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En homenaje a Pedro



Introduction

Gravity is curvature, is geometry.



Direct detection of gravitational waves from
a black-hole binary (in 2015)
Physics Nobel Prize 2017
Measured with a laser interferometer able to
“feel” tiny geometric disturbances
Surely, these waves carry energy and
momentum!



Equivalence Principle: the gravitational field
can be made to vanish along any causal curve
That implies that the gravitational
energy-momentum can be set to zero
anywhere at will
Gravitational energy is not localizable

No tµν!

Equivalence principle implies that there is no energy-momentum
tensor for the gravitational field.

There are definitions of “total energy-momentum” for isolated
systems, and other global interesting energy-momentum quantities,
but how to quantify the energy that affected the LIGO/VIRGO

interferometer?



Introduction

Gravity is curvature.

How does curvature affect
area/volume?



Pauli:Theory of Relativity

In an arbitrary [n-dimensional] Riemannian manifold, [the
volume of a hyper-sphere of radius `] becomes a
complicated function of `. We can imagine it to be
expanded in a power series in ` and retain only the [first
non-trivial] term. This gives

V = Ωn`
n

(
1 +

R
6(n+ 2)

`2 + . . .

)
[. . . ] Differentiating, one obtains [. . . ] the formula for the
surface of the sphere

A = nΩn`
n−1

(
1 +
R
6n
`2 + . . .

)
Here, V is the volume of the small ball, A is the “area” of its
boundary, ` its radius, and R the scalar curvature of the space at
the ball’s center.



Ωn =
2π

n+1
2

Γ
(
n+1

2

)
is the volume of the unit

n-sphere.



Introduction

Matter generates gravity
(ergo curvature)

What does matter do to geometry?



The Feynman lectures, vol.2

The rule that Einstein gave for the curvature is the
following: If there is a region of space with matter in it
and we take a sphere small enough that the density % of
matter inside it is effectively constant, then the radius
excess for the sphere is proportional to the mass inside
the sphere. Using the definition of excess radius, we have

δ`|A = `−
√
A

4π
=

G

3c2
M

(
=

G

3c2
4π

3
%`3
)

Here M is the mass inside the sphere, and δ`|A is the “excess”
radius to keep the area fixed.



Spatial geodesic balls

Choose p ∈M and then choose uµ ∈ TpM, uµuµ = −1.

p

uµ

`

Take RNC {xµ} based at p and adapt them so that uµ = δµ0
The spatial geodesic ball lies on the hypersurface t ≡ x0 = 0
and the spacelike geodesics generating it have

xµ = rnµ, uµn
µ = 0, =⇒ nµ = niδµi

where r is the affine parameter and we set δijninj = 1

ni

uµ
t = x0 = 0

{θA} are local coordinates on the ball’s boundary, ni(θA)
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Volume and Area of geodesic balls at linear order

Define the ball at first order by r = `+ δ`(1).

Split δ`(1) into a spherically symmetric piece δ`1 and the part
depending on the direction

r = `+ δ`1 + δ̃`1(θ
A).

A calculation at linear order in the curvature gives, for the
volume of the geodesic ball (d is the spacetime dimension)

V − V [ = Ωd−2`
d−2

(
δ`1 −

R
6(d2 − 1)

`3
)

:= δ(1)V

where V [ = Ωd−1`
d−1 = Ωd−2`

d−1/(d− 1) is the volume of a
radius ` round ball in Euclidean space;
And for the area

A−A[ = Ωd−2`
d−3

(
(d− 2)δ`1 −

R
6(d− 1)

`3
)

:= δ(1)A

where A[ = Ωd−2`
d−2 has the same meaning. R is the

intrinsic scalar curvature of the t = 0 hypersurface at p.
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Using the Einstein field equations

Note: at first order, the volume and area depend only on the
spherically symmetric "excess" δ`1, and not on the
direction-dependent δ̃`1(θA).

