Apéndice

Repaso de EDOs

Algunas EDOs de primer orden $\left| \frac{dy}{dx} = f(x, y) \right|$ resolubles

$$\frac{dy}{dx} = f(x, y)$$
 resoluble

[f, f_y continuas en un entorno de $(x_0, y_0) \Rightarrow$ existe una única solución con $y(x_0) = y_0$].

Separables: $\frac{dy}{dx} = \frac{p(x)}{q(y)} \rightarrow \int q(y) dy = \int p(x) dx + C$.

Se convierten en separables: $\frac{dy}{dx} = f(\frac{y}{x})$ con $z = \frac{y}{x}$. $\frac{dy}{dx} = f(ax + by)$ con z = ax + by.

Lineales: $\frac{dy}{dx} = a(x)y + f(x) \rightarrow y = Ce^{\int a(x)dx} + e^{\int a(x)dx} \int e^{-\int a(x)dx} f(x) dx$.

[solución general de la homogénea + solución y_p de la no homogénea].

Exactas: $M(x,y)+N(x,y)\frac{dy}{dx}=0$ con $M=U_X$ $N=U_Y$ $M_Y\equiv N_X$ $M_Y\equiv N_X$ $M_Y\equiv N_X$

Ej. $\frac{dy}{dx} = \frac{y}{y-x}$ (solución única si $y \neq x$) se puede resolver por tres caminos:

$$\begin{split} z &= \frac{y}{x} \to xz' + z = \frac{z}{z-1} \to \int \frac{(2z-2)\,dz}{z^2-2z} = -2\int \frac{dx}{x} + C \to z^2 - 2z = \frac{y^2}{x^2} - 2\frac{y}{x} = \frac{C}{x^2} \,. \\ y + (x-y)\frac{dy}{dx} \text{ con } M_y \equiv N_X = 1 \to U_x = y \to U = xy + p(y) \\ U_y &= x-y \to U = xy - \frac{1}{2}y^2 + q(x) \to y^2 - 2xy = C \,. \end{split}$$

$$y + (x-y)\frac{dy}{dx}$$
 con $M_y \equiv N_x = 1 \to U_x = y \to U = xy + p(y)$
 $U_y = x - y \to U = xy - \frac{1}{2}y^2 + q(x) \to y^2 - 2xy = C$

$$\frac{dx}{dy} = \frac{y-x}{y} = -\frac{x}{y} + 1 \text{ lineal (solución única si } y \neq 0 \text{) . } x = \frac{C}{y} + \frac{1}{y} \int y \, dy = \frac{C}{y} + \frac{y}{2} \text{ .}$$

[Pasa una sola curva integral (solución de $\frac{dy}{dx} = \cdots$ o de $\frac{dx}{dy} = \cdots$) salvo por (0, 0)].

EDOs lineales de orden 2:
$$\begin{bmatrix} n \end{bmatrix} \underbrace{ y'' + a(x)y' + b(x)y = f(x) }_{a \text{ , } b \text{ , } f \text{ continuas en } I \text{.}} , \quad |W|(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} .$$

Si $x_0 \in I$, tiene una sola solución (definida en todo I) con $y(x_0) = y_0$, $y'(x_0) = y'_0$.

Si y_1 , y_2 son soluciones de la homogénea ($f \equiv 0$) con wronskiano $|W|(s) \neq 0$ para algún $s \in I$, la solución general de la homogénea es: $y = c_1y_1 + c_2y_2$.

Si y_p es una solución de [n], la solución general de [n] es: $y=c_1y_1+c_2y_2+y_p$.

Una solución particular de [n] es: $y_p = y_2 \int \frac{y_1 f}{|W|} dx - y_1 \int \frac{y_2 f}{|W|} dx$ [**fvc**].

Coeficientes constantes: [h]
$$y'' + ay' + by = 0$$
, $\mu^2 + a\mu + b = 0$ (autovalores).

Si
$$\mu_1 \neq \mu_2$$
 reales $\to y = c_1 e^{\mu_1 x} + c_2 e^{\mu_2 x}$

La solución general de [h] es: Si μ doble (real) $\rightarrow y = (c_1 + c_2 x) e^{\mu x}$

Si $\mu = p \pm iq \rightarrow y = (c_1 \cos qx + c_2 \sin qx) e^{px}$

Método de coeficientes indeterminados para [c] $|y'' + \alpha y' + by = f(x)|$:

Si $f(x) = e^{\mu x} p_m(x)$, con p_m polinomio de grado m, y μ no es autovalor, tiene [c] solución particular de la forma $y_p = e^{\mu x} P_m(x)$, con P_m del mismo grado. Si μ es autovalor de multiplicidad r, hay $y_p = x^r e^{\mu x} P_m(x)$.

