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Preface

This dissertation reports the research I have carried out as a PhD student in the
Statistical Field Theory Group of the UCM, where I have been privileged to work
and learn under the guidance of Luis Antonio Fernández and Víctor Martín. They
not only form a truly remarkable scientific partnership, but have also been the
best advisors I could ever have hoped to have.

My work during this time constitutes an attempt to make some headway in
the field of complex condensed matter systems, concentrating on disordered spin
models and taking a Monte Carlo approach. In particular, this dissertation deals
with two archetypical systems: the diluted antiferromagnet in a field and the
Edwards-Anderson spin glass. The former is studied with Tethered Monte Carlo,
a formalism developed during this thesis.

As to the Edwards-Anderson spin glass, I have been fortunate to have access
to Janus, a special-purpose machine that outperforms conventional computing
architectures by several orders of magnitude in the Monte Carlo simulation of
spin systems. This would be akin to being one of a few particle physicists with
access to a newer, vastly more powerful collider (si parva licet componere magnis)
and has allowed our group to tackle head-on a much studied model and still see
some new physics. From the point of view of a PhD student, it has been a unique
learning opportunity. Janus is the fruit of a collaboration of physicists and engi-
neers from five universities in Spain and Italy. The project is directed by Alfonso
Tarancón and has as scientific coordinators Víctor Martín Mayor, Giorgio Parisi
and Juan Jesús Ruiz Lorenzo. My own participation has been, of course, only as a
very junior member of a large collaboration, so I only include in this dissertation
those physical studies where I carried out a major fraction of the work.
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personas. En primer lugar, Luis Antonio Fernández y Víctor Martín merecen una
nueva mención por su dedicación y accesibilidad, que ha ido mucho más allá
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de la habitual relación entre directores y doctorando. Mi grupo inmediato de
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CHAPTER I

General introduction

Modern physics is steadily broadening its scope and tackling increasingly complex
systems, whose rich collective behaviour is not easily explained from the often
simple nature of their constituent parts. Thus, a lot of attention is being focused
on understanding, from a fundamental point of view, an extremely diverse class
of problems, ranging from vortex glasses in high-temperature superconductors to
biological macromolecules. The featured physical phenomena can be as exotic as
the colossal magnetoresistance of some manganites [dag01, coe09, lev02], or as
familiar as the formation of glass [ang95, deb97, deb01]. The latter constitutes a
particularly conspicuous example of an everyday material whose microscopic de-
scription remains, in the words of P. W. Anderson [and95], ‘probably the deepest
and most interesting unsolved problem in solid state theory’. On a different vein,
the study complex physical systems has deep relations to the field of computa-
tional complexity and NP-incompleteness [méz02, zec06].

The enormous variety of problems, often straddling the boundaries between
physics, chemistry and biology, seems to suggest that the label of ‘complex sys-
tem’ bears little meaning, since it seems that each class of systems must surely
be studied separately. Actually, behind the diversity we can find key unifying
features, which has motivated attempts to find some solid common ground for a
joint treatment of complexity.

In this sense, the best hope of the fundamental physicist is the notion of uni-
versality [car96, ami05, zj05]. In general, a strict microscopic description of a
complex system is a daunting task: one has to account for many degrees of free-
dom, whose interactions follow complicated laws. Fortunately, one can often iden-
tify a few crucial scaling variables, whose evolution encodes the behaviour of the
whole system. More than that, by expressing all the more complicated quantities
in terms of these, very different systems can be shown to have the same qualita-
tive behaviour. Hence, all these systems can be understood through the study of
their simplest representative.

Perhaps the most striking example of this universal behaviour is the celebrated

23



24 General introduction

Figure 1.1: Angell plot, taken from [ang95], showing the viscosity of many glass-forming
liquids. The horizontal axis is rescaled in terms of a glass temperature Tg, defined as that
where the system’s viscosity reaches the value of 1013 P. In this representation, the devi-
ation from the ideal Arrhenius law (leftmost straight line) seems completely encoded by
the derivative at Tg. Notice that the values of the viscosity span 15 orders of magnitude.
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Figure 1.2: Idealised picture of a complex system. The free-energy profile contains many
local minima, which define metastable states with exponentially long escape times.
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Angell plot, of which we show an example in Figure 1.1. In it, glass-forming liquids
with completely different compositions and qualitatively different temperature
dependencies of the viscous flow are classified according to their ‘fragility’. This
is defined as the (logarithmic) derivative of the viscosity at the glass transition
temperature and, as it turns out, it characterises the material’s deviation from the
Arrhenius law, along 15 orders of magnitude. Scant few physical quantities have
ever been measured along so wide a range but, beyond that, the figure encloses
very deep physics.

For instance, fluctuation-dissipation relations [kub57] allow us to translate vis-
cosity into time. Therefore, the plot is showing us a situation where relaxation
times cross over from a microscopic to a macroscopic range. Notice that the scal-
ing temperature in this plot is chosen as the point where the viscosity reaches
1013 P (equivalent to relaxation times of one hour). More than that, and one has to
accept working out of equilibrium, which, in some fields, is a tough pill to swallow.

In the context of magnetic systems —where, unlike with glasses, one is sure of
being below a phase transition— the off-equilibrium regime is a completely natu-
ral experimental environment and has been for some time. A classic application
is the study of coarsening, a kind of dynamics characterised by the growth of
compact coherent domains. In this case, an especially powerful version of uni-
versality operates, aptly called superuniversality [fis86b]. According to it, all the
spatial and temporal scales during the dynamics are encoded in the growth of a
coherence length, which indicates the size of the coherent domains (cf. Chapter 9).

In general, we can say that the most common feature of complex systems is
an incredibly slow dynamical evolution, or aging [str78, bou98]. The study of
non-equilibrium relaxation is, thus, very important and often the only accessible
experimental regime.

In order to explain this sluggishness, the most often invoked defining char-
acteristic of complex systems is the picture of a ‘rugged free-energy landscape’
[fra97, jan08a]. The configuration space is pictured as having many valleys,
defining metastable states where a configuration is much more favourable than
neighbouring ones (Figure 1.2). The system in its evolution, then, must jump from
one local minimum to another through rare-event states, causing the slow dynam-
ics.

The causes of this ruggedness are diverse. For some materials, it may be due
to the presence of impurities or other defects, which hinder the physical evo-
lution. In others, the sluggish behaviour has been modelled as a hierarchically
constrained dynamics, consisting in the sequential relaxation of different degrees
of freedom, from the fastest to the slowest [pal84].

Sometimes one of the valleys dominates and the free-energy profile is funnel
shaped. This is the case, for instance, of protein folding, where the native con-
figuration defines an absolute minimum. For other systems, on the other hand,
there can be many equally favourable configurations, so one must take several
metastable states into account even when defining the equilibrium. The differ-
ence between both cases is not idle: proteins quite obviously are able to fold
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Figure 1.3: A small portion of a spin-glass lattice. The spins on the nodes can only
take the ‘up’ or ‘down’ orientation. They are joined along nearest-neighbour links by a
mixture of ferromagnetic (+) and antiferromagnetic (−) couplings. The former favour
aligned pairs of spins and the latter favour antiparallel ones. With the arrangement
shown in the figure there is no way of orienting the spins so that all of the bonds are
satisfied.

into their equilibrium configuration very quickly (in human terms), while glassy
systems with metastable behaviour are perennially out of equilibrium.

Since in this latter case the equilibrium phase is experimentally unreachable,
determining what (if any) bearing it has on the dynamical evolution (what we shall
call the ‘statics-dynamics relation’) is a non-trivial problem.

This discussion notwithstanding, we must caution the reader that Figure 1.2
is, at best, a metaphor. In order to turn it into real physics one must first, at
the very least, identify one (or more) appropriate reaction coordinates capable of
actually labelling the different minima. This requires a great deal of insight into
the system’s physics and still leaves unresolved the non-trivial step of actually
computing the free energy.

The quantitative investigation of these two issues (statics-dynamics and the
free-energy landscape) will constitute the main themes of this dissertation. We
shall work in the context of disordered magnetic systems, long considered prime
examples of complexity.1 One may think that the introduction of disorder cannot
be responsible for very exciting changes in a physical system. This is true in some
cases (after all, even the most perfect experimental sample has some impurities,
yet we can still talk of crystals or ferromagnets), but not in general. For some
strongly disordered systems, we shall see, the impurities have a dramatic effect
both in a technical sense (being a relevant perturbation in a renormalisation-group
setting) and in a very physical sense. Consider, for instance, the example of An-
derson localisation [and58], capable of turning metallic systems into insulators.

One of the simplest mechanisms responsible for the complexity of disordered

1We shall give a detailed introduction to these systems in their respective chapters, for now
we limit the discussion to a few general comments.
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systems is that of frustration [tou77], as very clearly illustrated in the case of spin
glasses (see, e.g., [bin86, méz87] and cf. Chapter 9). These are magnetic alloys in
which the interactions between the spins are in conflict. The disorder manifests as
a mixture of ferromagnetic and antiferromagnetic couplings. Thus, even for the
lowest-energy configuration some of the bonds are necessarily frustrated, as we
see in Figure 1.3. This makes it exceedingly difficult for the physical system to find
the equilibrium state (and no less for the physicist performing a computation).
Furthermore, many configurations have a similar degree of frustration and are
therefore equally favourable, giving rise to a free-energy landscape with many
relevant metastable states.

Yet not only the equilibrium is complicated but also the dynamical behaviour.
In the case of spin glasses, to the aging behaviour we have to add phenomena
such as rejuvenation or memory effects [jon98].

The choice of disordered magnetic systems as paradigmatic models for com-
plexity is mainly due to their permitting more precise experimental studies than
other classes of complex systems [myd93, bel98]. There are both technical and
physical reasons for this, as we shall see later.

On the theoretical front, on the other hand, these systems are at least easy to
model with deceptively simple lattice systems. The solution of these models is
another matter entirely. Indeed, disordered systems have often defied traditional,
and powerful, analytical tools such a perturbation theory [dom06]. In the case
of spin glasses, even the solution of such a gross simplification as the mean-
field approximation has been a veritable tour de force [par79a, par80]. Other
systems, such as the random field Ising model, are seemingly more amenable to
a perturbative treatment [dom06, nat98] but remain very poorly understood, the
analytical approach failing to analyse the critical behaviour convincingly.

In the last decades, a third avenue has opened for basic research: the com-
putational approach, of which the most salient example is Monte Carlo simula-
tion [lan05, rub07]. Unfortunately, in the case of disordered systems traditional
Monte Carlo methods suffer from the same problems as experiments do, to an
even greater degree. A simulation of a rugged free-energy landscape for a finite
lattice will get trapped in the local minima, just as an experiment, with an escape
time that grows as the exponential of the free-energy barrier, which in turn goes
as a power of the lattice size. As a consequence, for many models of interest only
very small systems can be thermalised, making extrapolation to the thermody-
namical limit very complicated. Many simulation algorithms have been proposed
to address this problem. However, as a general rule efficient innovations require
some previous knowledge, or at least a somewhat detailed working hypothesis,
of the underlying physics. Therefore, the investigation of new Monte Carlo dy-
namics must not be considered in isolation, but as an enterprise that should be
undertaken jointly with a thorough study of challenging physical problems.

An alternative is simply to eschew equilibrium and attempt a Monte Carlo re-
production of an experimental dynamics. This is simple enough in principle, the
most straightforward Monte Carlo dynamics being good mock-ups of the physical
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evolution, and has the advantage of considering the system in more controlled
conditions that are possible in a laboratory. Unfortunately, current computers
are several orders of magnitude too slow to reach the experimentally relevant
time scales.

In short, the study of complex systems faces significant obstacles, both exper-
imental and theoretical. From a fundamental point of view, far from discouraging
further effort, these problems are at heart the reasons why these systems are
so interesting, constituting a constant reminder that the traditional tools of sta-
tistical mechanics must be continuously complemented and expanded. This in
addition to the fact that by ‘complex systems’ we encompass such everyday mate-
rials as glasses, as well as systems with great technological or medical relevance
(colossal magnetoresistance oxides, proteins, etc.).

1.1

Scope of this thesis

This thesis is an attempt to provide a new outlook on complex systems, as well as
some physical answers for certain models, taking a computational approach. We
have focused on disordered systems, addressing two traditional ‘hard’ paradig-
matic models in three spatial dimensions: the Edwards-Anderson spin glass and
the diluted antiferromagnet in a field (the physical realisation of the random-field
Ising model). These systems have been studied by means of large-scale Monte
Carlo simulations, exploiting a variety of platforms (computing clusters, super-
computing facilities, grid computing resources and even a custom-built special-
purpose supercomputer). In accordance to the above discussion, the physical
study has been taken hand in hand with the development of new Monte Carlo
methods.

Indeed, at the foundation of the work reported herein is the development of
Tethered Monte Carlo, a general strategy for the study of rugged free-energy land-
scapes. This formalism provides a general method to guide the exploration of con-
figuration space by constraining (tethering) one or more parameters. In particular,
one selects a reaction coordinate (typically, but not necessarily, order parameters)
capable of labelling the different local free-energy minima. A statistical ensem-
ble is then constructed, permitting efficient Monte Carlo simulation where these
coordinates are fixed, avoiding the need to tunnel between competing metastable
states. From these tethered simulations the Helmholtz potential associated to
the reaction coordinates is reconstructed, yielding all the information about the
system.

This philosophy is applied first to ferromagnetic models (hardly complex sys-
tems, but extraordinary benchmarks nonetheless) and then to the diluted antifer-
romagnet in a field. There it is showed that the tethered approach, far from being
a mere optimised Monte Carlo algorithm, is capable of providing valuable infor-
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mation that would be hidden from a traditional study, thus permitting a more
complete picture of the physics. One of the more conspicuous examples of this is
that pictures such as Figure 1.2, long treated as mere conceptual aides, have been
turned into real computations of free-energy profiles.

The next part of this dissertation is concerned with the Edwards-Anderson
spin glass. For this system, our physical understanding is not yet at a level that
would permit a full tethered treatment. This notwithstanding, many pointers
are taken from the tethered philosophy, particularly in regards to the analysis of
physical results. For the Monte Carlo simulation, the strategy has been mainly
one of sheer brute force. Our work on spin glasses has been conducted within the
Janus Collaboration, a joint effort of researchers from five universities in Spain
and Italy. This project has as its main goal the construction and exploitation of
Janus, a special-purpose computer optimised for spin-glass simulations, where it
outperforms conventional computers by several orders of magnitude.

Aside from having been carried out with slightly different methods, our work
on spin glasses is complementary to the rest of this thesis in a major physical
way: it makes a strong emphasis on off-equilibrium dynamics. Indeed, as we
advanced in the previous discussion, experiments on spin glasses (and many other
complex systems) are always performed in an off-equilibrium regime. Then, a
very valid question arises: how relevant is it to know the unreachable equilibrium
phase? Our outlook, as we said before, has been that equilibrium structures,
though inaccessible, do condition the off-equilibrium evolution. This idea, long
accepted as a working hypothesis, is turned into a quantitative statement with
the finite-time scaling paradigm. Time is treated as a state variable, much as
pressure or temperature in a traditional thermodynamical setting. A time-length
dictionary links off-equilibrium results in the thermodynamical limit for finite
times with equilibrium results for finite lattices.

The next section summarises the organisation of the rest of this dissertation.
It should be noted that each section contains a more detailed topical introduction,
expanding on the issues touched in this General Introduction.

1.2

Organisation of this dissertation

As discussed above, the work reported herein is concerned both with the study
of paradigmatic complex systems in statistical mechanics (the DAFF and the spin
glass) and with the development of new Monte Carlo and analysis methods. The
rest of this dissertation is, therefore, organised thematically in the following way:

• Part I, including this General Introduction, has the purpose of motivating our
study and presenting our outlook on complex systems and how they should
be treated. We start by, very briefly, recalling some statistical mechanical
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concepts relevant to the study of complex systems (Chapter 2). This is fol-
lowed by Chapter 3, already concerned with our Monte Carlo approach. In
it we expand on the practical problems posed by the numerical simulation
of rugged free-energy landscapes and motivate the tethered formalism as a
way of removing or alleviating them. This last chapter contains some mate-
rial from our paper [mm11].

• Part II deals with our work on new Monte Carlo methods, motivated by the
above considerations. We start by detailing the construction of the teth-
ered formalism in Chapter 4. We then present a first demonstration of the
method in a straightforward application: the D = 2 Ising model (Chapter 5).
This is, of course, a well understood system, so our aim is not so much
presenting new physics as demonstrating our methods and how a tethered
study can provide a complementary picture to canonical methods. Finally,
Chapter 6 proves that the tethered formalism is compatible with advanced
Monte Carlo algorithms, in this case cluster methods. We first introduced the
Tethered Monte Carlo method in [fer09c] and we later presented it in a more
general context in [mm11]. Chapters 5 and 6 contain material from [fer09c]
and [mm09], respectively.

• Part III discusses the first class of complex systems we shall study: the di-
luted antiferromagnet in a field. In Chapter 7 we present the situation that
existed prior to our work and demonstrate how this system is particularly ill-
suited to a study with canonical methods. We then tackle the problem with
the tethered formalism in Chapter 8, applying all the techniques introduced
in Part II. This chapter is a much expanded version of [fer11b], including
some material from [mm11], as well as some unpublished results.

• Part IV deals with spin glasses. In Chapter 9 we introduce these systems,
stressing their peculiarities from an experimental point of view (with phe-
nomena such as aging, rejuvenation, memory, etc.) and their resulting
theoretical importance as paradigmatic complex systems. Chapter 10 deals
in depth with one of the main themes of this thesis: the relationship be-
tween equilibrium and non-equilibrium and introduces the finite-time scal-
ing framework. Finally, Chapter 11 studies in detail the structure of the
spin-glass phase in three spatial dimensions. Our work on spin glasses, car-
ried out within the Janus collaboration, was published in [jan08c, jan09a,
jan10a, jan10b]. Chapters 10 and 11 are a heavily reworked and reorganised
version of the results in those papers, including some unpublished material.

• Finally, Chapter 12 contains our conclusions.

• We include several appendices. Appendix A gives some notes on how to
assess thermalisation in Monte Carlo simulations. It starts reporting some
standard definitions but then describes some new techniques for complex
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systems (first introduced in [jan10a]). Appendix B presents some techniques
for analysing the strongly correlated data produced in the Monte Carlo simu-
lation of disordered systems. The explained methods are illustrated with es-
pecially tough examples and case studies taken from our work. Appendix C
contains some practical notes for an efficient numerical implementation of
Tethered Monte Carlo. Finally, Appendix D introduces the Janus special-
purpose computer used in our spin-glass simulations and Appendix E gath-
ers all the technical information on these runs (parameters, thermalisation,
etc.).





CHAPTER II

Statistical mechanics of disordered systems:
basic definitions

In this chapter we briefly recall some general definitions that will we employed
throughout this dissertation, with the main purpose of fixing the notation and
introducing some notions particular to the study of disordered systems. For
general references on statistical mechanics or the theory of critical phenomena
see, e.g., [lan80, hua87, ami05, lb91, zj05, car96]. For disordered systems,
see [méz87, you98, dom06, dot01].

2.1

Statistical mechanics and critical phenomena

We consider a system whose configuration can be specified by N degrees of free-
dom {sx}. In the canonical ensemble, the behaviour of the system is encoded in
the partition function

Z =
∑
{sx}

e−βE({sx}). (2.1)

In this equation, the sum is extended to all possible configurations, their relative
weights depending on their energy E. The parameter β = 1/kBT is the inverse
temperature. We use units where the Boltzmann constant is kB = 1, so β = 1/T .

Throughout this dissertation we study Ising spins, sx = ±1, on a square lattice
of N = LD nodes, where D is the spatial dimension. Therefore, in the following we
often use the language and notation of magnetic systems, even if much of what
we say can be applied to more general systems.

We define an observable O({sx}) as any function of the spin configuration.
In the context of Monte Carlo simulations, where we estimate Z by means of a
random walk in configuration space, we use the word measurement for a single
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evaluation of the observable during the simulation.
The total energy of the system can often be written in the following way

E({sx}) = U({sx})− hX({sx}), (2.2)

where U is the interaction energy of the spins and h is an external field, coupled
to some reaction coordinate X. In our case, U will be of the form of a two-spin
interaction

U({sx}) = −
∑
x,y
Jxysxsy, (2.3)

where the Jxy are the couplings. For instance, for the ferromagnetic Ising model,
Jxy = 1 if x and y are nearest neighbours on the lattice and zero otherwise. We
represent this sort of nearest-neighbours interaction as

U({sx}) = −
∑
〈x,y〉

sxsy. (2.4)

In this context, the most straightforward reaction coordinate is the magnetisa-
tion M ,

M({sx}) =
∑
x
sx, (2.5)

although we shall consider other kinds.
Therefore, the canonical ensemble describes the system at fixed temperature

and applied field. The basic thermodynamic quantity is the free-energy density1

FN(β,h) = 1
N

logZ(β,h). (2.6)

The average value of an observable in the canonical ensemble is denoted by

〈O〉 = 1
Z

∑
{sx}
O({sx}) e−βE({sx}). (2.7)

For quantities such as M or E we distinguish the extensive version from the
density by the use of uppercase and lowercase symbols, respectively,

M = Nm, E = Ne. (2.8)

Notice that we do not use this convention for the free energy, FN , which is also a
density, but only for observables.

1This is often defined with a different normalisation, FN = −kBT
N logZ , but we shall find our

definition more convenient later on.
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2.1.1 Legendre transformation

Throughout Part II, we shall find it interesting to consider an alternative ensemble
where it is the reaction coordinate m, and not the field h, which is kept fixed.
In classical thermodynamics, this is accomplished through the Legendre transfor-
mation, defining a new basic potential.

ΩN(β,m) = βmh− FN(β,h). (2.9)

We say ΩN is the Helmholtz free energy (FN is the Gibbs free energy). Since these
names are often exchanged in the literature, we avoid confusion by reserving the
name ‘free energy’ for FN , while we shall call ΩN ‘effective potential’, borrowing
the name from the context of quantum field theory. If FN is a convex function of
h, this operation allows us to define ΩN as a convex function of m. However, for
disordered systems with rugged free-energy landscapes ΩN is never convex for
finite N . Therefore, we shall consider the following alternative representation of
the transformation,

ZN(β,h) = eNFN(β,h) =
∫

dm eN[βhm−ΩN(β,m)] , (2.10)

The conjugate nature ofm and h can be summarised by the following formulae

〈m〉 = 1
β
∂FN
∂h

∣∣∣∣∣
β
, 〈h〉m = 1

β
∂ΩN
∂m

∣∣∣∣∣
β
, (2.11)

where by 〈· · ·〉m we denote the expectation value in the fixed-m ensemble defined
by ΩN .

2.1.2 Critical phenomena and exponents

We shall often consider the behaviour of physical systems in the neighbourhood
of a second-order phase transition, where the system approaches continuously a
state at which the scale of correlations becomes unbounded. In particular, if we
write the correlation between sites x and y as

〈sxsy〉 |x−y|→∞−−−−−−−−→ exp(−|x −y|/ξ), (2.12)

then, in the thermodynamic limit, the correlation length ξ diverges as we ap-
proach the critical temperature Tc. We characterise the divergence by a critical
exponent ν

ξ ∼ |T − Tc|−ν . (2.13)

This behaviour is not exclusive of the correlation length, many other quantities
either diverge or vanish as we approach Tc. Therefore, one defines additional
critical exponents:
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• Response of the system to an infinitesimal field h (for instance, the magnetic
susceptibility),

χ ∼ |T − Tc|−γ . (2.14)

• Specific heat

C ∼ |T − Tc|−α. (2.15)

• Order parameter (for instance, the magnetisation)

m ∼ (Tc − T)β. (2.16)

Unfortunately, this exponent uses the same symbol as the inverse tempera-
ture in what is a completely universal usage, but the context should always
make clear which is the referred quantity.

• Precisely at T = Tc, the decay of the correlation function is characterised by
the anomalous dimension

〈sxsy〉 ∼ |x −y|−(D−2+η). (2.17)

• Finally, again at T = Tc, the order parameter has a critical dependence on
the applied field h

m ∼ h1/δ. (2.18)

We have thus defined six different critical exponents. However, very general con-
siderations let us establish the so-called scaling relations

2β+ γ = 2−α, (2.19a)

2βδ− γ = 2−α, (2.19b)

γ = ν(2− η), (2.19c)

νD = 2−α. (2.19d)

The last of these, involving the dimension D, is called a hyperscaling relation.
Using (2.19), we see that for a general system, only two critical exponents are
independent.

In mean-field theory the exponents are β = ν = 1/2, γ = 1, α = η = 0,
δ = 3. Above some (model-dependent) upper critical dimension Du all systems
are described by these mean-field exponents. Notice that they do not depend on
D, in contrast with the hyperscaling law. Usually, Du = 4, but we shall see that this
is not the case for disordered systems. Finally, below the lower critical dimension
Dl there is no transition.
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2.1.3 Finite-size scaling

One of the most useful tools for the study of critical phenomena is the scaling
hypothesis. According to this, in the thermodynamic limit the correlation length
ξ∞ is the only characteristic length of the system in the neighbourhood of Tc (in
this regime, the correlation length is large in units of the lattice spacing and the
system ‘forgets’ about the lattice).

In a finite lattice, the corresponding finite-size scaling (FSS) ansatz states that
the finite-size behaviour is determined by the ratio L/ξ∞. If the ratio is large,
the finite-size effects are not important and the finite system is not essentially
different from the thermodynamic limit. If the ratio is small, however, we say we
are in the FSS regime. There, an observable O will behave as

〈O〉(L) ' LxO/νfO(L/ξ∞), (2.20)

where xO characterises the critical behaviour of O,

〈O〉(∞) ∼ |T − Tc|−xO . (2.21)

Alternatively, using the definition of the critical exponent ν we can write

〈O〉(L) ' LxO/ν f̃O(L1/νt), t = (Tc − T)/Tc. (2.22)

The FSS ansatz can be derived using renormalisation-group techniques (see, for
instance, [ami05]).

Note that in a finite lattice one cannot really talk of a phase transition. There
are no actual divergences of the physical quantities, only ever narrowing peaks
whose position tends to the real critical point and whose height grows as LxO/ν . In
this sense, Eq. (2.22) encodes the behaviour in a crossover region of width ∼ L−1/ν

between the two phases. In the thermodynamical limit, this interval degenerates
in a point and the crossover turns into a proper phase transition.

Finally, let us note that at the critical point ξ∞ → ∞, so the scaling hypothesis
leads to the conclusion that the system exhibits scale invariance, since there is no
characteristic length. This is an important observation for detecting the presence
of a second-order transition.

2.2

Quenched disorder

Let us now consider a system with disorder. In addition to the spins sx, we need
to specify additional variables µi that characterise the randomness. In our model
Hamiltonian (2.2), these can be random couplings Jxy, vacancies in the lattice or
even a random, site-dependent field hx.
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In principle, for each configuration of the disorder variables (disorder realisa-
tion or sample) we will have a different partition function

Zµ =
∑
{sx}

e−βHµ({sx}). (2.23)

If the disorder variables exhibit a dynamical evolution in time scales short com-
pared to the observation time (diffusion of impurities at high temperatures, for
instance) we say the disorder is annealed. In this situation, we can treat the µi
as additional dynamical variables and average over them, to obtain the complete
partition function. We denote this disorder average by an overline, (· · · ), so the
free energy of the system is

FN = 1
N

logZµ . (2.24)

We are interested in the opposite limit, where the impurities show no dynami-
cal evolution in experimental time scales. We say the disorder is quenched, so the
free energy is different for each sample

FN(µ) = 1
N

logZµ . (2.25)

This does not seem like a useful concept, because it seems to imply we would need
a different model for each particular piece of material. What actually happens is
that, for large enough systems, the physical properties do not depend on the µi
anymore,

lim
N→∞

FN(µ) = F∞. (2.26)

There is a simple argument for this in finite dimension, due to Brout [bro59].
We divide the lattice in many macroscopic systems of size 1 � RD � N . Then
the free-energy density of the whole system will be the average of those of the
N/RD subsystems, plus a contribution coming from interactions between them.
If we assume that the interactions are short-range, this latter contribution is an
interface energy, negligible in the large-N limit. Therefore, computing the free-
energy density of a very large lattice is essentially the same as averaging that of
many smaller systems and the central limit theorem guarantees that

F2
N(µ)− FN(µ)

2 ∼ 1
N
. (2.27)

We say the free energy self-averages.
So, the concept of quenched disorder is physically sound, but it implies a seri-

ous difficulty. In order to obtain physically meaningful results, we have to average
the free energy, which is the same as averaging the logarithm of Zµ

FN = FN(µ) = 1
N

logZµ . (2.28)
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The task of computing the average of a logarithm, unusual in statistical mechan-
ics, is exceedingly difficult. There is, however, a way around it: the so-called
replica method [kac68, edw72]. This is based on the elementary relationship

logZ = lim
n→0

Zn − 1
n

. (2.29)

For positive integer n, Znµ can be expressed in terms of identical replicas of the
system (sharing the same configuration of the µi)

Znµ =
n∏
a=1

Z(a)µ =
∑
{sax}

exp
[
−β

n∑
a=1

H (a)
µ ({sax})

]
. (2.30)

This quantity is easier to average over disorder. The objective then, is to obtain a
replica partition function

Zn = Znµ , (2.31)

that no longer depends on disorder and afterwards take the limit n → 0 in (2.29).
This procedure can be mathematically delicate in some cases (see, e.g., [méz87]).

Let us consider now the disorder average of an observableO({sx}). In principle
we have to do

〈O〉 = 1
Zµ

∑
{sx}

e−βHµ({sx})O({sx}), (2.32)

which has the unpleasant feature of having disorder variables both in the numer-
ator and denominator. This can be solved multiplying both by Zn−1

µ ,

〈O〉 = Z
n−1
µ

Znµ

∑
{sx}

e−βHµ({sx})O({sx}). (2.33)

Now we write the numerator in the replica notation, assigning the original parti-
tion function to replica 1 (this choice is, of course, arbitrary)

〈O〉 = 1
Znµ

∑
{sax}

e−β
∑
aH (a)

µ ({sax})O({s1
x}). (2.34)

In the n→ 0 limit the denominator goes to one and we have

〈O〉 = lim
n→0

∑
{sax}

e−β
∑
aH (a)

µ ({sax})O({s1
x}). (2.35)

In a successful application of the replica trick, one hopes to integrate the depen-
dence on the µi explicitly and define an effective Hamiltonian Hn that no longer
depends on the disorder (only on n). Then

〈O〉 = lim
n→0
〈O〉n = lim

n→0

∑
{sax}

e−βHn({sax})O({s1
x}). (2.36)

In this dissertation we do not carry out any such replica computations, but
in Chapter 9 we give an outline of a particularly famous example: the mean-field
theory of spin glasses.
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2.2.1 The relevancy of disorder

Real systems always have some measure of disorder, either in the form of impu-
rities or vacancies in the lattice. However, this disorder is not always relevant in
the sense of changing the universality class of the system.

For simplicity let us consider a ferromagnetic system, where we introduce
some disorder in the couplings. We consider a Hamiltonian of the form

H = −
∑
x,y
Jxysxsy, (2.37)

and let us write the couplings Jxy as a translationally invariant part plus a pertur-
bation

Jxy = J(|x −y|)+ δJxy. (2.38)

We say that a system described exclusively by the translationally invariant part is
the ‘pure’ system corresponding to our disordered model.

Then, there are two interesting limiting cases. In the first, the disorder is
strong, so

δJxy � J(|x −y|). (2.39)

Therefore, the disorder completely dominates the low-temperature properties of
the system. In particular, the low-temperature ferromagnetic order is destroyed

and the system is described by a ‘spin glass’ phase where 〈sx〉 = 0 but 〈sx〉2 ≠ 0.
The Edwards-Anderson model, which we study in Part IV, is one example.

On the other hand, the disorder may be weak

δJxy � J(|x −y|). (2.40)

In this case, one would not expect the disorder to effect great changes in the
ground-state properties. The low-temperature phase would continue to have a
ferromagnetic order, for instance. However, in the case of a second-order phase
transition for the pure model, the critical exponents may change. Furthermore, if
the transition of the pure system is of first order, it may become continuous.

There is a useful criterion for determining whether the weak disorder is going
to be relevant, due to Harris [har74]. According to it, if the specific-heat exponent
of the pure system is α(0) > 0, then the disorder will change the critical behaviour.
On the other hand, if the specific heat of the pure system is finite, the disorder
will be irrelevant (it will not change the critical exponents).

Finally, let us note that in Part III we study the random field Ising model, where
the disorder is not of the kind described by (2.38), but takes the form of random
fields. In that case the disorder is also very severe, because the randomness cou-
ples to the local order parameter.

2.2.2 Self-averaging violations

We started our discussion of quenched disorder by giving a general argument in
favour of the self-averaging property. This argument, however, breaks down at the
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critical point, where the correlation length diverges and our division of the lattice
in smaller subsystems with negligible interaction no longer works. Therefore, the
issue of self-averaging becomes non-trivial at the transition point.

In fact, it has long been known that for spin glasses there is no self-averaging
in the ordered phase [bin86]. For systems with weak disorder, a framework anal-
ogous to the Harris criterion can be established.

Let us consider some macroscopic quantity O (the magnetisation, energy, etc.)
and let us consider the probability distribution of the 〈O〉 for different samples,
which we characterise by its relative variance,

RO = 〈O〉
2 − 〈O〉2

〈O〉2
. (2.41)

We say the system is self-averaging if

RO
L→∞−−−−−→ 0. (2.42)

Aharony and Harris [aha96] reached the following conclusions:

1. Away from the critical region, we can apply the Brout argument and

RO ∼ (ξ/L)D . (2.43)

We say that the system is strongly self-averaging.

2. At the critical point we have to distinguish two possibilities.

(a) The disorder is irrelevant (in the sense of the Harris criterion). Then for
the pure system α(0) < 0 and

RO ∼ Lα(0)/ν(0) = Lα/ν . (2.44)

The system is weakly self-averaging.

(b) The disorder is relevant. In this case the system is no longer self-
averaging,

lim
L→∞

RO ≠ 0. (2.45)

Soon after the pioneering renormalisation-group work of Aharony and Harris, sev-
eral authors studied the issue of (lack of) self-averaging in disordered systems
with numerical simulations [wis95, paz97, wis98, bal98, ber04a].

This break down of the self-averaging property is an additional difficulty for
the study of the critical behaviour of disordered systems. In Chapter 8, however,
we shall demonstrate an approach that minimises its effects, in the context of
the random field Ising model (a system where the violation of self-averaging is
particularly severe [par02, wu06, mal06, fyt11]).





CHAPTER III

Managing rugged free-energy landscapes:
a Tethered Monte Carlo primer

Monte Carlo (MC) simulation (see, e.g., [lan05, rub07, sok97, new96] for general
reference works) constitutes one of the most important modern tools of theoret-
ical physics. At a first glance, it seems a very inefficient method: its statistical
character meaning that the uncertainty in the result decreases only as 1/

√N ,
whereN is a measure of the numerical effort. From a closer inspection, however,
comes the realisation that deterministic numerical methods, typically thought to
converge with higher powers of N or even exponentially, quickly lose their effi-
ciency when the number of degrees of freedom is increased (think, for instance,
of the computation of multi-dimensional integrals). In contrast, the 1/

√N be-
haviour of the MC method, a consequence of the central limit theorem, is stable.

