat space: the term $Y^{i j} E_{i j}$

Only spin $s=2$ is relevant

- Only the spin-2 deformation gives a different contribution to the area in curved space than in flat space: the term $Y^{i j} E_{i j}$
- Thus, $Y_{[s]}$ for all $s \neq 2$ cannot be fixed in terms of the local gravitational field at this order in perturbations, and only the component of $Y_{i j}$ aligned with $E_{i j}$ contributes differently than in flat space, hence

$$
Y_{i j}=\gamma E_{i j}
$$

With this in mind, setting $Y_{i_{1} \ldots i_{s}}=0$ for all $s \neq 2$ and $Y_{i j}=\gamma E_{i j}$, and using the explicit value of b_{2}, we can rewrite

$$
\begin{aligned}
& A=A^{b}+\underbrace{\Omega_{d-2} \ell^{d-4}(d-2) \ell \delta \ell_{2}}_{O(2)} \\
& +\underbrace{\frac{\Omega_{d-2} \ell^{d+2}}{15\left(d^{2}-1\right)}\left[-\frac{D^{2}}{8}-\frac{H^{2}}{2}+\frac{E^{2}}{3}+15 E^{2} \gamma\left(\gamma\left(d^{2}-3 d+4\right)-\frac{d}{3}\right)\right]}_{O(2)}
\end{aligned}
$$

With this in mind, setting $Y_{i_{1} \ldots i_{s}}=0$ for all $s \neq 2$ and $Y_{i j}=\gamma E_{i j}$, and using the explicit value of b_{2}, we can rewrite

$$
\begin{aligned}
& A=A^{b}+\underbrace{\Omega_{d-2} \ell^{d-4}(d-2) \ell \delta \ell_{2}}_{O(2)} \\
& +\underbrace{\frac{\Omega_{d-2} \ell^{d+2}}{15\left(d^{2}-1\right)}\left[-\frac{D^{2}}{8}-\frac{H^{2}}{2}+\frac{E^{2}}{3}+15 E^{2} \gamma\left(\gamma\left(d^{2}-3 d+4\right)-\frac{d}{3}\right)\right]}_{O(2)}
\end{aligned}
$$

The magenta terms give $\left.\delta^{(2)} A\right|_{\ell}$, while the red terms are due to the spin-2 deformation aligned with $E_{i j}$.

With this in mind, setting $Y_{i_{1} \ldots i_{s}}=0$ for all $s \neq 2$ and $Y_{i j}=\gamma E_{i j}$, and using the explicit value of b_{2}, we can rewrite

$$
\begin{aligned}
& A=A^{b}+\underbrace{\Omega_{d-2} \ell^{d-4}(d-2) \ell \delta \ell_{2}}_{O(2)} \\
& +\underbrace{\frac{\Omega_{d-2} \ell^{d+2}}{15\left(d^{2}-1\right)}\left[-\frac{D^{2}}{8}-\frac{H^{2}}{2}+\frac{E^{2}}{3}+15 E^{2} \gamma\left(\gamma\left(d^{2}-3 d+4\right)-\frac{d}{3}\right)\right]}_{O(2)}
\end{aligned}
$$

The magenta terms give $\left.\delta^{(2)} A\right|_{\ell}$, while the red terms are due to the spin-2 deformation aligned with $E_{i j}$.
Observe that the magenta terms alone give an expression which is not negative definite.
(Unless $d=4$, where they reduce to $-B^{2}-E^{2} / 6$).

Does $\delta A^{(2)}$ provide gravitational energy formula?

> Does this formula contain a quasi-local gravitational energy?

Does $\delta A^{(2)}$ provide gravitational energy formula?

Does this formula contain a quasi-local gravitational energy?

What should we expect as the correct answer at this quadratic order, and in vacuum?

Required properties

There are several desirable and expected properties for the proper deficit $-\delta^{(2)} A$ if it is to describe gravitational strength:
(1) It should be positive definite, zero if and only if $C_{\alpha \beta \mu \nu}=0$

Required properties

There are several desirable and expected properties for the proper deficit $-\delta^{(2)} A$ if it is to describe gravitational strength:
(1) It should be positive definite, zero if and only if $C_{\alpha \beta \mu \nu}=0$
(2) It must be quadratic in the curvature (that is, in $C_{\alpha \beta \mu \nu}$)

Required properties

There are several desirable and expected properties for the proper deficit $-\delta^{(2)} A$ if it is to describe gravitational strength:
(1) It should be positive definite, zero if and only if $C_{\alpha \beta \mu \nu}=0$
(2) It must be quadratic in the curvature (that is, in $C_{\alpha \beta \mu \nu}$)
(3) It should be the timelike component (with respect to u^{μ}) of a tensor field

Required properties

There are several desirable and expected properties for the proper deficit $-\delta^{(2)} A$ if it is to describe gravitational strength:
(1) It should be positive definite, zero if and only if $C_{\alpha \beta \mu \nu}=0$
(2) It must be quadratic in the curvature (that is, in $C_{\alpha \beta \mu \nu}$)
(3) It should be the timelike component (with respect to u^{μ}) of a tensor field
(9) The putative energy -the tensor totally timelike componentshould propagate causally, in the sense that it vanishes in the entire domain of dependence of any region in which it vanishes