Si $f(x) = e^{\mu x} [p_j(x) \cos qx + q_k(x) \sin qx]$, p_j , q_k de grados j, k, y $p \pm iq$ no es autovalor, hay $y_p = e^{px} [P_m(x) \cos qx + Q_m(x) \sin qx] \cos P_m$ y Q_m de grado $m = \max\{j, k\}$. Si $p \pm iq$ es autovalor hay $y_p = xe^{px}[P_m(x)\cos qx + Q_m(x)\sin qx]$.

Ej. $y''-y=e^x$. $\mu=\pm 1 \rightarrow \text{ solución general: } y=c_1e^x+c_2e^{-x}+y_p$, con:

$$y_p = Axe^x \rightarrow A(x+2) - Ax = 1 \rightarrow y_p = \frac{1}{2}xe^x$$
. O más largo:

$$|W|(x) = \begin{vmatrix} e^x & e^{-x} \\ e^x & -e^{-x} \end{vmatrix} = -2$$
, $y_p = e^{-x} \int \frac{e^x e^x}{-2} - e^x \int \frac{e^{-x} e^x}{-2} = -\frac{1}{4} e^x + \frac{1}{2} x e^x$.

Euler: [u]
$$x^2y'' + axy' + by = 0$$
, $\mu(\mu - 1) + a\mu + b = 0$.

Si $\mu_1 \neq \mu_2$ reales $\to y = c_1 x^{\mu_1} + c_2 x^{\mu_2}$

La solución general de [u] es: Si μ doble (real) $\rightarrow y = [c_1 + c_2 \ln x] x^{\mu}$

Si $\mu = p \pm qi \rightarrow y = [c_1 \cos(q \ln x) + c_2 \sin(q \ln x)] x^p$

Una y_p de $x^2y''+axy'+by=h(x)$ se obtiene de la [**fvc**] (con $f(x)=h(x)/x^2$), o utilizando que con $x=e^s$ se convierte en $y''(s)+(a-1)y'(s)+by(s)=h(e^s)$.

Si
$$b(x) \equiv 0$$
, $y' = v$ lleva [e] a lineal de primer orden en v .

Ej.
$$xy''-2y'=x$$
. Se puede ver como Euler: $x^2y''-2xy'=x^2$, $\mu(\mu-1)-2\mu=0$ $\rightarrow y=c_1+c_2x^3+y_p$, con $y_p=Ax^2$ $(y_p=Ae^{2s}) \rightarrow y_p=-\frac{1}{2}x^2$. $\left[0 \text{ bien, } |W|(x)=\left|\begin{matrix} 1 & x^3 \\ 0 & 3x^2 \end{matrix}\right|=3x^2, \ y_p=x^3\int \frac{1\cdot 1}{3x^2}+\int \frac{x^3\cdot 1}{3x^2}=-\frac{1}{2}x^2\right]$.

O de otra forma:
$$y' = v \rightarrow v' = \frac{2v}{x} + 1 \rightarrow v = Cx^2 + x^2 \int \frac{dx}{x^2} = Cx^2 - x \rightarrow y = K + Cx^3 - \frac{1}{2}x^2$$
.

Para otras ecuaciones lineales de segundo orden hay buscar:

Soluciones en forma de serie:

Si a, b son analíticas en x=0, es un punto **regular** de [e] y''+a(x)y'+b(x)y=0 y la solución de [e] es $y=\sum_{n=0}^{\infty}c_kx^k=c_0y_1+c_1y_2$, con c_0 , c_1 arbitrarios.

x=0 es punto **singular regular** de [e*] $x^2y''+xa^*(x)y'+b^*(x)y=0$ si a^* , b^* son analíticas en x=0. Sean $r_1 \ge r_2$ las raíces de $q(r)=r(r-1)+a_0^*r+b_0^*$.

Hay solución y_1 de [e*] de la forma $y_1 = x^{r_1} \sum_{k=0}^{\infty} c_k x^k$, $c_0 \neq 0$.