In the context of statistical mechanics, we are interested in extracting system
configurations that follow some complicated probability distribution, with a huge
number of degrees of freedom —typically p({sx}) ∝ e−βE({sx}), for systems in
the canonical ensemble (2.1). This is accomplished by means of a dynamic Monte
Carlo, where the generation of a new configuration depends on the current one.
In technical terms, we set up an ergodic Markov chain whose stationary distri-
bution is the physical distribution describing the equilibrium state of the system
(cf. Section a.1). Once the stationary regime is reached, we estimate 〈O〉 as an

unweighted average of O(t) = O({sx(t)}). The error then goes as ∼ 1/
√
Nsteps,

but with a potentially large prefactor (see Appendix A).
At a first glance one may think this probabilistic method is a poor alternative

to traditional tools such as perturbation theory. Yet, among the most interesting
problems in statistical mechanics and quantum field theory we often find strongly
coupled systems, far from the perturbative regime. In these situations, most of
our analytical tools break down and MC simulation emerges as one of a handful
of workable methods.

This is not to say that a MC computation does not have its difficulties. Chief
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among these is the issue of thermalisation: before we can even start to worry
about the 1/

√N behaviour of our numerical precision, the Markov chain has to
reach its stationary distribution. For the most physically interesting regime, the
neighbourhood of a phase transition, this turns out to be difficult, because of crit-
ical slowing down [hoh77, zj05]. This phenomenon consists in the rapid growth
of the characteristic times with the system size. Even for very simple systems,
such as the Ising model, the thermalisation times of traditional MC methods grow
as Lz, with z ≈ 2 and L the linear size of the system. Only for scant few systems
can one find optimised dynamics with z < 1 (cf. our study of cluster methods in
Chapter 6).

In many other situations the critical slowing down is even worse than the z ≈ 2
behaviour. This is the case of the rugged free-energy landscapes considered in the
General Introduction, where the thermalisation times grow exponentially with the
free-energy barriers. These barriers not only constitute a formidable stumbling
block for traditional MC methods, but are also physically interesting in their own
right. This is because the actual physical evolution of the system is hindered by
these same dynamical bottlenecks.

In the following section we give some precise examples of this phenomenon
and briefly review some of the methods that have been devised to address it. In
Section 3.2 we introduce our proposal: Tethered Monte Carlo, a formalism which
we shall develop and employ throughout Parts II and III of this thesis.

3.1

Free-energy barriers and Monte Carlo simulations

The most straightforward example of a free-energy barrier is encountered when-
ever we want to consider first-order phase transitions [gun83, bin87]. In these
situations two phases (ordered and disordered, or with different kinds of order)
coexist at the critical point. In a traditional MC simulation the system must tunnel
back and forth between these two pure phases by forming a mixed configuration,
featuring an interface of size L. This intermediate state has a free-energy cost of
ΣLD−1, where Σ is the surface tension and D the spatial dimension of the system.
Therefore, the probability of crossing the gap between the ordered and disordered
states scales as exp[−ΣLD−1]. Equivalently, the simulation suffers an exponential
critical slowing down, where the characteristic times grow as exp[ΣLD−1].

The situation can be even worse, as demonstrated by crystallisation studies.
Here, even for the simplest models there are many local free-energy minima.
These correspond to crystals with different symmetries and varying numbers of
defects, or even to amorphous solids (glasses). See, e.g., [pus89] for an experimen-
tal example.

Furthermore, the issue of free-energy barriers is not limited to first-order tran-
sitions. A prime example of this is the random field Ising model, which we shall
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study extensively in Part III. Here there still exists a free-energy barrier between
the ordered and the disordered states, but only one of these configurations de-
fines a stable phase. The difference with the first-order scenario is that the bar-
riers grow as Lθ, where θ < D − 1. Therefore, we still have a thermally activated
critical slowing down, with logτ ∼ Lθ (we shall see that θ = 1.469(20) for D = 3,
so this is very severe). The difficulty is compounded by the fact that this is a dis-
ordered system, so one must consider many disorder realisations in order to get
a meaningful picture (cf. the discussion in Chapter 2).

For the random field Ising model, we at least know the appropriate order pa-
rameter that signals the phase transition, but this is not always the case. The
most conspicuous example of this additional complication is the spin glass. The
problem is patched, but not completely solved, by using real replicas (clones of
the system with the same disorder realisation, evolving independently under the
same dynamics). In this case, the actual structure of the ordered phase is still in
dispute but, at least for finite systems, there are a large number of local minima
(see Chapter 9). This is a very popular problem, which has prompted the introduc-
tion not only of ad-hoc MC methods, such as parallel tempering (see Appendix A),
but even of special-purpose computers [ogi85, cru01, bal00]. The latest exam-
ple of this is the Janus machine (see Appendix D), which we have used for our
own spin-glass simulations (Part IV of this dissertation). Still, the use of a cus-
tom computer may accelerate the simulation by a constant factor, but does not
change the scaling of the thermalisation times which, even with parallel temper-
ing, are believed to suffer an exponential critical slowing down below the critical
temperature.

Many optimised schemes and formalisms have been proposed to deal with
these problems. The case of first-order phase transitions, with two clean and
easy to differentiate phases, is perhaps the best understood. For instance, mul-
ticanonical [ber92] or Wang-Landau [wan01] methods consider a generalised sta-
tistical ensemble. The dynamics consists in a random walk in energy space, cov-
ering the range bounded by the two competing phases. This strategy is able
to overcome the free-energy barriers for small systems, but this only delays to
larger sizes the advent of exponential slowing down [neu03]. This is mainly due
to the emergence of geometrical transitions in the energy gap between the two
phases [bis02, bin03, mac04, mac06, nuß06].

In a more general case, however, the local minima cannot be distinguished
by their energies and we have to consider alternative reaction coordinates (typi-
cally, but not necessarily, order parameters). Examples abound, perhaps the best
known being the studies of crystallisation in supercooled liquids [wol95, cho06],
where the different phases can be labelled with a bond-orientational crystalline or-
der parameter [ste83]. The random-walk strategy can be adapted to some of these
cases, resulting in the so-called umbrella sampling [tor77]. Unfortunately, for suf-
ficiently complex systems considering a single reaction coordinate is not enough.
Tuning the parameters of a Wang-Landau or umbrella sampling simulation is in
these cases rather cumbersome.
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A different strategy was first introduced in a microcanonical setting in [mm07].
In this method, one performs independent simulations with a fixed energy along
the whole gap, which are then combined with a fluctuation-dissipation formalism
to yield the entropy of the system. Thus, the need for tunnelling across geometri-
cal transitions is eliminated and very large system sizes can be considered.

In [fer09c] we generalised this microcanonical method to consider any reac-
tion coordinate instead of the energy density. In a similar manner, the role played
by the entropy in the microcanonical setting is taken by the Helmholtz effective
potential associated to the chosen reaction coordinate. Furthermore, the applica-
tion of this Tethered Monte Carlo method is not necessarily more difficult with
several reaction coordinates.

In a tethered computation, one simulates a statistical ensemble where the re-
action coordinate x is constrained (tethered) to a narrow range around a fixed
parameter x̂. This is accomplished through the introduction of a bath of Gaus-
sian demons, which absorb the changes in the reaction coordinate, so long as
these are not too large, to keep x̂ constant. From several such simulations for dif-
ferent values of x̂ the Helmholtz potential is readily reconstructed, yielding all the
information about the system. The tethered formalism is not intended as a mere
thermalisation speed-up, but it also grants us access to precious information that
would remain hidden from a traditional approach.

We will explain the construction of the tethered formalism in Chapter 4. Before
engaging in detailed derivations, however, it is useful to understand all the steps
of a Tethered Monte Carlo simulation. The remainder of this chapter provides
such an outline, actually constituting a self-contained guide to the set-up of a
TMC computation.

We note that the following was first published as Section 2 of [mm11], which we
reproduce here with minor emendations.

3.2

Tethered Monte Carlo, in a nutshell

In this section we give a brief overview of the Tethered Monte Carlo (TMC) method,
including a complete recipe for its implementation in a typical problem. This is as
simple as performing several independent ordinary MC simulations for different
values of some relevant parameter and then averaging them with an integral over
this parameter. We shall give the complete derivations and the detailed construc-
tion of the tethered ensemble in Chapter 4.

We are interested in the scenario of a system whose phase space includes
several coexisting states, separated by free-energy barriers. The first step in a TMC
study is identifying the reaction coordinate x that labels the different relevant
phases. This can be (but is not limited to) an order parameter. In the remainder of
this section we shall consider a ferromagnetic setting, so the reaction coordinate
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will be the magnetisation density m.
The goal of a TMC computation is, then, constructing the Helmholtz potential

associated to m, ΩN(β,m), which will give us all the information about the sys-
tem. This involves working in a new statistical ensemble tailored to the problem at
hand, generated from the usual canonical ensemble by Legendre transformation
(cf. Chapter 2):

ZN(β,h) = eNFN(β,h) =
∫

dm eN[βhm−ΩN(β,m)] . (2.10)

Since in a lattice system the magnetisation is discrete, we actually couple it to
a Gaussian bath to generate a smooth parameter, called m̂. The effects of this
bath are integrated out in the formalism.

In order to implement this construction as a workable Monte Carlo method we
need to address two different problems:

• We need to know how to simulate at fixed m̂.

• We need to reconstruct ΩN(β, m̂) from simulations at fixed m̂ and, after-
wards, to recover canonical expectation values from (2.10) to any desired
accuracy.

We explain separately how to solve each of the two problems, in the following two
paragraphs.

3.2.1 Metropolis simulations in the tethered ensemble

Let us denote the reaction coordinate by m (for the sake of concreteness let us
think on the magnetisation density for an Ising model). The dynamic degrees of
freedom are {sx}. Therefore m is an observable (i.e. a function of the {sx}). We
wish to simulate at fixed m̂ (m̂ is a parameter closely related to the average value
of m).

The canonical weight at inverse temperature β and h = 0 would be exp[−βU]
where U is the interaction energy. Instead, the tethered weight is (see Section 4.1
for a derivation)

ωN(β, m̂; {sx}) = e−βU+N(m−m̂)(m̂−m)(N−2)/2Θ(m̂−m) . (3.1)

The Heaviside step function Θ(m̂−m) imposes the constraint that m̂ > m({sx}).

The tethered simulations with weight (3.1) are exactly like a standard canonical
Monte Carlo in every way (and the balance condition, etc.). For instance, in an Ising
model setting, the common Metropolis algorithm [met53] is

1. Select a spin sx.
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2. The proposed change is flipping the spin, sx → −sx. 1

3. The change is accepted with probability2

P(sx → −sx) =min{1,ωnew/ωold}. (3.2)

4. Select a new spin s′x and repeat the process. We can either pick s′x at ran-
dom or run through the lattice sequentially. In the work reported in this
dissertation we have always followed the second option, more numerically
efficient.

Once N spins have been updated (or we have run through the whole lattice, in the
sequential case) we say we have completed one Monte Carlo Sweep (MCS).

We remark that the above outlined algorithm produces a Markov chain entirely
analogous to that of a standard, canonical Metropolis simulation. As such it has
all the requisite properties of a Monte Carlo simulation (mainly reversibility and
ergodicity). Tethered mean values can be computed as the time average along the
simulation of the corresponding observables (such as internal energy, magnetisa-
tion density, etc.). Statistical errors and autocorrelation times can be computed
with standard techniques (see Appendices A and B).

The actual magnetisation density is constrained (tethered) in this simulation,
but it has some leeway (the Gaussian bath can absorb small variations in m). In
fact, its fluctuations are crucial to compute an important dynamic function, whose
introduction would seem completely unmotivated from a canonical point of view:
the tethered field b̂

b̂ = − 1
N
∂ logωN(β, m̂; {sx})

∂m̂
= 1− N − 2

2N[m̂−m({sx})] . (3.3)

One of the main goals of a tethered simulation is the accurate computation of the
expectation value 〈b̂〉m̂.

The case where one wishes to consider two reaction coordinatesm1 andm2 is
completely analogous:

ωN(β, m̂1, m̂2; {sx}) =e−βU+N(m1−m̂1)+N(m2−m̂2)

× (m̂1 −m1)(N−2)/2Θ(m̂1 −m1)

× (m̂2 −m2)(N−2)/2Θ(m̂2 −m2) ,

(3.4)

where

b̂1 = − 1
N
∂ logωN(β, m̂,m̂2; {sx})

∂m̂1
= 1− N − 2

2N[m̂1 −m1({sx})] , (3.5)

b̂2 = − 1
N
∂ logωN(β, m̂,m̂2; {sx})

∂m̂2
= 1− N − 2

2N[m̂2 −m2({sx})] . (3.6)

1In an atomistic simulation, one would try to displace a particle, or maybe to change the
volume of the simulation box.

2In general, in order to satisfy the balance condition (see Section a.1) we have to take into
account both the weight of the current and proposed configurations and the probabilities of
proposing this particular change and its reciprocal. However, the latter are trivial, because the
change is always sx → −sx .
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For the Ising model, a Metropolis Tethered Monte Carlo simulation recon-
structs the crucial tethered magnetic field b̂ without critical slowing down (see
Chapter 5 for a benchmarking study). This may be considered surprising for what
is a local update algorithm, but notice that the constraint on m̂ is imposed glob-
ally. Non-magnetic observables, such as the energy, do not enjoy this non-local
information and hence show a typical z ≈ 2 critical slowing down (although the
correlation times are low enough to permit equilibration for very large systems,
see Chapter 5).

Let us stress that the above outlined update algorithm is by no means the
only one possible. For instance, the Fortuin-Kasteleyn construction [kas69, for72]
can be performed just as easily in the tethered ensemble, so we can consider
tethered simulations with cluster update methods [swe87, edw88, wol89]. We
demonstrated this in [mm09] (see also Chapter 6), where the tethered version of
the Swendsen-Wang algorithm was shown to have the same critical slowing down
as the canonical one for the D = 3 Ising model (z ≈ 0.47). This is an example that
the use of the tethered formalism implies no constraints on the choice of Monte
Carlo algorithm, nor does it hinder it in the case of an optimised method.

3.2.2 Reconstructing the Helmholtz effective potential from sim-
ulations at fixed m̂

The steps in a TMC simulation are, then, (see also Figure 3.1)

1. Identify the range of m̂ that covers the relevant region of phase space. Select
Nm̂ points m̂i, evenly spaced along this region.

2. For each m̂i perform a Monte Carlo simulation where the smooth reaction
parameter m̂ will be fixed at m̂ = m̂i.

3. We now have all the relevant physical observables as discretised functions
of m̂. We denote these tethered averages at fixed m̂ by 〈O〉m̂.

4. The average values in the canonical ensemble, denoted by 〈O〉, can be recov-
ered with a simple integration

〈O〉 =
∫ m̂max

m̂min

dm̂ p(m̂)〈O〉m̂. (3.7)

In this equation the probability density p(m̂) is

p(m̂) = e−NΩN(m̂,β), ΩN(m̂, β) = ΩN(m̂min)+
∫ m̂
m̂min

dm̂′ 〈b̂〉m̂′ . (3.8)

The tethered field 〈b̂〉m̂ was defined in Eq. (3.3). The integration constant
ΩN(m̂min) is chosen so that the probability is normalised.



50 Managing rugged free-energy landscapes: a Tethered Monte Carlo primer

L Nm̂ MCS −〈u〉
16 91 106 1.034 72(10)
32 91 106 1.007 189(78)
64 109 106 0.996 868(11)

128 50 106 0.992 949 3(45)

Table 3.1: Energy density of the D = 3 ferromagnetic Ising model computed with the
Tethered Monte Carlo method, showing that the reconstruction of canonical averages
can be performed with great accuracy. The second column shows the number of points
in the m̂ grid and the third the number of Monte Carlo sweeps taken on each (we use a
cluster update scheme). Data from the simulations reported in Chapter 6.

5. If we are interested in canonical averages in the presence of an external
magnetic field h, we do not have to run any new simulations. Indeed, we can
reuse the 〈O〉m̂ and only recompute ΩN (only the relative weight of the teth-
ered averages changes). This is as simple as shifting the tethered magnetic
field: 〈b̂〉m̂ → 〈b̂〉m̂ − βh.

6. In order to improve the precision and avoid systematic errors, we can run
additional simulations in the region where p(m̂) is largest.

The whole process is illustrated in Figure 3.1, where we compute the energy den-
sity at the critical temperature in an L = 64 lattice of the D = 3 Ising model.
Notice that the tethered averages 〈u〉m̂ vary in about 10% in our m̂ range, but the
computation of the effective potential is so precise that the averaged value for the
energy, 〈u〉 = −0.996 868(11), has a relative error of only ∼ 10−5.

This is the general TMC algorithm for the computation of canonical averages
from the Helmholtz potential. As we shall see in some of the applications, some-
times the integration over all phase space in step 4 is not needed and one can
use the ensemble equivalence property to recover the 〈O〉 from the 〈O〉m̂ through
saddle-point equations, remember Eq. (2.10). In other words, the tethered aver-
ages can be physically meaningful by themselves. For example, the crystallisation
study of [fer11a] is built entirely over the effective potential, one never uses the
p(m̂).

As will be shown in Chapter 4, the reconstruction of canonical averages from
the combination of tethered averages does not involve any approximation. We can
achieve any desired accuracy, provided we use a sufficiently dense grid in m̂ (to
control systematic errors) and simulate each point for a sufficiently long time (to
reduce statistical ones). Table 3.1 and Figure 3.1 show the kind of precisions that
we can achieve. One could initially think that the computation of the exponential
in p(m̂) = exp[−NΩN(m̂)] would produce unstable or imprecise results for large
system sizes. Instead, the combination of self-averaging and no critical slowing
down makes the numerical precision grow with N .
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Figure 3.1: Computation of the Helmholtz potential ΩN and the canonical expectation
values from tethered averages in a D = 3, L = 64 ferromagnetic Ising model at the
critical temperature. Top: tethered magnetic field 〈b̂〉m̂ (we show only the positive tail,
in order to see its structure better at this scale), with an inset zooming in on the region
between its two zeros. The statistical errors cannot be seen at this scale (except for the
leftmost points in the inset). The integral of this quantity is the Helmholtz potential
ΩN(m̂). Middle: p(m̂) = exp[−NΩN(m̂)] in a linear (right axis) and in a logarithmic
scale (left axis). Bottom: tethered expectation values of the energy density u. Their
integral over the whole m̂ range, weighted with p(m̂), gives the canonical expectation
value 〈u〉 = −0.996 868(11). (horizontal line). See Chapter 6 for further details on these
simulations.





Part II

The Tethered Monte Carlo formalism,
with a new look at ferromagnets
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CHAPTER IV

The tethered formalism

This chapter presents the tethered formalism in detail, noting its relation to the
canonical ensemble and introducing some of the techniques that we will use
throughout this dissertation (such as saddle-point equations). We first presented
the tethered statistical ensemble in [fer09c], demonstrating its application to the
Ising model (cf. Chapter 5). The exposition in this chapter also uses the Ising
ferromagnet as a model system, since that will be the first application consid-
ered in this thesis (it would be straightforward to reproduce the construction for
a different model, as we shall see in Chapter 8). However, the treatment of the
tethered formalism is otherwise more general than that of [fer09c]. For instance,
we include details on how to consider several tethered variables (Section 4.1.1), a
feature that we will need in our study of the DAFF (Chapter 8).

4.1

The tethered ensemble

As noted above, we consider the D-dimensional Ising model, characterised by the
following partition function

Z(β,h) = eNFN(β,h) =
∑
{sx}

exp
[
β
∑
〈x,y〉

sxsy + βh
∑
x
sx
]
, (4.1)

(recall that the angle brackets indicate that the sum is restricted to first neigh-
bours and that the spins are sx = ±1). As we indicated in Chapter 2, we shall
always consider square lattices of linear size L and periodic boundary conditions,
so a system in D spatial dimensions will have N = LD nodes. The partition func-
tion includes an applied magnetic field h. In this chapter we will work at fixed β.
Hence, to lighten the expressions we shall drop the explicit β dependencies. This
simplified notation is also employed throughout our applications.
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The spin interaction energy and magnetisation of a given configuration are

U({sx}) = Nu({sx}) = −
∑
〈x,y〉

sxsy, M({sx}) = Nm({sx}) =
∑
x
sx, (4.2)

Since this chapter is concerned with the construction of a new statistical ensem-
ble, we have to be very precise with our notation. Therefore, we use sans-serif
italics for random variables (i.e., functions of the spins) and serif italics for real
numbers (e.g., expectation values or arguments of probability density functions).
For future chapters, dedicated to physical results, we return to the usual conven-
tion and will no longer make this distinction explicit.

For instance, we shall denote the expectation values in the canonical ensemble,
for a given value of the applied magnetic field, by

U(h) = Nu(h) = 〈U 〉(h), M(h) = Nm(h) = 〈M 〉(h). (4.3)

As noted in Chapter 2, whenever a symbol has an uppercase and a lowercase
version, they correspond to extensive and intensive quantities, respectively. These
expectation values are weighted averages over the 2N possible configurations {sx}
of the system

〈O 〉(h) = 1
Z(h)

∑
{sx}

O({sx}) exp
[−βU({sx})+ βhM({sx})

]
. (4.4)

Let us for the moment consider the case h = 0 and use the shorthand

〈O 〉 = 〈O 〉(h = 0). (4.5)

Since this is a ferromagnetic system, we may be interested in considering the
average value of O conditioned to different magnetisation regions. The naive way
of doing this would be

〈O |m〉 =
〈
O δ

(
Nm−M({sx})

)〉〈
δ
(
Nm−M({sx})

)〉 . (4.6)

The canonical average could then be recovered by a weighted average of the
〈O|m〉,

〈O 〉 =
∑
m
〈O |m〉 p1(m), (4.7)

where

p1(m) = 1
Z(0)

∑
{sx}
δ
(
m−M({sx})/N

)
exp

[−βU({sx})
]
. (4.8)

In the thermodynamical limit, p1 would be a smooth function, the logarithm of
the effective potential associated to the reaction coordinate m (cf. Section 2.1.1).
For a finite system, however, there are only N + 1 possible values of m, so p1(m)
is a comb-like function.
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We want to construct a statistical ensemble where a smooth effective potential
can be defined in finite lattices. The first step is extending the configuration space
with a bath R of N demons and defining the smooth magnetisation M̂,

M̂ = M + R, (4.9)

where1

R =
∑
i

η2
i /2. (4.10)

The demons are statistically independent from the spins and Gaussianly dis-
tributed

p2(r) =
∫

Dη exp
[
−
∑
i

η2
i /2

]
δ
(
r −

∑
i

η2
i /(2N)

)
, Dη =

( N∏
i=1

dηi√
2π

)
. (4.11)

Notice that, due to the central limit theorem, the above probability distribution
approaches a Gaussian of mean 1/2 and variance (2N)−1 in the large-N limit.
Now our partition function is

Z(0) =
∫

Dη
∑
{sx}

exp
[
−βU({sx})−

∑
i

η2
i /2

]
. (4.12)

The convolution of p1(m) and p2(r) then gives the probability density function
(pdf) for m̂,

p(m̂) =
∫

dm
∫

dr p1(m)p2(r)δ(m̂−m− r). (4.13)

So p(m̂) is essentially a smooth version of p1(m̂ − 1/2). Writing p(m̂) explicitly
we have

p(m̂) = 1
Z(0)

∫
Dη

∑
{sx}

e−βU({sx})−
∑
i η2
i /2δ

(
m̂−m({sx})−

∑
i

η2
i /(2N)

)
(4.14)

= 1
Z(0)

∑
{sx}

e−βU({sx})+M({sx})−Nm̂
∫

Dη δ
(
m̂−m({sx})−

∑
i

η2
i /(2N)

)
(4.15)

In the second step we have used the Dirac delta to simplify the integral over
the demons, which has been reduced to the computation of the area of an N-
dimensional sphere. We have, finally

p(m̂) =
∑
{sx}

(2π)N/2

Γ (N/2)Z(0)
ωN(m̂; {sx}) = C

∑
{sx}
ωN(m̂; {sx}), (4.16)

where

ωN(m̂; {sx}) = e−βU({sx})+M({sx})−Nm̂[m̂−m({sx})](N−2)/2Θ
(
m̂−m({sx})

)
. (4.17)

1Actually, R can be defined in different ways, see Section 4.1.2.
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The Heaviside step function enforces the constraint m̂ ≥m. We can now introduce
the effective potential ΩN

e−NΩN(m̂) = p(m̂) = C
∑
{sx}
ωN(m̂, {sx}). (4.18)

We want to construct the tethered statistical ensemble, where ΩN would be the
basic physical quantity, instead of the free energy FN . Comparing (4.18) with (4.1)
and (4.4), we see that ωN is going to take the role of the tethered weight, just as
exp[−βU + βhM] in the canonical case. We therefore define the tethered expecta-
tion value as

〈O〉m̂ =
∑
{sx}O({sx}) ωN(m̂; {sx})∑

{sx}ωN(m̂; {sx}) , (4.19)

We can now rewrite the canonical average as

〈O〉 =
∫

dm̂ 〈O〉m̂ p(m̂) =
∫

dm̂ 〈O〉m̂ e−NΩN(m̂), (4.20)

This has the structure of Eq. (4.6), but now 〈O〉m̂ and p(m̂) are smooth functions
even for finite lattices.

Suppose now that we want to reintroduce the applied field h. It is clear
from (4.6) that 〈O|m〉 (h) = 〈O|m〉. Then, computing 〈O〉(h) is just a matter
of reweighting the different magnetisation sectors:

〈O〉(h) =
∑
m
〈O|m〉p1(m;h), (4.21)

where

p1(m;h) = 1
Z(h)

∑
{sx}
δ
(
m−m({sx})

)
exp

[−βU({sx})+ βhM({sx})
]
. (4.22)

Analogously, in the tethered notation we would have

〈O〉(h) = 1
Z(h)

∫
dm 〈O〉m̂ e−NΩN(m̂)+Nβhm̂ , (4.23)

where the partition function can be written as

Z(h) = eNFN(h) =
∫

dm̂ e−N[ΩN(m̂)−βhm̂] . (4.24)

This expression illustrates the fact that the construction of the tethered ensemble
from the canonical one is a Legendre transformation. We have replaced the free
energy, a function of h, with the effective potential, a function of m̂.

In the canonical ensemble the derivative of FN with respect to h defines the
magnetisation, the basic observable. Analogously, in the tethered ensemble the
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m̂-derivative ofΩN is going to define the tethered magnetic field —recall Eq. (2.11).
We differentiate in (4.18) to obtain

∂ΩN
∂m̂

=
∑
{sx}

(
1− 1/2−1/N

m̂−m({sx})
)
ωN(m̂; {sx})∑

{sx}ωN(m̂; {sx}) , (4.25)

Then, recalling the definition of tethered expectation values in (4.19) we define the
tethered magnetic field2

b̂({sx}) = 1− 1/2− 1/N
m̂−m({sx}) , (4.26)

so that

〈b̂ 〉m̂ = ∂ΩN∂m̂ . (4.27)

The tethered magnetic field is essentially a measure of the fluctuations in m,
which illustrates the dual roles the magnetisation and magnetic field play in the
canonical and tethered formalism. This is further demonstrated by the tethered
fluctuation-dissipation formula

∂〈O 〉m̂
∂m̂

=
〈
∂O
∂m̂

�
m̂
+N[〈Ob̂ 〉m̂ − 〈O 〉m̂〈b̂ 〉m̂]. (4.28)

This formula is easy to prove differentiating in (4.19). The values of m̂ where
〈b̂〉m̂ = 0 will define maxima and minima of the effective potential and, hence, of
the probability p(m̂).

Definition (4.26), together with the condition that p(m̂) = e−NΩN(m̂) be nor-
malised, allows us to reconstruct the Helmholtz potential from the tethered av-
erages alone. Therefore, from the knowledge of the 〈O〉m̂ we can obtain all
the information about the system (at the working temperature β), including the
canonical averages for arbitrary applied fields. Notice, from (4.23), that consid-
ering a non-zero h is simply equivalent to shifting the tethered magnetic field,
〈b̂〉m̂ → 〈b̂〉m̂ − βh.

The computation of the 〈O〉m̂, as detailed in the previous chapter, is just a mat-
ter of running several independent Monte Carlo simulations with the weight (4.17)
in a sufficiently dense grid of m̂.

As a final comment, we note that our introduction of demons is reminiscent
of Creutz’s microcanonical algorithm [cre83], but there are several important dif-
ferences: (i) we include one demon for each degree of freedom, (ii) our demons
are continuous variables and (iii) we explicitly integrate out the demons, finding a
tractable effective Hamiltonian. Still, notice that one could also define a version of
the tethered formalism where the demons are not integrated, but rather treated
as actual dynamical variables. This has worse numerical performance (as we shall
see, the non-local nature of the conservation law is crucial to break the critical
slowing down), but could have advantages for non-standard computer architec-
tures.

2In this thesis, we have changed the sign convention for ΩN with respect to that of [fer09c].
Therefore, our b̂ would be the −ĥ of [fer09c].
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4.1.1 Several tethered variables

Throughout this section we have considered an ensemble with only one tethered
quantity. However, as we shall see in Chapter 8, it is often appropriate to consider
several reaction coordinates at the same time. The construction of the tethered
ensemble in such a study presents no difficulties. We start by coupling reaction
coordinates xi, i = 1..n, with N demons each,

X̂1 = Nx̂1 = X1 + R1 , . . . , X̂n = Nx̂n = Xn + Rn . (4.29)

We then follow the same steps of the previous section, with the consequence
that the tethered magnetic field is now a conservative field computed from an
n-dimensional potential ΩN(x̂)

∇ΩN =
(
∂x̂1ΩN , . . . , ∂x̂nΩN

) = B̂ (4.30)

B̂ = (〈b̂1〉x̂, . . . , 〈b̂n〉x̂
)
, (4.31)

and each of the b̂i is of the same form as in the case with only one tethered vari-
able. Similarly, the tethered weight of Eq. (4.17) is now, up to irrelevant constant
factors,

ω(n)N (x̂, {sx})∝ e−βUγ
(
x̂1, x1({sx}

)
γ
(
x̂2, x2({sx})

) · · ·γ(x̂n, xn({sx})). (4.32)

where
γ(x̂; x) = eN(x−x̂)(x̂ − x)(N−2)/2Θ(x̂ − x). (4.33)

4.1.2 The Gaussian demons

In the construction of the tethered ensemble we defined the bath of Gaussian
demons as

R =
∑
i

η2
i /2, (4.10)

adding the ηi quadratically to the spins. However, we could also have considered
linear demons, for instance,

R(L) =
∑
i

ηi. (4.34)

The whole construction could be followed in the same way, but we would have

ω(L)N (m̂; {sx})∝ e−βU−(M−M̂)2/(2N), (4.35)

b̂(L) = m̂−m({sx}). (4.36)

Furthermore, we have assumed there are as many demons as spins. While this
choice seems natural, it is by no means a necessity. In fact, if we were to consider
an off-lattice system, the demons would increase the dispersion in the already
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continuous p1(x). In order to control the fluctuations it is useful in such a case
to consider a variable number of demons (see [fer11a]). Using the linear R(L) we
would have

Rα = 1
α

αN∑
i=1

ηi, (4.37)

b̂(L) = α(m̂−m). (4.38)

4.2

Ensemble equivalence

In this chapter we have constructed the tethered ensemble, noting its relation to
the canonical one. In particular, we have showed how to reconstruct canonical
expectation values from the tethered averages as a function of m̂. However, this
is not always the ultimate goal. Throughout this dissertation we shall see several
cases where we obtain physically relevant results without considering canonical
averages. Good examples are the computation of the hyperscaling violations ex-
ponent θ for the DAFF in Chapter 8 or the computation of the critical exponents
ratio β/ν in Chapters 5 and 6.

Still, most of the time the averages in the canonical ensemble are the ones with
an easiest physical interpretation (fixed temperature, fixed applied field, etc.). In
principle, their computation implies reconstructing the whole effective potential
ΩN and using it to integrate over the whole coordinate space, as in (4.23). Some-
times, however, the connection between the tethered and canonical ensembles is
easier to make. Let us return to our ferromagnetic example, with a single teth-
ered quantity m. Recalling the expression of the canonical partition function in
terms of ΩN for finite h, Eq. (4.24), we see that the integral is clearly going to be
dominated by a saddle point such that

∂m̂[ΩN(m̂)− βhm̂] = 0 =⇒ 〈b̂〉m̂ = βh. (4.39)

Clearly, this saddle point, the minimum of the effective potential, rapidly grows
in importance with the system size N , to the point that we can write

lim
N→∞

〈O〉(h) = lim
N→∞

〈O〉m̂(h). (4.40)

That is, in the thermodynamical limit we can identify the canonical average for a
given applied magnetic field h with the tethered average computed at the saddle
point defined by h, which is nothing more than the point where the tethered
magnetic field coincides with the applied magnetic field (times β).

This ensemble equivalence property would be little more than a curiosity if it
were not for the fact that the convergence is actually very fast (see Chapter 5 for
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a study). Therefore, in many practical applications the equivalence (4.40) can be
made even for finite lattices (see Section 8.1.1 below for an example).

The saddle-point approach can be applied to systems with spontaneous sym-
metry breaking. In the typical analysis, one has to perform first a large-N limit
and then a small-field one (this is troublesome for numerical work, where one
usually has to consider non-analytical observables such as |m|). In the tethered
ensemble we can implement this double limit in an elegant way by considering
a restricted range in the reaction coordinate from the outset (see Chapter 5 for
a straightforward example in the Ising model and Section 8.1.1 for a more subtle
one).



CHAPTER V

Tethered Monte Carlo study of the
ferromagnetic Ising model

This chapter presents a study of the D = 2 ferromagnetic Ising model carried out
with the tethered formalism. This is the first system that we studied with TMC,
as a demonstration of the method [fer09c]. It is intended as a step-by-step guide
to TMC in a straightforward application as well as a demonstration of its power.
We work in several regimes, covering most of the techniques that will be needed
in a more sophisticated implementation (saddle-point equations, grid refinement,
etc.). We also illustrate how TMC can provide complementary information and
enable some new analysis techniques (see, for instance, the computation of β/ν
in Section 5.2.2).

The two-dimensional Ising model was solved by Onsager in 1944 [ons44].
Since then, many other exact results have been obtained (see [mcc73] for a re-
view), making it the best understood model with a phase transition. Furthermore,
the Ising model is the ideal setting for sophisticated Monte Carlo methods, partic-
ularly cluster algorithms (cf. Chapter 6). Therefore, we can confront our results
with accurate numerical computations even in those cases where the exact solu-
tion is unknown.

5.1

The model and observables

We consider the two-dimensional Ising model, introduced in Chapter 4,1

Z(h) = eNFN(h) =
∑
{sx}

exp
[
β
∑
〈x,y〉

sxsy + βh
∑
x
sx
]
, (4.1)

1As in Chapter 4, we do not write explicit β dependencies, since we always work at constant
temperature.