Required properties

There are several desirable and expected properties for the proper deficit $-\delta^{(2)} A$ if it is to describe gravitational strength:
(1) It should be positive definite, zero if and only if $C_{\alpha \beta \mu \nu}=0$
(2) It must be quadratic in the curvature (that is, in $C_{\alpha \beta \mu \nu}$)
(3) It should be the timelike component (with respect to u^{μ}) of a tensor field
(9) The putative energy -the tensor totally timelike componentshould propagate causally, in the sense that it vanishes in the entire domain of dependence of any region in which it vanishes
(5) This causal propagation is known to require the dominant property for the underlying tensor, which states that the tensor contracted on any future pointing vectors is non-negative

Required properties

There are several desirable and expected properties for the proper deficit $-\delta^{(2)} A$ if it is to describe gravitational strength:
(1) It should be positive definite, zero if and only if $C_{\alpha \beta \mu \nu}=0$
(2) It must be quadratic in the curvature (that is, in $C_{\alpha \beta \mu \nu}$)
(3) It should be the timelike component (with respect to u^{μ}) of a tensor field
(9) The putative energy -the tensor totally timelike componentshould propagate causally, in the sense that it vanishes in the entire domain of dependence of any region in which it vanishes
(5) This causal propagation is known to require the dominant property for the underlying tensor, which states that the tensor contracted on any future pointing vectors is non-negative
(0) The dominant property also guarantees that the 'momentum density' vector (the tensor contracted on u^{μ} on all indices but one) is future-pointing timelike or null. This momentum density points in the direction of propagation of the putative energy

Interlude: Bel-Robinson super-energy tensor

There is a unique (symmetric) tensor with the above properties (JMMS , Class. Quantum Grav. 17 (2000) 2799):
the generalized Bel-Robinson tensor $T_{\alpha \beta \mu \nu}$.

Recall: the electromagnetic field $(d=4)$

$$
\text { - } T_{\mu \nu}=F_{\mu \rho} F_{\nu}^{\rho}-\frac{1}{4} g_{\mu \nu} F_{\rho \sigma} F^{\rho \sigma}=\frac{1}{2}\left(F_{\mu \rho} F_{\nu}^{\rho}+\star F_{\mu \rho} \star F_{\nu}^{\rho}\right)
$$

Recall: the electromagnetic field $(d=4)$

- $T_{\mu \nu}=F_{\mu \rho} F_{\nu}^{\rho}-\frac{1}{4} g_{\mu \nu} F_{\rho \sigma} F^{\rho \sigma}=\frac{1}{2}\left(F_{\mu \rho} F_{\nu}^{\rho}+\star F_{\mu \rho} \star F_{\nu}^{\rho}\right)$
- $T_{\mu \nu}=T_{\nu \mu}$

Recall: the electromagnetic field $(d=4)$

- $T_{\mu \nu}=F_{\mu \rho} F_{\nu}^{\rho}-\frac{1}{4} g_{\mu \nu} F_{\rho \sigma} F^{\rho \sigma}=\frac{1}{2}\left(F_{\mu \rho} F_{\nu}^{\rho}+\star F_{\mu \rho} \star F_{\nu}^{\rho}\right)$
- $T_{\mu \nu}=T_{\nu \mu}$
- $T^{\rho}{ }_{\rho}=0$

Recall: the electromagnetic field $(d=4)$

- $T_{\mu \nu}=F_{\mu \rho} F_{\nu}^{\rho}-\frac{1}{4} g_{\mu \nu} F_{\rho \sigma} F^{\rho \sigma}=\frac{1}{2}\left(F_{\mu \rho} F_{\nu}^{\rho}+\star F_{\mu \rho} \star F_{\nu}^{\rho}\right)$
- $T_{\mu \nu}=T_{\nu \mu}$
- $T^{\rho}{ }_{\rho}=0$
-

$$
T_{\mu \rho} T_{\nu}^{\rho}=\frac{1}{4} g_{\mu \nu} T_{\rho \sigma} T^{\rho \sigma}
$$

Recall: the electromagnetic field $(d=4)$

- $T_{\mu \nu}=F_{\mu \rho} F_{\nu}^{\rho}-\frac{1}{4} g_{\mu \nu} F_{\rho \sigma} F^{\rho \sigma}=\frac{1}{2}\left(F_{\mu \rho} F_{\nu}^{\rho}+\star F_{\mu \rho} \star F_{\nu}{ }^{\rho}\right)$
- $T_{\mu \nu}=T_{\nu \mu}$
- $T^{\rho}{ }_{\rho}=0$
-

$$
T_{\mu \rho} T_{\nu}^{\rho}=\frac{1}{4} g_{\mu \nu} T_{\rho \sigma} T^{\rho \sigma}
$$

-

$$
T_{\mu \nu} u^{\mu} v^{\nu} \geq 0
$$

for arbitrary future-pointing vectors u^{μ} and v^{ν} (inequality is strict if all of them are timelike). This is the Dominant energy condition.

Recall: the electromagnetic field $(d=4)$

- $T_{\mu \nu}=F_{\mu \rho} F_{\nu}^{\rho}-\frac{1}{4} g_{\mu \nu} F_{\rho \sigma} F^{\rho \sigma}=\frac{1}{2}\left(F_{\mu \rho} F_{\nu}^{\rho}+\star F_{\mu \rho} \star F_{\nu}{ }^{\rho}\right)$
- $T_{\mu \nu}=T_{\nu \mu}$
- $T^{\rho}{ }_{\rho}=0$
-

$$
T_{\mu \rho} T_{\nu}^{\rho}=\frac{1}{4} g_{\mu \nu} T_{\rho \sigma} T^{\rho \sigma}
$$

-

$$
T_{\mu \nu} u^{\mu} v^{\nu} \geq 0
$$

for arbitrary future-pointing vectors u^{μ} and v^{ν} (inequality is strict if all of them are timelike). This is the Dominant energy condition.

