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Inflation
The inflationary scenario is based on the two cornerstone
independent ideas (hypothesis):

1. Existence of inflation (or, quasi-de Sitter stage) – a stage of
accelerated, close to exponential expansion of our Universe in
the past preceding the hot Big Bang with decelerated,
power-law expansion.

2. The origin of all inhomogeneities in the present Universe is
the effect of gravitational creation of particles and field
fluctuations during inflation from the adiabatic vacuum
(no-particle) state for Fourier modes covering all observable
range of scales (and possibly somewhat beyond).

Existing analogies in other areas of physics.
1. The present dark energy.
2. Creation of electrons and positrons in an external electric
field.



NB. 1. This effect is similar to particle creation by black holes,
but no problems with the loss of information, ’firewalls’,
trans-Planckian energy etc. in cosmology, as far as
observational predictions are calculated.

2. The observational argument for the choice of the adiabatic
vacuum as the initial condition for all Fourier modes in the
WKB-regime: no cosmic rays with energies beyond the
GZK-cutoff at present that, in particular, means the absence
of trans-Planckian particle creation during the recent epoch of
the Universe expansion (A. A. Starobinsky, JETP Lett. 73,
371 (2001); A. A. Starobinsky and I. I. Tkachev, JETP Lett.
76, 235 (2002)).

3. Present dark energy can originate thorough this effect, too,
see e.g. the recent paper D. Glavan, T. Prokopec,
A. A. Starobinsky, Eur. Phys. J. C 78, 371 (2018);
arXiv:1710.07824.



Outcome of inflation
In the super-Hubble regime (k � aH) in the coordinate
representation:

ds2 = dt2 − a2(t)(δlm + hlm)dx ldxm, l ,m = 1, 2, 3

hlm = 2R(r)δlm +
2∑

a=1

g (a)(r) e(a)lm

e
l(a)
l = 0, g

(a)
,l e

l(a)
m = 0, e

(a)
lm e lm(a) = 1

R describes primordial scalar perturbations, g – primordial
tensor perturbations (primordial gravitational waves (GW)).

The most important quantities:

ns(k)− 1 ≡ d lnPR(k)

d ln k
, r(k) ≡ Pg

PR



In fact, metric perturbations hlm are quantum (operators in
the Heisenberg representation) and remain quantum up to the
present time. But, after omitting of a very small part,
decaying with time, they become commuting and, thus,
equivalent to classical (c-number) stochastic quantities with
the Gaussian statistics (up to small terms quadratic in R, g).

In particular:

R̂k = Rk i(âk−â†k)+O
(

(âk − â†k)2
)

+...+O(10−100)(âk+â†k)+, , ,

The last term is time dependent, it is affected by physical
decoherence and may become larger, but not as large as the
second term.

Remaining quantum coherence: deterministic correlation
between k and −k modes - shows itself in the appearance of
acoustic oscillations (primordial oscillations in case of GW).



CMB temperature anisotropy

Planck-2015: P. A. R. Ade et al., arXiv:1502.01589



CMB temperature anisotropy multipoles

0

1000

2000

3000

4000

5000

6000

D
T

T
`

[µ
K

2
]

30 500 1000 1500 2000 2500
`

-60
-30
0
30
60

�
D

T
T

`

2 10
-600
-300

0
300
600



CMB E-mode polarization multipoles
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Present status of inflation
Now we have numbers: N. Agranim et al., arXiv:1807.06209

The primordial spectrum of scalar perturbations has been
measured and its deviation from the flat spectrum ns = 1 in
the first order in |ns − 1| ∼ N−1H has been discovered (using
the multipole range ` > 40):

< R2(r) >=

∫
PR(k)

k
dk , PR(k) = (2.10± 0.03)·10−9

(
k

k0

)ns−1

k0 = 0.05 Mpc−1, ns − 1 = −0.035± 0.004

Two fundamental observational constants of cosmology in
addition to the three known ones (baryon-to-photon ratio,
baryon-to-matter density and the cosmological constant).
Existing inflationary models can predict (and predicted, in
fact) one of them, namely ns − 1, relating it finally to
NH = ln kB Tγ

~H0
≈ 67.2. (note that (1− ns)NH ∼ 2).



Physical scales related to inflation

”Naive” estimate where I use the reduced Planck mass
M̃Pl = (8πG )−1.