63
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The infinite-volume system undergoes a second-order phase transition at a criti-
cal (inverse) temperature βc

βc = log(1+√2)
2

= 0.440 686 793 509 771 . . . (5.1)

The main observables we consider are the energy U and the magnetisation M ,
both defined on Eq. (4.2). Other interesting physical quantities are the specific
heat C and the magnetic susceptibility χ2

C = N[〈u2〉 − 〈u〉2], (5.2)

χ2 = N[〈m2〉 − 〈m〉2]. (5.3)

The latter quantity can be generalised to define the higher cumulants of the
magnetisation,

χ2n = 1
Nβ2n

∂2n logZ
(∂h)2n

∣∣∣∣∣
h=0

= 1
β2n

∂2nFN
(∂h)2n

∣∣∣∣∣
h=0

, (5.4)

These can also be defined as the zero-momentum components of the 2n-point
correlation functions. In particular, the two-point propagator is

G2(k) = 1
N

∑
x
〈sxs0〉 eik·x . (5.5)

In the limit when k → 0, this function can be approximated by its free-field
form [zj05, ami05]

G2(k) −−−−−−→|k|→0

A
µ2 +��k2

, ��k2 = 4
D∑
i=1

sin2 ki/2. (5.6)

We can use the correlation function in position space to define a correlation
length,

ξexp = lim
|x|→∞

−|x|
log G̃2(x)

. (5.7)

In a finite lattice this definition is not practical but we can use the free-field ap-
proximation (5.6) to arrive at more easily measured ones. In particular, defini-
tion (5.7) would give ξexp = µ−1 so we define

ξ2 = G2(k1)−G2(k2)
��k2

2G2(k2)−��k2
1G2(k1)

. (5.8)

We can choose k1 = (0,0,0) and k2 = k(i)min = (2π/L)ûi, where ûi is one of the
unit vectors in reciprocal space. With this choice, k(i)min is the smallest non-zero
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momentum compatible with our periodic boundary conditions. We thus arrive at
the second-moment correlation length ξ2,

ξ2 = 1
2 sin(π/L)

[
χ2

G2(kmin)
− 1

]1/2
G2(kmin) = 1

D

D∑
i=1

G2
(
k(i)min

)
, (5.9)

(remember that G2(0) = χ2). This definition of the correlation length was in-
troduced in [coo82] and has since then proved very useful in finite-size scaling
studies [car95a, bal96, bal97].

In the broken symmetry phase (or with non-zero h), definition (5.9) does not
work and we have to use larger momenta (see Section 5.3).

A final interesting observable is the Binder ratio, related to the fourth cumulant
of the magnetisation,

B = 〈m4〉
〈m2〉2 . (5.10)

For the infinite model, the energy and specific heat can be shown to be (see,
e.g., [hua87] for a summary of the computation)

u∞(β) = − coth(2β)
[

1+ 2
π
κ′K1(κ)

]
, (5.11)

C∞(β) = 2
π
(β coth 2β)2

[
2K1(κ)− 2E1(κ)− (1− κ′)

(
π
2
+ κ′K1(κ)

)]
. (5.12)

Here E1(x) and K1(x) are the complete elliptic integrals of the first and second
kind (see, e.g., [gra00]) and κ = 2 sinh(2β)/ cosh2(2β), κ′ = 2 tanh2(2β) − 1. In
addition, C. N. Yang [yan52] showed that the spontaneous magnetisation is

m∞(β) =
0, β < βc,[

1− (sinh(2β)
)−4

]1/8
. β > βc.

(5.13)

We shall also compare our results with the exact expressions for finite L computed
by Ferdinand and Fisher in [fer69] (too long to reproduce here).

5.2

Results at βc, h = 0

We have used the TMC method, with the simple Metropolis implementation de-
scribed in Chapter 3, to simulate lattices L = 16,32, . . . ,1024 at the critical point
of the D = 2 ferromagnetic Ising model. Since the tethered formalism was al-
ready constructed using the Ising model as an example, no further notes on it are
needed here. However, we still have some practical decisions to make, regarding
the numerical implementation:
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Figure 5.1: Probability density function p(m̂) for several lattice sizes at the critical tem-
perature. The peaks get closer as L grows, eventually merging in the thermodynamical
limit.

• We need to decide on a numerical interpolation scheme for the 〈O〉m̂ and on
a numerical integration method to obtain ΩN from 〈b̂〉m̂.

• We need to decide which values of m̂ to simulate.

These issues are discussed in detail on Appendix C, which also contains some
practical recipes for the numerical implementation of the Metropolis algorithm
and for the analysis of some delicate physical observables. Suffice it to say here
that the issues of interpolation and integration are not critical (all the tethered
averages being very smooth functions of m̂).

As to the m̂ sampling, it is best done starting from a uniform grid and, after
a first analysis, perhaps refining the areas that are seen to have more weight in
the p(m̂). In our case, for systems with L ≤ 256 we have sampled the p(m̂) (see
Figure 5.1) with 51 uniformly distributed points in the interval m̂ ∈ [−0.5,1.5]
(except for L = 16, where the range had to be widened to avoid cutoff errors).
For larger lattices the probability density drops much faster at the tails, so we
have narrowed the range to m̂ ∈ [−0.3,1.3] and, since the peaks are also steeper,
we have then added another 26 points around the probability maxima (see Sec-
tion c.2).

In all cases we have performed 107 MCS for each value of m̂ and computed
the errors with 100 jackknife blocks (see Appendix B for our error estimation
techniques), after discarding the first fifth of the measurements for thermalisation
(although the correlation times are much smaller, see Section 5.5).

In the following subsection we report the result of computing the canonical
expectation values for several standard observables for zero magnetic field. We
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L −〈u〉 χ2/L2 ξ2/L C B

16 (TMC) 1.453 08(4) 0.545 43(6) 0.911 6(2) 7.718 6(14) 1.165 62(7)
16 (CAW) 1.452 9(2) 0.545 1(3) 0.910 4(9) 7.718(10) 1.165 9(3)
16 (E) 1.453 065. . . 7.717 134. . .

32 (TMC) 1.433 69(4) 0.459 00(10) 0.907 2(4) 9.509(3) 1.167 23(14)
32 (CSW) 1.433 67(12) 0.459 1(2) 0.907 8(9) 9.493(13) 1.167 1(3)
32 (E) 1.433 659. . . 9.509 379. . .

64 (TMC) 1.423 97(4) 0.386 19(18) 0.906 5(9) 11.285(6) 1.167 5(3)
64 (CSW) 1.423 90(6) 0.386 0(2) 0.905 6(10) 11.293(17) 1.167 7(4)
64 (E) 1.423 938. . . 11.288 138. . .

128 (TMC) 1.419 05(5) 0.324 4(3) 0.904 0(18) 13.063(10) 1.168 4(7)
128 (CSW) 1.419 06(4) 0.324 59(17) 0.904 8(10) 13.06(2) 1.167 7(4)
128 (E) 1.419 076. . . 13.060 079. . .

256 (TMC) 1.416 63(5) 0.272 8(6) 0.904(4) 14.83(2) 1.168 7(14)
256 (CSW) 1.416 64(2) 0.272 86(14) 0.904 2(9) 14.83(2) 1.168 2(4)
256 (E) 1.416 645. . . 14.828 595. . .

512 (TMC) 1.415 42(4) 0.229 3(7) 0.903(6) 16.57(3) 1.168(2)
512 (CSW) 1.415 444(11) 0.229 68(13) 0.905 9(10) 16.60(2) 1.167 6(4)
512 (E) 1.415 429. . . 16.595 404. . .

1024 (TMC) 1.414 89(4) 0.194 9(15) 0.919(15) 18.28(8) 1.163(6)
1024 (CSW) 1.414 826(6) 0.193 07(12) 0.904 6(11) 18.35(3) 1.168 1(4)
1024 (E) 1.414 821. . . 18.361 348. . .

Table 5.1: Results at the critical temperature and comparison with a cluster algorithm.
(TMC): Tethered Monte Carlo, (CSW): Canonical Swendsen-Wang, (E): Exact results at finite
L from [fer69].

then demonstrate the new options afforded to us by TMC, by carrying out an
unconventional, but very precise, computation of the anomalous dimension of
the system from the position of the peak in p(m̂). In Section 5.3 we shall reweight
these simulations to obtain canonical expectation values at non-zero magnetic
field.

5.2.1 Computation of the canonical expectation values

Our first physical result is the pdf of m̂, represented in Figure 5.1. This distri-
bution features a central minimum in the zero-magnetisation region (recall that
m̂ 'm+1/2) as well as two symmetric peaks that get closer together as L grows.
Of course, since this system experiences a second-order phase transition, the
peaks should converge in the thermodynamical limit (where the effective potential
is a convex function).
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In Table 5.1 on the preceding page we report our estimates for the canon-
ical expectation values of several standard observables. We check our results
against the values obtained from the exact formulas in [fer69] and against a
canonical Swendsen-Wang simulation. We use our own implementation, based on
the one distributed with [ami05], although our results are compatible with those
of [sal00]. We perform 107 Swendsen-Wang cluster updates.

From Table 5.1 we can confirm that a simple implementation of TMC is capable
of producing very accurate results. The relative errors for χ2 and B scale as L. This
can be explained by noticing that both are completely determined by p(m̂) (see
the discussion following Eq. (c.11) in Appendix C). In addition, b̂ is self-averaging
(cf. Section 2.2.2) and, as we shall see in Section 5.5, virtually free of critical slowing
down (meaning that for a fixed simulation length its error scales as 1/

√
N). Finally,

in the computation of p(m̂) we are multiplying ΩN(m̂) by a factor of N , yielding
an overall

√
N scaling for the errors.

Of course, TMC is not meant to be a competitor to cluster algorithms for the
Ising model without magnetic field. For example, the CPU time to compute each
of the 77 simulations at fixed m̂ for L = 1024 is similar to what we needed for
the whole Swendsen-Wang simulation, which is also more precise. See, however,
Chapter 6 for a tethered implementation of the Swendsen-Wang algorithm, which
turns out to be as efficient as the canonical Swendsen-Wang for the Ising model. In
any case, our tethered version of the Metropolis algorithm is much more efficient
than canonical Metropolis (see Section 5.5).

5.2.2 The magnetic critical exponent

Let us now see an example of the new kind of analyses afforded to us by the
tethered formalism. In particular, we shall compute the critical parameter β/ν
(recall the definitions of the critical exponents in 2.1.2) in a very simple way that,
however, would not be practical in a canonical simulation.

We consider the finite-size scaling formula (recall Section 2.1.3)

〈O〉 (h) = L−yO/ν
[
fO(L1/νt, Lyhh)+ . . .

]
, t = βc − β

βc
. (5.14)

We have included a second variable in the scaling function fO to allow for dis-
placements in the applied field h, not only in temperature. These are regulated by
a new critical exponent yh (analogous to yt = 1/ν). The dots represent possible
corrections to scaling. For the moment, we shall work with no field, h = 0.

Applied to the magnetisation, whose associated critical exponent is β, the FSS
ansatz implies that

p̃1(m,βc;L) = Lβ/ν f̃ (Lβ/νm), (5.15)

where p̃ is a smooth version of p1(m;L). Now, the pdf of m̂, p(m̂;L)—Eq. (4.13)—
is precisely a smooth version of p1(m̂− 1/2). Therefore, we can write

p(m̂, βc;L) = Lβ/νf
(
Lβ/ν(m̂− 1/2)

)
. (5.16)
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L −m−peak =
∣∣m̂−peak − 1

2

∣∣ m+peak = m̂+peak − 1
2

32 0.764 01(10) 0.764 31(11)
64 0.702 86(18) 0.703 0(2)

128 0.645 3(3) 0.645 1(4)
256 0.592 1(7) 0.591 0(7)
512 0.541 9(12) 0.542 7(9)

1024 0.499(2) 0.500(2)

Table 5.2: Position of the positive and negative maxima of the p(m̂). Since we are at the
critical temperature of a second-order phase transition, both columns should extrapolate
to zero in the large-L limit (cf. our study of the ferromagnetic region in Section 5.4).

If we concentrate on the peaks of the pdf, we see that their height is going to grow
as Lβ/ν , while their position is going to shift as

|m̂±
peak −

1
2
| ' AL−β/ν . (5.17)

Now, computing the maximum of a numerical function is usually a delicate oper-
ation. However, in our case we have measured directly b̂, which is the derivative
of (the logarithm of) p(m̂). Herein lies our advantage with respect to a canonical
simulation (which cannot access b̂ directly), because we only have to find a zero,
a much better conditioned operation. In particular, we run through our computed
tethered averages 〈b̂〉m̂i until we find two consecutive points in the grid such that

〈b̂〉m̂i > 0 and 〈b̂〉m̂i+1
< 0. Then, we find the single zero of the section of our

cubic spline (see Appendix C) that joins both points. This operation is performed
for each jackknife block in order to estimate the statistical error (cf. Appendix B).
The resulting maxima are collected in Table 5.2.

Notice that if we just wanted to obtain the maxima very precisely, we would not
have performed a simulation of the whole m̂ range. Instead, we would have done
a fast sweep to place the peaks approximately and then we would have simulated
only a few points in their neighbourhood, to a very high precision. However, even
with our suboptimal grid we have determined the position of the maxima with a
relative ranging from ∼ 10−4 for L = 32 to ∼ 5× 10−3 for L = 1024.

We have fitted the m̂±
peak to (5.17), for different fitting ranges L ≥ Lmin (Ta-

ble 5.3). The fits are good (in the sense of an acceptable χ2/d.o.f., see Appendix B)
for Lmin ≥ 64. Still, there are possible systematic sources of error (corrections to
scaling), so, following [bal96], we give as our final estimate the fit for Lmin = 64,
but with the larger error of the fit for Lmin = 128. For the negative magnetisa-
tion peak we find β/ν = 0.123 9(11) and for the positive peak β/ν = 0.124 5(10).
Both are compatible with the exact value for the D = 2 Ising model, known to be
β/ν = 1/8.

Since we have a wide range of lattice sizes, we can try to characterise the first
corrections to scaling. Following [sal00], we assume that in the D = 2 Ising model
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Lmin
m−peak m+peak

β/ν χ2/d.o.f. β/ν χ2/d.o.f.

32 0.121 7(3) 23.44/4 0.122 4(3) 27.85/4
64 0.123 9(5) 2.027/3 0.124 5(5) 2.087/3

128 0.125 0(11) 0.7569/2 0.124 6(10) 2.053/2
256 0.126(4) 0.6456/1 0.122 0(23) 0.3248/1

Table 5.3: Fits of m̂±peak(L) to (5.17), in order to find β/ν , for different fitting ranges
L ≥ Lmin. For each fit we give the chi-square estimator and the degrees of freedom (see
Appendix B). Our results converge to the exact value, β/ν = 0.125.

the dominant corrections to scaling are analytical

m±
peak = L−β/ν[A± + B±L−∆], ∆ = 7/4. (5.18)

We have fitted our points for all lattices to this expression, fixing the exponents to
their exact values and varying A± and B±. We have obtained χ2/d.o.f. = 0.9858/4
for the negative peak and χ2/d.o.f. = 2.825/4 for the positive one.

5.3

Results at βc, h ≠ 0

One of the strengths of TMC is that it can compute the canonical expectation val-
ues for an arbitrary applied field h without any need for new simulations. Notice
that in the canonical formalism not only would we have to run a new simulation
for each value of h, but we would also lose the possibility of using the highly
efficient cluster methods. One simply has to change the weight of the tethered
expectation values when integrating over m̂, as indicated by Eq. (4.23). Figure 5.2
shows an example of this reweighting. We plot the pdf p(m̂;h) for several val-
ues of the applied field. By integrating the same tethered averages computed in
Section 5.2 with this new pdf we can obtain the canonical average at the corre-
sponding applied magnetic field.

Notice that now only a very narrow region has any significant contribution to
the canonical average, which implies a loss of statistical precision. In general, if
one is interested in the canonical average at a particular value of h, the m̂ grid
should be chosen so that the resulting peak is appropriately sampled, neglecting
the exponentially suppressed region away from it. This is a simple task, because
the position of the peak is easily determined from a first trial run, as we saw in
the previous section. The only difference is that now we do not have to solve for
〈b̂〉m̂ = 0, but for

〈b̂〉m̂ = βh. (5.19)
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Figure 5.2: Probability density function p(m̂,h) for L = 128 at βc, for several values of
the applied magnetic field h.

Once the peak has been accurately placed, the best strategy is running long teth-
ered simulations precisely there and at neighbouring points.

In this section, however, we are not interested in any particular value of h,
but rather in studying the behaviour of the canonical averages 〈O〉(h) as smooth
functions of the magnetic field. The simulations we already have will be sufficient,
accepting a small loss of precision, because the m̂ grid will not be necessarily op-
timised. We can improve our precision somewhat, though, if we notice that most
interesting observables are either odd or even functions of the applied magnetic
field. Therefore, we can (anti)symmetrise the curves:

〈O〉odd(h) = 〈O〉(h)− 〈O〉(−h)
2

, (5.20)

〈O〉even(h) = 〈O〉(h)+ 〈O〉(−h)
2

. (5.21)

For statistically independent data, averaging two equivalent estimates in this way
would yield an error reduction of 1/

√
2. But this is not the case here: the individ-

ual averages for ±h are very strongly correlated. Therefore, the error reduction
for even quantities is negligible. For odd quantities, on the other hand, since we
are computing a difference, the fluctuations are greatly suppressed and the result-
ing error reduction is very large (around a factor of 10, specially for small values
of h). We shall use equations (5.20) and (5.21), but dropping the explicit ‘odd’ or
‘even’ superscripts.
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5.3.1 The magnetisation

We first consider the most straightforward observable, the magnetisation 〈m〉(h).
This is an odd function of h, so as discussed above we can greatly increase our
precision by using formula (5.20).

In this case, unlike previous sections, no data for 〈m〉(h) are readily available
in a finite lattice, since canonical cluster methods lose much of their power in
the presence of a magnetic field (in fact, current numerical methods for the in-
vestigation of the D = 2 Ising model in a field typically rely on transfer matrix
techniques [cas00, gri03, cas04]). Therefore, rather than compare our results
directly with other computations, we shall carry out self-consistency checks.

The first step is recalling Eq. (5.4), according to which the free energy of the
system (an even function of h, for obvious symmetry considerations) can be writ-
ten as a Taylor expansion in the following way

FN(h)− FN(0) =
∞∑
n=1

χ2n

(2n)!
(βh)2n . (5.22)

Therefore, the magnetisation 〈m〉(h) is simply

〈m〉(h) = 1
β
∂FN
∂h

= χ2 βh+ χ4

3!
(βh)3 + χ6

5!
(βh)5 + χ8

7!
(βh)7 + . . . (5.23)

Now, we can compute χ2n as the cumulants of the magnetisation at h = 0, but
this equation provides an alternative way. We generate a reasonable number of
points of the 〈m〉(h) curve, which we then parameterise with a truncated version
of (5.23). The choice of values for h is somewhat delicate: if we use very small
magnetic fields we will only be able to appreciate the first few coefficients but if
we go too far in h we would need to have sampled the tails of the pdf of m̂ very
precisely. We have found that magnetic fields up to βh ∼ (χ2)−1 provide a good
compromise (notice that this value is L-dependent).

As we discuss in Appendix B, the correlation among the points in the curve has
both a beneficial and a detrimental effect. The former is that, since all the points
fluctuate more or less coherently, the resulting curves are very smooth. The latter
is that these same correlations make it very difficult to estimate errors or to check
whether a proposed fitting function is a good model for the data. In this section
we have taken the approach of computing an odd interpolating polynomial with
a finite-difference formula, which gives us as many χ2n as we have points. We
estimate the statistical errors with the jackknife method. We still face a systematic
error, which we try to control by varying both the range in h and the number of
points. We have found that the last one or two coefficients in the fit are typically
unstable. Therefore, if we want to obtain n physically meaningful parameters,
we should compute at least n + 2 points. In our case, we have computed the
non-linear susceptibilities up to χ8, so, to be safe, we have used 7 points for each
lattice size. These were equally spaced at intervals of ∆(βh) = (10χ2)−1, where χ2

is the susceptibility computed in the simulation at h = 0.
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L N−1χ2 N−2χ4 N−3χ6 N−4χ8

16 (M) 0.545 43(6) −0.545 72(13) 2.265 7(8) −20.059(10)
16 (F) 0.545 43(6) −0.545 7(2) 2.262 8(19) −19.70(14)

32 (M) 0.459 00(10) −0.386 1(2) 1.348 5(10) −10.042(10)
32 (F) 0.459 00(10) −0.386 2(3) 1.348 4(18) −10.00(2)

64 (M) 0.386 19(18) −0.273 3(3) 0.803 1(13) −5.032(11)
64 (F) 0.386 19(18) −0.273 8(5) 0.805(2) −5.02(2)

128 (M) 0.324 4(3) −0.192 8(4) 0.475 8(17) −2.504(12)
128 (F) 0.324 4(3) −0.194 3(7) 0.481(3) −2.52(2)

256 (M) 0.272 8(6) −0.136 2(7) 0.283(2) −1.250(12)
256 (F) 0.272 5(6) −0.135 8(15) 0.280(6) −1.20(4)

512 (M) 0.229 3(7) −0.096 4(7) 0.168(2) −0.625(9)
512 (F) 0.229 3(7) −0.096 0(12) 0.166(4) −0.60(2)

1024 (M) 0.194 9(15) −0.069 8(13) 0.104(3) −0.328(12)
1024 (F) 0.194(3) −0.063(6) 0.08(2) −0.2(3)

Table 5.4: Non-linear susceptibilities from direct measurements at h = 0 (M) and from a
finite-difference formula for 〈m〉(h) as a function of the magnetic field (F).

In Table 5.4 we compare the non-linear susceptibilities computed from mea-
surements of the cumulants at h = 0 and from the 〈m〉(h) curve. Both series are
compatible, but the former are more precise.

We can also perform a FSS analysis. For small applied fields we can collapse
the curves for different sizes by plotting 〈m〉(h)/χ2 against βh. As h grows, how-
ever, we start to appreciate the deviations from linear behaviour computed above
(Figure 5.3—left). We can attempt a better collapse of the curves for different L
with the FSS formula (remember Section 5.2.2)

〈m〉(h) ' L−β/νfm(Lyhh), yh = 15/8. (5.24)

We have plotted 〈m〉Lβ/ν against hLyh on Figure 5.3—right. We also include a
fit for the scaling function fm. We use an odd seventh-degree polynomial and
include in the fit the points for L ≥ 64. The value of the diagonal χ2

d for this fit is
χ2

d/d.o.f. = 41.85/31 (see Appendix B for definitions). The last point in the curve
starts to show a deviation, probably due to corrections to leading order scaling.
Remember that we spaced our values of βh in units of (10χ2)−1, which is not an
optimal choice for a FSS study.

We complete our analysis of 〈m〉(h) by considering now L-independent mag-
netic fields across several orders of magnitude (Figure 5.4). We observe two well-
differentiated scales: a FSS regime, where the slope of the curve is very large, and
a saturation regime where the curves merge. Notice that the only hard limit in the
values of h we can consider is given by the saddle-point equation (5.19). So long as
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Figure 5.5: Correlation length ξ′(h)/L, Eq. (5.25), against the scaling variable βchLyh . We
also plot a fit to the scaling function fξ′ of (5.26).

βh is contained within the bounds set by our measured values of 〈b̂〉m̂, the peak
in p(m̂;h) will be contained in our simulated range and we can interpolate it with
some precision (this is the reason for the rapid error growth in our largest lat-
tices). Notice that the displacement of the curves in the FSS section seems linear
in logL. This is an artifact of the low value of β/ν = 1/8 in Eq. (5.24).

5.3.2 The correlation length

We consider now the correlation length of the system for non-zero applied field.
As we discussed in Section 5.1, the second-moment definition (5.9) does not work
in an applied field, so we have to go back to the generic formula (5.8) and choose
different k1 and k2. The simplest choice is to use the next smallest momenta:
k1 = kmin and k2 = 2π/L(1,±1),

ξ′ = 1
2 sin(π/L)

[
G2(kmin)−G2(k2)

2G2(k2)−G2(kmin)

]1/2

. (5.25)

Now, ξ′(h) is an even function of h, so we symmetrise it with (5.21). Again, due
to the lack of readily available data in a finite lattice for this observable, we check
our results with a FSS analysis. To leading order, we have

ξ′/L ' fξ′(Lyhh), (5.26)

where, as in the case of m, fξ′ is expected to be very smooth. As we can see
in Fig. 5.5, Eq. (5.26) is perfectly valid in our case, if we discard the data for L ≤
32. At a first glance, it may seem that we have even overestimated our errors



76 Tethered Monte Carlo study of the ferromagnetic Ising model

for L = 1024, but remember that the points are very strongly correlated. The
universal scaling curve is well represented by a sixth order even polynomial, with
χ2

d/d.o.f. = 3.978/36. Thus, the universal scaling function fξ2(x) for x . 1.5 is
very well approximated by

fξ′(x) = a0 + a2x2 + a4x4 + a6x6, (5.27)

with

a0 = 0.239 9(2), a2 = −0.063 9(4), a4 = 0.023 5(7), a6 = −0.004 5(4). (5.28)

We have estimated the errors in the fit parameters with the techniques of Ap-
pendix B.

5.4

The ordered phase: spontaneous symmetry breaking

In this section we present new simulations of the D = 2 Ising model in the ferro-
magnetic phase, using them to illustrate the treatment of spontaneous symmetry
breaking in the tethered formalism. We then examine the approach to the ther-
modynamical limit, studying the equivalence between the canonical and tethered
ensembles.

5.4.1 Spontaneous symmetry breaking

Let us now consider the β > βc regime. In this situation, the infinite system shows
a nonzero expectation value for the order parameter, 〈m〉 ≠ 0, even in the absence
of an external magnetic field, Eq. (5.13). This may seem incompatible with the par-
tition function (4.1), where the configurations {sx} and {−sx} occur with equal
probability. The well-known solution for this apparent paradox is spontaneous
symmetry breaking, see, e.g., [hua87, zj05], whose mathematical formulation in-
volves considering a small magnetic field (which establishes a preferred direction)
and taking the double limit

〈m〉(∞) = lim
h→0

lim
L→∞
〈m〉(L)(h). (5.29)

The order of the two limits is crucial: were we to reverse it, the magnetisation
would always vanish. We see then that the symmetry of our model complicates
the definition of a broken symmetry phase for finite lattices in the canonical en-
semble. The traditional workaround consists in considering not the magnetisation
m, but its absolute value |m|.

The tethered ensemble provides a cleaner concept of broken symmetry phase.
Consider the pdf of m̂, as in Fig. 5.1. In the ferromagnetic phase the correspond-
ing graph will again have two peaks, but now these will be much narrower and
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L Npoints ∆m̂ −〈u〉 C ξ′ 〈m〉
128 (T) 90 0.9 1.490 397(18) 8.874(4) 10.394(17) 0.719 34(6)
128 (E) 1.490 409 763. . . 8.877 363. . .

256 (T) 79 0.39 1.490 407(11) 8.869(5) 11.26(4) 0.719 41(4)
256 (E) 1.490 415 672. . . 8.874 075. . .

512 (T) 27 0.13 1.490 419(5) 8.877(5) 11.5(3) 0.719 45(3)
512 (E) 1.490 415 689. . . 8.874 046. . .

1024 (T) 27 0.13 1.490 416(4) 8.868(7) 11.4(18) 0.719 45(2)
1024 (E) 1.490 415 689. . . 8.874 046. . .

∞ (E) 1.490 415 689. . . 8.874 046. . . 0.719 436. . .

Table 5.5: Canonical averages for several physical quantities of an Ising lattice at β =
0.4473 computed with the tethered method (T). The grid of m̂ values is uniform in the
narrow simulated band. Also included are the exact results for finite lattices from [fer69]
and the exact results in the thermodynamical limit from Eqs. (5.11–5.13). We appreciate
that by simulating only a very small range ∆m̂ of values for m̂ we can obtain very precise
values. Within our error, we have already reached the thermodynamical limit for L = 512.
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higher, approaching two Dirac deltas in thermodynamic limit. Suppose we want
to perform the double limit of equation (5.29). This would involve introducing a
small magnetic field which would shift the origin of b̂ (4.23). The neighbourhood
of one of the peaks would then become exponentially suppressed and eventually
disappear in the thermodynamical limit. Thus, we can mimic the effect of equa-
tion (5.29) by considering only one of the two peaks from the outset. This would
not work at or below βc, as there the peaks extrapolate to m = 0 (recall Sec-
tion 5.2.2). This procedure has the considerable advantage that it works for any
lattice size. In this section we have chosen the peak of positive magnetisation.

We have run simulations for lattice sizes L = 128,256,512,1024 at inverse
temperature β = 0.4473 > βc. We chose this temperature as we estimated that
the correlation length would be around ξ′ ≈ 10.2

Following the previous discussion, we have worked in the m̂ > 0.5 (positive
magnetisation) region, where there is only one peak. An appropriate sampling
of m̂ is even more important in this phase (but easier to optimise) than in the
situation described in detail in Section c.2. The reason is that the peak is now
so narrow that a choice of m̂ spaced as in the aforementioned section would not
only be completely wasteful, but may also completely fail to sample the peak
(remember the loss of precision for very high magnetic fields in Section 5.3).

In the case of the Ising model, we know Yang’s exact solution m∞(β) for the
magnetisation of the infinite system, Eq. (5.13). The positive peak for p(m̂) will
then be very close to m∞(β) + 1

2 and get closer as we increase L. With this infor-
mation in hand, we can adequately reconstruct the effective potential by running
simulations in a small neighbourhood ofm∞(β)+ 1

2 . For a different model, where
we would lack the knowledge of the peak’s position in the thermodynamical limit,
we can just run simulations with a very fine grid for some small and essentially
costless lattice size and infer from them an efficient distribution of points for the
larger systems.

We have represented p(m̂) for all the simulated lattices in Fig. 5.6, which plots
the whole simulated range of m̂ for L ≥ 512 (for the smaller lattices we have used
a somewhat larger interval). It is interesting to compare the scale on the axes with
that of Fig. 5.1. As will be discussed in detail in Section 5.4.2, the peak approaches
m∞(β)+ 1

2 (the vertical line) as L increases. Table 5.5 compares the values of the
energy and specific heat obtained in our simulations with the exact values given
in [fer69]. Notice how very small simulated ranges of m̂ (∆m̂ = m̂max − m̂min)
yield very accurate results. In fact, we can see that for the L = 1024 lattice we
obtain a more precise determination for the energy with 27 points than what we
obtained at the critical temperature with 77 (we still perform 107 Monte Carlo
sweeps in each point). This result is even more impressive if we consider that
some of these 27 points, being deeply inside the tails of the distribution, do not
have any effect whatsoever in the average with our error (of course, we do not
know this until we have run the simulation and seen the actual width of the peak).

2In this section we again have to use ξ′, Eq. (5.25), instead of ξ2, Eq. (5.9).
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From Table 5.5 we can conclude that the thermodynamical limit has already
been reached for L = 256, at least to the level indicated by our errors. Our whole
computation for L = 512 required about 270 hours of computer time. For com-
parison, a Swendsen-Wang computation with a run time of 30 hours for L = 512
gives ξ′ = 11.8(2). We see that the ratio of computation time for both meth-
ods has changed significantly from the critical point, where the advantage of the
cluster algorithm was much greater.

5.4.2 Ensemble equivalence

Once we wander away from the critical point, the main goal is finding the value of
physical quantities in the thermodynamical limit, rather than attempting a finite-
size scaling. The ensemble equivalence property discussed in Section 4.2 suggests
a way to reach this limit without constructing the whole canonical p(m̂), but by
concentrating instead on its maximum. From the computational point of view,
this supposes a dramatic reduction in the needed effort for a TMC simulation.

Ensemble equivalence can be expressed in mathematical terms by

lim
N→∞

〈O〉 = lim
N→∞

〈O〉m̂peak
, (5.30)

where m̂peak is the saddle point of Section 4.2 (for zero field, in this case). This
equation can be understood as a more formal way of summarising the behaviour
of Fig. 5.6. Indeed, we saw in the previous section that we could reconstruct the
canonical averages considering only a very narrow range of m̂; in the thermody-
namic limit a single point would be sufficient.

For the Ising model we know exactly where this point would be situated, be-
cause, from Yang’s spontaneous magnetisation (5.13)

m̂∞(β) = lim
N→∞

〈m〉 + 1
2
=
[
1− (sinh 2β)−4

]1/8 + 1
2
. (5.31)

We could then run simulations for several lattice sizes precisely at m̂∞ and study
the evolution of 〈O〉m̂∞ as we increase L. This is not the most practical approach,
as for a model other than the D = 2 Ising lattice we would not know the position
of the peak beforehand. Instead, we will follow a more general analysis that would
work in more complex situations.

Let us consider the canonical average of some quantity and recall that we
are using periodic boundary conditions, so the approach to the thermodynami-
cal limit is exponential

〈O〉 =
∫∞

1/2
dm̂ p(m̂, β;L) 〈O〉m̂ = O∞ +AOe−L/ξ∞ , (5.32)

where AO is a constant amplitude. We have just considered the positive magneti-
sation peak.
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L β = 0.4473

b̂∞ · 105 m̂+peak −u+peak

16 2984(3) 1.343 84(4) 1.577 07(8)
32 924.7(16) 1.299 30(7) 1.528 98(9)
64 284.9(9) 1.263 33(7) 1.505 48(5)

128 86.0(6) 1.239 88(9) 1.495 63(4)
256 25.5(3) 1.227 32(8) 1.491 99(2)
512 6.9(2) 1.222 04(6) 1.490 859(16)

1024 2.11(11) 1.220 24(4) 1.490 538(9)

∞ 0 1.219 435. . . 1.490 416. . .

L β = 0.6

b̂∞ · 105 m̂+peak −u+peak

16 −290.6(14) 1.471 943(7) 1.912 98(4)
32 −52.5(8) 1.473 299(5) 1.910 18(2)
64 −11.0(4) 1.473 543(2) 1.909 374(9)

128 −2.45(19) 1.473 594 0(12) 1.909 165(5)
256 −0.67(11) 1.473 604 7(2) 1.909 107(3)
512 −0.19(5) 1.473 607 7(4) 1.909 090 7(15)

1024 −0.03(2) 1.473 608 3(2) 1.909 086 7(4)

∞ 0 1.473 608 7. . . 1.909 086 2. . .

Table 5.6: Tethered mean values of several parameters at the peak of the probability
density function for β = 0.4473 and β = 0.6, together with the value of b̂∞ = 〈b̂〉m̂∞ (this
observable is zero at the peak and helps characterise how close we are to it). The exact
value for an infinite lattice, which coincides with the canonical average, is also included
for comparison.

The integral will be dominated by a saddle point at m̂+
peak, with m̂+

peak
L→∞−−−→ m̂∞,

so we can approximate the pdf by a Gaussian

p(m̂, β;L) '
√

N
2πχ2

exp

[
−N(m̂− m̂peak)2

2χ2

]
. (5.33)

Therefore, we expect the tethered average of O at this saddle point to approach
the canonical average (5.32), with a correction of order N−1,

O∞ = 〈O〉 −AOe−L/ξ∞ = 〈O〉m̂+peak
+O

(
L−D

)
. (5.34)

To ease the notation we shall use the definition

O+peak = 〈O〉m̂+peak
. (5.35)
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This simple analysis provides a practical way of approaching the thermodynamic
limit without knowing the limiting position of the peak in advance.