- $\nabla^{\mu} T_{\mu \nu}=F_{\nu \rho} j^{\rho}$ and therefore $\nabla^{\mu} T_{\mu \nu}=0$ if there are no charge nor currents $\left(j^{\mu}=0\right)$.

Recall: the electromagnetic field $(d=4)$

- $T_{\mu \nu}=F_{\mu \rho} F_{\nu}^{\rho}-\frac{1}{4} g_{\mu \nu} F_{\rho \sigma} F^{\rho \sigma}=\frac{1}{2}\left(F_{\mu \rho} F_{\nu}^{\rho}+\star F_{\mu \rho} \star F_{\nu}{ }^{\rho}\right)$
- $T_{\mu \nu}=T_{\nu \mu}$
- $T^{\rho}{ }_{\rho}=0$
-

$$
T_{\mu \rho} T_{\nu}^{\rho}=\frac{1}{4} g_{\mu \nu} T_{\rho \sigma} T^{\rho \sigma}
$$

-

$$
T_{\mu \nu} u^{\mu} v^{\nu} \geq 0
$$

for arbitrary future-pointing vectors u^{μ} and v^{ν} (inequality is strict if all of them are timelike). This is the Dominant energy condition.

- $\nabla^{\mu} T_{\mu \nu}=F_{\nu \rho} j^{\rho}$ and therefore $\nabla^{\mu} T_{\mu \nu}=0$ if there are no charge nor currents ($j^{\mu}=0$).
- This provides conserved quantities if there are (conformal) Killing vector fields.

Local tensor describing gravitational strength

- the paradigmatic such tensor is the Bel-Robinson tensor given in 4 dimensions by

$$
\begin{aligned}
\mathcal{T}_{\alpha \beta \lambda \mu} & =C_{\alpha \rho \lambda \sigma} C_{\beta}{ }^{\rho}{ }_{\mu}{ }^{\sigma}+C_{\alpha \rho \mu \sigma} C_{\beta}{ }^{\rho} \lambda^{\sigma}-\frac{1}{8} g_{\alpha \beta} g_{\lambda \mu} C_{\rho \tau \sigma \nu} C^{\rho \tau \sigma \nu} \\
& =C_{\alpha \rho \lambda \sigma} C_{\beta}{ }^{\rho}{ }_{\mu}{ }^{\sigma}+\star C_{\alpha \rho \lambda \sigma} \star C_{\beta}{ }^{\rho}{ }_{\mu}{ }^{\sigma}
\end{aligned}
$$

Local tensor describing gravitational strength

- the paradigmatic such tensor is the Bel-Robinson tensor given in 4 dimensions by

$$
\begin{aligned}
\mathcal{T}_{\alpha \beta \lambda \mu} & =C_{\alpha \rho \lambda \sigma} C_{\beta}{ }^{\rho}{ }_{\mu}{ }^{\sigma}+C_{\alpha \rho \mu \sigma} C_{\beta}{ }^{\rho}{ }_{\lambda}{ }^{\sigma}-\frac{1}{8} g_{\alpha \beta} g_{\lambda \mu} C_{\rho \tau \sigma \nu} C^{\rho \tau \sigma \nu} \\
& =C_{\alpha \rho \lambda \sigma} C_{\beta}{ }^{\rho}{ }_{\mu}{ }^{\sigma}+\star C_{\alpha \rho \lambda \sigma} \star C_{\beta}{ }^{\rho}{ }_{\mu}{ }^{\sigma}
\end{aligned}
$$

- $\mathcal{T}_{\alpha \beta \lambda \mu}=\mathcal{T}_{(\alpha \beta \lambda \mu)}$

Local tensor describing gravitational strength

- the paradigmatic such tensor is the Bel-Robinson tensor given in 4 dimensions by

$$
\begin{aligned}
\mathcal{T}_{\alpha \beta \lambda \mu} & =C_{\alpha \rho \lambda \sigma} C_{\beta}{ }^{\rho}{ }_{\mu}{ }^{\sigma}+C_{\alpha \rho \mu \sigma} C_{\beta}{ }^{\rho} \lambda^{\sigma}-\frac{1}{8} g_{\alpha \beta} g_{\lambda \mu} C_{\rho \tau \sigma \nu} C^{\rho \tau \sigma \nu} \\
& =C_{\alpha \rho \lambda \sigma} C_{\beta}{ }^{\rho}{ }_{\mu}{ }^{\sigma}+\star C_{\alpha \rho \lambda \sigma} \star C_{\beta}{ }^{\rho}{ }_{\mu}{ }^{\sigma}
\end{aligned}
$$

- $\mathcal{T}_{\alpha \beta \lambda \mu}=\mathcal{T}_{(\alpha \beta \lambda \mu)}$
- $\mathcal{T}^{\rho}{ }_{\rho \lambda \mu}=0$

Local tensor describing gravitational strength

- the paradigmatic such tensor is the Bel-Robinson tensor given in 4 dimensions by

$$
\begin{aligned}
\mathcal{T}_{\alpha \beta \lambda \mu} & =C_{\alpha \rho \lambda \sigma} C_{\beta}{ }^{\rho}{ }_{\mu}{ }^{\sigma}+C_{\alpha \rho \mu \sigma} C_{\beta}{ }^{\rho} \lambda^{\sigma}-\frac{1}{8} g_{\alpha \beta} g_{\lambda \mu} C_{\rho \tau \sigma \nu} C^{\rho \tau \sigma \nu} \\
& =C_{\alpha \rho \lambda \sigma} C_{\beta}{ }^{\rho}{ }_{\mu}{ }^{\sigma}+\star C_{\alpha \rho \lambda \sigma} \star C_{\beta}{ }^{\rho}{ }_{\mu}{ }^{\sigma}
\end{aligned}
$$