I. Curvature scale

H ∼
√
PRM̃Pl ∼ 1014GeV

II. Inflaton mass scale

|minfl | ∼ H
√
|1− ns | ∼ 1013GeV

New range of mass scales significantly less than the GUT scale.



Direct approach: comparison with simple smooth

models
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Combined BICEP2/Keck Array/Planck results
P. A. R. Ade et al., Phys. Rev. Lett. 116, 031302 (2016)
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The simplest models producing the observed scalar

slope
1. The R + R2 model (Starobinsky, 1980):

L =
f (R)

16πG
, f (R) = R +

R2

6M2

M = 2.6× 10−6
(

55

N

)
MPl ≈ 3.1× 1013GeV

ns − 1 = − 2

N
≈ −0.036, r =

12

N2
≈ 0.004

N = ln
kf

k
= ln

a0Tγ
k
−O(10), HdS (N = 55) = 1.3×1014GeV

2. The same prediction from a scalar field model with
V (φ) = λφ4

4
at large φ and strong non-minimal coupling to

gravity ξRφ2 with ξ < 0, |ξ| � 1, including the
Brout-Englert-Higgs inflationary model.



The simplest purely geometrical inflationary model

L =
R

16πG
+

N2

288π2PR(k)
R2 + (small rad. corr.)

=
R

16πG
+ 5.1× 108 R2 + (small rad. corr.)

The quantum effect of creation of particles and field
fluctuations works twice in this model:
a) at super-Hubble scales during inflation, to generate
space-time metric fluctuations;
b) at small scales after inflation, to provide scalaron decay into
pairs of matter particles and antiparticles (AS, 1980, 1981).

Weak dependence of the time tr when the radiation dominated
stage begins:

N(k) ≈ NH + ln
a0H0

k
− 1

3
ln
MPl

M
− 1

6
ln(MPltr )



The most effective decay channel: into minimally coupled
scalars with m� M . Then the formula

1√−g
d

dt
(
√−gns) =

R2

576π

(Ya. B. Zeldovich and A. A. Starobinsky, JETP Lett. 26, 252
(1977)) can be used for simplicity, but the full
integral-differential system of equations for the Bogoliubov
αk , βk coefficients and the average EMT was in fact solved in
AS (1981). Scalaron decay into graviton pairs is suppressed
(A. A. Starobinsky, JETP Lett. 34, 438 (1981)).

For this channel of the scalaron decay:

N(k) ≈ NH + ln
a0H0

k
− 5

6
ln
MPl

M



Possible microscopic origins of this phenomenological model.

1. Follow the purely geometrical approach and consider it as
the specific case of the fourth order gravity in 4D

L =
R

16πG
+ AR2 + BCαβγδC

αβγδ + (small rad. corr.)

for which A� 1, A� |B |. Approximate scale (dilaton)
invariance and absence of ghosts in the curvature regime
A−2 � (RR)/M4

P � B−2.

One-loop quantum-gravitational corrections are small (their
imaginary parts are just the predicted spectra of scalar and
tensor perturbations), non-local and qualitatively have the
same structure modulo logarithmic dependence on curvature.



2. Another, completely different way:

consider the R + R2 model as an approximate description of
GR + a non-minimally coupled scalar field with a large
negative coupling ξ (ξconf = 1

6
) in the gravity sector::

L =
R

16πG
− ξRφ2

2
+

1

2
φ,µφ

,µ − V (φ), ξ < 0, |ξ| � 1 .

Geometrization of the scalar:

for a generic family of solutions during inflation and even for
some period of non-linear scalar field oscillations after it, the
scalar kinetic term can be neglected, so

ξRφ = −V ′(φ) +O(|ξ|−1) .

No conformal transformation, we remain in the the physical
(Jordan) frame!



These solutions are the same as for f (R) gravity with

L =
f (R)

16πG
, f (R) = R − ξRφ2(R)

2
− V (φ(R)).

For V (φ) =
λ(φ2−φ20)2

4
, this just produces

f (R) = 1
16πG

(
R + R2

6M2

)
with M2 = λ/24πξ2G and

φ2 = |ξ|R/λ.

The same theorem is valid for a multi-component scalar field,
as well as for the mixed Higgs-R2 model.