We first run a complete simulation for some small lattice, covering the whole
range of m̂. This provides a first approximation to the position of the peak. For
growing lattices, we just compute two or three points at both sides of where we
think the maximum is going to be. Our objective is not to reconstruct the whole
peak of p(m̂), just to find a good approximation to the point m̂+

peak where 〈b̂〉m̂
vanishes. We use the same procedure as in Section 5.2.2, finding the zero of the
cubic spline and interpolating the physical observables. Actually, if the position
of the peak is sufficiently bounded we could just place one point very closely at
either side and use a linear interpolation.

With this procedure we are able to compute the tethered mean values of the
relevant physical quantities at the peak with a minimum of numerical effort. Here
we shall apply this method to the energy and we shall also characterise the ap-
proach of the peak to m̂∞. To the latter purpose, we have computed b̂∞ = 〈b̂〉m̂∞
for several lattice sizes and studied how fast it approaches zero. We also give the
values for the position of the peak (Table 5.6).

Following the above analysis we should find that

|u+peak −u∞| = Au · L−ζu ,
|m̂+

peak,β − m̂∞| = Am̂ · L−ζm̂ , (5.36)

b̂∞ = Ab̂ · L−ζb̂ ,

with ζ ≈ 2. We present in Table 5.7 the result of applying the quotients method
(see Section 8.5) to these observables. As we can see, our results are always ζ < 2,
even though this exponent grows with L.

We believe this was caused by the proximity of the critical point, so we ran
analogous simulations for β = 0.6. We were able to complete this new computa-
tions in very little time, following the above procedure. For example, for L = 512
the position of the peak was so tightly bounded that we just computed one point
at either side.

Comparing Table 5.6 with Table 5.1 we see that for β = 0.6, with a computation
effort almost 40 times smaller, we have obtained a result an order of magnitude
more precise than what we had at βc. Recomputing the effective exponents for
these new simulations we obtain results compatible with ζ = 2. Notice that for
this temperature the error in the exponents is much bigger than that for β =
0.4473. The reason is clear from Table 5.6. The left-hand sides of (5.36) are
now much closer to zero than in β = 0.4473, yet their errors are only slightly
smaller. In the computation of the effective exponents only the relative errors
matter, which explains our bigger uncertainties. Notice, however, that we have
been able to distinguish values for b∞ of order 10−6 from zero and that we have
located the peak with seven significant figures.
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L β = 0.4473 β = 0.6

ζb̂ ζm̂ ζu ζb̂ ζm̂ ζu

16 1.690(3) 0.6394(14) 1.168(4) 2.47(2) 2.43(2) 1.83(3)
32 1.699(5) 0.864(3) 1.356(6) 2.25(5) 2.24(5) 1.93(5)
64 1.729(12) 1.102(7) 1.531(12) 2.17(12) 2.16(13) 1.87(10)

128 1.75(2) 1.375(16) 1.73(3) 1.9(3) 1.89(13) 1.9(2)
256 1.88(5) 1.60(4) 1.83(6) 1.8(4) 2.0(5) 2.2(5)
512 1.71(9) 1.70(8) 1.85(12) 2.7(12) 1.4(10) 3.1(12)

Table 5.7: Rate at which several observables approach zero. We consider a functional
form A · L−ζ and compute the effective exponent ζ from the ratio of the computed
values at consecutive lattice sizes. We consider three exponents, ζb̂, ζm̂ and ζu for the

evolution of b̂∞, m̂+peak and u+peak, respectively, see (5.36). We observe that for β = 0.6
the effective exponent approaches 2, as expected from the discussion in the text, while
for β = 0.4473 the proximity of the critical point complicates the analysis.

5.5

Numerical performance analysis

We consider here the Metropolis update algorithm described in detail in Sec-
tion 3.2.1, for a D = 2 Ising model at the critical temperature. Notice that, since
this is a local update algorithm, one would expect the autocorrelation times (see
Appendix A for definitions) to scale as

τ ∝ Lz (5.37)

with z ≈ 2, due to critical slowing down [hoh77, zj05].
In Table 5.8 we show the integrated autocorrelation times for the tethered

magnetic field at the values of the smooth magnetisation m̂ corresponding to the
minimum and one of the maxima in p(m̂) (recall Figure 5.1). As we can see, there
is hardly any evolution (in fact, the values are so small that we cannot even mea-
sure them properly, since times smaller than one are meaningless in a sequential
update scheme). The same situation is reproduced if we consider the autocorre-
lation times for other magnetic observables (functions of the magnetisation m).
This result is surprising, specially considering that naive conserved order param-
eter dynamics exhibit z = 4− η critical slowing down [hoh77].

The key is that our method imposes the constraint globally so, even though
the update algorithm is local, the magnetisation has global information. In this
case, the new dynamical exponent should be znonlocal = z − 2 ≈ 0 [tam89], as is
the case for our method. Notice that this result implies that Tethered Monte Carlo
is able to reconstruct the effective potential ΩN without critical slowing down for
the Ising model.
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L m̂ = 0.5 m̂ = 1.14

32 0.491(9) 0.564(4)
64 0.548(11) 0.614(8)

128 0.580(14) 0.654(8)
256 0.597(13) 0.641(6)
512 0.639(4) 0.661(4)

1024 0.632(4) 0.665(5)

Table 5.8: Autocorrelation times for the tethered magnetic field 〈b̂〉m̂ at the minimum,
m̂ = 0.5, and close to one of the maxima of the p(m̂) for a critical D = 2 Ising model,
simulated with a Metropolis algorithm. There is no critical slowing down for this ob-
servable. The times appear to grow for small sizes, but this is an artificial effect of the
discrete nature of Monte Carlo time (notice that τ ≥ 1/2 by construction and that times
very close to this limit are difficult to measure).

 0.001

 0.01

 0.1

 1

 0  100  200  300  400  500

ρ O
(t

,m̂
)

t

m̂ = 0.50

Energy
G2(kmin)  0.001

 0.01

 0.1

 1

 0  50  100  150  200

ρ O
(t

,m̂
)

t

m̂ = 1.14

Energy
G2(kmin)

Figure 5.7: Normalised autocorrelation functions ρO(t, m̂) for the energy and the prop-
agator G2(kmin) at Tc in an L = 128 lattice. We plot them at the central minimum of
p(m̂) (left) and at one of the peaks (right). In both cases, the correlation function for
G2 is almost a pure exponential. Notice, however, that the correlation functions for both
quantities become parallel, indicating that they share the same exponential autocorrela-
tion time.
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Figure 5.8: Exponential autocorrelation times for tethered simulations of the D = 2 Ising
model at the critical point, as a function of m̂. The τexp, computed from the correlation
function of G2(kmin), are represented in units of the system size, showing a z ≈ 2 critical
slowing down.

Other physical observables, however, do not enjoy the same nonlocal informa-
tion as b̂ and therefore show standard critical slowing down. This is the case,
for instance, of the energy. The quantity with the slowest dynamics seems to be
to be the two-point propagator G2, defined in (5.5), We have plotted in Figure 5.7
the temporal autocorrelation for the energy and for G2 in an L = 128 lattice, at
the central probability minimum and at the probability peak. At both magneti-
sations, the correlation functions for the energy and propagator become parallel
for long enough times. This indicates that they both have the same exponential
time, which we also expect to be the exponential time of the system as a whole. In
addition, the ρg2(t, m̂) is almost a pure exponential, so we can make the approxi-
mation

τexp = τexp,G2 ' τint,G2 . (5.38)

Figure 5.8 shows this exponential time as a function of m̂ for several sys-
tem sizes. As we can see, the central region does exhibit critical slowing down.
Notice, however, that even for an L = 1024 system τexp is only ∼ 104, so this
simple Metropolis algorithm can be used safely to study very large systems. As a
comparison, the exponential autocorrelation time of the canonical version of the
Metropolis algorithm for L = 64 is already as large as that of the tethered version
for L = 1024 (see, e.g., [ami05]).



CHAPTER VI

Optimising Tethered Monte Carlo: cluster
methods

In the previous chapter we showed how a straightforward implementation of the
tethered formalism, using as Monte Carlo dynamics the simple Metropolis algo-
rithm, can be very precise and efficient. Eventually, however, the system size we
can consider in the critical regime is capped by the appearance of critical slowing
down, according to which the thermalisation times grow as τ ∼ Lz, with z ≈ 2.

However, this z ≈ 2 is not a hard limit imposed by the tethered formalism,
but is instead determined by the Metropolis algorithm we have used to explore
the tethered ensemble. If we had run our tethered simulations with some kind of
optimised dynamics, the critical slowing down would have been reduced. In this
chapter we consider the most spectacular example of optimised update algorithm:
cluster methods. These are able to achieve z < 1, for all intents and purposes
eliminating critical slowing down. Because of this, since their introduction in the
1980s [swe87, wol89], they have attracted a considerable interest, which lasts to
the present day [cha98, den07a, den07b, den07c, den07d, den10, gar11]. De-
spite this continued research effort, however, efficient implementations of cluster
methods remain restricted to very few situations. In particular, the development
of a cluster update algorithm with conserved order parameter dynamics has long
been considered somewhat of a challenge [ann92].

The work reported in this chapter (whose results were originally published, in
a reduced form, in [mm09]) shows how, using the tethered formalism, one can
actually define a workable cluster update with a conserved order parameter. This
is demonstrated in the context of the D = 2,3 ferromagnetic Ising model, the
ideal scenario for canonical cluster methods. Furthermore, the tethered version
of the cluster update is shown to be just as efficient (in the sense of having the
same z exponent) as the canonical one.

85
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6.1

The canonical Swendsen-Wang algorithm

We summarise here the construction of the Swendsen-Wang algorithm, follow-
ing [edw88]. The process is based on the Fortuin-Kasteleyn transformation [kas69,
for72], which maps Potts models onto bond-percolation problems.1 We start by
rewriting the partition function of the Ising model in the following way

Z =
∑
{sx}

exp
[
β
∑
〈x,y〉

sxsy
]
= eβ

∑
{sx}

∏
〈x,y〉

[
pδsx ,sy + (1− p)

]
, (6.1)

where

p = 1− e−2β. (6.2)

We now notice that, trivially,[
pδsx ,sy + (1− p)

] = ∑
n=0,1

[
pδsx ,syδn,1 + (1− p)δn,0

]
. (6.3)

Finally, we introduce this identity in the partition function by considering one
auxiliary variable nxy for each first-neighbours pair 〈x,y〉:

Z =
∑
{sx}

∑
{nxy}

∏
〈x,y〉

[
pδsx ,syδnxy ,1 + (1− p)δnxy ,0

]
. (6.4)

This partition function describes a model with (D + 1)N dynamic variables: the
original N spins of the Ising model and the DN auxiliary variables nxy. We can
think of the latter as bond-occupation variables. We say that a link xy is occupied
if nxy = 1 and that it is empty if nxy = 0. Notice that the spins joined by
an occupied bond must be aligned, while those joined by an empty bond can be
either aligned or opposed. Therefore, the system has been partitioned into several
clusters (two spins are in the same cluster if they can be connected by a path of
occupied bonds).

If we sum over the sx for fixed bonds, we see that, while all spins in the same
cluster must be aligned, the orientation of separate clusters is independent. Con-
sider a bond configuration with ` occupied bonds, defining NC clusters (some
of which may be single-spin clusters). We see in (6.4) that each occupied bond
contributes a factor p to the weight and that each empty one contributes a fac-
tor (1 − p). There are 2NC possible cluster orientations. Therefore, the marginal
probability of the bonds is just

ω({nxy}) = Z−1p`(1− p)DN−`2NC . (6.5)

More interesting are the conditioned probabilities of the spins given the bonds
and vice versa, which can be read directly from (6.4),

1The Potts model is a generalisation of the Ising model where the spins can take q different
values, rather than just two.
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(a) Given the {sx}, the bonds are independent from one another and nxy = 1
with probability pδsx ,sy and nxy = 0 otherwise.

(b) Given the {nxy}, all the spins within a cluster are aligned and two spins
in different clusters are independent from each other. Each cluster has a
positive or negative orientation with 50% probability.

These conditioned probabilities can be used to define a Monte Carlo update
scheme. Each lattice update consists of two steps:

1. Given a starting spin configuration {sx}, the conditioned probability (a) is
used to trace the clusters. This can be implemented in several ways, with an
algorithmic complexity of O(N logN). See [lan05] or the code distributed
with [ami05] for an example.

2. Once the clusters are traced, they must be flipped to update the spin config-
uration. The conditioned probability (b) is trivial, the sign of each cluster is
chosen as ±1 with 50% probability.

Each of these two steps satisfies the detailed balance condition. The combination
of the two is irreducible and satisfies balance (see Section a.1 for definitions).

This scheme can be implemented for systems other than the Ising model (for
instance, in an antiferromagnetic model, the clusters have uniform staggered mag-
netisation), but it is for this system that it shows its full power. The critical slow-
ing down is practically eliminated, with z < 1 in both two and three dimensions
(see below), meaning that even for very large lattices a few updates are enough to
decorrelate the system completely.

6.1.1 Improved estimators

Performing a single cluster update changes the spin configuration radically, al-
most instantaneously decorrelating the system. Therefore, not only is the system
thermalised very quickly, but one can also take measurements very frequently and
obtain independent data (remember the discussion of integrated and exponential
correlation times in Appendix A).

But the statistical gain of a cluster scheme does not end here. Indeed, in the
Swendsen-Wang scheme, after tracing the clusters, we have to flip them randomly,
and with equal probability for each orientation, in order to obtain our new system
configuration. However, when taking measurements of some physical observables
we can consider at once the average over all the 2NC possible cluster orientations
with fixed {nxy}. We obtain in this way the so-called improved or cluster estima-
tors [swe83, wol88].

Let us call Si = ±1 the spin of the i-th cluster and ni its size. Then, the spin
estimator for the magnetisation of the system is

M =
∑
x
sx =

∑
i

niSi. (6.6)
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And the squared magnetisation is

M2 =
∑
xy
sxsy =

∑
i,j

ninjSiSj. (6.7)

Let us denote by an overbar the average over the 2NC cluster configurations {Si}.
Obviously,

M =
∑
i

niSi = 0. (6.8)

For the squared magnetisation, only the diagonal terms survive (remember the Si
are independent)

M2 =
∑
i

n2
iS

2
i =

∑
i

n2
i . (6.9)

Obviously, 〈M2〉 = 〈M2〉, but the second estimator has more information and is
therefore potentially more precise. We can do the same for other observables, for
instance,

M4 = 3
∑
i,j

n2
in

2
j − 2

∑
i

n4
i , (6.10a)

M6 = 15
∑
i,j,k

n2
in

2
jn

2
k − 30

∑
i,j

n2
in

4
j + 16

∑
i

n6
i , (6.10b)

M8 = 105
∑
i,j,k,l

n2
in

2
jn

2
kn

2
l − 420

∑
i,j,k

n2
in

2
jn

4
k + 448

∑
i,j

n2
in

6
j

+ 140
∑
i,j

n4
in

4
j − 272

∑
i

n8
i . (6.10c)

Consider now the propagator G2(k), Eq. (5.5), with spin estimator for a given
configuration2

G2(k) =
∣∣∣∣∣∑
x
sxeik·x

∣∣∣∣∣
2

=
∑
xy
sxsyeik·xe−ik·y. (6.11)

Now, when averaging over the cluster orientations at fixed {nxy}, two spins be-
longing to different clusters are uncorrelated and two spins in the same cluster
are equal, therefore

G2(k) =
NC∑
i=1

∣∣∣∣∣∣ ∑x∈Ci eik·x
∣∣∣∣∣∣

2

. (6.12)

The error reduction due to the adoption of cluster estimators is heavily depen-
dent on the cluster distribution (see [fer09a]), but it can be very large. See, for
instance, Table 6.1, where we compute the renormalised coupling constants of
the D = 2 Ising model with several methods, and obtain a tenfold error reduction
using cluster estimators.

2As explained in Appendix A, we use the Wiener-Khinchin theorem to write the Fourier Trans-
form of the spatial correlation of sx as the modulus of the Fourier Transform of sx .
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O TMC SWS SWC

−〈u〉 1.226 067(7) 1.226 076(8)
χ2 203.78(11) 204.07(10) 203.92(2)
ξ2 11.888(11) 11.907(10) 11.893 2(10)
r6 3.70(6) 3.73(8) 3.731(6)
r8 26.2(6) 24(3) 26.47(18)
g4 14.66(5) 14.69(9) 14.673(8)
g6 794(9) 806(24) 803.3(16)

g8/104 8.25(13) 7.5(11) 8.34(7)

Table 6.1: Several observables for the D = 2 Ising model (the ri and gi are renormalised
coupling constants, see [cas01] for definitions). We work at β = 0.42, with L = 100,
and take 108 Swendsen-Wang lattice updates. Compare the results with spin estimators
(SWS) and with cluster estimators (SWC). We also give, for comparison, results with the
Metropolis TMC algorithm (191 values of m̂, with 107 MCS on each).

6.2

The tethered Swendsen-Wang algorithm

The Fortuin-Kasteleyn construction is just as easy to do in the tethered formalism.
Remember the tethered weight

ωN(m̂, {sx})∝ e−βU+M−M̂(m̂−m)(N−2)/2Θ(m̂−m). (4.17)

Notice that the spin-connectivity term, given by the energy U , is exactly the same
as that of the canonical weight ωcanonical = exp[−βU], and can thus be repre-
sented as in (6.4). Therefore, the conditioned probability of the bonds given the
spins is exactly the same in the tethered and the canonical ensembles. Only the
conditioned probability of the spins given the bond varies,

(a) Given the {sx}, the bonds are independent from one another and nxy = 1
with probability pδsx ,sy and nxy = 0 otherwise.

(b′) Given the {nxy}, all the spins within a cluster are aligned and two spins in
different clusters are independent from each other. Each of the 2NC cluster
configurations {Si} has probability

p({Si})∝ eM−M̂(m̂−m)(N−2)/2Θ(m̂−m), M = Nm =
∑
i

niSi. (6.13)

Just as in the canonical case, the tethered Swendsen-Wang lattice update has two
steps. First we trace the clusters using the conditioned probability (a). Then we
flip them using (b′). This second step was trivial in the canonical ensemble, as all
2NC cluster configurations were equiprobable. In the tethered ensemble, however,
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we have to pick one using (6.13). A naive way to make this choice would be to
select one configuration randomly and accept it with a heat-bath probability,

P = p({Si})∑NC
j=1p({Sj})

. (6.14)

The problem with this method is obvious: NC is potentially a very large number,
so it is impossible to compute all the weights and average them.

Clearly, we need a more manageable scheme. In order to construct it let us first
recall the Wolff or single-cluster algorithm [wol89]. With this (canonical) method,
we randomly pick one spin and immediately trace and flip the cluster to which it
belongs. Since the clusters are flipped with probability proportional to their size,
this method is able to cause a very large change in the system.

In the tethered formalism we cannot take the same approach, because the
weights of the configurations with ±Si are different. We can, however, make use
of the notion that not all clusters need be flipped. Indeed, we can selectN ′

C �NC

clusters and consider a heat bath of the 2N
′
C configurations {S′i} where all the

other clusters are fixed. In principle, one could select one of the {S′i} randomly
and accept it with probability

P ′ = p({S′i})∑N ′
C

j=1p({S′j})
. (6.15)

This is already a manageable computation, but there still remains a problem. Since
the weight (6.13) is heavily dependent on M , only a few of the 2N

′
C configurations

will have non-negligible weight. Therefore, a method where we choose one ran-
domly and check whether it is accepted with (6.15) is going to have a very low
acceptance. It is better to use a modified representation of the heat bath algo-
rithm, where we construct a vector with the cumulative probabilities

Ak =
∑k
j=1p({S′j})∑N ′

C
j=1p({S′j})

, A0 = 0. (6.16)

We then extract a uniform random number 0 ≤ R < 1 and choose the configura-
tion {S′k} such that

Ak−1 ≤ R < Ak. (6.17)

We still have to decide how to choose the N ′
C clusters that we will attempt

to flip. Two simple choices, both satisfying the balance condition, present them-
selves:

• Select theN ′
C largest clusters.

• Select N ′
C spins randomly and note their clusters (in case of repetition, we

keep drawing spins until we getN ′
C different clusters).
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Figure 6.1: Spin overlap, Eq. (6.18), in a D = 2 critical L = 512 Ising model. We plot the
results, whose errors cannot be discerned at this scale, for the central minimum of the
p(m̂) and for one of its maxima.

It may seem that the first choice is preferable, with more potential for changing
the system quickly. However, nothing says that we can only select theN ′

C clusters
and flip them once, before retracing the clusters. In fact, tracing the clusters is a
relatively costly operation, O(N logN), so the flipping time is negligible. There-
fore, we can adopt the following algorithm as our lattice update

1. Trace the clusters in the system.

2. Flip the clusters. For t = 1, . . . ,Nrep do

(a) SelectN ′
C clusters with the second of the methods described above (we

useN ′
C = 5, but this number can be changed).

(b) Obtain the {Sti } with the heat bath of Eq. (6.16), fixing the NC − N ′
C

remaining clusters in the orientations they had at t − 1.

We are therefore using a dynamic Monte Carlo in order to pick the cluster orienta-
tions, rather than a static Monte Carlo, as is the case for the canonical algorithm.
It may seem counterintuitive that the optimal value of Nrep is rather large. In
order to see it, let us consider the overlap

o =

〈∑
x
[
st=0
x st=Nrep

x − 〈m〉2m̂
]�

N
(
1− 〈m〉2m̂

) . (6.18)

Notice that o would vanish for completely uncorrelated configurations. We have
plotted this quantity in Figure 6.1. Clearly, the configuration can significantly
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evolve for a fixed distribution of the bonds. We have empirically found that an
Nrep that equilibrates the cluster tracing and cluster-flipping times is close to
optimal and convenient (one simply scales Nrep with N). For the largest systems
that we will consider here, with N = 2563 spins, this results inNrep ≈ 5× 105.

In the above discussion we have constructed a Monte Carlo algorithm capable
of quickly and non-locally changing the spin configuration, potentially accelerat-
ing thermalisation. Remember, however, that in a canonical setting this was not
the end of the story: we could obtain significant error reductions by employing
improved estimators. In our case, even if we cannot write closed formulas such
as (6.8–6.12) we can get an even better enhancement by taking measurements of
the relevant observables at each of theNrep steps. In Table 6.2 we can see that for
the all-important tethered field b̂ this nets us a factor 29 in error reduction for an
N = 2563 system, where we use Nrep = 219 ≈ 5.2 × 105, an effect equivalent to
considering a simulation 841(= 292) times longer.

Nrep 〈b̂MCS〉m̂=0.5 × 106 〈b̂Nrep〉m̂=0.5 × 106 Error ratio

20 −1.9224± 5.2934 −1.9224± 5.2934 1.00
21 −1.7207± 3.5529 −2.1219± 3.5332 1.01
22 3.2730± 2.7653 3.5203± 2.7173 1.02
23 −7.5114± 1.9301 −8.1937± 1.9104 1.01
24 −1.8460± 1.6477 −1.8712± 1.5495 1.06
25 −2.2291± 1.3728 −0.4083± 1.1968 1.15
26 −0.5641± 1.3838 0.6485± 0.9193 1.50
27 −0.4048± 1.3637 −0.4720± 0.6707 2.03
28 2.2643± 1.3579 −0.0167± 0.4785 2.84
29 0.6270± 1.2368 0.2684± 0.3510 3.52
210 2.3544± 1.1953 0.3511± 0.2633 4.54
211 −1.0922± 1.3222 0.2449± 0.1813 7.29
212 0.4522± 1.3126 0.2188± 0.1359 9.66
213 −0.7033± 1.3030 −0.0485± 0.1227 10.62
214 1.0856± 1.2832 0.0181± 0.0849 15.11
215 1.5875± 1.3750 0.1504± 0.0864 15.91
216 −0.2056± 1.2189 −0.1113± 0.0671 18.17
217 1.9023± 1.4305 0.0963± 0.0593 24.12
218 0.3395± 1.3451 0.0064± 0.0607 22.16
219 −2.5036± 1.3495 0.0166± 0.0460 29.34

Table 6.2: Evolution of 〈b̂〉m̂=0.5 and its error with increasing Nrep for simulations of
an N = 2563 system at βc with NMC = 50 000 MCS. We compare the result of measuring
b̂ only after each MCS with the result of measuring it after each of the Nrep × NMC

cluster flippings. The error in the first estimator is quickly saturated but the second
keeps getting more precise even for very large Nrep. The last columns gives the ratio of
the errors of both estimates Notice that, since we are working at the central probability
minimum, we have 〈b̂〉m̂=0.5 = 0, so the central value can be taken as a check that the
errors are correctly estimated.
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6.3

Numerical performance analysis

In order to assess the efficiency of the tethered Swendsen-Wang method, we have
computed the integrated autocorrelation times for several observables. As in the
Metropolis case (Section 5.5), they are largest for the m̂ = 0.5 (m ≈ 0) region.
However, unlike the local case, now the energy is the slowest observable (this is a
common feature of cluster methods). Therefore, in order to evaluate the overall
performance of the method, we concentrate on the energy at m̂ = 0.5. In the
next section we give a second measurement of the performance, in terms of the
precision of the computed physical observables.

We show τint,E at m̂ = 0.5 for the D = 2,3 Ising model in Tables 6.3 and 6.4 on
the next page. For D = 2 we have worked at β = βc = log(1+√2)/2 and for D = 3
at β = 0.221 654 59 ≈ βc [blö99].

We consider both the cluster algorithm described in the previous section and a
mixed scheme, where we take two Metropolis steps between cluster updates (the
cluster update takes more time to perform, so this does not change the running
time noticeably). We have computed the integrated time with the self-consistent
window method described in Section a.2.1.

We also compare our results with the corresponding autocorrelation times for
the canonical Swendsen-Wang algorithm, taken from [sal00] for the D = 2 case3

and from [oss04b] for D = 3. Recall that the Ising model at the critical point is
the ideal setting for these methods.

Notice that in both dimensions the integrated times of the tethered pure clus-
ter method are smaller than those of its canonical counterpart, although the dy-
namic critical exponents are comparable. The mixed algorithm has even smaller
correlation times, but in D = 2 it does not follow a power law in L and in D = 3
the resulting zE is larger than the one for the pure cluster method. This probably
means that the asymptotic regime has not yet been reached for the mixed algo-
rithm. Presumably, for large enough systems it will scale as the pure cluster one.
However, since for our range of lattice sizes the combined algorithm has smaller
τ , it is the one we shall use to compute physical results in the next section.

In short, the critical slowing down of the Tethered Monte Carlo method, al-
ready absent for magnetic observables with a local update scheme, can be re-
moved just as completely as in the canonical case with the application of cluster
methods. This is a demonstration that adopting the tethered formalism does
not imply abandoning optimised update schemes, nor does it hinder their perfor-
mance.

3The quoted values are reported by Salas and Sokal only in the preprint version of [sal00], as
a combination of their simulations and those of [bai91].



94 Optimising Tethered Monte Carlo: cluster methods

L TMC (Cluster) TMC (Met. + Cluster) Canonical

16 2.310(14) 0.775(3) 3.253(8)
32 2.758(20) 1.055(5) 4.011(11)
64 3.347(22) 1.417(7) 4.891(11)
128 4.11(5) 1.861(12) 5.510(20)
256 4.87(4) 2.391(16) 6.928(22)
512 5.79(8) 3.040(24) 8.107(25)
1024 6.78(8) 3.70(4)

zE 0.241(7) 0.222(7)
χ2/d.o.f. 0.36/2

Table 6.3: Integrated autocorrelation times for the energy at m̂ = 0.5 and β = βc for the
D = 2 Ising model. We compare the cluster and mixed versions of our TMC algorithm.
We also include the results of [sal00] for canonical Swendsen-Wang. For the pure cluster
algorithm we fit to τE = ALzE , in the range L ≥ 128. Our resulting value for the dynamic
critical exponent is very similar to the result of [sal00] for the canonical algorithm.

L TMC (Cluster) TMC (Met. + Cluster) Swendsen-Wang

16 2.135(13) 0.782(3) 5.459(3)
32 2.80(3) 1.134(5) 7.963(9)
48 3.467(28) 1.427(8) 9.831(9)
64 3.88(3) 1.700(10) 11.337(12)
96 4.79(5) 2.152(14) 13.90(3)
128 5.46(6) 2.566(17) 15.90(5)
192 6.54(11) 3.32(4) 19.10(9)
256 7.51(13) 3.85(5) 21.83(10)

zE 0.472(8) 0.591(4) 0.460(5)
χ2/d.o.f. 5.85/5 4.61/5

Table 6.4: Integrated autocorrelation times for the energy at m̂ = 0.5 and β = βc for the
D = 3 Ising model. We compare the cluster and mixed versions of our TMC algorithm
with the results for the canonical version reported in [oss04b]. Our value of zE comes
from a fit for L ≥ 32.
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6.4

Physical results for the ferromagnetic Ising model

In this section we compute some physically relevant quantities for the critical
Ising model in D = 2 and D = 3. In the former case, we compare the the tethered
cluster simulations with our Metropolis results of Chapter 5 and in the latter with
the canonical Swendsen-Wang results of [oss04b].

We give our D = 2 results in Table 6.5. We have used the same grid of 77
simulation points as in the Metropolis simulations of Chapter 5, but now we have
performed 106 cluster updates instead of 107 Metropolis ones. As we can see, the
errors of the Swendsen-Wang algorithm are about 5 times smaller for L = 512 and
10 times smaller for L = 1024.

For D = 3 we have simulated an N = 1283 lattice at βc, taking 106 cluster steps
on each of the points in a grid of 50 values of m̂. We compare with the canonical
Swendsen-Wang simulation conducted in [oss04b], with a total of 4.8×107 cluster
steps. This results in a similar number of total lattice updates (and, therefore,
simulation time) for both simulations. In accordance with our autocorrelation
time study, the statistical errors in the canonical averages computed with both
methods are similar (see Table 6.6 on page 97.

Let us recall, however, that, while the results for zero applied field are sim-
ilarly precise in the canonical and tethered computations, the latter has more
information about the system. This is because its results can be reweighted to
yield canonical averages for non-zero applied field.

As a final test of our method’s accuracy and as a demonstration that it can
do more than merely reproduce canonical averages we shall reproduce the study
of Section 5.2.2. We shall compute the anomalous dimension of the D = 3 Ising
model from a FSS analysis of the peak position in p(m̂).

L −〈u〉 χ2/L2 ξ2/L C B

512 (MTMC) 1.415 42(4) 0.229 3(7) 0.903(6) 16.57(3) 1.168(2)
512 (CTMC) 1.415 435(7) 0.229 71(13) 0.906 4(11) 16.588(10) 1.167 5(4)
512 (E) 1.415 429. . . 16.595 404. . .

1024 (MTMC) 1.414 89(4) 0.194 9(15) 0.919(15) 18.28(8) 1.163(6)
1024 (CTMC) 1.414 819(4) 0.193 02(15) 0.905 3(14) 18.332(16) 1.167 7(6)
1024 (E) 1.414 821. . . 18.361 348. . .

Table 6.5: Results at the critical temperature for the D = 2 Ising model. We compare
the result of taking 107 MCS with a Metropolis implementation of TMC (MTMC) with that
of taking 106 MCS with the tethered Swendsen-Wang scheme (CTMC). For the energy and
specific heat we also give the exact results of [fer69].
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Recalling the analysis of Section 5.2.2 and the scaling relation 2β/ν = D−2+η,
Eq. (2.19), we have

m̂peak − 1
2
= AL−(D−2+η)/2 + . . . (6.19)

Our results for the D = 3 Ising model can be seen in Table 6.7. For these sim-
ulations we have first located the approximate position of the peak with a short
sweep in m̂ and then run long simulations for only two very close m̂ values, one
at either side of the peak.4 The peak position is then computed from the saddle-
point equation

〈b̂〉m̂ = 0, (6.20)

with a simple linear interpolation.
We show the result of fitting the data in Table 6.7 to (6.19) in Table 6.8. We

obtain good fits already with Lmin = 48 and excluding more points results in
compatible values of η, with growing errors. Our preferred final estimate is
η = 0.036 0(7), combining the central value for Lmin = 48 and the more con-
servative error for Lmin = 64 to account for systematic effects. This value should
be compared to the best determinations known to us, a Monte Carlo computa-
tion giving η = 0.036 27(10) [has10] and a high-temperature expansion value of
η = 0.036 39(15) [cam02]. Both quoted values, however, were computed with a
‘perfect’ action, not directly in the Ising model.

4Actually, for each lattice size we ran many independent runs, whose results were later aver-
aged. The table gives the total of MCS, adding those of all the individual runs.
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Method MCS −〈u〉 C χ ξ2

Canonical SW 48× 106 0.992 946 6(48) 66.465(54) 21 193(13) 82.20(3)
CTMC 50× 106 0.992 949 3(45) 66.522(40) 21 202(13) 82.20(6)

Table 6.6: Comparison of canonical Swendsen-Wang (data from [oss04b]) with TMC for
an N = 1283 lattice at βc. We take 106 MC steps at each of the 50 points of our m̂ grid.
This results in a similar number of MCS for both simulations.

L MCS m̂peak − 1
2

16 1.0× 108 0.334 21(5)
32 1.0× 108 0.233 77(4)
48 1.0× 108 0.189 56(4)
64 1.0× 108 0.163 41(4)
96 1.0× 108 0.132 40(4)
128 1.0× 108 0.114 083(24)
192 6.0× 107 0.092 46(4)
256 8.2× 106 0.079 59(12)

Table 6.7: Position of the peak of p(m̂;L) for the D = 3 Ising model at βc.

Lmin η χ2/d.o.f.

16 0.033 92(21) 42.6/6
32 0.035 26(30) 8.79/5
48 0.036 0(5) 4.24/4
64 0.036 8(7) 1.02/3
96 0.036 3(12) 0.78/2
128 0.037 3(19) 0.31/1
192 — —
256 — —

Table 6.8: Fits to m̂peak − 1
2 = AL−(D−2+η)/2 of the data in Table 6.7 for several ranges

L ≥ Lmin.
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CHAPTER VII

The state of the art: the DAFF with canonical
methods

In this Part we intend to demonstrate the first of our two main points: when
studying complex systems, one should use a statistical ensemble tailored to the
problem at hand. We do this in the context of the diluted antiferromagnet in a field
(DAFF), a system that had been extensively studied with canonical methods, but
that remained very poorly understood. In the present Chapter we start by giving
an introduction to the model (and its universality class), noting the difficulties
that have been encountered in the different approaches. We then, in Section 7.2,
present the main observables and summarise the theoretical expectations for the
critical behaviour. In Section 7.3 we demonstrate the difficulties of a canonical
MC approach to the problem. The next Chapter, finally, presents our study of the
DAFF with the tethered formalism.

7.1

Introduction

In Chapter 2 we introduced the concept of quenched disorder and explained how
it can radically affect the collective behaviour of a physical system, to the point
that disordered models are prime examples of complex systems. Here we consider
a particularly interesting class: magnetic systems with random fields.

In particular, we are interested in the random field Ising model (RFIM):

H = −
∑
〈x,y〉

sxsy −
∑
x
hxsx = U + EF. (7.1)

The hx are quenched and independent random variables, typically chosen so that
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Figure 7.1: Inverted compact domain in a ferromagnetic system.

hx = 0. Let us in addition assume they are Gaussianly distributed and

hx = 0, hxhy = δxyH. (7.2)

Recall that the overline denotes the average over the disorder. In the language of
Chapter 2, then, a sample is a choice of {hx}.