- $\mathcal{T}_{\alpha \beta \lambda \mu}=\mathcal{T}_{(\alpha \beta \lambda \mu)}$
- $\mathcal{T}^{\rho}{ }_{\rho \lambda \mu}=0$
-

$$
\mathcal{T}_{\alpha \beta \lambda \mu} \mathcal{T}_{\gamma}{ }^{\beta \lambda \mu}=\frac{1}{4} g_{\alpha \gamma} \mathcal{T}_{\rho \beta \lambda \mu} \mathcal{T}^{\rho \beta \lambda \mu}
$$

Local tensor describing gravitational strength

- the paradigmatic such tensor is the Bel-Robinson tensor given in 4 dimensions by

$$
\begin{aligned}
\mathcal{T}_{\alpha \beta \lambda \mu} & =C_{\alpha \rho \lambda \sigma} C_{\beta}{ }_{\mu}{ }^{\sigma}+C_{\alpha \rho \mu \sigma} C_{\beta}{ }_{\lambda}{ }_{\lambda}^{\sigma}-\frac{1}{8} g_{\alpha \beta} g_{\lambda \mu} C_{\rho \tau \sigma \nu} C^{\rho \tau \sigma \nu} \\
& =C_{\alpha \rho \lambda \sigma} C_{\beta}{ }^{\rho}{ }_{\mu}^{\sigma}+\star C_{\alpha \rho \lambda \sigma} \star C_{\beta}{ }_{\mu}{ }_{\mu}^{\sigma}
\end{aligned}
$$

- $\mathcal{T}_{\alpha \beta \lambda \mu}=\mathcal{T}_{(\alpha \beta \lambda \mu)}$
- $\mathcal{T}^{\rho}{ }_{\rho \lambda \mu}=0$

$$
\mathcal{T}_{\alpha \beta \lambda \mu} \mathcal{T}_{\gamma}^{\beta \lambda \mu}=\frac{1}{4} g_{\alpha \gamma} \mathcal{T}_{\rho \beta \lambda \mu} \mathcal{T}^{\rho \beta \lambda \mu}
$$

- $\mathcal{T}_{\alpha \beta \lambda \mu} u^{\alpha} v^{\beta} w^{\lambda} z^{\mu} \geq 0$ for arbitrary future-pointing vectors u^{α}, v^{β}, w^{λ}, and z^{μ} (inequality is strict if all of them are timelike).
This is called the Dominant property.
($\mathcal{T}_{0000}=0 \Longrightarrow C_{\alpha \beta \lambda \mu}=0$).

Local tensor describing gravitational strength

- the paradigmatic such tensor is the Bel-Robinson tensor given in 4 dimensions by

$$
\begin{aligned}
\mathcal{T}_{\alpha \beta \lambda \mu} & =C_{\alpha \rho \lambda \sigma} C_{\beta} \rho_{\mu}^{\sigma}+C_{\alpha \rho \mu \sigma} C_{\beta}{ }_{\lambda}{ }_{\lambda}^{\sigma}-\frac{1}{8} g_{\alpha \beta} g_{\lambda \mu} C_{\rho \tau \sigma \nu} C^{\rho \tau \sigma \nu} \\
& =C_{\alpha \rho \lambda \sigma} C_{\beta} \rho_{\mu}^{\sigma}+\star C_{\alpha \rho \lambda \sigma} \star C_{\beta}{ }^{\rho}{ }_{\mu}^{\sigma}
\end{aligned}
$$

- $\mathcal{T}_{\alpha \beta \lambda \mu}=\mathcal{T}_{(\alpha \beta \lambda \mu)}$
- $\mathcal{T}^{\rho}{ }_{\rho \lambda \mu}=0$
$-$

$$
\mathcal{T}_{\alpha \beta \lambda \mu} \mathcal{T}_{\gamma}^{\beta \lambda \mu}=\frac{1}{4} g_{\alpha \gamma} \mathcal{T}_{\rho \beta \lambda \mu} \mathcal{T}^{\rho \beta \lambda \mu}
$$

- $\mathcal{T}_{\alpha \beta \lambda \mu} u^{\alpha} v^{\beta} w^{\lambda} z^{\mu} \geq 0$ for arbitrary future-pointing vectors u^{α}, v^{β}, w^{λ}, and z^{μ} (inequality is strict if all of them are timelike). This is called the Dominant property.
$\left(\mathcal{T}_{0000}=0 \Longrightarrow C_{\alpha \beta \lambda \mu}=0\right)$.
- $\nabla^{\alpha} \mathcal{T}_{\alpha \beta \lambda \mu}=0$ if the vacuum Einstein's field equations $R_{\beta \mu}=\Lambda g_{\beta \mu}$ hold (providing conserved quantities if there are (conformal) Killing vector fields)

Bel-Robinson versus energy

- The Bel-Robinson tensor is reminiscent of energy-momentum tensors, yet it is not such a thing -it cannot be!

Bel-Robinson versus energy

- The Bel-Robinson tensor is reminiscent of energy-momentum tensors, yet it is not such a thing -it cannot be!
- It looks related somehow to the energy-momentum properties of the the gravitational field, but its physical dimensions $\left(L^{-4}\right)$ are wrong

Bel-Robinson versus energy

- The Bel-Robinson tensor is reminiscent of energy-momentum tensors, yet it is not such a thing -it cannot be!
- It looks related somehow to the energy-momentum properties of the the gravitational field, but its physical dimensions $\left(L^{-4}\right)$ are wrong
- is there any relation with gravitational energy?