Observe: we recover Pauli’s remark by just setting δ`1 = 0
(keep the radius of the ball fixed!).
We also recover Feynman’s interesting remark by keeping,
instead, the area A fixed (A = A[), noticing that (Gµν is the
Einstein tensor)

R = 2G00

and using Einstein’s field equations !
Then

δ`1|A =
`3

3(d− 1)(d− 2)
G00 =

8πG

c4
`3

3(d− 1)(d− 2)
T00
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Variations of area and the energy density

What is to be compared?

One can keep the radius fixed (δ`1 = 0) and then the area
deficit is

δ(1)A|` = −8πG

c4
Ωd−2

`d

3(d− 1)
T00

Alternatively, one can keep the volume fixed,
V − V [ = δ(1)V = 0, which sets δ`1 = R`3/(6(d2 − 1)) and
then

δ(1)A|V = −8πG

c4
Ωd−2

`d

d2 − 1
T00

The area deficit is in both cases proportional to the energy
density (at the center of the ball), but the proportionality
factor is different. What is the correct factor?
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Variations of area and the energy density

In a recent interesting paper (Phys. Rev. Lett. 116 (2016) 201101) T.
Jacobson argued that the correct expression is the second one

This correctness is based on the use of a Bekenstein-Hawking
entropy Ac3/4G~, and on an entanglement entropy which is
stationary for a conformal field theory when the Einstein
equations hold.
He even argued that Einstein’s field equations could be
deduced from the above expressions by assuming an
equilibrium condition for the vacuum entanglement entropy !
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A relationship between area deficit and energy
density!

Thus, the right relation between area deficit and energy
density at first order is taken to be

δ(1)A|V = −8πG
c4

Ωd−2
`d

d2−1T00

Can this relationship between area deficit and energy density be
taken as a guiding principle, valid in more general situations?
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Vacuum!

What does pure gravity do to
geometry?

T Jacobson, JMM Senovilla, A Speranza, Class. Quantum Grav 35 (2018) 085005



Area deficit in vacuum

If Gµν = 0 the area deficit δA(1)|V vanishes.

However, the gravitational field is non-vanishing outside the
material sources and also itself a source of curvature, so that
this “purely gravitational” curvature affects the area too.
If the relationship between area deficit and energy density is
solid, such a change in area should be related, in one way or
another, to the gravitational energy density
Alternatively, area deficits could help provide a notion of
quasilocal energy for the gravitational field.
At second order, the volume of a geodesic ball and the area of
its boundary receive corrections depending quadratically on the
curvature.
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Electric-magnetic decomposition of Cαβµν

Given that Rµν = 0, Rαβµν = Cαβµν at p.

Cαβµν may be decomposed into their electric and magnetic
parts with respect to uµ (we only need them at p)

Eij = C0i0j “electric-electric”
Hijk = C0ijk “electric-magnetic”
Dijkl = Cijkl “magnetic-magnetic”

Note that hijDikjl = Ekl and thus

Dijkl = Fijkl +
1

d− 3
(Eikhjl − Ejkhil − Eilhjk + Ejlhik)

where Fijkl is spatially traceless (hij is the metric on the
hypersurface t = 0)
Observe: Fijkl vanishes in d = 4, in which case Dijkl is
equivalent to Eij , and Eij and Bij ≡ 1

2εjklHi
kl are simply

referred to as the electric and magnetic parts relative to uα.
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The ball at second order

p

uµ

Define the ball at second order by

r = `+ δ`1 + δ̃`1(θ
A)︸ ︷︷ ︸

O(1)

+ δ`2︸︷︷︸
O(2)

.