Notice that the pure system is in this case the ferromagnetic Ising model stud-
ied in Part II, whose critical behaviour is well understood. In particular, the phase
diagram for D > 1 consists in a low-temperature phase with ferromagnetic order
and a high-temperature paramagnetic phase, connected through a second-order
phase transition. In principle, the presence of a small random field would disturb
the ferromagnetic order and lower the transition temperature. For a high enough
value of the field strength H the critical temperature would go to zero and the
ferromagnetic phase would be destroyed.

That this naive qualitative picture of the phase diagram hides a more complex
and interesting situation was first demonstrated by Imry and Ma in 1975 [imr75].
In particular, they showed how, for a low spatial dimension, even an infinitesimal
H can destroy the ferromagnetic order completely. Since this argument is very
simple and elegant, it is worth recalling here.

Let us consider a system with a predominantly ferromagnetic order, with most
of the spins in the (−) orientation. In this situation, we flip a compact domain of
radius R (see Figure 7.1).

The value of the exchange interaction energy in the bulk of this domain does
not change with this reversal, but all the links across its boundary are inverted.
Therefore, there is an increase ∆U ∼ RD−1. As to the field-interaction energy the
average value of hx inside the domain is of course zero. On the other hand, the
variance of the sum of n Gaussian variables, each of variance H, is

√
nH. That is,

we have ∆EF = 2EF ∼ HRD/2. Choosing a region with positive EF, we then have

∆E = ∆U +∆EF = aRD−1 − bHRD/2, (7.3)
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where a,b are positive constants. Therefore, if D − 1 < D/2 we see that these
perturbations are actually energetically favourable, for large enough R. Hence,
the ferromagnetic phase is unstable for D < 2. The marginal case D = 2 was
considered in [bin83] and also found to be unstable. Therefore, the lower critical
dimension for the RFIM had to be Dl ≥ 2 (other mechanisms than the domain-wall
argument could destroy the long-range order in three or more dimensions). The
issue was solved by the rigorous proof that Dl = 2 [imb84, bri87, aiz89].

The disorder in the RFIM was thus showed to be strong enough to modify
the phase diagram of the pure model profoundly, yet not so radical as to make
the phase transition disappear altogether. The interest in the system was further
enhanced when it was shown that it could be faithfully realised physically by a
diluted antiferromagnet in a uniform field (DAFF) [fis79, car84]. This ignited a
considerable experimental effort (see [bel98] for a review).

In short, it was shown more than twenty years ago that the RFIM experiences a
phase transition in three spatial dimensions and that the system is also of exper-
imental interest through the DAFF. Despite a continuing analytical, experimental
and numerical effort, however, almost all the details of this transition remain
controversial.

In particular, characterising the phase transition proved to be no easy task
from an analytical point of view (see [nat98, dom06] for reviews of theoretical
results). First of all, we have the general observation that the upper critical di-
mension for disordered systems is Du = 6 (as opposed to Du = 4 for pure models,
cf. Chapter 2 and Section 7.2.1, below). Therefore, it is more difficult to predict the
behaviour in the physically interesting case of D = 3 from renormalisation-group
expansions in ε = Du −D.

An example of the problems with perturbation expansions is afforded by the
issue of dimensional reduction. In 1979, Parisi and Sourlas [par79b] presented
an elegant supersymmetry argument by which the critical behaviour of the RFIM
at dimension D should be equivalent to that of the pure model in D − 2. But
this had to be wrong: we have already seen that there is a phase transition in
D = 3, while the Ising model has no ordered state in D = 1. Parisi pointed out
a possible flaw in the supersymmetric argument as soon as 1984 [par84], but
the issue has remained an active topic of research (see, e.g., [bre01, tis11] and
references therein).

The experimental and numerical approaches to the problem are similarly pla-
gued by severe intrinsic problems. The main one is perhaps posed by the peculiar
critical behaviour of the DAFF/RFIM [vil85, fis86a, nat98]. In general, most au-
thors work in the framework of an unconventional scaling theory, which we shall
explain in Section 7.2.1, where the spatial dimension D is replaced by D − θ in
the traditional hyperscaling relation (2.19d). Here θ is a new critical exponent,
believed to be θ ≈ 1.5 from theoretical arguments (cf. Section 7.2.1) but inaccessi-
ble to a direct computation both in experimental studies and in (canonical) Monte
Carlo simulations.

The complete uncertainty in the determination of θ has allowed experimental
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and numerical works to report qualitatively different sets of values for the other
critical exponents.1 One example of this is the experimental claim for a divergence
in the specific heat [bel83, bel98], not observed numerically [har01]. We must
note that the specific heat critical exponent is notoriously difficult to estimate
numerically [mal06], especially considering that the expected divergence is very
slow.

From the experimental point of view, an additional problem is posed by the un-
certainty over the analytical form of the scattering line shape or structure factor.
Different ansätze lead to mutually incompatible results for the thermal critical ex-
ponent, from ν = 0.87(7) [sla99] to ν = 1.20(5) [ye04]. The first of these works
also reported a value of η = 0.16(6) which, combined with a divergent specific
heat (α ≥ 0), would violate hyperscaling if θ ≈ 1.5.

On the numerical front, the determination of ν has been at least as difficult,
with estimates ranging from ν ≈ 1 to ν > 2 (see, e.g., [nat98, wu06, vin10] for de-
tailed lists). The most precise values have typically come from ground state stud-
ies. Hartmann and Nowak claimed ν = 1.14(10) in [har99], although the value
has recently been increased, with a recent estimate of 1.37(9) [mid02] (other re-
cent works [mal06, fyt11] give similar results). In general, these latest numerical
estimates are outside the experimental range of values and only barely compati-
ble with a divergent specific heat. Another recent work, [wu06], gives ν = 1.25(2)
and α = −0.05(2). However, these values suffer from similar problems as ex-
perimental estimates (with which they are compatible) in that they do not satisfy
hyperscaling bounds.

An additional source of uncertainty is the extremely low value of the magnetic
critical exponent, believed to be β ∼ 0.01. This exponent is also determined with
almost no precision [nat98, har99], the latest estimate of which we have notice
being β = 0.007(5) [fyt11]. The fact that β is compatible with the first-order
result of β = 0 has led some authors to suggest the possibility that the phase
transition in the DAFF may not be continuous. This claim is typically based on the
finding of metastable signatures [sou99, mai07, wu06] and casts doubts on the
supposed universality between the DAFF and the RFIM.

A final issue is the lack of self-averaging in the DAFF, which has been exten-
sively studied [par02, mal06, fyt11] and complicates any numerical analysis.

At the root of these problems is the deep physical issue of free-energy barriers,
discussed in Chapter 3. Both experimentally and in canonical MC simulations, the
system gets trapped in local minima, with escape times logτ ∼ ξθ, which makes
it exceedingly hard to thermalise even relatively small systems and ensures that
the statistics will be dominated by extremely rare events.

In the remainder of this chapter, after giving some definitions in Section 7.2,
we shall examine more closely the reasons why canonical MC simulations of the
DAFF fail.

1Notice that only three exponents are independent, the other being fixed through scaling and
hyperscaling relations.
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7.2

Model and observables

We consider the diluted antiferromagnet in a field (DAFF), defined by the following
Hamiltonian (as always N = LD Ising spins in a cubic lattice)

H =
∑
〈x,y〉

εxsxεysy − h
∑
x
εxsx − hs

∑
x
εxsxπx, πx = eiπ

∑D
µ=1 xµ (7.4)

In addition to the Ising spins (sx = ±1), this Hamiltonian includes quenched occu-
pation variables εx. These are equal to one with probability p and equal to zero
with probability (1−p) and characterise the dilution of the system. The value of
p is not supposed to be important to the physics, so long as we keep our distance
both from the percolation threshold of pc ≈ 0.31 [sta84] and from the pure case.2

The εx are quenched variables, which, recalling Section 2.2, means that we should
perform first the thermal average for each choice of the {εx} and only afterwards
compute the disorder average. In the canonical ensemble we denote the thermal
average by 〈· · · 〉 and the disorder average by (· · · ).

The Hamiltonian (7.4) includes a two-component applied field (h,hs), coupled
to the regular and staggered magnetisations

M = Nm =
∑
x
εxsx, (7.5)

Ms = Nms =
∑
x
εxsxπx, . (7.6)

We shall continue to denote by U the spin interaction component of the energy

U = Nu =
∑
〈x,y〉

εxsxεysy. (7.7)

Therefore, the total energy E of a given spin configuration can be written as

E = U − hM − hsMs. (7.8)

In general, one is interested in the case hs = 0, but we will find this parameter
useful later on.

In order to study spatial correlations we need to consider the staggered Fourier
transform of the spin field

φ(k) =
∑
x
sxπx e−ik·x. (7.9)

2Some experimental works [bar00] have pointed out possible non-equilibrium effects if the
concentration is low enough to permit percolation of vacancies (p < 1−pc ≈ 0.69), although the
issue is not completely understood [ye02, she04].



106 The state of the art: the DAFF with canonical methods

7.2.1 Phase transition in the DAFF: theoretical expectations

In this section, we give some heuristic arguments justifying the modified scaling
relations expected for the DAFF, assuming a second-order scenario.3

Let us consider the system at the paramagnetic-antiferromagnetic transition
point Tc(p,h) for a given dilution p and field h. Now let us consider the effect
of introducing a staggered magnetic field hs. Unlike h, hs is coupled to the order
parameter of the transition, so by definition (2.18) of the critical exponent δ,

ms ∼ h1/δ
s . (7.10)

Now, recalling that ms ∼ xi−β/ν , from (2.13) and (2.16) we have

hs ∼ ξ−βδ/ν . (7.11)

In addition, if we divide the system in the even and odd sublattices, the dilution
implies that one is going to have ∼ LD/2 more spins than the other. This causes
an excess staggered field δhs ∼ ξ−D/2. Now, if we want the system to have a real
transition as we approach the critical point hs → 0, we need

δhs

hs

ξ→∞−−−−−→ 0. (7.12)

That is, we need
D
2
≥ βδ
ν
= 2+ γ −α

2ν
, (7.13)

where we have used the scaling relation (2.19b).
If we plug the mean-field exponents into this equation, we obtain D/2 ≥ 3.

Therefore, the upper critical dimension is in this case Du = 6.
Below Du we can in principle apply the hyperscaling law (2.19d). However, if

we do this we obtain

νD = 2−α
νD ≥ 2+ γ −α

}
=⇒ γ ≤ 0. (7.14)

Since the susceptibility critical exponent γ must be positive, this is not possible.
The answer to this problem was given independently by Villain [vil85] and

by Fisher [fis86a]. We consider the system at the length scale of the correlation
length. According to Widom scaling (see, e.g., [ami05]), the free energy of this
correlation volume ξD is

F(ξ) ∼ ξD−(2−α)/ν . (7.15)

In conventional systems, the scale of variations of F(ξ) is set by the thermal fluc-
tuations, so F(ξ) is of order one and the usual hyperscaling law νD = 2 − α fol-
lows. In our disordered system, however, the fluctuations due to the randomness
dominate and

F(ξ) ∼ ξθ, (7.16)

3We follow closely the arguments given in [nat98] and [fis86a] for the RFIM, but adapt the
language to the antiferromagnetic system.
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where θ is a new, independent, critical exponent.4 Comparing (7.15) with (7.16) we
read off the modified hyperscaling relation

2−α = ν(D − θ). (7.17)

In addition, from (7.13) we obtain the inequality

θ ≥ γ/ν = 2− η. (7.18)

This last relation has been proven rigorously for a class of models [sch85].
Some authors [aha76, sch86] have suggested that the above inequality is sat-

urated for the DAFF, giving
θ = 2− η, (7.19)

so we would again have only two independent critical exponents.
Several heuristic arguments have been given to motivate Eq. (7.19) for the RFIM

(see, e.g., [nat98]), but we can also examine the issue directly in the DAFF.
Let us consider the system in the low-temperature phase with no field, so there

is a non-zero spontaneous staggered magnetisation ms (in one of two orienta-
tions). As we said before, one of the sublattices (let us say the even one), has
∼ LD/2 more spins than the other. When the magnetic field h is introduced, of the
two orientations for the same |ms| the one where the even spins are aligned with
the field will be more favourable.

Now, let us consider a region of radius R where the odd sublattice is dominant
(always possible to find, if the system is large enough). Clearly, inverting the
magnetisation within this region aligns more spins with the field, lowering the
total energy. The energy gain is ∼ −RD/2msh.

On the other hand, this inversion also has an energy cost, due to the surface
energy. Therefore, the probability of inverting this region is going to be propor-
tional to the exponential of

F(R) = RD/2ms − ΣRD−1, (7.20)

where Σ is the surface tension and we have neglected irrelevant constant factors
in both terms. By definition of correlation length, this probability is maximum for
ξ = R, where F ′(R = ξ) = 0. Therefore,

F(ξ) ∼ ξD/2ms ∼ ΣξD−1. (7.21)

Finally, by definition (7.16) of θ and using ms ∼ ξ−β/ν

ξθ ∼ ξD/2ms ∼ ξD/2−β/ν , (7.22)

and we have
θ = D/2− β/ν, (7.23)

4From the naive Imry-Ma argument of Section 7.1 we would expect θ = D/2.
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which is equivalent to (7.19).
On the other hand, from F(ξ) ∼ ξθ and (7.21), the surface tension is seen to

scale as Σ ∼ ξ−(D−1−θ). Since we are assuming a second-order scenario, this has
to vanish in the thermodynamical limit and we have

θ < D − 1, (7.24)

(this last bound can be obtained without assuming the two-exponent scenario).
Finally, let us close this section by mentioning that the need for a third expo-

nent is related to the existence of two correlation functions that scale differently,

Sc(k) = 〈φ(k)φ(−k)〉 − 〈φ(k)〉 〈φ(−k)〉 ∼ 1
k2−η , (7.25a)

Sd(k) = 〈φ(k)〉 〈φ(−k)〉 ∼ 1
k4−η̄ . (7.25b)

In this equation, φ(k) is the staggered Fourier transform of the spin field, defined
in (7.9), and η̄ is

η̄ = 2+ η− θ. (7.26)

Notice that in the two-exponent scenario, η̄ = 2η and the disconnected propagator
diverges as the square of the connected one

Sd ∼ S2
c . (7.27)

7.3

The DAFF in canonical Monte Carlo simulations

In this section we carry out canonical Monte Carlo simulations of a DAFF system,
to demonstrate the problems inherent in the traditional approach and motivate
our tethered study of Chapter 8.

In these simulations we have used parallel tempering, a common method to
thermalise systems with free-energy barriers. The basic idea is running several
copies of the same sample of the system concurrently, each at a different tem-
perature. Every so often, we attempt to exchange copies at neighbouring tem-
peratures. When the temperature is raised, the energy fluctuations increase and
copies that would get trapped in metastable states can escape (see Appendix A
for a full explanation of this method).

In our case, we have not attempted to conduct a full canonical study of the
phase transition, we have just simulated a few samples. For each of them we
performed many parallel tempering runs, using 40 temperatures evenly spaced in
the range 1.6 ≤ T ≤ 2.575 and choosing the field such that βh = 1.5 (in this way,
we intend to cross the phase diagram with a diagonal straight line). We considered
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Figure 7.2: Time evolution of the interaction energy u(t) —Eq. (7.7)— for the configu-
ration at T = 1.6, β = 2.4 in 50 different parallel tempering simulations of the same
sample. We plot 50 out of a total of 100 runs. After a variable simulation time, most
of the simulations fall into one of two metastable states, whose energies u1 and u2 we
mark with straight black lines. In a thermalised situation, we would see tunnelling be-
tween the two states (or all of the runs reaching the same one, if only one is dominant).

a system size of L = 24 and a dilution of p = 0.7. These parameters are taken
from [mai07].5

Figure 7.2 shows the time evolution of the interaction energy u(t) for the
lowest temperature (T = 1.6, h = 2.4) for 50 runs of a single sample (we per-
formed a total of 100 such runs, but we only show 50 to avoid cluttering the
graph). We can see how, after a variable simulation length, most of the systems
reach one of two metastable states, with interaction energies u(1) = −1.077 35(8)
and u(2) = −1.097 3(7). The corresponding total energy densities, Eq. (7.8), are
e(1) = −1.376 08(2) and e(2) = −1.382 0(2). The same qualitative picture is ob-
tained for different samples.

The first conclusion we can draw from this plot is that parallel tempering has
failed. Assuming u1 and u2 represent intermediate metastable states, not repre-
sentative of the system’s equilibrium phase, we have failed to escape from them
and reach the relevant regions of configuration space. On the other hand, assum-
ing both are important to the equilibrium phase, then in a thermalised simulation
we should see tunnelling between the two. Notice that obtaining the two estates
in separate runs is not enough, we need to see the tunnelling in order to know
their relative weights. However, we have not seen a single such jump, once the

5In fact, the authors of [mai07] go to even lower temperatures. Here we make things easier
for the parallel tempering by going no further down than T = 1.6, which the authors of [mai07]
found to be the critical temperature along the line βh = 1.5.
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Figure 7.3: Scatter plot of the interaction energy u and the staggered magnetisation for
the 100 runs of Figure 7.2. In each case we average the observables over the last 10 000
MCS, corresponding to the last 0.1% of their whole Monte Carlo history. We see that
the states with energies u1 ≈ −1.077 and u2 ≈ −1.097 correspond to systems in an
antiferromagnetic phase (with opposite orientations).

simulation reaches one of the two states it never escapes. In total we performed
100 runs for this sample, each with 107 parallel tempering updates, which sug-
gests that the tunnelling probability is upper bounded by 10−9. In other words,
parallel tempering is not able to thermalise the system in a reasonable amount of
time. Notice that some of the simulations have not even reached one of the two
metastable states

The second problem with the canonical approach is that of interpreting the
results. Suppose we had considered runs many orders of magnitude longer than
the ones plotted in Figure 7.2. Then, we would eventually begin to see the quick
jumps from one state to the other, separated by long stays in each of them. This
is the sort of metastable behaviour that one expects in the neighbourhood of a
first-order phase transition, where two different phases have a similar weight, but
are separated by large tunnelling barriers.

However, this interpretation would be wrong, as evinced by Figure 7.3. In it
we represent a scatter plot of the staggered magnetisation against u for the 100
runs of Figure 7.2. It is readily apparent that the two states correspond to systems
with opposite sign of the order parameter m(1)

s = 0.502 3(3), m(2)
s = −0.543(3).

Therefore, the observed metastability would not correspond to jumps between
an antiferromagnetic and a paramagnetic phase (the phase transition we want to
study), but would rather reflect jumps between two antiferromagnetic states with
different spin orientation.6

6One could think that these two states should be symmetric and have the same energy, but
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This latter problem is intrinsic to the canonical description. Even if we could
devise a more efficient thermalisation algorithm (or use a much faster computer)
our results would still be contaminated by this spurious metastability and their
statistical analysis dominated by extremely rare events.

remember that the number of spins in the odd and even sublattices is not the same for this
random system, thus breaking the usual Z2 symmetry usually associated with antiferromagnets.





CHAPTER VIII

The DAFF in the tethered formalism

We have just seen how traditional Monte Carlo methods are not well suited for the
simulation of the DAFF. This was not only a case of thermalisation problems, but
also revealed intrinsic limitations in the canonical approach, where the statistics
is dominated by extremely rare events. In this Chapter we intend to demonstrate
how a tethered approach can solve many of these difficulties.

8.1

The DAFF in the tethered ensemble

Our canonical investigation revealed that in the DAFF one has to deal with free-
energy barriers separating states with different staggered magnetisations. There-
fore, the appropriate reaction coordinate to tether is ms. In addition, we are
interested in a transition at non-zero magnetic field, where metastability could
also appear. Therefore, we also tether the regular magnetisation m. Notice that
by doing this, we do not need to specify the applied field for the tethered simu-
lations. We simply simulate at zero field and then reweight the results as we did
for the Ising model.

Let us consider the tethered description of a single sample. Recalling Sec-
tion 4.1.1, we need a two-variable effective potential, whose gradient defines the
tethered field, now a two-dimensional vector,

∇ΩN(m̂, m̂s) =
(
∂ΩN(m̂, m̂s)

∂m̂
,
∂ΩN(m̂, m̂s)

∂m̂s

)
= (〈b̂〉m̂,m̂s , 〈b̂s〉m̂,m̂s

)
(8.1)

113
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In this equation

b̂ = 1− 1/2− 1/N
m̂−m , (8.2a)

b̂s = 1− 1/2− 1/N
m̂s −ms

. (8.2b)

Then, the canonical averages in the presence of an external magnetic field with
a regular component h and a staggered component hs are related to the tethered
expectation values through the Legendre transformation

〈O〉(h,hs) =
∫

dm̂
∫

dm̂s 〈O〉m̂,m̂s e−N[ΩN(m̂,m̂s)−m̂βh−m̂sβhs]∫
dm̂

∫
dm̂s e−N[ΩN(m̂,m̂s)−m̂βh−m̂sβhs]

, (8.3)

although here we are interested in hs = 0, so we shall use the notation

〈O〉(h) = 〈O〉(h,hs = 0). (8.4)

And furthermore, we shall use the following shorthand

Ω(h)N (m̂, m̂s) = ΩN(m̂, m̂s)− βhm̂, (8.5)

and
B̂ =∇Ω(h)N (m̂, m̂s) =

(〈b̂〉m̂,m̂s − βh, 〈b̂s〉m̂,m̂s

)
. (8.6)

According to the procedure described in Section 3.2, a tethered study of the DAFF
would consist in a set of tethered simulations for fixed values of (m̂, m̂s) in a
two-dimensional grid. From the value of the tethered field (〈b̂〉m̂,m̂s , 〈b̂s〉m̂,m̂s) we
would then reconstruct ΩN(m̂, m̂s) and use (8.3).

This is not, however, the most practical approach. For instance, it would in-
volve the non-trivial numerical computation of a two-dimensional potential from
its gradient, evaluated in a discrete grid. Instead, we note that, for a given h, only
a very small region of the reaction coordinate space (m̂, m̂s) will have a relevant
weight. In fact, the integral (8.3) is going to be dominated by the minima of the
effective potential (recall our discussion of ensemble equivalence in Section 4.2).
These will be given by the saddle-point equations

∇Ω(h)N (m̂, m̂s) = B̂ = 0, (8.7)

that is 

∂ΩN
∂m̂

= 〈b̂〉m̂,m̂s = βh,

∂ΩN
∂m̂s

= 〈b̂s〉m̂,m̂s = 0.

(8.8)

In principle, some of these equations will correspond to local minima of Ω(h)N
and some to local maxima or to saddle points in the strict sense (a minimum in



8.1 — The DAFF in the tethered ensemble 115

10-15

10-10

10-5

100

-0.2  0  0.2  0.4  0.6  0.8  1  1.2

 10

 20

 30

p
(m

(t
),
 m

s(
t)

)

t

Linear scale
Log scale

–0.04

–0.02

0

0.02

0.04

〈B̂
t〉 m̂

(t
),
 m̂

s(
t)

1.06

1.10

1.14

–u1

–u2

–〈
u
〉 m̂

(t
),
 m̂

s(
t)

Figure 8.1: Result of a tethered investigation of the sample that we studied with canon-
ical methods in Section 7.3. We join the two metastable states found in the canonical
computation with a straight line and measure along this line the tethered expectation
values for the energy u and the projection of the tethered field B̂t (top and middle, re-
spectively). We simulated 281 independent points along the line, but only plot one in five
with error bar to avoid cluttering the graph. The tethered field has many zeros, defining
saddle points in (8.3). Finally, the bottom panel shows the (exponential of the) integral
of B̂t , defining the relative weight of the points along the path. Two peaks dominate,
where the tethered values of the energy correspond to the two metastable states u1 and
u2 that we found in Section 7.3. Notice the extremely low probability of the connecting
region, which explains the difficulty to thermalise canonical simulations.
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one direction, but a maximum in the other). In the case of local minima, the saddle
points will correspond to metastable states, potentially relevant to the description
of the equilibrium phase. Notice that we also obtained several metastable states
in our canonical study of Section 7.3, but we were unable to know their relative
weights. In the tethered approach, however, this is easily done by considering
their potential difference, i.e., the line integral of B̂ along a connecting path.

Let us demonstrate this procedure for the sample of Section 7.3, where we
had identified two metastable states (two local minima of Ω(h)N , in the tethered
nomenclature). We first have to determine the values of (m̂, m̂s) that correspond
to these saddle points using (8.8). This is easy, because our canonical study has
given us the values of m(i) and m(i)

s . We can now use (8.2a), setting b̂s = 0 and
b̂ = βh = 2.4. Therefore, we know that m̂(i)

s 'm(i)
s +1/2 and m̂(i) 'm(i)+1/(2(1−

βh)). From these starting guesses the actual saddle points are readily found. We
can connect them with any path (because B̂ is a conservative field). Since the
system is random, it is difficult to predict which will be the optimal connecting
curve (in the sense of thermalisation), so we consider a simple straight line,

(m̂(t), m̂s(t)) = (m̂(1), m̂(1)
s )(1− t)+ (m̂(2), m̂(2)

s ). (8.9)

The whole computation is depicted in Figure 8.1. We performed tethered sim-
ulations for 281 values of the parameter t and measured the tethered expectation
values of the energy 〈u〉m̂(t),m̂s(t) and the tethered field B̂. These are plotted in the
top and middle panels of the figure (for the tethered field we plot its projection
B̂t along the path).

Now, following (8.3), the probability density or relative weight of the points
along the path is just

p(m̂(t), m̂s(t)) = e−NΩ
(h)
N (m̂(t),m̂s(t)), (8.10)

where Ω(h)N (t) is the line integral of B̂, with the integration constant chosen so
that the whole weight is normalised. This probability density is plotted in the
bottom panel of Figure 8.1, in both a linear and a logarithmic scale. We find
that one of the two metastable has about ten times more weight than the other
(curiously, fewer canonical simulations found the more relevant state). In addi-
tion, the two resulting peaks in the p(m̂(t), m̂s(t)) are separated by a region with
very low probability, explaining the difficulty of canonical simulations to tunnel
between the two states. Interestingly enough, even within this low-probability
sector we can see a rich structure of the p(m̂(t), m̂s(t)) —equivalently, of the ef-
fective potential. In other words, we are seeing a quantitative example of a rugged
free-energy landscape.

8.1.1 Self-averaging and the disorder average

In order to perform a quantitative analysis of the DAFF, we have to simulate a large
number of samples and perform the disorder average. The naive way of doing this
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for a system with quenched disorder would be to measure B̂ and construct ΩN for
each sample, then use Eq. (8.3) to compute all the physically relevant 〈O〉(h). Only
then would we average 〈O〉(h) over the disorder.

This approach is, however, paved with pitfalls. First of all, computing a two-
variable ΩN(m̂, m̂s) from a two-dimensional (m̂, m̂s) grid is not an easy matter.
In the previous section we avoided this problem by computing the saddle points
first and then evaluating ΩN only along a path joining them. But this cannot be
done efficiently and safely for a large number of samples. Even if it could be
done, the free-energy landscape of each sample is very complicated, with many
local minima, several of which could be relevant to the problem, so a very high
resolution would be needed on the simulation grid.

Finally, even reliably and efficiently computing the canonical averages 〈O〉(h)
would not be the end of our problems. Indeed, as we discussed in Section 2.2.2,
the canonical expectation values suffer from severe self-averaging violations. In
this section we address all these problems and demonstrate the computational
strategy followed in our study of the DAFF.

The first step is ascertaining whether the tethered averages themselves are
self-averaging or not. We already know that, since we are going to be working with
a large regular external field h, the relevant region for the regular magnetisation
m (and hence m̂) is going to be exceedingly narrow (cf. Section 5.3, where the
fields were much smaller). Therefore, we are going to explore the whole range of
m̂s for a fixed value of m̂ = 0.12 (this smooth magnetisation is in the range where
the saddle points typically lie for the applied fields we considered in Chapter 7).

We have plotted the staggered tethered magnetic field 〈b̂s〉m̂=0.12,m̂s for 20 sam-
ples of an L = 24 system at β = 0.625 in Figure 8.2—top. The different curves
have a variable number of zeros, but all of them have at least three: one in the cen-
tral region and two roughly symmetrical ones for large staggered magnetisation.
The positions of the two outermost zeros clearly separate two differently behaved
regions. Inside the gap the sample-to-sample fluctuations are chaotic, while out-
side it the sheaf of curves even seems to have an envelope. This impression is
confirmed in the bottom panel of Figure 8.2, where we show the sample-averaged
tethered magnetic field for several system sizes.

In order to quantify this observation we can study the fluctuations of the

disorder-averaged 〈b̂s〉m̂,m̂s ,

σ 2(m̂, m̂s) =
(
〈b̂s〉m̂,m̂s − 〈b̂s〉m̂,m̂s

)2

. (8.11)

This quantity is plotted in the left panel of Figure 8.3. As we can see, it goes to
zero as a power in L, so we also plot fits to

σ 2(m̂ = 0.12, m̂s) = A(m̂s)L−c(m̂s). (8.12)

This would seem like a very good sign, because it could be indicative of self-
averaging behaviour. However, it is not the whole story. If we recall the bottom
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Figure 8.2: Top: Staggered component of the tethered magnetic field, 〈b̂〉m̂,m̂s for m̂ =
0.12 as a function of m̂s. We plot the results for several samples of an L = 24 system at
β = 0.625. The curves are cubic splines interpolated from 33 simulated points. We note
that the errors are very small (invisible at this scale), so the fluctuations of the curves

are not artifacts of the interpolation scheme. Bottom: Disorder-averaged 〈b̂s〉m̂,m̂s for
the same smooth magnetisation and temperature as the left panel, for all our system
sizes. The plot shows the different behaviour of the regions inside the gap, where the
staggered magnetic field goes to zero as L increases, and outside it, where there is a
non-zero enveloping curve.
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to m̂s = 0.7, is right inside the gap defined by the outermost zeros in Figure 8.2, while
the blue curve (m̂s = 1.1) is outside. Both are shown to decay with a power law. Right:

Disorder average 〈b̂s〉m̂,m̂s for the systems of the left panel. Inside the gap, the field goes
to zero with L; outside it has a finite limit.

panel of Figure 8.2, we see that inside the gap the tethered magnetic field itself,
not only its fluctuations, goes to zero as L increases. In fact, as shown in Fig-

ure 8.3, for m̂s = 0.7, σ 2 ∼ L−2.5, while 〈b̂s〉m̂,m̂s ∼ L−1.6. This means that the
relative fluctuations Rb̂s

, Eq. (2.41), do not decrease with increasing L. For the
point outside the gap, however, the disorder average of the tethered magnetic
field reaches a plateau. Furthermore, the fluctuations decay with c = 2.94(7),
which is compatible with the behaviour Rb̂s

∼ L−D of a strongly self-averaging
system (in the language of Section 2.2.2).

In physical terms, this analysis means that the saddle point defined by a small,
but non-zero, value of the applied staggered magnetic field hs would be self-
averaging. We can now recall the well-known recipe for dealing with spontaneous
symmetry breaking (see Section 5.4.1): consider a small applied field and take
the thermodynamical limit before making the field go to zero. Translated to the
DAFF, this means that we should solve the saddle-point equations (8.8) on aver-
age, rather than sample by sample, and then take the hs → 0 limit on the results,

∂ΩN
∂m̂

= 〈b̂〉m̂,m̂s = βh,

∂ΩN
∂m̂s

= 〈b̂s〉m̂,m̂s = 0+.

(8.13)

In other words, we are considering the disorder average of a thermodynamical
potential, ΩN , different from the free energy. This approach was first introduced
in [fer08], in a microcanonical context (the averaged potential was in that case
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the entropy).
In order to understand the limit hs → 0+, it is convenient to keep in mind

the analysis of the p(m̂) for the Ising model in Sections 5.3 and 5.4.1. A small
but positive hs exponentially suppresses the negative staggered magnetisation
region and, as its value is decreased, it is equivalent to considering a ‘smeared’
saddle point and averaging over the whole sector with m̂s > 1/2. A small but
negative hs would have the corresponding effect in the m̂s < 1/2 region. Since
most of the interesting disorder-averaged observables are symmetric with respect
to m̂s = 1/2, we can gain statistics by averaging over the whole m̂s range.

By doing this for fixed m̂ = m̂0 we obtain the probability distribution of m̂s,
conditioned to m̂ = m̂0, which we will denote by p(m̂s|m̂0) (Figure 8.4). This
probability density function can be used to average over m̂s for fixed m̂,

〈O〉m̂ =
∫

dm̂s p(m̂s|m̂)〈O〉m̂,m̂s =
∫

dm̂s 〈O〉m̂,m̂se
−NΩN(m̂s|m̂), (8.14)

where
∂ΩN(m̂s|m̂)

∂m̂s
= 〈b̂s〉m̂,m̂s . (8.15)

The zero in ΩN(m̂s|m̂) is chosen so that p(m̂s|m̂) is normalised (so ΩN(m̂s|m̂)
differs from the two-dimensional ΩN(m̂, m̂s) in a constant term). In practice,
since the p(m̂s|m̂) is not symmetric sample by sample, but only for the disor-
der average, considering the whole m̂s range for Nsamples disorder realisations is
roughly equivalent to considering only the positive sector for 2Nsamples.1

1Compare with Section 5.3, where the average for ±h netted a very small error reduction for
even observables, due to the correlation in the data.
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With this process we have integrated out the dependence on m̂s. We now have
a series of smooth functions 〈O〉m̂, together with a smooth one-to-one function

h(m̂) = 〈b̂〉m̂/β. Recalling our analysis of ensemble equivalence in Section 5.4.1,
we see that 〈O〉m̂(h) and 〈O〉(h) are simply two quantities that tend to the same
thermodynamical limit. Furthermore, for finite lattices the tethered definition
〈O〉m̂ is better behaved statistically and arguably more faithful to the physics of
an experimental sample. Therefore, we shall make the identification

〈O〉(h) = 〈O〉m̂, (8.16)

exact in the thermodynamical limit, even for finite lattices.

8.2

Our tethered simulations

We can infer several useful conclusions from the analysis of the previous section

• The disorder average should be performed on the tethered observables, be-
fore computing the effective potential.

• It is best to analyse several values of m̂ separately, since the average over
m̂s for each fixed m̂ can be unambiguously related to the canonical average

〈O〉(h) via h(m̂) = 〈b̂〉m̂/β. In this way, we can study the phase transition
that arises by varying the applied magnetic field at fixed β.

• For fixed m̂ the conditioned probability p(m̂s|m̂) has two narrow, symmet-
ric peaks, separated by a region with extremely low probability.

Therefore, we have carried out the following steps

1. Select an appropriate grid of m̂ values. This should be wide enough to in-
clude the critical point for the simulation temperature, and fine enough to
detect the fluctuations of 〈O〉m̂. These turn out to be very smooth functions
of m̂, so a few values of this parameter suffice, as we shall see.

2. For each value of m̂, select an appropriate grid of m̂s. We start with evenly
spaced points and after a first analysis add more values of m̂s in the neigh-
bourhood of the saddle points, as this is the more delicate and relevant
region. In contrast with our study for the Ising model (Section c.2), the
steepness of the peaks makes this second step crucial here, even for small
lattices.