Inflation in the mixed Higgs-R2 Model
M. He, A. A. Starobinsky and J. Yokoyama, JCAP 1805
(2018) 064; arXiv:1804.00409.

L =
1

16πG

(
R +

R2

6M2

)
−ξRφ

2

2
+

1

2
φ,µφ

,µ−λφ
4

4
, ξ < 0, |ξ| � 1

In the attractor regime during inflation (and even for some
period after it), we return to the f (R) = R + R2

6M2 model with

the renormalized scalaron mass M → M̃ :

1

M̃2
=

1

M2
+

24πξ2G

λ

More generally, R2 inflation (with an arbitrary ns , r) serves as
an intermediate dynamical attractor for a large class of
scalar-tensor gravity models.



Inflation in GR

Inflation in GR with a minimally coupled scalar field with some
potential.

In the absence of spatial curvature and other matter:

H2 =
κ2

3

(
φ̇2

2
+ V (φ)

)

Ḣ = −κ
2

2
φ̇2

φ̈ + 3Hφ̇ + V ′(φ) = 0

where κ2 = 8πG (~ = c = 1).



Reduction to the first order equation

It can be reduced to the first order Hamilton-Jacobi-like
equation for H(φ). From the equation for Ḣ , dH

dφ
= −κ2

2
φ̇.

Inserting this into the equation for H2, we get

2

3κ2

(
dH

dφ

)2

= H2 − κ2

3
V (φ)

Time dependence is determined using the relation

t = −κ
2

2

∫ (
dH

dφ

)−1
dφ

However, during oscillations of φ, H(φ) acquires non-analytic
behaviour of the type const +O(|φ− φ1|3/2) at the points
where φ̇ = 0, and then the correct matching with another
solution is needed.



Inflationary slow-roll dynamics

Slow-roll occurs if: |φ̈| � H |φ̇|, φ̇2 � V , and then |Ḣ | � H2.

Necessary conditions: |V ′| � κV , |V ′′| � κ2V . Then

H2 ≈ κ2V

3
, φ̇ ≈ − V ′

3H
, N ≡ ln

af

a
≈ κ2

∫ φ

φf

V

V ′
dφ

First obtained in A. A. Starobinsky, Sov. Astron. Lett. 4, 82
(1978) in the V = m2φ2

2
case and for a bouncing model.



Spectral predictions of the one-field inflationary

scenario in GR
Scalar (adiabatic) perturbations:

PR(k) =
H4

k

4π2φ̇2
=

GH4
k

π|Ḣ |k
=

128πG 3V 3
k

3V ′2k

where the index k means that the quantity is taken at the
moment t = tk of the Hubble radius crossing during inflation
for each spatial Fourier mode k = a(tk)H(tk). Through this
relation, the number of e-folds from the end of inflation back
in time N(t) transforms to N(k) = ln kf

k
where

kf = a(tf )H(tf ), tf denotes the end of inflation.
The spectral slope

ns(k)− 1 ≡ d lnPR(k)

d ln k
=

1

κ2

(
2
V ′′k
Vk
− 3

(
V ′k
Vk

)2
)

is small by modulus – confirmed by observations!



Tensor perturbations (A. A. Starobinsky, JETP Lett. 50, 844
(1979)):

Pg (k) =
16GH2

k

π
; ng (k) ≡ d lnPg (k)

d ln k
= − 1

κ2

(
V ′k
Vk

)2

The consistency relation:

r(k) ≡ Pg

PR
=

16|Ḣk |
H2

k

= 8|ng (k)|

Tensor perturbations are always suppressed by at least the
factor ∼ 8/N(k) compared to scalar ones. For the present
Hubble scale, N(kH) = (50− 60). Typically, |ng | ≤ |ns − 1|,
so r ≤ 8(1− ns) ∼ 0.3 – confirmed by observations!



Inverse reconstruction of inflationary models in GR
In the slow-roll approximation:

V 3

V ′2
= CPR(k(t(φ))), C =

12π2

κ6

Changing variables for φ to N(φ) and integrating, we get:

1

V (N)
= − κ4

12π2

∫
dN

PR(N)

κφ =

∫
dN

√
d lnV

dN

Here, N � 1 stands both for ln(kf /k) at the present time
and the number of e-folds back in time from the end of
inflation. First derived in H. M. Hodges and G. R. Blumenthal,
Phys. Rev. D 42, 3329 (1990).

