Soluciones del parcial de Cálculo (grupo C) (11 de marzo de 2024)

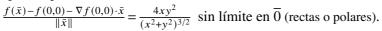
- **1.** Sea $f(x,y) = \frac{3xy^2 x^3}{x^2 + y^2}$, f(0,0) = 0. a) Probar que f es continua en (0,0). Hallar, si existen, $f_x(0,0)$, $f_y(0,0)$ y $D_{(1,2)}f(0,0)$, derivada según el vector (1,2). Precisar si f es diferenciable o no en (0,0).
 - b] Dibujar las curvas de nivel f = 0 y hallar un vector \overline{v} para el que sea $D_{\overline{v}}f(-\sqrt{3},1) = 0$.
 - c] Calcular $\Delta f(1,1)$ [mejor a partir de la expresión $f_{rr} + \frac{1}{r} f_r + \frac{1}{r^2} f_{\theta\theta}$].

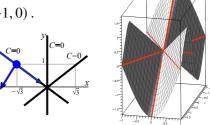
[3.5 puntos] (1.9+.8+.8)

- a] Polares. $f(r,\theta) = r(3\cos\theta\sin^2\theta \cos^3\theta)$. Como $|f(r,\theta) 0| \le 4r \xrightarrow[r \to 0]{} 0$ es f continua. $f(x,0) = -x \Rightarrow f_x(0,0) = -1$. $f(0,y) = 0 \Rightarrow f_y(0,0) = 0$. $\nabla f(0,0) = (-1,0)$.
 - Con la definición: $\frac{f(h,2h)-f(0,0)}{h} = \frac{11h^3}{5h^2h} = \frac{11}{5} \xrightarrow{h\to 0} \frac{11}{5} = D_{(1,2)}f(0,0)$.

Si fuera diferenciable sería $D_{(1,2)}f(0,0) = \nabla f(0,0) \cdot (1,2) = -1$.

No puede, por tanto, serlo. O directamente con la definición:





- **b**] $f(x,y)=0 \rightarrow x=0$, $x=\pm\sqrt{3}y$. Sobre la recta que contiene $\overline{v}=(\pm\sqrt{3},\mp1)$ es f constante y es, pues, $D_{\overline{v}}=0$ para esos \overline{v} . No se necesita el $\nabla f = \left(\frac{3y^4 - 6x^2y^2 - x^4}{(x^2 + y^2)^2}, \frac{8x^3y}{(x^2 + y^2)^2}\right) \stackrel{(-\sqrt{3}, 1)}{\longrightarrow} -\frac{3}{2}(1, \sqrt{3})$, perpendicular a los \overline{v} ahí.
- $\mathbf{c}] \ f_r = 3cs^2 c^3, \ f_{rr} = 0 \ , \ f_\theta = 3r \big(3c^2s s^3 \big) \ , \ f_{\theta\theta} = 9r \big(c^3 3cs^2 \big) \ . \ \Delta f = \frac{8c}{r} \big(c^2 3s^2 \big) \overset{r = \sqrt{2}, \, \theta = \pi/4}{\longrightarrow} \ -4$ Con más cálculos se llega en cartesianas a: $\Delta f = \frac{8x(x^2 - 3y^2)}{(x^2 + y^2)^2} \xrightarrow{x,y=1} -4$.
- 2. Sean $F(x, y, z) = x^4 + 5y^2 + z^4 + 2xyz$, la superficie S dada por F = 9 y la curva $\bar{c}(t) = (t, t^2, t)$, con $t \ge 0$.
 - a] Calcular en el punto \bar{p} de corte entre ambas el plano tangente a la superficie y la recta tangente a la curva. Hallar el ángulo con el que la recta corta el plano.
 - b] Si $h(t) = F(\bar{c}(t))$, calcular, mediante la regla de la cadena en \mathbb{R}^n , el valor de h'(1).
 - c] Calcular paso a paso, a partir de la definición, el rot (∇F) .

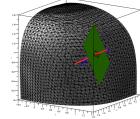
[3.5 puntos] (2+.8+.7)

a) Se cortan si $9t^4 = 9 \rightarrow t = 1$. Es $\bar{p} = (1,1,1)$. $\nabla F = (4x^3 + 2yz, 10y + 2xz, 4z^3 + 2xy)$. $\nabla F(1,1,1) = 6(1,2,1)$. Plano: $(1,2,1) \cdot (x-1,y-1,z-1) = 0$, z=4-x-2y.

El vector tangente a la curva en \bar{p} es $\bar{c}'(1) = (1, 2t, 1)|_{t=1} = (1, 2, 1)$.

Y la recta es, por tanto: $\bar{x} = (1+t, 1+2t, 1+t)$.

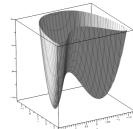
El vector normal al plano y el tangente a la curva coinciden. El ángulo es $\frac{\pi}{2}$.



- **b**] $h'(1) = \nabla F(\bar{c}(1)) \cdot \bar{c}'(1) = 6(1, 2, 1) \cdot (1, 2, 1) = 36$ (como la derivada de $h(t) = 9t^4$). **c**] $rot(\nabla F) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial/\partial_x & \partial/\partial_y & \partial/\partial_z \\ 4x^3 + 2yz & 10y + 2xz & 4z^3 + 2xy \end{vmatrix} = (2x 2x, 2y 2y, 2z 2z) = (0, 0, 0)$, como sabíamos que debía ocurrir.
- 3. Sea $h(x,y) = y^2 2x^2y + 2x^4 2x^2$. a] Hallar y clasificar los puntos críticos de h. [3 puntos] (1.8+.6+.6)

Elegir dos entre **b**], **c**] y **d**]: **b**] Probar, completando un par de cuadrados, que hay mínimos globales. **c**] Escribir el desarrollo de Taylor de orden 2 de *h* en torno al punto (1, 1).

- d] Hallar y'(1) si y(x) es la función definida implícitamente por h=0 cerca de (1,2), justificando que existe.
- a] $h_x = 4(2x^3 xy x) = 0$ $4x(x^2 1) = 0$ $y = 2(y x^2) = 0$, $y = x^2$ Puntos críticos (0, 0) y $(\pm 1, 1)$. $h_{xx} = 4(6x^2 - y - 1)$, $h_{yy} = 2$, $h_{xy} = -4x$. $H = 8\begin{vmatrix} 6x^2 - y - 1 & -x \\ -2x & 1 \end{vmatrix}$.



En (0,0) es H=-8<0 y por lo tanto se trata de un **punto silla**, con h(0,0)=0. Y como $H(\pm 1, 1) = \begin{vmatrix} 16 & \mp 4 \\ \mp 4 & 2 \end{vmatrix} > 0$ y $h_{xx} > 0$. **Mínimos locales**, con $h(\pm 1, 1) = -1$.

- **b**] $h(x,y) = (y-x^2)^2 + x^4 2x^2 = (y-x^2)^2 + (x^2-1)^2 1 \ge -1 \ \forall x, y$. Valor mínimo global.
- c] Tenemos ya todas las derivadas: $h(x, y) = -1 + 8(x-1)^2 4(x-1)(y-1) + (y-1)^2 + \cdots$
- **d**] $h \in C^1$, h(1,2) = 0, $h_y(1,2) \neq 0 \Rightarrow$ existe y(x) de C^1 . $y' = -\frac{h_x}{h_y} = \frac{2x(1+y-2x^2)}{y-x^2} \xrightarrow{(1,2)} y'(1) = 2$. [La curva h=0 dibujada por Maple es la de la derecha. Su expresión es $y=x^2\pm x\sqrt{2-x^2}$].