3. The simulations for each (m̂, m̂s) are carried out with the Metropolis update
scheme of section 3.2.1. In addition, we use parallel tempering (cf. Ap-
pendix A). This is not needed in order to thermalise the system for L < 32,
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L Nsamples NT Nm̂ Nm̂s Nmin
MC N av

MC

8 1000 20 5 31 7.7× 105 7.7× 105

12 1000 20 5 35 7.7× 105 7.7× 105

16 1000 20 5 35 7.7× 105 7.7× 105

24 1000 40 5 33 7.7× 105 9.3× 105

32 700 40 4 25 1.5× 106 5.5× 106

Table 8.1: Parameters of our simulations. For each of the Nsamples disorder realisations
for each L, we runNm̂×Nm̂s tethered simulations with temperature parallel tempering.
The NT participating temperatures are evenly spaced in the interval [1.6,2.575]. For
each size we report the minimum number of Monte Carlo steps (Metropolis sweep +
parallel tempering). After the application of our thermalisation criteria, some of the
simulations for L ≥ 24 needed to be extended, leading to a higher average number of
Monte Carlo steps (N av

MC).

but it is convenient since we also study the temperature dependence of
some observables. Furthermore, the use of parallel-tempering provides a
reliable thermalisation check (Section a.3.1). Section c.4 in Appendix C con-
tains some information about our numerical implementation of TMC for the
DAFF.

From Figure 8.4 we see that, if we only want to compute the 〈O〉(h), the tethered
simulations for m̂s away from the peaks are worthless, since their contribution
to the average over m̂s is exponentially suppressed by a huge factor. We could
have run tethered simulations only in a narrow range of m̂s around the peaks,
as we did in Section 5.4.1. As we shall see, however, some physically relevant
quantities require that the whole range be explored, the most conspicuous being
the hyperscaling violations exponent θ.

The parameters of our simulations are presented in Table 8.1. The table lists
the number Nm̂ of values in our m̂ grid and the number of points in the m̂s

grid for each, so the total number of tethered simulations for each sample is
Nm̂ ×Nm̂s .

The number of Monte Carlo steps in each tethered simulation is adapted to the
autocorrelation time (see next section), the table lists the minimum length Nmin

MC

and the average lengthN av
MC for each lattice size.

8.2.1 Thermalisation and metastability

We have assessed the thermalisation of our simulations through the autocorrela-
tion times of the system, computed from the analysis of the parallel tempering
dynamics (see Section a.3.1). We require a simulation time longer than 100τint.2

2For most simulations τint ' τexp, so this value is much larger than what is required to achieve
thermalisation. This ample choice of minimum simulation time protects us from the few cases
where τexp is noticeably larger than τint. Cf. Section a.3.3.2.
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Figure 8.5: Histograms of thermalisation times for our L = 32 simulations, at two values
of m̂s for m̂ = 0.12. Notice the logarithmic scale in the horizontal axis, which is in
units of 300 parallel-tempering steps. The saddle point (the peak in the probability
distribution) at this m̂ = 0.12 corresponds to m̂s = 1.078. Notice that we cannot measure
times shorter than our measuring frequency of 300 parallel-tempering steps, so the first
bin should be taken as encompassing all shorter autocorrelation times. Only the samples
with τ & 26 have to be extended from the minimum simulation time.
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Figure 8.6: Same as Fig. 8.5, but now we consider several values of m̂ for m̂s = 0.8 (in
the hard thermalisation region far from the peak). The points for m̂ = 0.12, closer to the
critical point, exhibit a heavier long-time tail (mind the vertical logarithmic scale).
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This process is only followed for L ≥ 24. For smaller sizes we have simply made
the minimum simulation time large enough to thermalise all samples.

The distribution of correlation times for our different samples turns out to be
dependent on the value of (m̂, m̂s). Considering first the variation of the average
τint with m̂s at fixed m̂, we see that the peak of the p(m̂s|m̂) and its adjoining
region are much easier to thermalise (Figure 8.5). This region coincides with the
only points that have a non-negligible probability density (Figure 8.4), i.e., the
only points that contribute to the computation of the 〈O〉m̂. This fact suggests a
possible optimisation, that we will discuss in Section 8.7.

A second interesting result comes from studying the evolution of the τint with
m̂. Figure 8.6 represents the histogram of autocorrelation times for m̂s = 0.8 (in
the ‘hard’ region) for two values of m̂. The distribution for m̂ = 0.12 has a much
heavier tail. As we shall see, this is due to the onset of a phase transition.

The difficulty in thermalising some samples stems from the coexistence of
several metastable states, even for fixed (m̂, m̂s). In Figure 8.7 we represent
the time evolution of the energy u for several temperatures of the same sam-
ple (L = 32, m̂ = 0.12, m̂s = 0.8). As we can see, for a narrow temperature range
several metastable states compete. This has a very damaging effect on the paral-
lel tempering dynamics, whose flow is hindered whenever a configuration that is
metastable for one temperature is very improbable in the next (see Figure 8.8).

For L = 32, some points3 presented a metastability so severe that enforcing a
simulation time longer than 100τint would require a simulation of more than 109

parallel-tempering updates (one thousand times longer than our minimum simu-
lation of ∼ 106 steps). Thermalising these points (which constitute about 0.1% of
the total) would have thus required some 106 extra CPU hours, with a wall-clock
of many months. We considered this to be disproportionate to their physical rele-
vance (they are all restricted to a region far from the peaks where the probability
density is < 10−40, see Figure 8.4). Therefore, we have stopped these simulations
at about 10τint. This is still a more demanding thermalisation criterion than is
usual for disordered systems and does not introduce any measurable bias in the
physically relevant disorder-averaged observables. This can be checked in several
ways:

• First of all, as we have already discussed, these points are restricted to a
region in m̂s with probability density of at most 10−40. Therefore, even if
there were a bias it would not have any effect in the computation of canonical
averages.

• Even at the most difficult values of (m̂, m̂s) the log2-binning plot (the only
thermalisation test typically used in disordered-systems simulations, see
Section a.3) presents many logarithmic bins of stability (Figure 8.9, blue
bars). Even if we subtract the result of the last bin from the others, tak-
ing into account statistical correlations (see Section a.3 and [fer07]), several

3By ‘point’ we mean any of theNsamples×Nm̂×Nm̂s individual tethered simulations for each
L.
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Figure 8.7: Time evolution (in number of parallel tempering steps) for the energy density
u for the same sample of an L = 32 system at m̂ = 0.12, m̂s = 0.7 and different temper-
atures. For most temperatures the equilibrium value is quickly reached, but for a very
narrow temperature range there are several competing metastable states (bottom-left
panel for T = 1.901).
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parallel tempering simulation of the sample in Figure 8.7. The flow is blocked at the
same temperature that had several metastable states (marked with a horizontal line), see
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bins of stability remain (Figure 8.9, red bars). This is a very strict test, and
one that even goes beyond physical relevance (because it reduces the errors
dramatically from those given in the final results).
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Figure 8.9: Time evolution of 〈b̂s〉m̂,m̂s for m̂ = 0.12, m̂s = 0.5, in a logarithmic scale
(the first bin is the average over the second half of the simulation, the second bin the
average over the second quarter and so on, cf. Section a.3). This is in the middle of the
(m̂, m̂s) region where thermalisation is hardest. The blue bars are the actual errors of
our results and the red bars mark the error in the correlated difference of each bin with
the first. Even for these reduced errors, we have several bins of convergence.

8.3

The effective potential

As we discussed in detail in Section 8.1.1, we can learn much about the physics of
the DAFF by studying the disorder-averaged saddle-point equations (8.13), which
amounts to studying the disorder-averaged tethered field. To this end, we have
plotted both components of the tethered field in Figure 8.10. Let us first consider
the staggered component. In the region we are considering, the corresponding
equation has three solutions for each m̂: one in the paramagnetic region at m̂s =
0.5 and two symmetric ones that get closer together as we lower m̂.4 Notice that

4The tethered field is actually not exactly symmetric in m̂s, there are deviations in the tails
due to the way we have added the Gaussian demons when constructing m̂s in (8.2a). However,
we can consider the peak positions symmetric with great precision.
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Figure 8.10: Left: Staggered component of the tethered field as a function of m̂s for all
the values of m̂ in our L = 32 simulations. Right: Same plot for the regular component
of the tethered field.

〈b̂〉m̂,m̂s is negative, therefore when we lower m̂ we are actually increasing |m|.5
The other equation, 〈b̂〉m̂,m̂s = βh, has two symmetrical solutions for each m̂

(for values of h in the range). The resulting structure of the effective potential

is better understood with a two-dimensional plot of B̂ = (〈b̂〉m̂,m̂s − βh, 〈b̂〉m̂,m̂s

)
,

which is the gradient of Ω(h)N (m̂, m̂s) = ΩN(m̂, m̂s)− βhm̂. We have plotted this
vector in Figure 8.11, for βh = −1.33.6 There are three stationary points (circles
in the figure):

• Two in the antiferromagnetic region, symmetric with respect to m̂s and at
the same m̂. These are minima of the effective potential and, therefore,
maxima of the probability density p(m̂, m̂s;h) (cf. Figure 8.12).

• One in the paramagnetic region, at m̂s = 0.5 and at a different value of
m̂ from the other two. This is a saddle point, it is a maximum in the m̂s

direction and a minimum in the m̂ direction (by symmetry considerations,
these are its principal directions).

We can use this analysis to make a first qualitative assessment of the or-
der of the DAFF’s phase transition. Indeed, one of the most important features
of a first-order transition is the emergence of metastability. The system, close
to the transition point, has two metastable states, one ordered and the other
disordered, characterised by peaks in the p(m̂, m̂s;h). As we modify the mag-
netic field, the relative weight of the peaks changes, until, at the transition point

5The minus sign is an awkward remnant from the sign convention for the tethered field used
in [fer09c], but inverted in [fer11b] after, alas, having finished the simulations. We would
obviously have obtained a positive range of b̂ if we had simulated the m̂ region for the opposite
range of m.

6This choice seems arbitrary, but we shall see later that it corresponds to the critical h for
this temperature.
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Figure 8.11: Plot of B̂ = (〈b̂〉m̂,m̂s − βh, 〈b̂s〉m̂,m̂s
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three stationary points (circles): two symmetric antiferromagnetic minima at m̂ ≈ 0.12
and a paramagnetic saddle point at m̂ ≈ 0.093. The dashed arrow marks the integration
path that we will use in Section 8.5.2.
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p(m̂ordered, m̂ordered
s ;hc) = p(m̂disordered, m̂disordered

s ;hc). This is equivalent to the
Maxwell construction in a microcanonical setting. However, in our analysis we
have found no peak in the paramagnetic region, which would rule out the first-
order scenario.

How, then, can we explain the metastable behaviour observed in previous
work? Actually, our preliminary study of the DAFF in the canonical ensemble
in Section 7.3 had the answer: the observed metastability is caused by the two
coexisting antiferromagnetic peaks.

Let us consider Ω(m̂s|m̂) in Figure 8.12. In a canonical simulation the system
would spend most of its time in one of the two antiferromagnetic minima, only
very rarely tunnelling from one to the other. Notice that, even though the barrier
∆ΩN decreases with L, the escape time actually goes as exp[N∆ΩN], thus causing
an exponential critical slowing down (cf. Figure 8.4, showing exp[N∆ΩN] ∼ 1070

for an L = 32 system). The precise behaviour of these free-energy barriers is of
paramount importance to a characterisation of the physics and we shall dedicate
Section 8.5.2 to its investigation.

8.4

Finite-size scaling study of the phase transition

The study of the effective potential in the previous section found no evidence of
first-order behaviour in the DAFF, suggesting that its phase transition is contin-
uous. Of course, promoting this statement to more than a working hypothesis
would be premature, for several reasons. Not the least of which is that we have
not yet shown that there actually is a phase transition in the studied (m̂, m̂s)
region. In the remaining sections we shall both find this phase transition and
characterise its properties. We shall first work at fixed β = 0.625 and find the
phase transition that appears when varying h and we shall then examine the tem-
perature behaviour at fixed h.

8.4.1 Scale invariance

One of the clearest signals of a continuous phase transition is the presence of
scale invariance in the system. Therefore, our first step is computing the correla-
tion length.

Recalling definition (7.9) of the staggered Fourier transform we define the fol-
lowing propagator

Fm̂(k) = N〈φ(k)φ(−k)〉m̂, (8.17)

which we use to define the second-moment correlation length (explained in Sec-
tion 5.1)

ξ2(h) = 1
2 sin(π/L)

[
Fm̂(h)(0)
Fm̂(h)(kmin)

− 1

]1/2

. (8.18)
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Figure 8.13: Correlation length in units of the system size as a function of the external
magnetic field h, for β = 0.625. The clear crossings at h ≈ −2.13 signal a second-order
phase transition.
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Notice that we write ξ2(h) instead of ξ2(m̂), following our discussion of ensemble
equivalence in Section 8.1.1.

The result of this computation is plotted in Figure 8.13. In it we can see a
clear occurrence of scale invariance, signalling the onset of a second-order phase
transition at h ≈ −2.13. As a welcome bonus, the dependence of ξ on h is linear,
which will simplify the analysis.

We can obtain a complementary picture by fixing the magnetic field and study-
ing the temperature dependence. In Figure 8.14 we show this for h = −2.13. For
each temperature and lattice, ξ(h = −2.13) is obtained by linear interpolation in
a plot analogous to Figure 8.13. This value of h causes the critical temperature to
appear at the very end of our simulated range. The reason for this choice is that
the m̂s grid for each m̂ was optimised for β = 0.625. As we move away from this
temperature the peaks are only irregularly sampled, which causes larger statistical
errors and potentially discretisation biases.

8.5

Computation of critical exponents

From the previous plots we can perform a Finite-Size Scaling [ami05, zj05] analysis
in order to determine the critical exponents. As we discussed in Section 7.2.1, we
need three independent critical exponents in order fully to characterise the phase
transition of the DAFF, which we can choose as ν , η̄, θ. In the following sections
we shall compute these three exponents and then use additional observables to
check the scaling and hyperscaling relations.

We shall apply the quotients method [bal96], which is based on Nightingale’s
phenomenological renormalisation [nig75]. Let us consider a system that experi-
ences a second-order phase transition at a critical point Xc (where the parameter
X is, in our case, either the applied magnetic field h or the temperature). If some
physical observable O behaves as (X − Xc)−yo = x−yo near the transition point,
then we expect the following dependence on a finite lattice (cf. Section 2.1.3),
neglecting corrections to scaling,

O(L,x) = Lyo/νxfO(xL1/νx). (8.19)

In this formula νx is the exponent of the correlation length, ξ ∝ x−νx and fO is a
smooth universal scaling function.

In order to define the quotients method, we write (8.19) in the following form

O(L,x) = Lyo/νxFO(ξ(L,x)/L). (8.20)

Now, for a pair of lattice sizes L1 and L2 = sL1 we identify the single value of x
such that ξ(L1, x∗)/L1 = ξ(L2, x∗)/L2. At this point, we have

O(sL,x∗)
O(L,x∗)

= syo/νx . (8.21)
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L h∗(L) β/νh νh α/νh νβ
8 −2.178(4) 0.0125(7) 0.887(5) 0.0765(25) 1.07[7](5)
12 −2.140(5) 0.0104(5) 0.790(9) 0.0781(27) 1.01[3](3)
16 −2.123(3) 0.0119(4) 0.742(7) 0.224(4) 1.10[13](7)

Table 8.2: Computation of the critical exponents with the quotients method, applied to
pairs of lattices (L,2L). The first four columns give results from the quotients at h∗(L)
for fixed β = 0.625. The last column gives results for β∗(L) at fixed h = −2.13. For this
last value we give two error bars, distinguishing systematic and statistical errors.

In Table 8.2 we have applied this method to several observables, using s = 2,

∂xξ −→ yo = νx + 1, (8.22)

M2
s −→ yo = γ̄ = 2β− 3νx, (8.23)

∂xM −→ yo = α. (8.24)

In the following sections we shall analyse each critical exponent separately and
compare the results with previous numerical and experimental work and with
analytical conjectures.

8.5.1 Exponents ν and β

As a first application of the quotients method, we can compute the correlation
length critical exponent, using equations (8.21) and (8.22). This exponent can be
computed either from ∂hξ (Figure 8.13) or from ∂βξ (Figure 8.14).

In the first case, since the h dependence is linear in all our simulated range,
we simply fit ξ(h) to a straight line and approximate ∂hξ with its slope (as usual,
we perform a different fit for each jackknife block) .

As to the temperature dependence, the analysis is more delicate for two rea-
sons. The first is that ξ(β) is no longer a straight line, the smaller sizes showing
a clear curvature even very close to the intersection point. The second is that, as
discussed above, the value of the correlation length for temperatures other than
β = 0.625 has some chaotic fluctuations due to discretisation error. Therefore,
even if the data are correlated (as is the case for parallel tempering simulations),
computing the temperature derivative is difficult.

Our solution has been to fit the high-β region to a quadratic polynomial for
L ≤ 16 and to a straight line for L ≥ 24. The aforementioned systematic effects
cause the derivative to depend heavily on the fitting range. We have accounted
for this effect in Table 8.2 by giving a second error bar, in square brackets.

Notice that exponents νh and νβ should coincide, but we obtain νh ≈ 0.75
and νβ ≈ 1.05. This discrepancy is mainly due to large corrections to scaling. In
general, as discussed in the introduction to this chapter, attempts to determine ν
have yielded values in a very broad range. We can see the reason in Figure 8.15,
where we show scaling plots of ξ(β) for values of ν in a very broad range. For
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Figure 8.15: Scaling plots of ξ/L for several values of the thermal critical exponent ν . A
very high value of ν causes a misleading collapse for low L, while our preferred values
(bottom panels) are better at collapsing the larger sizes close to the intersection points.

each ν there is a temperature range that shows a seemingly good scaling. There-
fore, attempting to estimate ν as the exponent that produces the best collapse, a
method frequently employed for this and other models, is not only imprecise but
also dangerous. By precisely locating the critical point and using the quotients
method we minimise the effect of scaling corrections (but we do not eliminate
them completely, as evinced by the incompatible values of νh and νβ).

Notwithstanding these difficulties, notice that our range of values for ν is in
good agreement to that defined by the best experimental estimates: from ν =
0.87(7) [sla99] to ν = 1.20(5) [ye04].

We can determine the critical exponent γ̄/ν by applying the quotients method
to 〈M2

s 〉(h). The results are quoted in Table 8.2. According to the scaling and
hyperscaling relations (Section 7.2.1), γ̄/ν = 4− η̄ = 3− 2β/ν . Our resulting value
of β/ν is very low, but different from zero. Recall that this exponent controls the
evolution of the peaks in p(m̂s;h) (cf. Sections 5.2.2 and 6.4). In Figure 8.16 we

can see that, indeed, the zero in 〈b̂s〉m̂,m̂s shifts slowly but surely with increasing L.
The figure is for fixed m̂ = 0.12 ≈ m̂(hc).

The extremely small value of β/ν is one of the reasons for past claims of a
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Figure 8.16: Plot of the staggered component of the tethered magnetic field, 〈b̂s〉m̂,m̂s

for m̂ = 0.12 ≈ m̂(hc) at β = 0.625. This is a close-up of Figure 8.2—bottom, restricting
the m̂ range and eliminating the curve for L = 8 in order better to see the L-evolution.
The area under the curve between the two zeros gives the quantity ∆F1, Eq. (8.29), which
we can use to compute θ. Notice the slow shift inwards of the antiferromagnetic zero,
which marks the position of the peak in p(m̂s|m̂).

first-order phase transition and is consistent with previous numerical studies.

8.5.2 The hyperscaling violations exponent θ

The third and last independent critical exponent is θ, which gives a measure of the
violations to hyperscaling, Eq. (7.17). This exponent cannot be obtained from the
canonical averages of physical observables at hc, as we did for β and ν . Rather, its
computation is an intrinsically tethered operation. Following Vink et al. [vin10,
fis11], we can relate θ to the free-energy barrier between the two coexisting states
at the critical point,

∆FN ∝ Lθ−D, (8.25)

in this equation FN is the free-energy density, as in equation (2.10). This is a
specially interesting quantity to measure, since in a first-order transition θ ≥ D−1.
Indeed, in a first order scenario the system would tunnel between the two pure
phases (paramagnetic and antiferromagnetic) by building an interface. The free-
energy barrier would then be associated to a surface tension. This in turn would
be proportional to the dimension of the interface’s surface, which must be at least
D − 1.

We first notice that ∆FN is defined as the free-energy barrier between the two
phases (disordered and antiferromagnetic) that form at the critical point (β,hc).
Recalling our study of section 8.3 we see that this is equivalent to computing the
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Figure 8.17: Tethered average 〈b̂〉m̂,m̂s=0.5 for all our lattice sizes at β = 0.625.

∆Ω(h)N between the paramagnetic saddle point and one of the antiferromagnetic
minima. We denote these two points by (m̂(1), m̂(1)

s ) and (m̂(2), m̂(2)
s ), respectively,

∆Ω(h)N = Ω(h)N (m̂(1), m̂(1)
s )−Ω

(h)
N (m̂(2), m̂(2)

s ). (8.26)

As always, this potential difference is simply the line integral of

B̂ = (〈b̂〉m̂,m̂s − βh, 〈b̂s〉m̂,m̂s

)
(8.27)

along any path connecting (m̂(1), m̂(1)
s ) and (m̂(2), m̂(2)

s ).
In our simulations we have not covered the (m̂, m̂s) plane uniformly. Rather,

we have simulated several slices with fixed m̂. Therefore, the most convenient

way to evaluate ∆Ω(h)N is

1. At m̂ = 0.12 ≈ m̂c = m̂(hc), compute the potential difference between
(m̂c, m̂∗

s ) and (m̂c,0.5), where m̂∗
s is the position of the peak of p(m̂s|m̂c)

Notice that, since we are working at constant m̂,

Ω(h)N (m̂c, m̂s = 0.5)−Ω(h)N (m̂c, m̂∗
s ) = ΩN(0.5|m̂c)−ΩN(m̂∗

s |m̂c). (8.28)

This is just the integral

∆F1 = ΩN(0.5|m̂c)−ΩN(m̂∗
s |m̂c) =

∫
B̂ · d`1 =

∫ 0.5

m̂∗s
dm̂s 〈b̂s〉m̂c,m̂s . (8.29)

In other words, ∆F1 is just the area under the curve in Figure 8.16. We can
average ∆F1 for the symmetric path in the region with negative staggered
magnetisation (m̂s < 1/2).



136 The DAFF in the tethered formalism

L ∆FN Fit range θ χ2/d.o.f.

8 0.033 82(29) L ≥ 8 1.448(9) 5.56/3
12 0.017 56(15) L ≥ 12 1.469(13) 0.44/2
16 0.011 38(9) L ≥ 16 1.461(20) 0.16/1
24 0.006 08(5)
32 0.003 92(5)

Table 8.3: Computation of the hyperscaling violations exponent θ from the free-energy
barriers ∆FN . We report fits to (8.34), for different ranges. Our preferred final estimate
is θ = 1.469(20), taking the central value of the fit for L ≥ 12 and the more conservative
error of the fit for L ≥ 16.

2. The tethered average at (m̂c, m̂∗
s ) defines a value of βhc through the saddle-

point equation,

〈b̂〉m̂c,m̂∗s = βhc . (8.30)

3. Consider the tethered values 〈b̂〉m̂,m̂s=0.5 as a function of m̂ and interpolate
the value m̂∗ that satisfies

〈b̂〉m̂∗,m̂s=0.5 = βhc . (8.31)

This turns out to be very easy to do because the 〈b̂〉m̂,m̂s=0.5 fall on a straight
line (Figure 8.17).

4. Compute the potential difference between (m̂c, m̂s=0.5) and (m̂∗, m̂s=0.5).

∆F2 =
∫
B̂ · d`2 =

∫ m̂∗
m̂c

dm̂
(〈b̂〉m̂,m̂s=0.5 − βhc

)
. (8.32)

5. The sum of ∆F1 and ∆F2 is equal to the integral of B̂ along a path joining the
two saddle points (m̂(1), m̂(1)

s ) = (m̂∗,0.5) and (m̂(2), m̂(2)
s ) = (m̂c, m̂∗

s ). i.e.,
the free-energy barrier we were looking for,

∆FN = ∆F1 +∆F2. (8.33)

This integration path is depicted with a dashed line in Figure 8.11 on page 128.
Notice that, in accordance with the study of Section 8.3, ∆F1 will be positive
and ∆F2 negative.

We have implemented this procedure for all our lattices. Table 8.3 shows the
resulting ∆FN and fits to

∆FN = AL3−θ. (8.34)
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As our preferred final result we can give the central value of the fit for L ≥ 12
with the error of the fit for L ≥ 16. Therefore

θ = 1.469(20). (8.35)

Notice that θ is close to the value θ = D/2 that one would expect from a naive
Imry-Ma argument [imr75]. In particular, θ < D − 1, and therefore the metastable
states do not define stable phases, which is yet another argument against a first-
order transition.

Notice that the value of θ > 0 is also the reason for the exponential slowing
down of this model. Indeed, we saw in Section 8.3 that the system gets trapped
in local minima with escape times τ ∼ exp[N∆FN] ∼ exp[Lθ] causing a thermally
activated critical slowing down [fis86a, nat98].

8.5.3 Scaling relations: the specific heat and α

As discussed in the introduction to this chapter, there has long been disagree-
ment as to whether the specific heat in the DAFF is divergent, as observed in
experiments [bel83, bel98]. The specific heat critical exponent is generally dif-
ficult to obtain in numerical simulations and the self-averaging violations in the
DAFF have not made things any easier [har01, wu06, mal06],

Since we already have a complete set of independent critical exponents, we
can obtain α from the hyperscaling relation (7.17). Using our range of values
0.75 ≤ ν ≤ 1.1 and θ = 1.469(20), we have the following bounds for α,

0.32 ≤ α ≤ 0.85. (8.36)

Clearly, the uncertainty in ν does not allow a good determination, yet we can
safely exclude a non-divergent specific heat from our data (α < 0 would imply
ν > 1.3). Furthermore, even the logarithmic divergence (α = 0) suggested by
experimental work seems excluded. Notice, however, that the experimental values
of ν together with hyperscaling relations, also imply α > 0. For instance, the
result ν = 0.87(7) of [sla99], taken with our θ = 1.469(20), would give α ≈
0.67(10). Even the higher value ν = 1.20(5) of [ye04] would give α ≈ 0.16(8).

We can attempt a direct determination of α from our simulations. We start by
defining the specific heat as

C = ∂〈m〉
∂h

(8.37)

In principle, at the critical field, C ∝ Lα/ν , so we could compute α/ν from C using
the quotients method. Unfortunately, the quotients method is ill-suited to this
quantity, which features a large analytical background, so its scaling is more aptly
described by C ' A + Bα/ν [bal98]. Therefore, one needs extremely large values
of L to reach the asymptotic regime where C ∼ Lα/ν .
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The behaviour of the quotients shown in Table 8.2 is consistent with the above
expectation. Our results point to a divergent specific heat, but our estimates for
the exponent α are clearly still very far from the asymptotic regime where (7.17)
would be satisfied. An additional source of error is that our determination of
the specific heat suffers from systematic effects due to the discretisation of m̂.
Indeed, while our m̂ grid was more than adequate for a determination of ∂m̂ξ,
which could be approximated by a straight line, the specific heat shows a clear
curvature as a function of m̂. We have interpolated it with a quadratic polynomial
in order to estimate the derivative, but we would have needed more resolution in
m̂ to make a safe computation.

8.5.4 The two-exponent scenario and the experimental scattering
line shape

We can close our FSS analysis of the phase transition by considering the two-
exponent scenario discussed in Section 7.2.1. Recall that according to this pro-
posal, θ = D/2 − β/ν . From (8.35) and β/ν = 0.011 1(8) (combining the last two
rows of Table 8.2) we have

θ = 1.469(20), (8.38)

D/2− β/ν = 1.488 9(8). (8.39)

The two numbers are compatible.
We can use our results for the critical exponents to shed some light on the

experimental situation. In an experimental study, the critical exponents are com-
puted from fits to the scattering line shape or structure factor S(k). We can write
this quantity as

S(k) = Sd(k)+ Sc(k), (8.40)

where Sd and Sc are the connected and disconnected propagators defined in (7.25).
Recall that these diverge as

Sd(k) ∼ k−4+η̄ + . . . , (8.41)

Sc(k) ∼ k−2+η + . . . , (8.42)

where the dots represent subdominant terms.
An experimental study of S(k) faces, then, the considerable challenge of distin-

guishing two different divergences at k = 0. One possibility is simply to disregard
the difference and parameterise S(k) with an effective anomalous dimension,

S(k) ∼ k−2+ηeff . (8.43)

This procedure was employed in [ye04], obtaining ν = 1.20(5) and ηeff = −0.51(5).
An alternative way, supported by our results, is to adopt the two-exponent

ansatz (7.19), which can be rewritten as 2η = η̄. Then, the following approximation
can be made:

Sd(k) = [Sc(k)]2. (8.44)
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This avenue was followed in [sla99], yielding ν = 0.87(7) and η = 0.16(6). This
value of ν is right in the middle of our numerical bounds. However, taking into
account (7.19), we would have

θ = 2− η = 1.84(6), (8.45)

which is clearly incompatible with our results.
The answer to this problem is that the approximation (8.44) is probably too

naive. Even accepting that η̄ = 2η, approximating all of Sd, and not just its most
divergent term, as the square of Sc is an excessive simplification. Clearly, a better
theoretical parameterisation of S(k) is needed. Our methods are well suited to a
direct numerical approach to this question, left for future work.

8.6

Geometrical study of the critical configurations

The picture painted in the previous sections is that of a second-order transition;
but one with quite extreme behaviour. Among its peculiarities we can cite an
extremely small value of β and large free-energy barriers, features both that are
reminiscent of first-order behaviour. The free-energy barriers in the DAFF, how-
ever, diverge too slowly to be associated to the surface tension of well-defined,
stable coexisting phases. But this only raises the question of what kind of config-
urations can give rise to such a behaviour.

In this section we study the geometrical properties of the minimal-cost spin
configurations joining the two ordered phases at the critical point. To this end,
we consider simulations at β = 0.625, m̂ = 0.12 ≈ m̂(hc) and m̂s = 0.5. Recalling
that m̂s ' ms + 1/2, this last condition expresses the fact that we are studying
configurations with no global staggered magnetisation. This is a good example of
an ‘inherently tethered’ study, that examines information hidden from a canonical
treatment (cf. Figure 8.4, where we show that the region considered here has a
canonical probability density of ∼ 10−70 for an L = 32 system).

Figure 8.18 shows an example of such a configuration for an L = 24 system. In
order to make the different phases clearer, we are not representing the spin field
sx, but the staggered field sxπx. As is readily seen, even if the global magnetisa-
tion is ms ≈ 0, the system is divided into two phases with opposite (staggered)
spin. In geometrical terms, most of the occupied nodes of the system belong to
one of two large clusters with opposite sign. All the other clusters are orders of
magnitude smaller, with most of the remaining spins forming single-site clusters.

At a first glance, this picture may seem consistent with a first-order scenario,
where the system is divided into two strips whose surface tension gives rise to the
free-energy barriers (see [mm07] for an example of these geometrical transitions
in a first-order setting). In order to test this possibility, we can study the evolu-
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Figure 8.18: Equilibrium configuration for an L = 24 system at β = 0.625, m̂ = 0.12,
m̂s = 0.5.

tion of the interface mass with the system size and compare it with the explicit
computation of free-energy barriers done in Section 8.5.2.

Given a configuration, we first trace all the geometric antiferromagnetic clus-
ters. We then identify the largest and second largest ones. Finally, we say that an
occupied node belongs to the ‘interface’ if it belongs to the largest cluster and has
at least one first neighbour belonging to the second largest one. We have com-
puted in this way the interfaceNinterface for our 700 L = 32 samples and for 3000
samples for all our smaller systems (we have run additional simulations just at
this point). Table 8.4 shows the result of this computation. A fit to

Ninterface = ALc, (8.46)

for L ≥ 12 gives c = 2.240 2(24) with χ2/d.o.f. = 3.62/2. If the metastability
of the system were to be associated to a surface tension, then the free-energy
barriers would have to scale with c. However, we saw in Section 8.5.2 that the
actual scaling is N∆FN ∝ Lθ, with θ = 1.469(20).

To understand the reason why this large interfaces are not responsible for
metastable signatures, we have to look more closely at the geometry of the con-
figurations. Indeed, we see in Figure 8.18 that there is a path connecting the spins
in the green strip across the red one (there is only one green strip, since we are
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L Nsamples Ninterface

12 3000 160.29(25)
16 3000 304.62(41)
24 3000 755.74(94)
32 700 1446.1(39)

Table 8.4: Masses of the interfaces for our equilibrium configurations at β = 0.625, m̂ =
0.12 ≈ m̂c, m̂s = 0.5. This mass grows as Ninterface ∝ Lc . From a fit, c = 2.240 2(24),
which is incompatible with our estimate of θ = 1.469(20), confirming that the free-
energy barriers are not associated to surface tensions.

considering periodic boundary conditions). If we were to consider a complete to-
mography of this configuration, we would find several of these paths (which, of
course, need not be contained in a plane). In other words, the phases are porous.
This is in clear contrast to a first-order scenario in which the phases have essen-
tially impenetrable walls. Now, this could be a peculiarity of the particular se-
lected configuration. In order to make the analysis quantitative, we shall examine
all of our samples and determine the strip-crossing probability P . This is defined
as the probability of finding a complete path with constant staggered spin across
the strip with opposite staggered magnetisation and we can compute it with the
following algorithm:

1. For each configuration, compute the staggered Fourier transform (7.9) of the
spin field at k(i)min, for each of the three axes (φx, φy , φz).

2. In a strip configuration, one of the φ will be much larger than the other two.
Assume this is φx, so the strips are perpendicular to the OX axis.

3. Measure the staggered magnetisationMx
s on each of the planes with constant

x and identify the plane x = xmax with largest |Mx
s |. This plane will be at

the core of one the strips.

4. Trace all the clusters that contain at least one spin on the x = xmax plane,
but severing the links between planes x = xmax and x = xmax − 1.

5. If any of the clusters reaches the plane x = xmax − 1 there is at least a path
through the strip with opposite magnetisation (the previous step has forced
us to go the long way around, so we know we have crossed the strip).

We have plotted the strip-crossing probability P(m̂) in Figure 8.19. Notice that
1−P behaves as an order parameter. If we keep increasing m̂, so that we enter the
ordered phase, the phases eventually become proper impenetrable strips, hence
P = 0 for large enough systems. On the other hand, for low m̂, in the disordered
phase, the strips become increasingly porous, so that P = 1 in the limit of large
systems. The crossover between these two regimes manifests in the crossing of
the P(m̂;L) at the phase transition point m̂ ≈ 0.12.
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Figure 8.19: Probability of completing a path with constant staggered spin across the
strip with opposite staggered magnetisation, see Fig. 8.18, for our spin configurations at
β = 0.625, m̂s = 0.5.