The two-parameter family of isospectral slow-roll inflationary
models, but the second parameter shifts the field φ only.



Minimal ”scale-free” reconstruction
Minimal inflationary model reconstruction avoiding
introduction of any new physical scale both during and after
inflation and producing the best fit to the Planck data.

Assumption: the numerical coincidence between 2/NH ∼ 0.04
and 1− ns is not accidental but happens for all 1� N . 60:
PR = P0N

2. Then:

V = V0
N

N + N0
= V0 tanh2 κφ

2
√
N0

r =
8N0

N(N + N0)

r ∼ 0.003 for N0 ∼ 1. From the upper limit on r :

N0 <
0.07N2

8− 0.07N

N0 < 57 for N = 57.



Another example: PR = P0N
3/2.

V (φ) = V0
φ2 + 2φφ0

(φ + φ0)2

Not bounded from below (of course, in the region where the
slow-roll approximation is not valid anymore). Crosses zero
linearly.

More generally, the two ”aesthetic” assumptions – ”no-scale”
scalar power spectrum and V ∝ φ2n, n = 1, 2... at the
minimum of the potential – lead to
PR = P0N

n+1, ns − 1 = −n+1
N

unambiguously. From this,
only n = 1 is permitted by observations. Still an additional
parameter appears due to tensor power spectrum – no
preferred one-parameter model (if the V (φ) ∝ φ2 model is
excluded).



Inflation in f (R) gravity
The simplest model of modified gravity (= geometrical dark
energy) considered as a phenomenological macroscopic theory
in the fully non-linear regime and non-perturbative regime.

S =
1

16πG

∫
f (R)
√−g d4x + Sm

f (R) = R + F (R), R ≡ Rµ
µ

Here f ′′(R) is not identically zero. Usual matter described by
the action Sm is minimally coupled to gravity.

Vacuum one-loop corrections depending on R only (not on its
derivatives) are assumed to be included into f (R). The
normalization point: at laboratory values of R where the
scalaron mass (see below) ms ≈ const.

Metric variation is assumed everywhere. Palatini variation
leads to a different theory with a different number of degrees
of freedom.



Field equations

1

8πG

(
Rν
µ −

1

2
δνµR

)
= −

(
T ν
µ (vis) + T ν

µ (DM) + T ν
µ (DE)

)
,

where G = G0 = const is the Newton gravitational constant
measured in laboratory and the effective energy-momentum
tensor of DE is

8πGT ν
µ (DE) = F ′(R)Rν

µ−
1

2
F (R)δνµ+

(
∇µ∇ν − δνµ∇γ∇γ

)
F ′(R) .

Because of the need to describe DE, de Sitter solutions in the
absence of matter are of special interest. They are given by
the roots R = RdS of the algebraic equation

Rf ′(R) = 2f (R) .

The special role of f (R) ∝ R2 gravity: admits de Sitter
solutions with any curvature.



Reduction to the first order equation

In the absence of spatial curvature and ρm = 0, it is always
possible to reduce these equations to a first order one using
either the transformation to the Einstein frame and the
Hamilton-Jacobi-like equation for a minimally coupled scalar
field in a spatially flat FLRW metric, or by directly
transforming the 0-0 equation to the equation for R(H):

dR

dH
=

(R − 6H2)f ′(R)− f (R)

H(R − 12H2)f ′′(R)

See, e.g. H. Motohashi amd A. A. Starobinsky, Eur. Phys. J C
77, 538 (2017), but in the special case of the R + R2 gravity
this was found and used already in the original AS (1980)
paper.



Analogues of large-field (chaotic) inflation: F (R) ≈ R2A(R)
for R →∞ with A(R) being a slowly varying function of R ,
namely

|A′(R)| � A(R)

R
, |A′′(R)| � A(R)

R2
.

Analogues of small-field (new) inflation, R ≈ R1:

F ′(R1) =
2F (R1)

R1
, F ′′(R1) ≈ 2F (R1)

R2
1

.

Thus, all inflationary models in f (R) gravity are close to the
simplest one over some range of R .