δ`2 is the spherically symmetric piece of the 2nd-order
perturbation to r: one can prove that this is the only relevant
part for the volume and area at quadratic order in curvature.
As a function defined on the (d− 2)-sphere, δ̃`1 can be
expanded in spherical harmonics. Letting s denote the “spin,”
we have

δ̃`1 =
∞∑
s=1

Yi1...isn
i1 . . . nis

where Yi1...is are totally symmetric and traceless for s > 1.
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Volume of geodesic balls at quadratic order

The volume of the ball at this order (with Rµν = 0 and δ`1 = 0) is

V = V [ +
Ωd−2`

d+3

15(d2 − 1)(d+ 3)

[
−D

2

8
− H2

2
+
E2

3

]
︸ ︷︷ ︸

O(2)

+ Ωd−2`
d−3

[
`δ`2 + (d− 2)

∞∑
s=1

csY
2
[s] −

`3

3(d2 − 1)
Y ijEij

]
︸ ︷︷ ︸

O(2)

where cs are known constant factors depending on d and s.

(Y 2
[s] ≡ Yi1...isY

i1...is , E2 ≡ EijEij , and so on)



Area of geodesic balls at quadratic order

Similarly, the area of the ball’s boundary at this order is

A = A[ +
Ωd−2`

d+2

15(d2 − 1)

[
−D

2

8
− H2

2
+
E2

3

]
︸ ︷︷ ︸

O(2)

+ Ωd−2`
d−4

[
(d− 2)`δ`2 +

∞∑
s=1

bsY
2
[s] −

`3d

3(d2 − 1)
Y ijEij

]
︸ ︷︷ ︸

O(2)

where bs are known constant factors depending on d and s.



Only spin s = 2 is relevant

Only the spin-2 deformation gives a different contribution to
the area in curved space than in flat space: the term Y ijEij

Thus, Y[s] for all s 6= 2 cannot be fixed in terms of the local
gravitational field at this order in perturbations, and only the
component of Yij aligned with Eij contributes differently than
in flat space, hence

Yij = γEij
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With this in mind, setting Yi1...is = 0 for all s 6= 2 and Yij = γEij ,
and using the explicit value of b2, we can rewrite

A = A[ + Ωd−2`
d−4(d− 2)`δ`2︸ ︷︷ ︸
O(2)

+
Ωd−2`

d+2

15(d2 − 1)

[
−D

2

8
− H2

2
+
E2

3
+ 15E2γ

(
γ(d2 − 3d+ 4)− d

3

)]
︸ ︷︷ ︸

O(2)

The magenta terms give δ(2)A|`, while the red terms are due to the
spin-2 deformation aligned with Eij .

Observe that the magenta terms alone give an expression which is
not negative definite.

(Unless d = 4, where they reduce to −B2 − E2/6).
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What should we expect as the
correct answer at this quadratic

order, and in vacuum?
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Required properties

There are several desirable and expected properties for the proper
deficit −δ(2)A if it is to describe gravitational strength:

1 It should be positive definite, zero if and only if Cαβµν = 0

2 It must be quadratic in the curvature (that is, in Cαβµν)
3 It should be the timelike component (with respect to uµ) of a

tensor field
4 The putative energy —the tensor totally timelike component—

should propagate causally, in the sense that it vanishes in the
entire domain of dependence of any region in which it vanishes

5 This causal propagation is known to require the dominant
property for the underlying tensor, which states that the tensor
contracted on any future pointing vectors is non-negative

6 The dominant property also guarantees that the ‘momentum
density’ vector (the tensor contracted on uµ on all indices but
one) is future-pointing timelike or null. This momentum
density points in the direction of propagation of the putative
energy
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Interlude: Bel-Robinson super-energy tensor

There is a unique (symmetric) tensor with the above properties
(JMMS , Class. Quantum Grav. 17 (2000) 2799):

the generalized Bel-Robinson tensor Tαβµν.