La segunda solución y_2 linealmente independiente es:

a] Si
$$r_1 - r_2 \neq 0, 1, \dots : y_2 = x^{r_2} \sum_{n=0}^{\infty} b_k x^k, b_0 \neq 0$$
. b] Si $r_1 = r_2 : y_2 = x^{r_1 + 1} \sum_{n=0}^{\infty} b_k x^k + x_1 \ln x$.

c] Si
$$r_1 - r_2 \in \mathbf{N}$$
: $y_2 = x^{r_2} \sum_{n=0}^{\infty} b_n x^n + dy_1 \ln x$, $b_0 \neq 0$, $d \in \mathbf{R}$.

EDOs importantes resolubles utilizando series:

Legendre $(1-x^2)y''-2xy'+p(p+1)y=0$. Tiene soluciones polinómicas si $p=n \in \mathbb{N}$:

$$P_0 = 1$$
 , $P_1 = x$, $P_2 = \frac{3}{2}x^2 - \frac{1}{2}$, $P_3 = \frac{5}{2}x^3 - \frac{3}{2}x$, $P_4 = \frac{35}{8}x^4 - \frac{15}{4}x^2 + \frac{3}{8}$, ...

Se cumple que: $\int_{-1}^{1} P_n P_m dx = 0$, si $m \neq n$; $\int_{-1}^{1} P_n^2 dx = \frac{2}{2n+1}$.

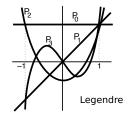
Bessel:
$$x^2y'' + xy' + [x^2 - p^2]y = 0$$
 $\rightarrow r = \pm p$. $r_1 = p \rightarrow J_p(x) \equiv \left[\frac{x}{2}\right]^p \sum_{m=0}^{\infty} \frac{(-1)^m \left[x/2\right]^{2m}}{m! \, \Gamma(p+m+1)}$.

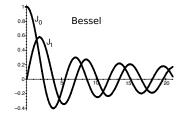
 J_p soluciones acotadas en x=0, con infinitos ceros [los de J_0 son: 2.4.., 5.5.., ...]. Las soluciones linealmente independientes de ellas son no acotadas en 0.

Cuando $p = \frac{1}{2}, \frac{3}{2}, \dots$, la solución es expresable con funciones elementales

[por ejemplo, si
$$p = \frac{1}{2}$$
 es $y = c_1 \frac{\sin x}{\sqrt{x}} + c_2 \frac{\cos x}{\sqrt{x}}$].

Recurrencia: $J_{p+1} = \frac{2p}{x} J_p - J_{p-1}$. Derivadas: $[x^p J_p(x)]' = x^p J_{p-1}(x)$, $J'_0(x) = -J_1$.



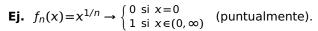


Repaso de convergencia uniforme

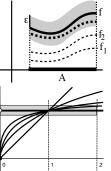
Sea la **sucesión de funciones** definidas en $A \subset \mathbf{R}$: $\{f_n(x)\} = f_1(x), f_2(x), ..., f_n(x), ...$

- $\{f_n\}$ converge puntualmente f en A si para cada $x \in A$ es $\lim_{n \to \infty} f_n(x) = f(x)$.
- $\{f_n\}$ converge uniformemente hacia su límite puntal f en A si $\forall \varepsilon > 0$ existe algún N tal que $\forall x \in A$, si $n \ge N$ entonces $|f(x) f_n(x)| < \varepsilon$.

Gráficamente, si $\{f_n\} \to f$ uniformemente, a partir de un N todas las gráficas de las f_n quedan dentro de toda banda de altura 2ε alrededor de la de f. Si la convergencia es sólo puntual, para cada x el N es distinto y no se puede dar uno válido para todos los puntos de A.

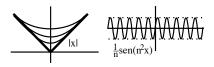


La convergencia es uniforme en [1,2], pero no en [0,1]. Para cada $x \in [0,1]$ existe N tal que si $n \ge N$ el punto $(x,x^{1/n})$ está dentro de la banda, pero hace falta elegir N mayores según nos acercamos a 0. En [1,2] la convergencia es uniforme, pues el N que vale para x=2 claramente vale también para el resto de los x del intervalo.



 f_n continuas en un intervalo I y $\{f_n\} \rightarrow f$ uniformemente en $I \Rightarrow f$ continua en I.

Si las f_n son derivables, que $f_n \to f$ uniformemente no basta para que f sea derivable, o puede existir f' y no ser el límite de las f'_n (como en los ejemplos de la derecha); para que pasen ambas cosas, deben también converger las f'_n uniformemente.



Las series de funciones son un caso particular

 $\sum_{n=1}^{\infty} f_n \text{ converge puntualmente o uniformemente en } A \text{ hacia } f \text{ si lo hace}$ la sucesión de sus **sumas parciales** $S_n = f_1 + \dots + f_n$.