Quasilocal energy in the small sphere limit $(d=4)$

- Take any of the (many) definitions of quasilocal energy E for closed surfaces and apply it to a very small sphere of radius r. Then one can prove that at first non-trivial order in r one gets

$$
E=\frac{4 \pi}{3} r^{3} T_{00}+O\left(r^{4}\right)
$$

where T_{00} is the timelike component of the energy-momentum tensor (in a basis with \vec{e}_{0} orthogonal to the sphere).

Quasilocal energy in the small sphere limit $(d=4)$

- Take any of the (many) definitions of quasilocal energy E for closed surfaces and apply it to a very small sphere of radius r. Then one can prove that at first non-trivial order in r one gets

$$
E=\frac{4 \pi}{3} r^{3} T_{00}+O\left(r^{4}\right)
$$

where T_{00} is the timelike component of the energy-momentum tensor (in a basis with \vec{e}_{0} orthogonal to the sphere).

- But, what happens if we are in vacuum? That is, if $T_{\mu \nu}=0$.

Quasilocal energy in the small sphere limit $(d=4)$

- Take any of the (many) definitions of quasilocal energy E for closed surfaces and apply it to a very small sphere of radius r. Then one can prove that at first non-trivial order in r one gets

$$
E=\frac{4 \pi}{3} r^{3} T_{00}+O\left(r^{4}\right)
$$

where T_{00} is the timelike component of the energy-momentum tensor (in a basis with \vec{e}_{0} orthogonal to the sphere).

- But, what happens if we are in vacuum? That is, if $T_{\mu \nu}=0$.
- Then, as first proven by Horowitz and Schmidt (1982)

$$
E=(\text { const. }) r^{5} \mathcal{T}_{0000}+O\left(r^{6}\right)
$$

where \mathcal{T}_{0000} is the timelike component of the Bel-Robinson tensor (the "super-energy density").

Quasilocal energy in the small sphere limit $(d=4)$

- Take any of the (many) definitions of quasilocal energy E for closed surfaces and apply it to a very small sphere of radius r. Then one can prove that at first non-trivial order in r one gets

$$
E=\frac{4 \pi}{3} r^{3} T_{00}+O\left(r^{4}\right)
$$

where T_{00} is the timelike component of the energy-momentum tensor (in a basis with \vec{e}_{0} orthogonal to the sphere).

- But, what happens if we are in vacuum? That is, if $T_{\mu \nu}=0$.
- Then, as first proven by Horowitz and Schmidt (1982)

$$
E=(\text { const. }) r^{5} \mathcal{T}_{0000}+O\left(r^{6}\right)
$$

where \mathcal{T}_{0000} is the timelike component of the Bel-Robinson tensor (the "super-energy density").

- Analogously, the gravitational momentum vector of a small sphere leads to $T_{0 i}$ and, in vacuum, to $\mathcal{T}_{000 i}$. The energy flux of a gravitational plane wave, for instance, travels in the direction of $\mathcal{T}_{000 i}$.

Bel-Robinson in arbitrary d

- It seems only natural to expect that the correct answer for the area deficit should lead to the Bel-Robinson "super-energy" density.

Bel-Robinson in arbitrary d

- It seems only natural to expect that the correct answer for the area deficit should lead to the Bel-Robinson "super-energy" density.
- For arbitrary d its expression reads (лмм Senovilla, Class. Quantum Grav. 17 (2000) 2799)

$$
\begin{aligned}
T_{\alpha \beta \lambda \mu} \equiv & C_{\alpha \rho \lambda \sigma} C_{\beta}{ }_{\mu}{ }_{\mu}^{\sigma}+C_{\alpha \rho \mu \sigma} C_{\beta}{ }^{\rho}{ }_{\lambda}{ }^{\sigma}-\frac{1}{2} g_{\alpha \beta} C_{\rho \tau \lambda \sigma} C_{\mu}^{\rho \tau}{ }_{\mu}^{\sigma} \\
& -\frac{1}{2} g_{\lambda \mu} C_{\alpha \rho \sigma \tau} C_{\beta}{ }^{\rho \sigma \tau}+\frac{1}{8} g_{\alpha \beta} g_{\lambda \mu} C_{\rho \tau \sigma \nu} C^{\rho \tau \sigma \nu}
\end{aligned}
$$

Bel-Robinson in arbitrary d

- It seems only natural to expect that the correct answer for the area deficit should lead to the Bel-Robinson "super-energy" density.
- For arbitrary d its expression reads (Jмм Senovilla, Class. Quantum Grav. 17 (2000) 2799)

$$
\begin{aligned}
T_{\alpha \beta \lambda \mu} \equiv & C_{\alpha \rho \lambda \sigma} C_{\beta}{ }^{\rho}{ }_{\mu}{ }^{\sigma}+C_{\alpha \rho \mu \sigma} C_{\beta}{ }^{\rho}{ }_{\lambda}{ }^{\sigma}-\frac{1}{2} g_{\alpha \beta} C_{\rho \tau \lambda \sigma} C^{\rho \tau}{ }_{\mu}^{\sigma} \\
& -\frac{1}{2} g_{\lambda \mu} C_{\alpha \rho \sigma \tau} C_{\beta}{ }^{\rho \sigma \tau}+\frac{1}{8} g_{\alpha \beta} g_{\lambda \mu} C_{\rho \tau \sigma \nu} C^{\rho \tau \sigma \nu}
\end{aligned}
$$