Recall: the electromagnetic field (d = 4)

Tµν = FµρFν
ρ − 1

4gµνFρσF
ρσ = 1

2 (FµρFν
ρ + ?Fµρ ? Fν

ρ)

Tµν = Tνµ

T ρρ = 0

TµρTν
ρ =

1

4
gµνTρσT

ρσ

Tµνu
µvν ≥ 0

for arbitrary future-pointing vectors uµ and vν (inequality is
strict if all of them are timelike). This is the Dominant energy
condition.
∇µTµν = Fνρj

ρ and therefore ∇µTµν = 0 if there are no
charge nor currents (jµ = 0).
This provides conserved quantities if there are (conformal)
Killing vector fields.
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Local tensor describing gravitational strength

the paradigmatic such tensor is the Bel-Robinson tensor
given in 4 dimensions by

Tαβλµ = CαρλσCβ
ρ
µ
σ + CαρµσCβ

ρ
λ
σ − 1

8
gαβgλµCρτσνC

ρτσν

= CαρλσCβ
ρ
µ
σ + ?Cαρλσ ? Cβ

ρ
µ
σ

Tαβλµ = T(αβλµ)
T ρρλµ = 0

TαβλµTγβλµ =
1

4
gαγTρβλµT ρβλµ

Tαβλµuαvβwλzµ ≥ 0 for arbitrary future-pointing vectors uα,
vβ , wλ, and zµ (inequality is strict if all of them are timelike).
This is called the Dominant property.
(T0000 = 0 =⇒ Cαβλµ = 0).
∇αTαβλµ = 0 if the vacuum Einstein’s field equations
Rβµ = Λgβµ hold (providing conserved quantities if there are
(conformal) Killing vector fields)
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Bel-Robinson versus energy

The Bel-Robinson tensor is reminiscent of energy-momentum
tensors, yet it is not such a thing –it cannot be!

It looks related somehow to the energy-momentum properties
of the the gravitational field, but its physical dimensions (L−4)
are wrong
is there any relation with gravitational energy?
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Quasilocal energy in the small sphere limit (d = 4)

Take any of the (many) definitions of quasilocal energy E for
closed surfaces and apply it to a very small sphere of radius r.
Then one can prove that at first non-trivial order in r one gets

E =
4π

3
r3T00 +O(r4)

where T00 is the timelike component of the energy-momentum
tensor (in a basis with ~e0 orthogonal to the sphere).

But, what happens if we are in vacuum? That is, if Tµν = 0.
Then, as first proven by Horowitz and Schmidt (1982)

E = (const.)r5T0000 +O(r6)

where T0000 is the timelike component of the Bel-Robinson
tensor (the “super-energy density”).
Analogously, the gravitational momentum vector of a small
sphere leads to T0i and, in vacuum, to T000i. The energy flux
of a gravitational plane wave, for instance, travels in the
direction of T000i.
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Bel-Robinson in arbitrary d

It seems only natural to expect that the correct answer for the
area deficit should lead to the Bel-Robinson “super-energy”
density.

For arbitrary d its expression reads (JMM Senovilla, Class. Quantum Grav.

17 (2000) 2799)

Tαβλµ ≡ CαρλσCβ
ρ
µ
σ + CαρµσCβ

ρ
λ
σ − 1

2
gαβCρτλσC

ρτ
µ
σ

−1

2
gλµCαρστCβ

ρστ +
1

8
gαβgλµCρτσνC

ρτσν

The corresponding totally timelike component (Bel-Robinson
energy density) is

W := T0000 =
1

2

(
E2 +H2 +

D2

4

)
(W = E2 +B2 if d = 4.)
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The area deficit in terms of W

δ(2)A =
Ωd−2`

d+2

(d2 − 1)

[
−W

15
+ E2

(
γ2(d2 − 3d+ 4)− γd

3
+

1

18

)
+

(d− 2)(d2 − 1)

`5
δ`2

]

The freedom encoded in γ and δ`2 is obviously enough to get
something proportional to W ,

Generically the 2nd-order radius variation δ`2 has to be
nonzero for this to occur.
Oddly enough, precisely when d = 4 and γ = γ0 = 1/12, the
E2 coefficient vanishes, leaving

δ(2)A|` = −Ω2`
6

225
W

if the radius is held constant.
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Generically the 2nd-order radius variation δ`2 has to be
nonzero for this to occur.
Oddly enough, precisely when d = 4 and γ = γ0 = 1/12, the
E2 coefficient vanishes, leaving

δ(2)A|` = −Ω2`
6

225
W

if the radius is held constant.