8.7

Beyond L = 32: optimising TMC simulations

The simulations listed in Table 8.1 required more than 700 years of total CPU time
and were carried out using a combination of large supercomputing facilities (Mare
Nostrum of the Red Española de Supercomputación), large computing clusters
(Terminus at BIFI) and grid resources (Piregrid). Even with the parallel scheme
explained in Section c.4, the wall-clock for some of the toughest points has been
of several months.

Essentially, by tethering the magnetisations we managed to remove the largest
free-energy barriers of the systems. However, for large sizes, new barriers, asso-
ciated to different reaction coordinates, began to appear. In order to eliminate
these, one would have to tether additional quantities.

It may seem, then, that the methods described in this Chapter cannot be ex-
tended to larger lattices with current hardware. Actually, these simulations were
intended to explore the physics of the DAFF thoroughly, perhaps sacrificing fo-
cus for breadth. In a more targeted study, however, we can take advantage of the
model’s characteristics to optimise the simulations. In particular, we can highlight
two interesting facts:

• Only a very narrow region around the saddle points has any significant
weight for reconstructing canonical averages (Figure 8.4).

• It is much harder to equilibrate the region far from these peaks (Figure 8.5).
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Combining these two observations, it turns out that, if our only interest is recon-
structing canonical averages, we can achieve a qualitative reduction in simulation
time by simulating only a narrow range around the peak in p(m̂s|m̂) for each
value of the smooth magnetisation m̂. In fact, all the results discussed in this
chapter, except for Sections 8.5.2 and 8.6, could have been computed in this sim-
plified fashion.

We have demonstrated this optimisation by simulating 400 samples of an L =
48 system for m̂ = 0.12. We use only Nm̂s = 6 (but we have to increase the
number of temperatures in the parallel-tempering to 60, in the same range, in
order to keep the exchange acceptance high). Table 8.5 shows the value of m̂peak

s

as a function of L.
We can use the values of m̂peak

s reported in Table 8.5 to attempt an alterna-
tive determination of β/ν , following the method described in Section 5.2.2. In
particular, we perform a fit to

|m̂peak
s − 1/2| = AL−β/ν . (8.47)

This is plotted in Figure 8.20. The result of the fit, with χ2/d.o.f. = 2.98/3, is

β/ν = 0.011 1(7). (8.48)

This result is compatible with our computation with the quotients method in Ta-
ble 8.2. Notice, however, that it does not take into account the uncertainty in m̂c

(in Section 5.2.2 we worked at the exact βc and even in Section 6.4 we knew βc

with many significant figures).
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L Nsamples Nm̂s m̂peak
s − 1/2

8 1000× 2 31 0.585 85(87)
12 1000× 2 35 0.582 39(54)
16 1000× 2 35 0.581 54(36)
24 1000× 2 33 0.578 39(24)
32 700× 2 25 0.576 72(20)
48 400 6 0.574 91(33)

Table 8.5: Value of the peak position for our different system sizes. The result for L = 48
is of comparable accuracy, despite being computed from only 6 tethered simulations
around the saddle point. Recall that for L ≤ 32 we can average over the positive and
negative peaks, so the number of samples for these systems is effectively double the
value shown in Table 8.1.
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Figure 8.20: Position of the peak against L from Table 8.5 with a fit to Eq. (8.47), giving
β/ν = 0.0111(7).
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The Edwards-Anderson spin glass
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CHAPTER IX

Spin glasses: an experimental challenge for
theoretical physics

During the 20th century, the experimental study of magnetic alloys gradually led
to the identification of a class of materials that suffered a ‘freezing transition’
at some critical temperature Tc. In particular, if we denote by Sx the magnetic
moment (spin) at site x in a lattice1

• Below Tc, each of the spins freezes in some orientation, 〈Sx〉t ≠ 0.2

• Though the freezing is collective, the spin orientations are random. In par-
ticular, the average orientation of the spins is zero: 1

N

∑
x 〈Sx〉t = 0. More

generally, there is no long-range magnetic order of any kind

Mk = 1
N

∑
x

e−ik·r 〈Sx〉t = 0, ∀k. (9.1)

Notice that this expression includes both the ferromagnetic order parameter,
k = 0, and the antiferromagnetic one, k = (π,π,π).

• The dynamical evolution takes place at macroscopic times below Tc.

The position of the freezing temperature is typically signalled by the appearance
of a cusp in the imaginary part χ′′(ω) of the frequency-dependent magnetic sus-
ceptibility, although it has been proved that this freezing corresponds to an actual
phase transition (cf. Section 9.1.3).

These systems were soon seen to have many interesting physical properties,
which in turn generated a great deal of theoretical and experimental interest. In
the early 1970s, the concept of ‘spin glass’ was introduced, and applied to random,
mixed-interacting magnetic systems that experience a random, yet cooperative,
freezing of spins below some critical temperature.

1In this section we consider the general case where the spins are three-dimensional vectors.
2Here the 〈· · ·〉t denote an average over a very long measuring time.
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The random and mixed nature of the magnetic interactions gives rise to frus-
tration (recall Figure 1.3) and this, in turn, generates a rugged free-energy land-
scape. Furthermore, the fact that spin glasses were particularly amenable to ex-
perimental investigation and theoretical modelling (see below) quickly established
them as quintessential examples of complex systems.

In this chapter we shall begin by giving some brief notes on spin glasses from
an experimental point of view in Section 9.1. This will also serve as an introduc-
tion to non-equilibrium physics and the concept of aging. We then discuss the
generally accepted Edwards-Anderson model in Section 9.2, stating the main con-
clusions of the different (and incompatible) theoretical pictures that have been
proposed for it. Finally, in Section 9.3 we motivate the numerical investigation of
the problem that will be undertaken in Chapters 10 and 11.

9.1

The experimental spin glass

9.1.1 The canonical experimental spin glass: RKKY

As we said above, in order to have a spin glass system we need at least disorder
and a mixture of ferromagnetic and antiferromagnetic interactions between the
spins. In principle, we would be looking for a system whose spin Hamiltonian
consisted of exchange interactions:

Hxy = −JxySx · Sy, (9.2)

where we need to have both positive and negative Jxy.
The classical solution to these requirements is the Ruderman-Kittel-Kasuya-

Yosida (RKKY) interaction [rud54, kas56, yos57]. We consider a noble metal with
magnetic impurities (for instance, CuMn, for copper with manganese impurities).
Then, the magnetic moments scatter the conducting electrons, which gives rise to
an indirect exchange interaction: Hx,x+r = J(r)Sx · Sx+r . For a large separation
between impurities, we can write the coupling strength as

J(r) ' J0
cos(2kFr +φ)

(kFr)3
, (9.3)

(kF is the Fermi momentum of the metal). Since the positions of the impurities
or, in other words, the distances between the spins, are random, the oscillating
nature of J(r) will generate precisely the random mixture of ferromagnetic and
antiferromagnetic couplings that we need.

9.1.2 Aging and other non-equilibrium phenomena

The physical properties observed in spin-glass simulations are rich and surprising
(see [bin86, myd93] for reviews). The main feature is that, in general, the relax-
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Figure 9.1: Comparison of the zero-field-cooled (b and d curves) and field-cooled suscep-
tibilities (a and c) for two samples of CuMn with different concentration of impurities.
Graph from [nag73], as quoted in [bin86].

ation times below Tc are not only macroscopic, but large enough for the system
to be out of equilibrium for the whole of the experiment. When the spin glass
evolves at fixed T1 < Tc, some frozen or spin-glass phase slowly forms. In this sit-
uation, the system is said to age [vin97]: the response to a field variation depends
on the time spent at T1.

Let us see some examples of this. First we consider the experiment quoted in
Figure 9.1. In it, the authors measured the magnetisationM induced in a spin glass
by a small applied field h and used it to define a dc susceptibility3 χdc = M/H.
They then consider two experimental protocols. In the first one (field-cooling) they
apply the field above Tc and cool the system down to T1 < Tc, without switching
off the field. The resulting curve is reversible if the temperature variation is cycled
and it has the peculiarity that the χFC

dc becomes constant below Tc. In the second
(zero-field cooling) the temperature is lowered to T1 < Tc without applying any
field. Then, the field is activated and the sample is reheated across the critical
temperature. Above Tc, χZFC

dc coincides with the field-cooled version, but this is
not the case in the frozen phase. There, the curve is no longer constant, but
increasing with T . Furthermore, while the FC curve was reversible, this one is not
and it also depends on the temperature-variation rate. We are seeing a system out
of equilibrium. In fact, if, after zero-field-cooling the system, we were to switch on
the field and let the system evolve at fixed temperature, the susceptibility would
grow slowly, approaching the FC value but never reaching it, even for waiting
times of several hours.

3Notice that this is different from the frequency-dependent, or ac, susceptibility we men-
tioned earlier.
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Figure 9.2: Memory and rejuvenation effects in an experimental spin-glass (see text for
explanation). Figure taken from [jon98].

A different, but related, example is the thermoremanent magnetisation. In
this case, one cools the system in a field down to T1 < Tc, then waits for a time
tw, switches off the field and measures the decay of the remanent magnetisation
when a time t has passed after switching off the field. It turns out that this mag-
netisation depends both on t and on the waiting time tw that the system evolved
in a field (the decay is slower for longer tw). This phenomenon is called aging. For
a rapid cooling, the remanent decays as a function of [(t + tw)/tµw] [rod03], so tw
is the only recognisable time scale. If µ = 1 we say that we have full aging.

Notice that the concept of aging also applies to the coarsening dynamics of
ferromagnetic systems, although there the process is much faster [sic08]. How-
ever, let us stress that the differences between the dynamics of spin glasses and
ferromagnets are much more profound than a simple change of speed. As an ex-
ample of this, let us consider the experiment in Figure 9.2, taken from [jon98]. In
this study, the authors took an experimental sample and measured the imaginary
part χ′′ of the ac susceptibility as the temperature was varied. The applied field
had a low frequency of ω/2π = 0.04 Hz. In particular, they took the following
three steps:

1. Starting at some temperature above Tc, they cool the system at a constant
slow rate of 0.1 K/min and then reheat it at the same rate. This cooling
rate (in terms of the logarithmic derivative of the temperature), is very small
compared with the frequency,ω, which is equivalent to considering a regime
where t � tw. The resulting χ′′(T) is seen to be essentially reversible and
represented by a thick black line. Notice the cusp at the transition tempera-
ture Tc ≈ 15 K.

2. Back at the maximum temperature, the system is cooled again at the same
rate (curve with empty diamonds). Now, however, they stop the cooling at
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T1 < Tc and let the system age for a few hours. This produces a ‘dip’ in the
χ′′ curve.

3. They resume the cooling and the susceptibility quickly returns to the refer-
ence curve, as if it had not aged at all. This effect is often named rejuvena-
tion.

4. Now, the system is reheated at the same rate, without stopping at T1 (curve
with black diamonds). Surprisingly, the aging dip in the susceptibility is
reproduced. Therefore, the rejuvenation of the previous step was not com-
plete: the system has retained some memory of its previous aging.

No longer can we talk of a simple, temperature-independent spin-glass phase
as in a ferromagnet. A picture of thermally activated barriers is also discarded,
since the time spent at T1 does not contribute to aging at T2 < T1. Instead, we
have some sort of temperature chaos: the appropriate spin-glass phase at T1 looks
completely random from the point of view of the system at T2.

Still, even if the dynamical behaviour of spin glasses is very complex, there is
some regularity. We shall see in Section 9.2.4 how it is possible to make experi-
mentally testable predictions for several non-equilibrium quantities.

9.1.3 Spin glasses as models for general glassy behaviour

Structural glasses are formed when the viscosity of a liquid grows so much that
the latter loses its ability to flow. The system drops out of equilibrium and its
microscopic structure seems frozen. However, there is no long-range order: a still
photo of the molecular arrangement would show no great difference from that of
a dense liquid.

The above picture is, in qualitative terms, much the same as the one we painted
at the beginning of this chapter, when introducing the spin-glass transition. This
is so despite the fact that the physical causes for the two kinds of freezing pro-
cesses are very different.

This observation is, of course, the motivation for the name of ‘spin glasses’ but,
more than that, it is also the reason for much of their physical relevance. Indeed,
taking spin glasses as model systems for investigating general glassy behaviour
has many advantages, both from an experimental and from a theoretical point of
view

• The nature of glass formation is still poorly understood, it has not yet been
possible to relate it to a reproducible thermodynamical phase transition. On
the other hand, the freezing of magnetic moments in spin glasses is known
to be a phase transition, both in experiments [gun91], where one observes a
diverging non-linear susceptibility, and in theoretical models [pal99, bal00].
Knowing that one is really below a proper critical temperature has many
advantages from the point of view of analysis and interpretation of results.
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• In both classes of systems, the experimental determination of characteristic
length scales is very difficult (the microscopic correlations are not accessible
and one has to use an indirect determination via some susceptibility). How-
ever, spin-glass systems have two advantages: (i) The size ξ of the glassy
domains is much larger in spin glasses, and therefore easier to access experi-
mentally (compare, e.g., [joh99, ber04b] with [ber05]). (ii) In experiments on
structural glasses, the measurements are specially delicate and taken with a
variety of methods (in [ber05] they estimate the enthalpy fluctuations from
measurements of the dielectric susceptibility). Spin-glass experiments, on
the other hand, use SQUIDs, allowing for a far greater precision and conve-
nience.

• The free-energy barriers in fragile glasses grow with a power law, while in
spin glasses this growth is ∼ logξ, as we shall see.

• Finally, spin glasses are easier to model theoretically (lattice models with
simple interactions), making their subsequent analytical and numerical in-
vestigation more straightforward (although by no means easy, as we shall
see in Section 9.2).

Still, even if we accept that spin glasses are more convenient model systems
and that they have a qualitatively similar behaviour to structural glasses, we need
some concrete, quantitative bridge between both systems, if only to see how far
we can take the analogy.

In this sense, the study of dynamical heterogeneities can provide a valuable
common ground. This topic has received much experimental attention in the last
two decades [edi00, wee00, keg00, vr00, ouk10, ber11] and, has, in fact, been
identified as the key to understanding the statistical mechanics of amorphous
solids. Indeed, even though in structural glasses there is no long-range order,
there are non-trivial spatiotemporal fluctuations, caused by the wide distribution
of relaxation rates across the system. A thorough understanding of these dy-
namical heterogeneities can therefore give many clues on the nature of the glassy
phase.

This heterogenous dynamic behaviour has recently been studied numerically
in spin-glass systems [cas02, cas03, jau07, aro08]. In this context, the dynamical
heterogeneities can be characterised by a two-time correlation length ζ(t, tw), al-
though the time scales that have been traditionally reachable in simulations have
not permitted the authors to see correlation lengths greater than a couple of lat-
tice spacings. At the same time, some recent experimental works suggest [ouk10]
that ζ will soon be accessible experimentally. Therefore, there is every indica-
tion that work on dynamical heterogeneities in structural and spin glass systems
is soon going to converge in a unified approach. In the following chapters we
shall dedicate much attention to ζ, which will be the basis of a finite-time scaling
paradigm for the study of non-equilibrium dynamics.
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9.2

The theoretical spin glass: the Edwards-Anderson model

The complexity of the experimental spin-glass phase is both an incentive and a
formidable challenge for theoretical physics. We need a system simple enough
to allow for, at least, some level of analytical treatment yet complex enough to
explain the rich physics observed in experiments.

The first obstacle is the very definition of an order parameter that could sig-
nal the onset of the spin-glass transition. By definition of spin glass —Eq. 9.1—
we cannot use anything based on long-range order. Moreover, the temperature
chaos property implies that the frozen state of the magnetic moments is going to
depend on temperature. Under these conditions, Edwards and Anderson [edw75]
proposed replacing the spatial correlations of spins at different sites with a time
correlation at the same site. Considering a very large sample with N nodes, we
have4

q = lim
t→∞

1
N

∑
x
〈sx(0)sx(t)〉t . (9.4)

In other words, they considered the overlap between the configuration at two dif-
ferent times (in equilibrium). In the spin-glass phase, where the spins are frozen,
this is non-zero. In particular, we would expect q = 1 at T = 0 and q → 0 when
T → Tc (as in a second-order transition).

Now we can take the usual step of replacing the time average limt→∞ 〈· · ·〉t
with an ensemble average and write

q = 1
N

∑
x
〈sx〉2 . (9.5)

Now that we know how to define a workable order parameter, we need a more
tractable spin interaction than that defined by the RKKY theory. The Edwards-
Anderson model is then defined in the simplest possible way: as a random mixture
of positive and negative nearest-neighbour couplings,

H = −
∑
〈x,y〉

Jxysxsy. (9.6)

The quenched Jxy are extracted from some probability distribution such that
Jxy = 0. The actual shape of the coupling distribution is not very important (uni-
versality), the most popular examples are Gaussian and bimodal (±J) couplings.

9.2.1 The mean-field spin glass and the RSB picture

The Edwards-Anderson (EA) model is simple enough to formulate, but its solution
is quite a different matter. In the DAFF, one considers the mean-field approxima-

4We go back to considering Ising spins, sx = ±1. This does not constitute an unphysical
simplification (consider, for instance, an orthorhombic lattice where one direction is favoured).



154 Spin glasses: an experimental challenge for theoretical physics

tion, which turns out to be trivial, and attempts to extend the solution to finite
dimensions using the perturbative renormalisation group (a difficult task, to be
sure). In the case of the EA spin-glass, as we shall see, not even the mean-field
case is easy. In the following we give an outline of the mean-field solution for
the EA spin glass. Our aim is not to present the full derivation, which is well ex-
plained in several places (see, e.g., [dot01, dom06]). Rather, we shall simply give
the essential information to understand its testable (and exotic) predictions for
the nature of the spin-glass phase.

The mean-field version of the EA model is the Sherrington-Kirkpatrick [she75]
model

H = −
∑
i<j

Jijsisj. (9.7)

For the sake of simplicity, we have numbered the lattice sites, rather than denoting
them by their position vector, as we have usually done. The interactions are now
not only restricted to nearest-neighbours, but exist between every pair of sites
(this can be seen as an infinite-dimensional version of the EA model).

The couplings are extracted from the following conveniently normalised Gaus-
sian distribution

p(Jij) =
∏
i<j

√
N
2π

exp
(
−N

2
J2
ij

)
, (9.8)

so we have

Jij = 0, J2
ij =

1
N
. (9.9)

The factor 1/N has been chosen so that the total energy at fixed β is proportional
to N , to make the energy density independent of N .

Now, let us compute the Edwards-Anderson order parameter with the replica
trick, which we introduced in Section 2.2. First, let us write this quantity in replica
notation. We start with the basic definition (9.5), averaged over disorder

q = 1
N

∑
i

〈si〉2 = 1
N

∑
i

(∑
{s} e−βHJ({s})si

)(∑
{s} e−βHJ({s})si

)
Z2
J

. (9.10)

Now we multiply numerator and denominator by Zn−2
J and follow the same steps

as in Section 2.2. The numerator again depends on n replicas, two of which, (µ
and ν , say) are for the two spins that appear explicitly in (9.10). Therefore,

q = 1
N

∑
i

lim
n→0

∑
{sa}

e−β
∑
aH (a)

J (sa)sµi s
ν
i . (9.11)

After performing the average over the J, we have, in the notation of Section 2.2

q = 1
N

∑
i

lim
n→0
〈sµi sνi 〉n , (9.12)
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Our main goal, then, is to compute the effective Hamiltonian that defines the 〈·〉n.
The replica partition function is (omitting irrelevant pre-exponential factors)

Zn = ZnJ =
∑
{sa}

∫
DJij exp

(
β

n∑
a=1

∑
i<j

Jijsai s
a
j −

1
2
N
∑
i<j

J2
ij

)
(9.13)

The integration over the Jij can be performed explicitly with (9.8) and gives

Zn =
∑
{sa}

exp

1
4
β2Nn+ 1

2
β2N

n∑
a<b

(
1
N

∑
i

sai s
b
i

)2
 . (9.14)

Finally, one linearises the sum over the sites by introducing the so-called replica
matrix Qab,

Zn =
 n∏
a<b

∫
dQab

 ∑
{sa}

exp

1
4
β2Nn− 1

2
β2N

n∑
a<b

Q2
ab + β2

n∑
a<b

∑
i

Qabsai s
b
i

 .
(9.15)

By definition,

Qab = Qba, Qaa = 0. (9.16)

After some algebra, one can represent (9.15) as

Zn =
∫

DQabeLn{Qab}, (9.17)

where the effective Lagrangian is

Ln{Qab} = Nn
4
β2 − N

2
β2

∑
a<b

Q2
abN log

∑
sa

exp

β2
∑
a<b

Qabsasb
 . (9.18)

Notice that we have eliminated the summation over i and constructed a simpler
single-site Lagrangian. Finally, the equilibrium values of Qab are defined by the
equation δLn/δQab = 0 and turn out to be

Qab = 1
N

∑
i

〈sai sbi 〉n , a ≠ b, (9.19)

where the average 〈·〉n is defined by the partition function in (9.17).
It is here that the computation must stop, unless we introduce some ansatz for

the replica matrix Qab. Since the replicas are all equivalent, one could be tempted
to use a symmetric form

Qab = (1− δab)q. (9.20)

Using this hypothesis, the computation can be taken to the end. In particular,
after performing the n → 0 limit, one finds that the value of q is given by the
saddle-point equation

q =
∫∞
−∞

dz√
2π

exp(−z2/2) tanh2(βz
√
q). (9.21)
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Figure 9.3: Sketch of the first two steps of replica symmetry breaking.

This equation has no non-trivial solution above T = Tc = 1, while for T < Tc it
has a single solution qEA(T), such that limT→0 qEA(T) = 1. Even more, according
to (9.19), (9.20) and (9.12) we have

qEA(T) = 1
N

∑
i

lim
n→0
〈sai sbi 〉n =

1
N

∑
i

〈si〉2. (9.22)

which is just the Edwards-Anderson order parameter that we introduced earlier.
Therefore, it would seem that the replica-symmetric solution reproduces just the
behaviour that we want.

There are severe problems, though. The most serious being that the entropy
becomes negative at low temperatures and that the spin-glass phase becomes
unstable in the entire T < Tc region.

Clearly, the replica symmetry must be broken somehow. The way to do this
was explained by Parisi [par79a, par80]. We consider the n × n replica matrix
Qab. Before breaking the replica symmetry, Qab = (1 − δab)q0. We now divide
the matrix into constant blocks of size m1 ×m1 and set each diagonal block as
a submatrix whose off-diagonal elements are all q1. All the elements in the off-
diagonal blocks remain in their original value q0. We then take a second replica
symmetry breaking (RSB) step and subdivide the diagonal blocks, introducing a
new overlap q2. See Figure 9.3 for a sketch of these two first steps. This process
is continued indefinitely.

Notice that the replica equivalence property is conserved, because all rows
have the same elements (in different order). Now the values of the matrix elements
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can be described by the pdf

p(q) = 1
n(n− 1)

∑
a≠b

δ(Qab − q) (9.25)

= n
n(n− 1)

[
(n−m1)δ(q − q0)+ (m1 −m2)δ(q − q1) (9.26)

+ (m2 −m3)δ(q − q2)+ . . .
]

(9.27)

Finally, we have to take the limit n→ 0,

p(q) =m1δ(q − q0)+ (m2 −m1)δ(q − q1)+ (m3 −m2)δ(q − q2)+ . . . (9.28)

This limit has inverted the order of themi, so now we have 0 <m1 <m2 < . . . < 1.
In the limit of infinite RSB steps we obtain a continuous variation, so qk → q(x),
with x ∈ [0,1].

In other words, the spin-glass order parameter is no longer a number, but a
function. In particular,

dx
dq
= p(q). (9.29)

There are infinitely many states, whose overlap q′ is 0 ≤ q′ ≤ qEA = q(1). It can
be seen that the RSB method cures the problems of the symmetric ansatz and
produces a stable spin-glass phase. In fact, it has been proved rigorously that
the RSB scheme produces the correct free energy for the Sherrington-Kirkpatrick
model [tal06].

Some of the main physical predictions of this mean-field solution are (we shall
see more in the following sections)

• Below the critical temperature, there are infinitely many states. This is rep-
resented by a non-trivial probability distribution of the spin-glass order pa-
rameter q, which can take any value in [−qEA, qEA] with non-zero probability
density.

• The states are organised in a hierarchical structure, giving rise to an ultra-
metric overlap space. This is best seen by representing the RSB process as a
branching tree. At lowest order, q0, all the elements are equal and contained
in one branch. As we break up the ensemble of states into more and more
clusters we keep increasing the value of q. Then, to find the overlap qab of
two replicas belonging to different branches we simply have to follow up the
tree up to the encounter point. Clearly enough, we have an ultrametric space
where qac ≥ min{qab, qbc}. This hierarchical organisation might explain the
temperature chaos effect observed in the experiments.

• In the presence of an external magnetic field, the spin-glass phase is not
destroyed.



158 Spin glasses: an experimental challenge for theoretical physics

Such is the mean-field solution to the EA model. In principle, one could try
to extend this description to finite dimensions by means of a perturbative renor-
malisation group. One would expect the D = 3 spin-glass phase to share the
essential properties of the mean-field solution (infinity of states, etc.) but differ in
some details. In this way, one obtains the so-called RSB picture of the spin-glass
phase (see [dom98, dom06, méz87, mar00b] for some analytical results and more
detailed physical predictions of this theory).

9.2.2 The droplet picture

The above described RSB picture is not generally accepted as a faithful description
of the spin-glass phase in D = 3. The most popular alternative is the droplet the-
ory [bra84, bra87, mcm84, fis86b, fis88a], which stems from a Migdal-Kadanoff
approximation to the EA model.

The droplet approach paints a completely different picture of the spin-glass
phase. Instead of having a non-trivial order parameter distribution, it considers
only two equilibrium states, with q = ±qEA.

From a phenomenological point of view, the model assumes that the lowest-
energy excitations of the system are compact domains, or droplets, of coherently
flipped spins. In particular, the typical free energy of an excitation of size L scales
with Ly , where y is the so-called stiffness exponent. Alternatively, zero-energy
droplets of size L occur with probability L−y . It can be proved that

y < (D − 1)/2. (9.30)

Notice that the stiffness exponent must be positive in order for there to be
a stable spin-glass phase. The issue has been examined numerically in D = 3,
resulting in values of y ≈ 0.27 [car02] or y ≈ 0.24 [boe04, boe05]. In D = 2 the
exponent is negative and the spin-glass phase disappears.

One of the main consequences of this picture is that the spatial correlations
decay with y ,

C(rij) = 〈sisj〉2 − 〈si〉2〈sj〉2 ∼ 1

ryij
. (9.31)

For this reason, q2 − q2 → 0, that is, the p(q) that we introduced in the previ-
ous section has zero variance. This is translated into the previously mentioned
property of a trivial overlap, where p(q) = δ(q2 − q2

EA).
Another point of departure of the droplet and RSB pictures is the behaviour

in an external magnetic field. The RSB predicts that the spin-glass phase can
survive a small magnetic field. However, in the droplet picture we can generalise
the Imry-Ma argument of Chapter 7. The energy barrier for flipping the droplet is
Ly − hLD/2. Since y < (D − 1)/2, this makes the spin-glass phase unstable in the
presence of even an infinitesimal h.

Finally, let us mention that even if the droplet picture is simple compared to
the RSB one, it still can explain the complex physics of the experimental spin glass.
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In particular, the temperature chaos property is expected. Indeed, the droplet
boundary scales as LDs , with D − 1 ≤ Ds < D. Therefore in order to produce the
Ly scale dependence, with y < Ds, different parts of the droplet’s boundary must
give alternating contributions. This gives rise to a delicate balance of energy and
entropy that is easily upset with a small change in temperature.

9.2.3 The geometry of the excitations and the TNT picture

A final interesting issue concerns the geometry of the activated domains. In the
droplet picture we have assumed these are compact, so their surface scales as LDs ,
where D − 1 ≤ Ds < D, and their surface-to-volume ratio goes to zero as L → ∞.
Furthermore, there are no zero-energy excitations.

In the RSB picture, however, we do have to consider excitations with zero en-
ergy cost. Let us denote by {s(0)x } the original spin configuration and by {s(1)x } the
excited one. Then, we consider the link overlap (as opposed to the spin overlap q)

Qlink = 1
Nl

∑
〈x,y〉

s(0)x s(0)y s(1)x s(1)y , (9.32)

where Nl is the number of links. This may seem a pointless definition from the
mean-field point of view, since in the Sherrington-Kirkpatrick model Qlink = q2

trivially, but we shall see how we can get valuable information from this observ-
able. We note that in D = 3 we no longer have this simple relation, but the RSB
picture still expects Qlink to have a non-trivial distribution (i.e., be some function
of q2).

Let us now consider an excitation where we pass from a ground state to an-
other by flipping O(N) spins. The link overlap, unlike q, only changes for those
links across the surface of the flipped domain. Its relative change is, therefore, of
order LDs−D. In order to make this compatible with a non-trivial distribution for
Qlink it follows that for RSB systems Ds = D. In other words, the excitations are
space-filling.

The above considerations led some authors to consider the issue of zero-
temperature excitations and their geometry, as a means of deciding between the
droplet and RSB pictures. In the year 2000, Palassini and Young [pal00] and Krza-
kala and Martin [krz00] reached the following conclusions from their numerical
simulations

• There exist excitations involving O(N) spins but having finite energy. That
is, the spin overlap distribution is non-trivial (as in RSB).

• The surface of these excitations is Ds < D, so the link overlap distribution is
trivial (as in the droplet picture). In particular [pal00, pal03], D−Ds ≈ 0.44
in D = 3.

Therefore, this trivial-non-trivial (TNT) picture emerges as an intermediate alter-
native to droplet and RSB.
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9.2.4 Coarsening vs. non-coarsening dynamics

Throughout this chapter, there has been a disconnection between experiments
and theory in that the former were considered in a non-equilibrium regime and
the latter was explained in terms of the equilibrium spin-glass phase. The usual
justification for this approach is that the equilibrium structures, though unreach-
able in finite time, do condition the dynamical evolution of the system.

Still, the explicit theoretical study of the non-equilibrium evolution can be very
rewarding. To this end, the first (and most important) step in the understanding
of complex phenomena such as those of Figure 9.2 is surely understanding what
happens during the isothermal aging.

In this sense, one considers the direct quench experimental protocol [ber02,
jim05, mar00a, kis96, rie93, jim03, pg06, cas02, cas03, jau07]. We start by
considering a starting configuration at a very high temperature (i.e., completely
random orientation of the spins) and instantaneously cool it down to the work-
ing temperature T < Tc. We then let the system age for some waiting time tw
and probe its properties at a later measuring time t + tw. In these conditions,
the main feature of the dynamics is the formation and slow growth of coherent
domains, whose size is characterised by a coherence length ξ(tw). We remark that
this coherence length is accessible to experiments, through estimates of Zeeman
energies [joh99], where its extremely slow grow results in ξ ∼ 100 lattice spac-
ings, even close to Tc and for several hours of evolution (the evolution grows ever
slower as we decrease the temperature).

This much is agreed by all, but the controversy soon begins when we consider
the nature of these coherent domains. On the one hand, in the droplet picture
the dynamics consists in the growth, or coarsening, of compact domains where
the spin overlap takes one of its two possible equilibrium values, q = ±qEA. In
this sense, the droplet spin glass behaves as a disguised ferromagnet. The aging
dynamics of all coarsening systems is qualitatively the same.

In particular, if one measures times and lengths in units of ξ(tw), no non-
equilibrium observable should depend on the quenched randomness and the re-
sulting scaling functions should be identical for all coarsening systems [fis88a].
This so-called superuniversality property then treats in exactly the same way sys-
tems as diverse as the ferromagnetic or site-diluted Ising model, or even the
DAFF that we studied in Part III [aro08]. According to the droplet picture then,
the isothermal aging of the spin glass would be no different.5

We are not aware of any investigation of the dynamical consequences of the
TNT picture, but an antiferromagnetic analogy suggests that TNT systems will
also show coarsening behaviour.

The study of the dynamics in the mean-field limit was thoroughly undertaken
in the 1990s [cug93, cug94b]. The emerging picture for an RSB spin glass resulted

5We stress that we are talking of isothermal aging. When the temperature is varied, the
behaviour of a droplet spin glass is much more complicated than that of a ferromagnet, due to
temperature chaos.
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Figure 9.4: Violation of the fluctuation-dissipation theorem (dotted-dashed line) in an
experimental spin glass (from [her02], see text for discussion). In the figure, t′ corre-
sponds to our tw and t corresponds to our t + tw.

much more complex than that of coarsening systems. The main difference is that
in RSB systems there exist equilibrium states with q = 0, so the dynamics remains
forever in this sector. Furthermore, the replicon, a Goldstone model analogous to
magnons in Heisenberg ferromagnets, is present for all T < Tc [dom98, dom06].
As a consequence, the spin overlap is expected to vanish even inside each domain,
in the limit of large ξ(tw). Finally, the spin overlap q is not a privileged observable:
the link overlap exhibits the same aging behaviour (overlap equivalence).

A good example of the relevance of these predictions for experimental work is
the case of the mild violations of the classic fluctuation-dissipation theorem (FDT).
This result, proven in [cal51, kub57], makes it possible to predict the system’s re-
sponse to an external field from its equilibrium dynamics, but only if the system
was already in equilibrium when the field was applied. Still, the pattern of viola-
tions of the FDT for spin glasses admits a very simple parameterisation. Cuglian-
dolo and Kurchan [cug94a, cug97] proposed characterising the deviations from
the FDT behaviour by studying a fluctuation-dissipation ratio, representing the
response as a function of the system correlations.

This procedure was followed experimentally in [her02] and the result is repre-
sented in Figure 9.4. In it, the authors consider the response function at time t+tw
of a field that was switched off at time tw, denoted by χ̃(t, tw). This is represented
against the temporal autocorrelation of the system C̃(t, tw).6 Should the systems
obey FDT, the resulting plot χ̃(C̃) should fall on a straight line (dotted-dashed
line in the figure). In the spin glass, the linear behaviour is indeed reproduced for
short measuring times t, but the curves eventually deviate from this prediction at
a tw-dependent branching point.

In the tw → ∞ limit, the RSB and droplet pictures expect a different pattern

6The experimental definition and measurement of these quantities is somewhat involved,
see [her02] for the details.
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of violations. In both theories, the measured curved should branch off from the
FDT prediction at C̃ = qEA. However, in the RSB framework one expects that
limtw→∞ dχ̃/dC̃ would correspond to the Parisi function x(q) that we introduced
in Section 9.2.1 [fra98, fra99]. In the droplet picture, on the other hand, the curve
of violations should be horizontal. In Figure 9.4 the authors have attempted this
extrapolation (dashed line).

9.3

The Edwards-Anderson spin-glass in numerical simula-
tions

In order to be made quantitative, the different theories for the spin-glass phase
need input from numerical simulations. In this sense one can take two comple-
mentary approaches

• Simulate a very large system with a Monte Carlo update that reproduces the
physical evolution (such as heat bath or Metropolis dynamics). As long as
ξ(tw) � L, one can consider to be observing the same thermodynamical-
limit behaviour as in a physical sample. Then, take a long-tw limit to predict
the physical evolution.

• Simulate smaller lattices with some kind of optimised dynamics (typically
parallel tempering) to equilibrate the systems. Then perform a finite-size
scaling study to perform a large-L extrapolation. Use the information thus
obtained on the equilibrium spin-glass phase to predict the experimental
non-equilibrium behaviour.