Perturbation spectra in slow-roll f (R) inflationary

models

Let f (R) = R2 A(R). In the slow-roll approximation
|R̈ | � H |Ṙ |:

PR(k) =
κ2Ak

64π2A′2k R
2
k

, Pg (k) =
κ2

12Akπ2

N(k) = −3

2

∫ Rk

Rf

dR
A

A′R2

where the index k means that the quantity is taken at the
moment t = tk of the Hubble radius crossing during inflation
for each spatial Fourier mode k = a(tk)H(tk).



Smooth reconstruction of inflation in f (R) gravity

f (R) = R2 A(R)

A = const − κ2

96π2

∫
dN

PR(N)

lnR = const +

∫
dN

√
−2 d lnA

3 dN

Here, the additional assumptions that PR ∝ Nβ and that the
resulting f (R) can be analytically continued to the region of
small R without introducing a new scale, and it has the linear
(Einstein) behaviour there, leads to β = 2 and the R + R2

inflationary model with r = 12
N2 = 3(ns − 1)2 unambiguously.



Quantum corrections to the simplest model

Due to the scale-invariance of the R + R2 model for R � M2,
one may expect logarithmic running of the dimensionless
coefficient in front of the R2 term for large energies and
curvatures. The concrete ’asymptotically safe’ model with

f (R) = R +
R2

6M2
[

1 + b ln
(

R
µ2

)]
was recently considered in L.-H. Liu, T. Prokopec,

A. A. Starobinsky, Phys. Rev. D 98, 043505 (2018);
arXiv:1806.05407.



However, comparison with CMB observational data shows that
b is small by modulus: |b| . 10−2. Thus, from the
observational point of view this model can be simplified to

f (R) = R +
R2

6M2

[
1− b ln

(
R

µ2

)]
,

for which the analytic solution exists:

ns − 1 = −4b

3

(
e

2bN
3 − 1

)−1

r =
16b2

3

e
4bN
3(

e
2bN
3 − 1

)2
For |b|N � 1, these expressions reduce to those for the
R + R2 model.



Second type: terms arising from the conformal

(trace) anomaly

The tensor producing the ∝
(
RµνR

µν − R2

3

)
term in the trace

anomaly:

T ν
µ =

k2
2880π2

(
Rα
µR

ν
α −

2

3
RRν

µ −
1

2
δνµRαβR

αβ +
1

4
δνµR

2

)
It is covariantly conserved in the isotropic case only! Can be

generalized to the weakly anisotropic case by adding a term
proportional to the first power of the Weyl tensor.

T 0
0 =

3H4

κ2H2
1

, T = − 1

κ2H2
1

(
RµνR

µν − R2

3

)
, H2

1 =
2880π2

κ2k2



The spectrum of scalar and tensor perturbations in this case
was calculated already in A. A. Starobinsky, Sov. Astron. Lett.
9, 302 (1983).

ns − 1 = −2β
eβN

eβN − 1
, β =

M2

3H2
1

If ns > 0.957 and N = 55, then H1 > 7.2M .



Perspectives of future discoveries

I Primordial gravitational waves from inflation: r .
r . 8(1− ns) ≈ 0.3 (confirmed!) but may be much less.
However, under reasonable assumptions one may expect
that r & (ns − 1)2 ≈ 10−3.

I A more precise measurement of ns − 1 =⇒ duration of
transition from inflation to the radiation dominated stage
=⇒ information on inflaton (scalaron) couplings to known
elementary particles at superhigh energies E . 1013 Gev.

I Local non-smooth features in the scalar power spectrum
at cosmological scales (?).

I Local enhancement of the power spectrum at small scales
leading to a significant amount of primordial black holes
(?).



The most well-known and influential papers of

Prof. González-D́ıaz

The 4 most cited (135-225 citations according to INSPIRE)
and influential papers by Prof. Pedro González-D́ıaz : Phys.
Rev. D (2003), Phys. Lett. B (2004), Nucl. Phys. B (with
C. L. Siguenza) and Phys. Lett. B (2008) (with
M. Bouhmadi-Lopez and P. Martin-Moruno) – were related to
different aspects of phantom present dark energy. One more
paper (Phys. Lett. B (2004), with J. A. Jimenez-Madrid) was
devoted to phantom primordial dark energy (phantom
inflation) where the hypothesis of the ”big trip” was
introduced.



Possible forms of DE
I Physical DE.

New non-gravitational field of matter. DE proper place –
in the rhs of gravity equations.

I Geometrical DE.
Modified gravity. DE proper place – in the lhs of gravity
equations.