How to compare two different spacetimes?

What is to be compared?

How to choose the deformation?
What should we keep fixed (area, radius, volume, anything
else)?
In summary, how to be sure that a given deformed ball (a
volume limited by an area) is the "same" as a corresponding
ball in flat spacetime?
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The ball as the base of a causal diamond

The calculation, assuming Rµν = 0 and at linear order in the
curvature gives

t = 0, r = `

(
1 +

1

6
`2ninjEij

)
,

where `/c is the (future and past) proper times of the central
geodesics.

In simpler words, the shape deformation must be

δ̃`1(θ
A) = ninjYij =

1

6
`3ninjEij .

This implies that Y[s] = 0 for all s 6= 2 in agreement with the
previous indications, and also sets γ = 1/6 !
It leaves δ`2 free, as this is just an ambiguity in the value `/c
of the proper time corresponding to the apexes of the cones.
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Two further independent arguments

The trace of the 2nd fundamental form of the ball’s boundary
is (at this order)

K =
d− 2

`
+

1

`2

∑
s 6=2

[(d− 2)(s− 2) + s(s− 1)]Yi1...isn
i1 . . . nis

+ninj
(

2

`2
Yij −

`

3
Eij

)
.

The two future null expansions at the ball’s boundary read

θ± = ±K.

Therefore, K and θ±, are constant on the entire boundary if
and only if Y[s] = 0 for all s 6= 2 and

Yij = `3Eij/6

That is, γ = 1/6 as before!
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An intrinsic definition of the boundary surface
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are the base of a small causal diamond in their

respective spacetimes.

This provides an intrinsic definition, independent of
the spacetime, of the boundary of the ball.
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The area deficit with γ = 1/6

δ(2)A =
Ωd−2`

d+2

(d2 − 1)

[
−W

15
+
E2

36
(d− 2)(d− 3) +

(d− 2)(d2 − 1)

`5
δ`2

]

The freedom left available in δ`2 is still enough to get an area
deficit proportional to W ,

The choice to be made is (α arbitrary constant)

δ`2 =
`5

36(d2 − 1)

(
−E2(d− 3) + αW

)
(The ability to shift δ`2 by an arbitrary amount proportional to
W leads to a similar ambiguity in δ(2)A).
However, how to justify such a choice? is there any physical or
geometrical reason to make this choice for δ`2?
Again: What is to be compared?
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The area deficit δ(2)A|V with γ = 1/6

Following what we learnt at first order, a logical prescription
would have beeen to hold the volume fixed

This provides a δ`2 not compatible with the required choices
and leads to

δ(2)A|V =
Ωd−2`

d+2

3(d+ 3)(d2 − 1)

(
−W +

E2

12
(d− 2)(d+ 1)

)
Unfortunately, this is not proportional to W , and it does not
have the required properties.
Altogether, this is a little puzzling!
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Other possibilities

Thus, the question remains on how to justify the required
choices for δ`2

My favorite bet at present: keep the causal diamond
construction, but forget about geodesic balls: define the
co-dimension 2 “surface” as the diamond spacelike boundary
and then try to control the volume by considering all possible
hypersurfaces with such boundary
An interesting idea is to maximize the volume enclosed by such
a boundary (in flat space one knows that this is a round ball).
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Conclusion

Is there a relation between area
deficit (or other deficits) and

gravitational energy in vacuum?

Is the latter described by the
Bel-Robinson W?
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Gracias Pedro.
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