- The corresponding totally timelike component (Bel-Robinson energy density) is

$$
\begin{gathered}
W:=T_{0000}=\frac{1}{2}\left(E^{2}+H^{2}+\frac{D^{2}}{4}\right) \\
\left(W=E^{2}+B^{2} \text { if } d=4 .\right)
\end{gathered}
$$

The area deficit in terms of W

$$
\begin{array}{r}
\delta^{(2)} A=\frac{\Omega_{d-2} \ell^{d+2}}{\left(d^{2}-1\right)}\left[-\frac{W}{15}+E^{2}\left(\gamma^{2}\left(d^{2}-3 d+4\right)-\frac{\gamma d}{3}+\frac{1}{18}\right)\right. \\
\\
\left.+\frac{(d-2)\left(d^{2}-1\right)}{\ell^{5}} \delta \ell_{2}\right]
\end{array}
$$

- The freedom encoded in γ and $\delta \ell_{2}$ is obviously enough to get something proportional to W,

The area deficit in terms of W

$$
\begin{array}{r}
\delta^{(2)} A=\frac{\Omega_{d-2} \ell^{d+2}}{\left(d^{2}-1\right)}\left[-\frac{W}{15}+E^{2}\left(\gamma^{2}\left(d^{2}-3 d+4\right)-\frac{\gamma d}{3}+\frac{1}{18}\right)\right. \\
\\
\left.+\frac{(d-2)\left(d^{2}-1\right)}{\ell^{5}} \delta \ell_{2}\right]
\end{array}
$$

- The freedom encoded in γ and $\delta \ell_{2}$ is obviously enough to get something proportional to W,
- Generically the 2 nd-order radius variation $\delta \ell_{2}$ has to be nonzero for this to occur.

The area deficit in terms of W

$$
\begin{array}{r}
\delta^{(2)} A=\frac{\Omega_{d-2} \ell^{d+2}}{\left(d^{2}-1\right)}\left[-\frac{W}{15}+E^{2}\left(\gamma^{2}\left(d^{2}-3 d+4\right)-\frac{\gamma d}{3}+\frac{1}{18}\right)\right. \\
\\
\left.+\frac{(d-2)\left(d^{2}-1\right)}{\ell^{5}} \delta \ell_{2}\right]
\end{array}
$$

- The freedom encoded in γ and $\delta \ell_{2}$ is obviously enough to get something proportional to W,
- Generically the 2 nd-order radius variation $\delta \ell_{2}$ has to be nonzero for this to occur.
- Oddly enough, precisely when $d=4$ and $\gamma=\gamma_{0}=1 / 12$, the E^{2} coefficient vanishes, leaving

$$
\left.\delta^{(2)} A\right|_{\ell}=-\frac{\Omega_{2} \ell^{6}}{225} W
$$

if the radius is held constant.

How to compare two different spacetimes?

- What is to be compared?

How to compare two different spacetimes?

- What is to be compared?
- How to choose the deformation?

How to compare two different spacetimes?

- What is to be compared?
- How to choose the deformation?
- What should we keep fixed (area, radius, volume, anything else)?

How to compare two different spacetimes?

- What is to be compared?
- How to choose the deformation?
- What should we keep fixed (area, radius, volume, anything else)?
- In summary, how to be sure that a given deformed ball (a volume limited by an area) is the "same" as a corresponding ball in flat spacetime?

Fixing the ball deformation

What is to be compared?

Fixing the ball deformation

What is to be compared?
A particularly natural way to define the ball deformation is to choose its shape to ensure that the ball is the base of a small causal diamond.

The ball as the base of a causal diamond

- The calculation, assuming $R_{\mu \nu}=0$ and at linear order in the curvature gives

$$
t=0, \quad r=\ell\left(1+\frac{1}{6} \ell^{2} n^{i} n^{j} E_{i j}\right)
$$

where ℓ / c is the (future and past) proper times of the central geodesics.

The ball as the base of a causal diamond

- The calculation, assuming $R_{\mu \nu}=0$ and at linear order in the curvature gives

$$
t=0, \quad r=\ell\left(1+\frac{1}{6} \ell^{2} n^{i} n^{j} E_{i j}\right)
$$

where ℓ / c is the (future and past) proper times of the central geodesics.

- In simpler words, the shape deformation must be

$$
\tilde{\delta} \ell_{1}\left(\theta^{A}\right)=n^{i} n^{j} Y_{i j}=\frac{1}{6} \ell^{3} n^{i} n^{j} E_{i j} .
$$

The ball as the base of a causal diamond

- The calculation, assuming $R_{\mu \nu}=0$ and at linear order in the curvature gives

$$
t=0, \quad r=\ell\left(1+\frac{1}{6} \ell^{2} n^{i} n^{j} E_{i j}\right)
$$

where ℓ / c is the (future and past) proper times of the central geodesics.

- In simpler words, the shape deformation must be

$$
\tilde{\delta} \ell_{1}\left(\theta^{A}\right)=n^{i} n^{j} Y_{i j}=\frac{1}{6} \ell^{3} n^{i} n^{j} E_{i j} .
$$

- This implies that $Y_{[s]}=0$ for all $s \neq 2$ in agreement with the previous indications, and also sets $\gamma=1 / 6$!

The ball as the base of a causal diamond

- The calculation, assuming $R_{\mu \nu}=0$ and at linear order in the curvature gives

$$
t=0, \quad r=\ell\left(1+\frac{1}{6} \ell^{2} n^{i} n^{j} E_{i j}\right)
$$

where ℓ / c is the (future and past) proper times of the central geodesics.