Criterio de Weierstrass

Sean $\{f_n\}$ definidas en A y $\{M_n\}$ una sucesión de números tal que $|f_n(x)| \le M_n$ $\forall x \in A$ y tal que $\sum M_n$ converge. Entonces $\sum f_n$ converge uniformemente en A.

Ej. $\sum \frac{\operatorname{sen} nx}{n^2}$ converge uniformemente en todo **R** pues $\left|\frac{\operatorname{sen} nx}{n^2}\right| \leq \frac{1}{n^2}$ y $\sum \frac{1}{n^2}$ converge.

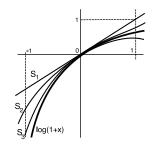
[Se tiene entonces, por ejemplo, que la suma f(x) de esta serie es continua en todo ${\bf R}$]. La serie obtenida derivando término a término: $\sum \frac{\cos nx}{n}$ diverge, por ejemplo, si x=0. (Para otros x, como $x=\pi$, converge por Leibniz, y para casi todos es difícil decirlo).

Así pues, en general, no se pueden derivar término a término las sumas infinitas como las finitas. Aunque sí se puede hacer con las **series de potencias**:

La serie $\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \cdots$ converge uniformemente en todo intervalo cerrado $[a,b] \subset (-R,R)$ (R radio de convergencia). Para |x| < R la función f(x) definida por la serie es derivable y $f'(x) = \sum_{n=1}^{\infty} n c_n x^{n-1} = c_1 + 2c_2 x + 3c_3 x^2 + \cdots$

Ej. $x - \frac{x^2}{2} + \frac{x^3}{3} + \cdots$ con R = 1, converge puntualmente si $x \in (-1, 1]$ [hacia $\log(1+x)$] y uniformemente en cualquier intervalo [a, 1], a > -1, pero no lo hace en todo (-1, 1], pues las sumas parciales están acotadas en ese intervalo y el log no.

La serie derivada término a término $1-x+x^2+\cdots$ converge en (-1,1) [hacia $\frac{1}{1+x}$].



Repaso de cálculo en varias variables

Sean $\alpha, \mathbf{x} \in \mathbf{R}^n$, $A \subset \mathbf{R}^n$. **Entorno** de centro α y radio r es $B_r(\alpha) \equiv \{\mathbf{x} : \|\mathbf{x} - \alpha\| < r\}$. α es **interior** a A si hay algún $B_r(\alpha) \subset A$. A es **abierto** si $A = int A \equiv \{\mathbf{x} : \forall r, B_r(\mathbf{x}) \text{ tiene puntos de } A \text{ y de } \mathbf{R}^n - A\}$. $\overline{A} = int A \cup \partial A$.

La **derivada según el vector v** de un campo escalar $f: \mathbb{R}^n \to \mathbb{R}$ en un punto α es:

$$D_{\mathbf{V}}f(\mathbf{\alpha}) \equiv f_{\mathbf{V}}(\mathbf{\alpha}) = \lim_{h \to 0} \frac{f(\mathbf{\alpha} + h\mathbf{v}) - f(\mathbf{\alpha})}{h} = \sup_{\mathbf{S} \mathbf{i}} \int_{\mathbf{f} \in C^1} \nabla f \cdot \mathbf{v} \quad \text{[si } \mathbf{v} \text{ es unitario se llama direccional, si } \mathbf{v} = \mathbf{i} \text{ es la parcial } \partial f / \partial x(\mathbf{\alpha}), \dots].$$

Si
$$\begin{cases} y_1 = f_1(x_1, ..., x_n) \\ ... \\ y_n = f_n(x_1, ..., x_n) \end{cases}$$
, el determinante **jacobiano** es
$$\frac{\partial (y_1, ..., y_n)}{\partial (x_1, ..., x_n)} = \begin{vmatrix} \partial f_1 / \partial x_1 \cdots \partial f_1 / \partial x_n \\ \vdots & \vdots \\ \partial f_n / \partial x_1 \cdots \partial f_n / \partial x_n \end{vmatrix}$$
.

Polares:
$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases} \rightarrow \frac{\partial(x,y)}{\partial(r,\theta)} = r$$
. **Esféricas**: $\begin{cases} x = r\sin\theta\cos\phi \\ y = r\sin\theta\sin\phi \end{cases} \rightarrow \frac{\partial(x,y,z)}{\partial(r,\theta,\phi)} = r^2\sin\theta$.