I Λ - intermediate case.

Observations: T ν
µ (DE) is very close to Λδνµ for the concrete

solution describing our Universe;

< wDE >= −1.03± 0.03

where wDE ≡ pDE/εDE .
wDE > −1 – normal case,
wDE < −1 – phantom case,
wDE ≡ −1 – the exact cosmological constant (”vacuum
energy”).



DE phantom behavior in modified classical gravity

1. Models of present DE in scalar-tensor gravity may
generically have phantom behaviour due to change of Geff

(B. Boisseau et al., Phys. Rev. Lett. 85, 2236 (2000)).
2. Viable models of present DE in f (R) gravity typically
exhibit phantom behaviour of dark energy during the
matter-dominated stage and recent crossing of the phantom
boundary wDE = −1 ( (H. Motohashi, A. A. Starobinsky and
J. Yokoyama, Progr. Theor. Phys. 123, 887 (2010)).
3. Moreover, if the present mass of the scalaron is sufficiently
large, there will be an infinite number of phantom boundary
crossings during the future evolution of such cosmological
models (H. Motohashi, A. A. Starobinsky and J. Yokoyama,
JCAP 1106, 006 (2011)).
However, in all cases |1 + w | is small, less than a few percent.



Phantom behaviour in quantum regime
1. The weak and null energy conditions are always temporarily
violated in the process of particle creation from the adiabatic
vacuum as far as the effective average number of particles is
small ( Ya. B. Zeldovich and L. P. Pitaevsky, 1971,
Ya. B. Zeldovich and A. A. Starobinsky, 1971). Otherwise,
particle creation from vacuum would not be possible
(S. W. Hawking, 1970).
2. Smallness and Gaussian statistics of primordial scalar
perturbations require Ḣ < 0, i. e. non-phantom behaviour,
during the observable part of inflation. Still primordial DE may
be temporary weakly phantom during its early, stochastic stage
which is not directly observable.
3. Present ’quantum’ DE consisting of quantum fluctuations
of a non-minimally coupled scalar field which was a spectator
one during inflation may be phantom, in principle, though this
possibility has not been investigated in detail.



Conclusions

I The typical inflationary predictions that |ns − 1| is small
and of the order of N−1H , and that r does not exceed
∼ 8(1− ns) are confirmed. Typical consequences
following without assuming additional small parameters:
H55 ∼ 1014GeV, minfl ∼ 1013GeV.

I Though the Einstein gravity plus a minimally coupled
inflaton remains sufficient for description of inflation with
existing observational data, modified (in particular,
scalar-tensor or f (R)) gravity can do it as well.

I Inflation in f (R) gravity represents a dynamical attractor
for slow-rolling scalar fields strongly coupled to gravity.

I From the scalar power spectrum PR(k), it is possible to
reconstruct an inflationary model both in the Einstein and
f (R) gravity up to one arbitrary physical constant of
integration.



I In the Einstein gravity, the simplest inflationary models
permitted by observational data are two-parametric, no
preferred quantitative prediction for r , apart from its
parametric dependence on ns − 1, namely, ∼ (ns − 1)2 or
larger.

I In the f (R) gravity, the simplest model is one-parametric
and has the preferred value r = 12

N2 = 3(ns − 1)2.

I Thus, it has sense to search for primordial GW from
inflation at the level r > 10−3!



I Comparison with observational data shows that
logarithmic high-curvature quantum corrections to the
R + R2 model in the observable part of inflation are
small, no more than a few percents. This smallness has
been expected since it caused by the anomalously large
value of the dimensionless coefficient in front of the R2

term which finally follows from actual smallness of
present large-scale inhomogeneity of the Universe.

I Present dark energy may by phantom due to modified
gravity (Geff changing) or quantum gravitational effects,
but the expected amount of its phantomness is very small
that agrees with observations. Primordial dark energy
may not be phantom at the observable (final) part of
inflation, but may be temporary weakly phantom during
its early, stochastic stage when generated scalar
perturbations are large (though not locally observable).


	Present status of inflation
	The simplest one-parametric inflationary models
	Inflation and its smooth reconstruction in GR
	Inflation and its smooth reconstruction in f(R) gravity
	Quantum corrections to the simplest model
	May primordial and/or present dark energy be phantom?
	Conclusions