- In simpler words, the shape deformation must be

$$
\tilde{\delta} \ell_{1}\left(\theta^{A}\right)=n^{i} n^{j} Y_{i j}=\frac{1}{6} \ell^{3} n^{i} n^{j} E_{i j} .
$$

- This implies that $Y_{[s]}=0$ for all $s \neq 2$ in agreement with the previous indications, and also sets $\gamma=1 / 6$!
- It leaves $\delta \ell_{2}$ free, as this is just an ambiguity in the value ℓ / c of the proper time corresponding to the apexes of the cones.

Two further independent arguments

- The trace of the 2nd fundamental form of the ball's boundary is (at this order)

$$
K=\frac{d-2}{\ell}+\frac{1}{\ell^{2}} \sum_{s \neq 2}[(d-2)(s-2)+s(s-1)] Y_{i_{1} \ldots i_{s}} n^{i_{1}} \ldots n^{i_{s}}
$$

$$
+n^{i} n^{j}\left(\frac{2}{\ell^{2}} Y_{i j}-\frac{\ell}{3} E_{i j}\right) .
$$

Two further independent arguments

- The trace of the 2nd fundamental form of the ball's boundary is (at this order)

$$
K=\frac{d-2}{\ell}+\frac{1}{\ell^{2}} \sum_{s \neq 2}[(d-2)(s-2)+s(s-1)] Y_{i_{1} \ldots i_{s}} n^{i_{1}} \ldots n^{i_{s}}
$$

$$
+n^{i} n^{j}\left(\frac{2}{\ell^{2}} Y_{i j}-\frac{\ell}{3} E_{i j}\right) .
$$

- The two future null expansions at the ball's boundary read

$$
\theta_{ \pm}= \pm K
$$

Two further independent arguments

- The trace of the 2nd fundamental form of the ball's boundary is (at this order)

$$
K=\frac{d-2}{\ell}+\frac{1}{\ell^{2}} \sum_{s \neq 2}[(d-2)(s-2)+s(s-1)] Y_{i_{1} \ldots i_{s}} n^{i_{1}} \ldots n^{i_{s}}
$$

$$
+n^{i} n^{j}\left(\frac{2}{\ell^{2}} Y_{i j}-\frac{\ell}{3} E_{i j}\right) .
$$

- The two future null expansions at the ball's boundary read

$$
\theta_{ \pm}= \pm K
$$

- Therefore, K and $\theta_{ \pm}$, are constant on the entire boundary if and only if $Y_{[s]}=0$ for all $s \neq 2$ and

$$
Y_{i j}=\ell^{3} E_{i j} / 6
$$

Two further independent arguments

- The trace of the 2nd fundamental form of the ball's boundary is (at this order)

$$
\begin{gathered}
K=\frac{d-2}{\ell}+\frac{1}{\ell^{2}} \sum_{s \neq 2}[(d-2)(s-2)+s(s-1)] Y_{i_{1} \ldots i_{s}} n^{i_{1}} \ldots n^{i_{s}} \\
+n^{i} n^{j}\left(\frac{2}{\ell^{2}} Y_{i j}-\frac{\ell}{3} E_{i j}\right) .
\end{gathered}
$$

- The two future null expansions at the ball's boundary read

$$
\theta_{ \pm}= \pm K
$$

- Therefore, K and $\theta_{ \pm}$, are constant on the entire boundary if and only if $Y_{[s]}=0$ for all $s \neq 2$ and

$$
Y_{i j}=\ell^{3} E_{i j} / 6
$$

- That is, $\gamma=1 / 6$ as before!

An intrinsic definition of the boundary surface

It seems that we must compare geodesic balls that are the base of a small causal diamond in their respective spacetimes.

An intrinsic definition of the boundary surface

It seems that we must compare geodesic balls that are the base of a small causal diamond in their respective spacetimes.

This provides an intrinsic definition, independent of the spacetime, of the boundary of the ball.

The area deficit with $\gamma=1 / 6$

$$
\delta^{(2)} A=\frac{\Omega_{d-2} \ell^{d+2}}{\left(d^{2}-1\right)}\left[-\frac{W}{15}+\frac{E^{2}}{36}(d-2)(d-3)+\frac{(d-2)\left(d^{2}-1\right)}{\ell^{5}} \delta \ell_{2}\right]
$$

- The freedom left available in $\delta \ell_{2}$ is still enough to get an area deficit proportional to W,

The area deficit with $\gamma=1 / 6$

$$
\delta^{(2)} A=\frac{\Omega_{d-2} \ell^{d+2}}{\left(d^{2}-1\right)}\left[-\frac{W}{15}+\frac{E^{2}}{36}(d-2)(d-3)+\frac{(d-2)\left(d^{2}-1\right)}{\ell^{5}} \delta \ell_{2}\right]
$$

- The freedom left available in $\delta \ell_{2}$ is still enough to get an area deficit proportional to W,
- The choice to be made is (α arbitrary constant)

$$
\delta \ell_{2}=\frac{\ell^{5}}{36\left(d^{2}-1\right)}\left(-E^{2}(d-3)+\alpha W\right)
$$

The area deficit with $\gamma=1 / 6$

$$
\delta^{(2)} A=\frac{\Omega_{d-2} \ell^{d+2}}{\left(d^{2}-1\right)}\left[-\frac{W}{15}+\frac{E^{2}}{36}(d-2)(d-3)+\frac{(d-2)\left(d^{2}-1\right)}{\ell^{5}} \delta \ell_{2}\right]
$$

- The freedom left available in $\delta \ell_{2}$ is still enough to get an area deficit proportional to W,
- The choice to be made is (α arbitrary constant)

$$
\delta \ell_{2}=\frac{\ell^{5}}{36\left(d^{2}-1\right)}\left(-E^{2}(d-3)+\alpha W\right)
$$

- (The ability to shift $\delta \ell_{2}$ by an arbitrary amount proportional to W leads to a similar ambiguity in $\delta^{(2)} A$).