Cambios de variable en integrales dobles:

Sea $\mathbf{g}: (u, v) \to (x(u, v), y(u, v))$ de C^1 , inyectiva en D^* , $\mathbf{g}(D^*) = D$ y f integrable. Entonces: $\iint_D f(x, y) \, dx \, dy = \iint_{D^*} f(x(u, v), y(u, v)) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \, du \, dv$.

Integrales de línea de campos escalares:

Sea C la curva C^1 descrita por una función vectorial $\mathbf{c}(t) \colon [a,b] \to \mathbf{R}^2$ y sea f un campo escalar tal que $f(\mathbf{c}(t))$ es continua. Entonces: $\int_C f \, ds \equiv \int_a^b f(\mathbf{c}(t)) \, \|\mathbf{c}'(t)\| \, dt$.

[No depende de la $\mathbf{c}(t)$ elegida. Si C es C^1 a trozos, se divide [a,b] y se suman las integrales].

Teorema de la divergencia (en el plano):

Sea $D \subset \mathbb{R}^2$ limitado por ∂D curva cerrada simple, $\mathbf{f}: D \to \mathbb{R}^2$ campo vectorial C^1 , y \mathbf{n} el vector normal unitario exterior a ∂D . Entonces $\iint_D \operatorname{div} \mathbf{f} \, dx \, dy = \oint_{\partial D} \mathbf{f} \, \mathbf{n} \, ds$.

[Si ∂D viene descrita por $\mathbf{c}(t) = (x(t), y(t))$ un normal unitario es $\mathbf{n} = (y'(t), -x'(t)) / \|\mathbf{c}'(t)\|$].

Ej. Comprobemos el teorema para $\mathbf{f}(x,y)=(7,y^2-1)$ en el semicírculo $r \le 3$, $0 \le \theta \le \pi$:

$$\iint_{D} 2y \, dx dy = \int_{0}^{\pi} \int_{0}^{3} 2r^{2} \sin \theta \, dr \, d\theta = 36.$$
Para C_{1} , si $\mathbf{c}(x) = (x, 0)$, $x \in [-3, 3] \to \int_{C_{1}} (1 - y^{2}) \, ds = \int_{-3}^{3} dx = 6.$
Para C_{2} , si $\mathbf{c}(t) = (3\cos t, 3\sin t)$, $t \in [0, \pi] \to \|\mathbf{c}'(t)\| = 3$. Como
$$\mathbf{n} = (\cos t, \sin t), \int_{C_{2}} \mathbf{f} \, \mathbf{n} \, ds = 3 \int_{0}^{\pi} (7\cos t + 9\sin^{3}t - \sin t) \, dt = 30.$$

Integrales de superficie de campos escalares:

Sea S la superficie descrita por la función vectorial $\mathbf{r}(u,v)\colon T\subset\mathbf{R}^2\to\mathbf{R}^3$ y sea f tal que $f(\mathbf{r}(u,v))$ es continua. Entonces: $\iint_S f\,dS \equiv \iint_T f(\mathbf{r}(u,v)) \left\|\frac{\partial\mathbf{r}}{\partial u}\times\frac{\partial\mathbf{r}}{\partial v}\right\|du\,dv.$ producto vectorial fundamental f

[Si *S* es del tipo z=h(x,y) se puede describir $\mathbf{r}(x,y)=(x,y,h(x,y))$, con *T* proyección de *S* sobre z=0, y el producto vectorial fundamental adopta la forma $(-h_x,-h_y,1)$].

Ej. Integremos $f(x, y, z) = z^2$ sobre la superficie esférica $\mathbf{x} = a$.

Eligiendo $\mathbf{r}(u, v) = (a\cos u \sin v, a \sin u \sin v, a \cos v),$

$$\iint_{S} z^{2} dS = \int_{0}^{\pi} \int_{0}^{2\pi} a^{2} \cos^{2} v \ a^{2} \sup_{\text{pvf}^{\uparrow}} v \ du \ dv = \frac{4\pi}{3} a^{4} \ .$$

$$\text{Con } \mathbf{r}(x, y) = \left(x, y, \sqrt{a^{2} - x^{2} - y^{2}}\right), \text{ el pvf es } \frac{a}{\sqrt{a^{2} - x^{2} - y^{2}}} \to 0$$

$$\iint_{S} z^{2} dS = 2 \iint_{T^{*}} a \sqrt{a^{2} - x^{2} - y^{2}} dx dy = 4\pi \int_{0}^{a} ar \sqrt{a^{2} - r^{2}} dr = \frac{4\pi}{3} a^{4}.$$