The area deficit with $\gamma=1 / 6$

$$
\delta^{(2)} A=\frac{\Omega_{d-2} \ell^{d+2}}{\left(d^{2}-1\right)}\left[-\frac{W}{15}+\frac{E^{2}}{36}(d-2)(d-3)+\frac{(d-2)\left(d^{2}-1\right)}{\ell^{5}} \delta \ell_{2}\right]
$$

- The freedom left available in $\delta \ell_{2}$ is still enough to get an area deficit proportional to W,
- The choice to be made is (α arbitrary constant)

$$
\delta \ell_{2}=\frac{\ell^{5}}{36\left(d^{2}-1\right)}\left(-E^{2}(d-3)+\alpha W\right)
$$

- (The ability to shift $\delta \ell_{2}$ by an arbitrary amount proportional to W leads to a similar ambiguity in $\delta^{(2)} A$).
- However, how to justify such a choice? is there any physical or geometrical reason to make this choice for $\delta \ell_{2}$?

The area deficit with $\gamma=1 / 6$

$$
\delta^{(2)} A=\frac{\Omega_{d-2} \ell^{d+2}}{\left(d^{2}-1\right)}\left[-\frac{W}{15}+\frac{E^{2}}{36}(d-2)(d-3)+\frac{(d-2)\left(d^{2}-1\right)}{\ell^{5}} \delta \ell_{2}\right]
$$

- The freedom left available in $\delta \ell_{2}$ is still enough to get an area deficit proportional to W,
- The choice to be made is (α arbitrary constant)

$$
\delta \ell_{2}=\frac{\ell^{5}}{36\left(d^{2}-1\right)}\left(-E^{2}(d-3)+\alpha W\right)
$$

- (The ability to shift $\delta \ell_{2}$ by an arbitrary amount proportional to W leads to a similar ambiguity in $\delta^{(2)} A$).
- However, how to justify such a choice? is there any physical or geometrical reason to make this choice for $\delta \ell_{2}$?
- Again: What is to be compared?

The area deficit $\left.\delta^{(2)} A\right|_{V}$ with $\gamma=1 / 6$

- Following what we learnt at first order, a logical prescription would have beeen to hold the volume fixed

The area deficit $\left.\delta^{(2)} A\right|_{V}$ with $\gamma=1 / 6$

- Following what we learnt at first order, a logical prescription would have beeen to hold the volume fixed
- This provides a $\delta \ell_{2}$ not compatible with the required choices and leads to

$$
\left.\delta^{(2)} A\right|_{V}=\frac{\Omega_{d-2} \ell^{d+2}}{3(d+3)\left(d^{2}-1\right)}\left(-W+\frac{E^{2}}{12}(d-2)(d+1)\right)
$$

The area deficit $\left.\delta^{(2)} A\right|_{V}$ with $\gamma=1 / 6$

- Following what we learnt at first order, a logical prescription would have beeen to hold the volume fixed
- This provides a $\delta \ell_{2}$ not compatible with the required choices and leads to

$$
\left.\delta^{(2)} A\right|_{V}=\frac{\Omega_{d-2} \ell^{d+2}}{3(d+3)\left(d^{2}-1\right)}\left(-W+\frac{E^{2}}{12}(d-2)(d+1)\right)
$$

- Unfortunately, this is not proportional to W, and it does not have the required properties.

The area deficit $\left.\delta^{(2)} A\right|_{V}$ with $\gamma=1 / 6$

- Following what we learnt at first order, a logical prescription would have beeen to hold the volume fixed
- This provides a $\delta \ell_{2}$ not compatible with the required choices and leads to

$$
\left.\delta^{(2)} A\right|_{V}=\frac{\Omega_{d-2} \ell^{d+2}}{3(d+3)\left(d^{2}-1\right)}\left(-W+\frac{E^{2}}{12}(d-2)(d+1)\right)
$$

- Unfortunately, this is not proportional to W, and it does not have the required properties.
- Altogether, this is a little puzzling!

Other possibilities

- Thus, the question remains on how to justify the required choices for $\delta \ell_{2}$

Other possibilities

- Thus, the question remains on how to justify the required choices for $\delta \ell_{2}$
- My favorite bet at present: keep the causal diamond construction, but forget about geodesic balls: define the co-dimension 2 "surface" as the diamond spacelike boundary and then try to control the volume by considering all possible hypersurfaces with such boundary

Other possibilities

- Thus, the question remains on how to justify the required choices for $\delta \ell_{2}$
- My favorite bet at present: keep the causal diamond construction, but forget about geodesic balls: define the co-dimension 2 "surface" as the diamond spacelike boundary and then try to control the volume by considering all possible hypersurfaces with such boundary
- An interesting idea is to maximize the volume enclosed by such a boundary (in flat space one knows that this is a round ball).

Conclusion

Is there a relation between area deficit (or other deficits) and gravitational energy in vacuum?

Conclusion

Is there a relation between area deficit (or other deficits) and

 gravitational energy in vacuum?Is the latter described by the Bel-Robinson W?