We stress that the goal of numerical work on the Edwards-Anderson model is
ultimately to understand the nature of the spin-glass phase. In this sense, the
situation is complementary to that of the DAFF. In the latter, the low-temperature
phase is trivial (antiferromagnetic order), but the phase transition itself is poorly
understood. In the spin glass, the phase transition has been thoroughly exam-
ined numerically [pal99, bal00, has08a, has08b],7 and it is the low-temperature
phase, as far from the critical point as possible, that has the most interest.

Of course, the extreme sluggishness of the dynamics poses a problem for nu-
merical investigations. For instance, the typical time scales of experiments on
spin glasses range from a few seconds to a few hours, but each MCS is equivalent
to only 10−12 s [myd93]. Therefore, one has to perform an enormous number of
lattice updates even to begin to approach the physically relevant regime. In this

7Actually, this is true for the Ising spin glass that we consider here. For the version with
vector spins (Heisenberg spin glass), the nature of the phase transition is still controversial (see,
e.g., [fer09b, vie10]).
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sense, non-equilibrium simulations have reached only about 10−4 s. In the equi-
librium case, the lattice sizes that one can thermalise are very small, so the data
are always suspect of being dominated by finite-size effects and not considered
representative of the real physics.

On the other hand, the understanding of the spin-glass phase is not yet ripe
for a tethered study, because the appropriate reaction coordinate (which must be
sample-dependent) is not known. Still, some of the techniques developed in the
previous chapters will prove to be useful.

9.3.1 Introduction to our work with Janus

In the following chapters we shall take a brute-force approach to the numerical
study of the spin-glass phase. In particular, we have carried out our simulations
using Janus, a special-purpose machine optimised for Monte Carlo simulations of
spin systems. For this restricted class of problems, Janus can outperform con-
ventional computing architectures by several orders of magnitude, thus providing
a qualitative jump in the time and length scales that can be accessed. In partic-
ular, we have been able to follow the non-equilibrium dynamics up to times of
0.1 s, at the threshold of the experimental scale, and we have thermalised lattices
up to L = 32 down to T = 0.64Tc.

The characteristics of Janus are very briefly explained in Appendix D. The
Ising spin-glass simulations carried out with Janus, whose parameters we report
in Appendix E, have produced four physics publications so far: [jan08c, jan09a,
jan10a, jan10b]. This work is the fruit of the collaboration of a large number
of people, including physicists and engineers. To reflect this, the following chap-
ters include only those physical studies where the author carried out a major
fraction of the work. In particular, we leave out the results corresponding to Sec-
tions 5.2 and 6 in [jan09a], as well as those corresponding to Sections 7.2 and 7.3
in [jan10a]. Fortunately, the quoted sections are relatively independent from the
rest of the works, so our presentation will be self-contained.

We note that the order of presentation of our results in this and the next
chapter is markedly different from their original development. In our original
work we were of course constrained by the running of the simulations (we carried
out the non-equilibrium ones first, while our equilibrium simulation campaign
took over a year). In this dissertation, we shall try to present the results in a
logical fashion, rather than in a chronological one.





CHAPTER X

The statics-dynamics correspondence and the
finite-time scaling paradigm

In this chapter we tackle the second of our main topics: the relation between the
(experimentally unreachable) equilibrium phase and the off-equilibrium dynamics
in the context of spin glasses.

After introducing the relevant physical observables and correlation functions,
we try to characterise the isothermal aging dynamics of the D = 3 Edwards-
Anderson spin-glass. We begin by using only non-equilibrium simulations and
study issues like the growing characteristic lengths or the thermoremanent mag-
netisations.

Eventually, however, the non-equilibrium study faces an imposing stumbling
block: in order fully to understand the reasons for the dynamical behaviour at
finite time one must consider extrapolations to infinite time. In particular, we
observe a very interesting crossover behaviour in the so-called dynamical hetero-
geneities (Section 10.5) that we will be unable to quantify.

It is then that we introduce a complementary approach: that of finite-size
equilibrium simulations. First, we promote the relation between the equilibrium
phase and the dynamics to a quantitative level, through a time-length dictionary.
This will allow us to introduce one of the most important concepts (and results)
of this study: the notion that experimental non-equilibrium physics is equivalent
to the equilibrium behaviour, not of the thermodynamical limit, but of a more
modest lattice of L ∼ 100.

Finally, we resume the analysis of dynamical heterogeneities from an equilib-
rium point of view. This allows us to perform a fully quantitative study and,
through it, to take the statics-dynamics one step further: the finite-time scaling
paradigm.

Throughout this chapter, we shall focus only on those aspects of the spin-
glass dynamics and equilibrium about which the different theoretical pictures are
in full agreement. For instance, we do not try to decide whether the dynamics is
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coarsening-like or not. We shall see that this neutral approach can actually take
us very far.

In Chapter 11 we shall, on the other hand, address the RSB-droplet-TNT con-
troversy directly. We shall then try to decide which of these is a better description
of the spin-glass phase.

10.1

Physical observables for spin-glass dynamics

We work on the Edwards-Anderson model introduced in the previous chapter,

H = −
∑
〈x,y〉

Jxysxsy. (9.6)

We use bimodal couplings, Jxy = ±1 with 50% probability. For this Hamiltonian,
the phase transition occurs at Tc = 1.109(10) [has08a, has08b].

We study the dynamics in the direct quench protocol explained in the previous
chapter. We use heat-bath dynamics, which is in the universality class of physical
evolution. We take 1 MCS to correspond to 10−12 seconds [myd93]. When studying
the non-equilibrium dynamics we shall consider that we are in the thermodynam-
ical limit, even if we simulate in a finite lattice (L = 80 in our case). In practice,
this approximation is good as long as the length scale of the coherent domains
that grow during the evolution remains much smaller than the system size. We
shall check this issue in Section 10.3.2

We represent by O(tw) the time evolution of some observable O for a single
sample, and by O(tw) its disorder average. In principle one would have to average
over many thermal histories. However, the main source of error is sample-to-
sample fluctuation, so it is better to run more samples than more histories for
each one. Still, we run two independent thermal histories for each sample (two
real replicas), for reasons that will become apparent below. Whenever one ob-
servable can be averaged over the two replicas, we shall do so, even if we do not
indicate it explicitly.

The first issue we have to consider when defining physical observables is the
gauge symmetry induced by the quenched average [tou77]. Indeed, the Hamilto-
nian is unchanged under the transformation

sx −→ αxsx, (10.1)

Jxy −→ αxJxyαy, (10.2)

where αx = ±1. In principle, this would mean that one should have to consider for
each observable its gauge average 2−L

D∑
{αx}O({αxsx}). Notice, however, that the

gauge-transformed couplings are as probable as the original ones, so the disorder
average of O is the same as its average over the gauge orbit.
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We need, therefore, gauge invariant observables. The usual way out of this
problem is introducing real replicas. These are defined as statistically indepen-
dent systems {s(i)x } that evolve with the same set of Jxy. Their overlap field is

qx = s(1)x (tw)s(2)x (tw), (10.3)

obviously gauge-invariant.
The averaged density of the overlap field defines the spin-glass order parame-

ter, the spin overlap q

q(tw) = 1
N

∑
x
qx(tw). (10.4)

We can also consider the spin-glass susceptibility

χSG(tw) = Nq2(tw), (10.5)

which, as can be seen using fluctuation-dissipation relations, is essentially the
same as the non-linear susceptibility χ4 —see (5.4) and (5.23). In fact (in equilib-
rium)

6χ4 = χSG − 2/3. (10.6)

10.1.1 Temporal correlations

Since we are working on an aging system, we need to consider two time scales, as
we commented in Chapter 9. We are particularly interested in the overlap between
the configurations at the waiting time tw and at the measuring time t + tw,

cx(t, tw) = s(i)x (tw)s(i)x (t + tw). (10.7)

Notice that this quantity needs only one replica.
We can use the two-time overlap to define the temporal correlation function

C(t, tw) = 1
N

∑
x
cx(t, tw). (10.8)

For fixed tw, C(t, tw) is strictly decreasing in t, indicating the gradual but very slow
decorrelation in the system. In fact, for fixed tw, the C(t, tw) can be interpreted as
the thermoremanent magnetisation (Section 10.4). This is because we can make
a gauge transformation from the uniform configuration resulting from a strong
magnetic field to the random initial configuration in our simulations. Therefore,
the overlap with this random configuration plays the part of a magnetisation.

In the pseudoequilibrium regime, t � tw, the (real part of the) magnetic sus-
ceptibility at frequency ω = 2π/T is given by the fluctuation-dissipation formula(
1− C(t, tw)

)
/T .

For any finite tw, limt→∞ C(t, tw) = 0. However, in equilibrium tw → ∞, the
overlap has a finite value below Tc. In particular, if we define the stationary, or
translationally invariant, part of the correlation,

C∞(t) = lim
tw→∞

C(t, tw), (10.9)
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we get
qEA = lim

t→∞
C∞(t). (10.10)

This equation defines the value of the Edwards-Anderson order parameter.1 The
dynamical computation of qEA from this limit is notoriously difficult [pg06, iñi97],
even with the extremely long times simulated on Janus (Section 10.6). In this
chapter, we shall consider an alternative, equilibrium, approach (Section 10.8).

The introduction of the stationary part of C(t, tw) can be generalised to a di-
vision of this correlation function in several time sectors. We can define the µ
sector by

C(µ)∞ (s) = lim
tw→∞

(stµtw , tw). (10.11)

The translationally invariant sector would thus correspond to µ = 0. Notice that
qEA < C(0)∞ (s) < 1. In order to cover the whole range of values C ∈ [0,1], at least
another sector must be considered. The simplest (and experimentally supported)
one is the full-aging regime [rod03], obtained by setting µ = 1. If full-aging holds,
one would expect C(1)∞ (s) to cover the whole range from qEA to 0. We shall examine
these claims in Section 10.2.

We finally note that some authors [cas02, cas03] use different definitions for
these functions, so care must be exercised when consulting the literature. In
particular, often t is taken to be our t + tw and the C∞(t) is defined so that it
tends to zero (i.e., subtracting qEA from it).

10.1.2 Spatial correlations

The spin-glass dynamics is characterised by the growth of coherent domains both
in the coarsening and the non-coarsening pictures (even if their shape and nature
differ). These can be studied through the spatial autocorrelation of the overlap
field

C4(r, tw) = 1
N

∑
x
qx(tw)qx+r(tw) . (10.12)

In particular, the long-distance decay of C4(r, tw) defines the coherence length
ξ(tw)

C4(r, tw)
r→∞−−−−−→ 1

ra
f
(
r/ξ(tw)

)
. (10.13)

At the critical point, a is non-zero and related to the anomalous dimension,
through a(Tc) = D − 2+ η. In D = 3, a(Tc) = 0.625(10) [has08a, has08b].

Below Tc, the value of a characterises the dynamics. For fixed r/ξ(tw), the
correlation function of a coarsening system does not tend to zero when r → ∞,
since the domains are compact. In a system described by the RSB picture, how-
ever, there exist equilibrium states with q = 0, so the dynamics remains forever
with a vanishing order parameter. This is related to the existence of the replicon

1Recall that in a droplet setting this is the only equilibrium value of q, while in an RSB setting
it is the maximum of the Parisi function q(x).
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mode, a Goldstone boson (like magnons in Heisenberg ferromagnets or pions in
high-energy physics). Therefore, a ≠ 0 for RSB systems. It has been conjectured
that a(T < Tc) = a(Tc)/2 [dom98]. The exponent a is probably discontinuous at
Tc [par97].

In short, the value of a below the critical temperature is a good marker to
distinguish coarsening dynamics (droplet or TNT) from the RSB predictions. We
shall consider this issue in Chapter 11.

Notice that the presence of the damping function is required due to causality
considerations. In the case of C4(r, tw), the damping function f seems to decay a
little faster than an exponential [jim05, mar00a],

f(x) ∼ e−xβ , β ≈ 1.5. (10.14)

Notice that the spin-glass susceptibility (10.5) can be defined as

χSG(tw) = Nq2(tw) =
∫

dDr C4(r, tw). (10.15)

In order to characterise the aging dynamics, one must take dynamical hetero-
geneities into account [cas02, cas03, jau07]. This is best accomplished through
the two-time spatial correlation

C2+2(r, t, tw) = 1
N

∑
x

[
cx(t, tw)cx+r(t, tw)− C2(t, tw)

]
(10.16)

Notice that this is a connected correlation function. In principle, it may seem

more natural to subtract C(t, tw)
2
, but due to the self-averaging nature of C (see

below), both definitions are equivalent in the thermodynamical limit. We note
that this correlation is natural for the structural glasses problem, where the order
parameter is not known (see, e.g., [ber05] and references therein).
C2+2 seems complicated, but it actually has a simple probabilistic interpre-

tation. Let us call a defect a site where cx(t, tw) = −1 and let n(t, tw) be the
density of such defects. Trivially, C(t, tw) = 1 − 2n(t, tw). Then, the conditional
probability of finding a defect at site x + r, knowing that there is one at x, is
n(t, tw)g(r), where g(r) represents the pair-correlation function of the defects.
Hence, C2+2(r, t, tw) is just 4n2(t, tw)

(
1− g(r)).

The long-distance decay of C2+2(r, t, tw) defines the correlation length ζ(t, tw),
the characteristic length scale for dynamic heterogeneities,2

C2+2(r, t, tw)
r→∞−−−−−→ 1

rb
g
(
r(ζ(t, tw)

)
. (10.17)

Little is known in the literature about either b of g, since, before Janus, the time
scales that could be explored reached only very small values of ζ(t, tw).

2Notice that C2+2 is the difference of two correlated quantities, so its error is significantly
reduced from what one would expect from error propagation. We take this into account, as
always, with the jackknife method (Appendix B).
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Notice that we have called ζ a correlation length, while we said that ξ was a
coherence length. The distinction stems from the fact that the former is computed
from a connected correlation function and the latter from a non-connected one.
In particular, ξ(tw) diverges in the large-tw limit, while this may or may not be the
case for ζ. We must point out, though, that this nomenclature is not universal.

In the RSB framework, we can distinguish two sectors in the dynamics: (i)
relaxation within a single state, where qEA < C < 1, and (ii) exploration of new
states, where C < qEA. These can be identified by the relation of ζ and ξ. In
particular, for sector (i) we expect ζ(t, tw)� ξ(tw). We shall find ζ(t, tw)/ξ(tw) a
valuable dynamical variable (Section 10.9).

Throughout this chapter, and the next, we shall need to consider the evolu-
tion of the physical observables along many orders of magnitude in time, which
complicates their interpretation and analysis. Yet, recall that, for fixed tw, C(t, tw)
defines a one-to-one relation between C and t. Hence, we shall often eliminate t
as an independent variable in favour of C .

A final note concerns the issue of self-averaging. Notwithstanding the discus-
sion in Section 2.2.2, most of the observables considered here are actually self-
averaging. This is because, in the non-equilibrium regime, the coherence length
is much smaller than L, so we essentially have about LD/ξD independent blocks.
The exception is χSG, which is non-local. In fact, the central limit theorem suggests
that the probability distribution of q(tw) should tend to a Gaussian when L → ∞.
Therefore, the variance of χSG(tw) is ∼ 2χ2

SG(tw) in the limit of large systems.

10.1.3 Our non-equilibrium simulations

We comment the parameters of our non-equilibrium simulations, as well as some
technical details, in Appendix E. Let us summarise by saying that we have run
simulations for three subcritical temperatures T = 0.6,0.7,0.8 as well as for T =
1.1 ≈ Tc. For the first three temperatures, we reached tw = 1011, simulating 96
samples for T = 0.6,0.8 and 63 samples for T = 0.7. At the critical point we
reached tw = 4.2× 109 and simulated 32 samples.

These simulations were first presented in [jan08c]. Later, in [jan09a], we
simulated a new set of 768 samples for T = 0.7, which shall constitute our main
working temperature. For these new simulations we reached only tw = 1010, since
for longer times we had observed finite-size effects (see Section 10.3.2). When
discussing our results at T = 0.7, we shall find it sometimes convenient to use
the longer 63-sample simulation, instead of the shorter but more precise one with
768 samples.
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10.2

Aging and full aging in C(t, tw)

We start our study of the non-equilibrium dynamics by considering the two-time
correlation function. In Figure 10.1 on the next page we have plotted C(t, tw) for
T = 0.6 (our lowest temperature), for a range of tw across 11 orders of magnitude
(equivalent to physical times from picoseconds to one tenth of a second).

We observe the qualitative claims made in the previous section, namely

• For each tw, C(t, tw) is a strictly decreasing function of t.

• limt→∞ C(t, tw) = 0.

• As we increase tw, we begin to see an enveloping curve. This is the C∞(t)
that we shall study in Section 10.6.

In the following we try to quantify these remarks. We begin by attempting to pa-
rameterise the aging behaviour. It has been claimed in experimental work [rod03]
that C(t, tw) is well described by a full-aging behaviour, that is

C(t, tw) = f
(
(t + tw)/tw

)
, (10.18)

at least in the range 1014 < tw < 1016. To check for this in a systematic way, we
consider the functional form

C(t, tw) = A(tw)(1+ t/tw)−α(tw). (10.19)

If full aging is correct, the parameters A(tw) and α(tw) should be constant for
large tw. This has been checked before [jim03], but with much smaller statistics.

We present the results of fits to (10.19) as a function of tw for our three sub-
critical temperatures of T = 0.6,0.7,0.8 in Figure 10.2. For each tw, we consider
the range tw ≤ t ≤ 10tw (we want to avoid the short-times behaviour). These fits,
and their errors, have been computed with the jackknife method explained in Ap-
pendix B. In our simulated range, the exponent α(tw) is an increasing function of
tw, but its growth slows down noticeably. Still, the behaviour at tw = 1016 seems
beyond reasonable extrapolation.

Notice that the α(tw) exhibits some suspicious undulations (especially for T =
0.6). This is a visual effect caused by the data correlation, as we discuss in detail
in Section b.3.3.2.

In Section 10.4 we shall use our fits to (10.19) to study the thermoremanent
magnetisation.
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Figure 10.1: Temporal correlation function C(t, tw), Eq. (10.8), for T = 0.6. We plot the
curves as a function of t for tw = 22i, where i = 1,2, . . . ,18 (tw grows from bottom to
top). The errors are smaller than the width of the lines.
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Figure 10.2: Parameters in a fit of C(t, tw) to (10.19) as functions of tw. For T = 0.7
we use our longer simulations with 63 samples (cf. Figure b.3). The evolution seems to
slow down for large tw, but we do not yet see the full aging behaviour, in which these
parameters are constant.
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10.3

Spatial correlations and the coherence length

In this section we consider the issue of growing length scales in the spin-glass
dynamics. The computation of characteristic length scales is a recurring problem
in statistical mechanics, as well as in lattice gauge theory. In previous chapters
we solved it by considering the second-moment definition (5.9). Notice that, in the
thermodynamical limit, this second-moment estimator is equivalent to

ξ(∞)2 =
√∫

dDr r2C4(r, tw)∫
dDr C4(r, tw)

. (10.20)

The denominator in this equation is χSG(tw), Eq. (10.15), which does not self-
average. Therefore, this method is problematic in non-equilibrium studies, where
one considers very large systems but not many samples (in our case Nsamples ≈
100 for T = 0.6,0.8, Tc andNsamples = 768 for T = 0.7).

On the face of this problem, one could think of replacing the integral estima-
tors by fits to some functional form for C4(r, tw) featuring the ξ(tw). However,
in the spin-glass case we do not know this explicit functional form —we have
at best a reasonable ansatz as to its scaling, Eq. (10.13)— so this is not a viable
alternative. In addition, we would face the ever present problem of statistical
correlations, which complicate fits and their interpretation.

Therefore, we must go back to the integral estimators. In this respect notice
that the C4(r, tw), for fixed r, is self-averaging. The lack of self-averaging in ξ2

stems from the fact that the integration volume grows with L. For a fixed size,
it is the dismal signal-to-noise ratio in the long-distance tails which spoils the
precision. But this is precisely the problem that one faces when trying to compute
the integrated autocorrelation time from a time series (Section a.2.1) and we can
borrow its solution: a self-consistent cutoff.

10.3.1 Integral estimators of characteristic length scales

We start our discussion by simplifying our definition of the spatial correlations to
take into account only values of r along the axes. We define

C4(r , tw) = 1
D

D∑
i=1

C4(r ûi, tw), (10.21)

where the ûi denote each of the lattice unit vectors. That is, we take the values
of the correlation for a distance r along the axes as representative of the whole
spherical shell of radius r . We shall study the goodness of this approximation in
Section 10.3.4,
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Now, for positive integer k, we consider the integral,

Ik(tw) =
∫ L/2

0
dr r kC4(r , tw). (10.22)

Notice that our bound of integration is L/2, and not L, due to the periodic bound-
ary conditions. Since we are considering the regime ξ(tw) � L, this makes no
difference. In addition, the actual numerical computation of Ik uses an error-
dependent cutoff: we only integrate up to the point rcutoff where the relative error
in C4(r , tw) rises above some threshold. This is the same trick used in the com-
putation of the integrated autocorrelation time in Section a.2.1. We shall discuss
this issue in more detail in Section 10.3.3.

With this notation, and assuming rotational invariance, the second-moment
estimate is

ξ(∞)2 '
√
ID+1(tw)
ID−1(tw)

. (10.23)

An alternative approach, considered in [kis96], would be to identify ξ(tw) with
I0(tw), which has the correct dimensions. However, this is only a good definition
if a = 0 and we want a definition that would work for any scaling behaviour of
the type (10.13).

To this end, we note first that

Ik(tw)∝ ξk+1−a(tw). (10.24)

Therefore, we can introduce the following definition

ξk,k+1(tw) = Ik+1(tw)
Ik(tw)

∝ ξ(tw). (10.25)

Notice that the coherence length is only defined up to a constant scale factor, so
any of the ξk,k+1(tw) would work.

Still, there is a systematic error involved. Equation (10.13) is valid only in the
regime where 1 � r � L. The resulting bias is minimised by considering large
values of k, which suppress short distances in the integrals. However, too large
a value of k would give too much weight to the tails of the correlation function,
where the signal-to-noise ratio is worst. A compromise in the value of k is clearly
needed (cf. Figure 10.5).

In Section 10.3.3 we shall compare different estimators of the coherence length
and demonstrate that, indeed, the integral ones produce a significant error reduc-
tion. Furthermore, the issue of the choice of k is not as critical as it may seem. For
the moment, let us proceed with the physical discussion, using as our preferred
estimator ξ1,2(tw).

10.3.2 The dynamical critical exponent and finite-size effects

We consider in Figure 10.3 our coherence length ξ1,2(tw) for T = Tc and for our
three subcritical temperatures. For T = 0.7 we have plotted our simulations with
63 samples, since they reach longer times.
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Figure 10.3: Growth of the coherence length for several subcritical temperatures and for
the critical point. For T = 0.7 we use our longer simulations with 63 samples.

As expected, the growth of ξ(tw) is slower at lower temperatures. Furthermore,
our curves follow a power law for a wide time range. There are some deviations
at short times, due to lattice discretisation effects (our definitions do not make
much sense for ξ . 3). Some of the curves also present some deviations for long
times (this is most noticeable for T = 0.8).

These can be interpreted as finite-size effects, even though we are simulating
very large lattices (L = 80). Indeed, when studying non-equilibrium dynamics
we assume that our system is in the thermodynamical limit, which in principle
requires ξ(tw) � L. In practice, the bound depends on the numerical accuracy.
From finite-size scaling we would expect the largest tw for which L = 80 still
represents L = ∞ physics to scale as L ≥ kξ1,2(tw). We have estimated k by
computing ξ1,2(tw) in simulations for L = 24,40 and noting where they diverge
from their L = 80 counterparts (Figure 10.4). We conclude that at T = 0.8 the safe
range is L ≥ 7ξ1,2(tw). For Tc, the equivalent bound is L ≥ 6ξ1,2(tw).

In order to be safe, we have considered that ξ1,2(tw) is physically meaningful
for 3 ≤ ξ(tw) ≤ 10. For T = 0.6 the upper bound is not reached, while for T = 0.7
it corresponds to tw ∼ 1010 and for T = 0.8 it corresponds to tw ∼ 108. In this
range, we have fitted the coherence length to a power law, in order to determine
the dynamical critical exponent z,

ξ(tw) = A(T)t1/z(T)
w . (10.26)

The results of these fits can be seen in Table 10.1. We also include the maximum
waiting time safe from finite-size effects, defined as ξ1,2(tmax

w ) = 10.
The resulting values of z are very large, going from z(Tc) = 6.86(16) at the

critical point to z(T = 0.6) = 14.06(25) at our lowest temperature. Also, we find
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Figure 10.4: Finite size effects in ξ(tw), obtained by computing the difference between
ξ1,2(tw) for each of our lattice sizes and a power-law extrapolation. In particular, we
define ξ∞1,2(tw) as the result of applying the fit to (10.26), computed for L = 80 in the
range ξ ∈ [3,10], to the whole temporal range. Then, for each lattice size we consider

the relative difference [ξ∞1,2(tw)− ξ(L)1,2(tw)]/ξ
∞
1,2(tw).

T Nsamples [ξmin, ξmax] z χ2
d/d.o.f. tmax

w

0.6 96 [3,10] 14.06(25) 41.7/82 ≈ 9× 1011

0.7 63
[3,10] 11.84(22) 82.7/81 ≈ 2.2× 1010
[3.5,10] 12.03(27) 52.7/71

0.8 96 [3,10] 9.42(15) 17.1/63 ≈ 4.3× 108

1.1 32 [3,10] 6.86(16) 18.7/46 ≈ 3.5× 106

0.7 768

[3,10] 11.45(10) 86.9/76

≈ 2.2× 1010[3.5,10] 11.56(13) 46.6/66
[4,10] 11.64(15) 40.1/58
[4.5,10] 11.75(20) 29.6/50

Table 10.1: Value of the dynamic critical exponent z for several temperatures. For our
simulations with less than 100 samples we have used the fitting range ξ1,2 ∈ [3,10],
while for our 768-sample simulation at T = 0.7 we have needed to restrict the fitting
range. For ξ1,2(tw) > 10, our simulations are affected by finite-size effects. We also
report the value of tmax

w for which this bound is reached (for T = 0.6 we never reach
ξ1,2 = 10, so this is an extrapolation).
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Figure 10.5: Plot of the spatial correlation function C4(r , tw) for several subcritical tem-
peratures and tw = 220. We show the correlation multiplied by r2 (left) and r4 (right),
needed to compute I2(tw) and I4(tw), respectively. The signal-to-noise ratio is the same
in both cases, but for the latter the distances with maximum weight are closer to the
noise-dominated region. The curve for T = 0.7 is the average over 768 samples, while
those for T = 0.6,0.8 were computed with 96 samples.

that this exponent roughly follows the law

z(T) = z(Tc)
Tc

T
, (10.27)

consistent with previous numerical and experimental studies [joh99, mar00a].
Furthermore, if we extrapolate the coherence length to a typical experimental

scale of 100 s (tw ∼ 1014), we find

ξ1,2(tw = 1014, T = 0.6) = 14.0(3), (10.28)

ξ1,2(tw = 1014, T = 0.7) = 21.7(4), (10.29)

ξ1,2(tw = 1014, T = 0.8) = 37.0(14), (10.30)

ξ1,2(tw = 1014, T = Tc ) = 119(9), (10.31)

which nicely compare with experiments [joh99, ber04b].

10.3.3 Comparison of different estimators of the coherence length

In this section we consider some details on the implementation of our integral
estimators and present a comparison of the different methods to compute ξ(tw).

A naive numerical implementation of (10.22) to compute ξ1,2 already yields
a considerable increase in precision with respect to ξ2. However, we can still
improve the computation. In Figure 10.5 we show how r 2C4(r , tw) is very well
behaved up to the point where it becomes compatible with zero, where the errors
increase dramatically, spoiling the precision of the whole integral. We take this
into account with a self-consistent integration cutoff, much like what we describe
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Figure 10.6: Left: Result of computing ξ1,2(tw) in two different ways for our 96 samples
at T = 0.6. In the red curve we stop the integration at the cutoff point where the relative
error in C4(r , tw) is greater than 1/3. In the blue curve we add the contribution of the tail
from that point on, estimated with an extrapolation using a fit to (10.14). The difference
is small, but the second method maintains the power law behaviour until longer times.
Right: Analogous plot for our 768 samples at T = 0.7. Now the effect is much less
noticeable, since the increase in statistics has shifted the cutoff point.

for the evaluation of integral correlation times in Appendix A. We integrate our
data (interpolated with a cubic spline, although this choice is arbitrary) only up
to the point where the relative error of C4(r , tw) becomes greater than 1/3. Thus,
we reduce the statistical error at the cost of introducing a, hopefully small, cutoff
bias. We can minimise this systematic effect by estimating the contribution of the
tails with a fit to

C4(r , tw) = A
r 0.4 exp

[
−(r/ξfit(tw)

)1.5
]
. (10.32)

This is the scaling function (10.14), using a = 0.4. The fit is computed for
3 ≤ r ≤ min{15, rcutoff}, where the signal is still good. This correction turns out
to be only relevant for the largest times and this only for our simulations with
∼ 100 samples. For T = 0.7, where we have 768 samples, the cutoff distance is
increased and the effect of the tail correction is hardly noticeable (Figure 10.6).

We have claimed that this method yields a considerable increase in precision
with respect to the computation of ξ2(tw), or with the evaluation of ξ from a fit.
We offer two demonstrations of this. First, in Figure 10.7 we compare 4πI2(tw)
with Nq2(tw), two quantities that should coincide (assuming rotational invari-
ance). As we can see, the former is much more precise for the whole span of
our simulation. As a second check, we have plotted in Figure 10.8 the coherence
length for T = 0.7 (where we have the best statistics) for several methods. All de-
terminations are proportional, but the integral estimators are much more precise.

As a final test, we check not only our determination of ξ, but also its error
estimate by comparing our 63-sample computation of [jan08c] with the improved
768-sample one of [jan09a] for T = 0.7. Figure 10.9 shows the difference in both
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the second-moment estimate ξ2 of (10.20) and the result of a fit to (10.13) using (10.14)
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more precise.
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Figure 10.11: Level curves C4(r, tw) = c for c = 0.3 (dashed lines) and c = 0.1 (solid
lines) at T = 0.6 (dotted lines are circles, for visual reference). The plot is restricted to
the z = 0 plane, for clarity. The innermost curve corresponds in both cases to tw = 4 and
the succeeding ones correspond to geometrically growing times (tw = 4×16i). As we can
see, the deviations from isotropy are mainly due to lattice discretisation (i.e., functions
of r ). The errors are smaller than the thickness of the lines.

determinations (the error in the difference is the quadratic sum of the individual
errors, since both sets of samples are disjoint). We have excellent agreement for
the whole time range. Notice that the points in this curve are correlated in time,
so the fluctuations of neighbouring points are not independent.

Finally, we consider the error estimates in Figure 10.10. The expected error
reduction is

√
768/63 ≈ 3.5, but we do not reach this value for most of our times.

Notice that the relative statistical error in our error estimate is ∼ 1/
√

2Nsamples,

so the effect is not a fluctuation. The explanation is that the cutoff distance has
increased for the simulation with 768 samples, which trades statistical error for a
reduction of systematic biases.

10.3.4 The isotropy of C4(r, tw)

Throughout this section we have glossed over the issue of rotational invariance,
assuming it is a good approximation. At all times we worked with correlations
C4(r , tw) restricted to the directions along the axes, hence ignoring most of the
N points for a given tw. The main motivation for this approach has traditionally
been to avoid the computation of the whole C4(r, tw), a task of O(N2) in a naive
implementation. However, as detailed in Appendix A, we can turn the evaluation
of an autocorrelation into the computation of two real Fourier transforms (the
Wiener-Khinchin theorem). This latter task is O(N logN) with the FFT algorithm.
Therefore, computing the whole C4(r, tw) implies no increase in numerical effort.
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and with correlations along the axes, ξ1,2. Both estimates coincide for large times and
their errors are similar for the whole range. Data for T = 0.6.

We examine in this section whether this complete correlation function is iso-
tropic and whether we can take advantage of all the N point to reduce statistical
errors in the determination of ξ(tw). The first question is answered in Figure 10.11,
where we plot level curves C4(r, tw) = c for several values of c and tw. As we
can see, isotropy is recovered at quite small distances (remember we are only
interested in ξ & 3).

We next consider the possible improvement of our determination of ξ(tw) with
the three-dimensional correlation function. In order to use our integral method
we must first average over spherical shells,

Qk(n, tw) =
∑
|r|∈[n,n+1) |r|kC4(r, tw)∑

|r|∈[n,n+1) 1
. (10.33)

Notice that Qk(0, tw) = r kC4(0, tw) = δk0. We can use Qk(m, tw) as we did
r kC4(r , tw) in our integral estimators. We would expect the resulting coherence
length ξ(Q)1,2 (tw) to coincide with ξ1,2(tw) for large tw. However, if the fluctuations

of C4(r, tw) are independent, ξ(Q)1,2 will have smaller errors, due to the increase in
statistics. In fact, see Figure 10.12, the statistical correlation between different
parts of the lattice is so great that it renders the gain in precision negligible.

In short, the usual approximation of considering only correlation along the
axes introduces neither a bias nor an increase in statistical errors. Still, the com-
putation of C4(r, tw) could be rewarding if one needed to consider Ik with k > 2
(Figure 10.13).
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10.4

The thermoremanent magnetisation

The thermoremanent magnetisation of a spin glass is one of the easiest quan-
tities to study experimentally. Indeed, it has been known since the 1980s that
it decays with a power law (see [gra87, pré88] and references therein), even for
temperatures very close to the critical point.3

As we explained in Section 10.1.1, the two-time correlation C(t, tw) can be iden-
tified with the thermoremanent magnetisation (we have to choose tw ∼ 1 as our
initial ‘magnetised’ configuration and consider its overlap with the configuration
at time t� tw). Following [par97] we have fitted our data to the decay law

C(t, tw) = A0(tw)+A1(tw)tc(tw). (10.34)

Notice that for a finite number of samples the correlation function does not ac-
tually go to zero for long times, hence the need for the finite asymptote A0(tw).
This is actually also a problem for experimental studies [gra87].

Table 10.2 shows the results of fits to (10.34) for our subcritical temperatures.
The fits where computed in the range 106 ≤ t ≤ tmax

w , where tmax
w was given in

Table 10.1. The lower bound of the fitting region can be varied along several
orders of magnitude with no effect. Notice that the values of χ2

d/d.o.f. are always
much smaller than one, due to the correlations.

3The only deviations from this simple behaviour were observed for T > 0.98Tc.
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T tw c(tw) A0(tw)× 103 χ2
d/d.o.f. d(tw)

0.6 ≈ 0.55Tc

2 −0.1525(23) 2.6(6) 14.7/64 2.14(5)
4 −0.1495(22) 2.8(8) 15.5/64 2.10(5)
8 −0.1459(20) 2.5(10) 17.4/64 2.05(4)

16 −0.1430(19) 2.4(12) 17.5/64 2.01(4)

0.7 ≈ 0.64Tc

2 −0.1787(14) 1.47(25) 23.3/50 2.067(27)
4 −0.1765(13) 1.8(3) 18.4/50 2.041(26)
8 −0.1733(12) 1.7(4) 18.9/50 2.004(25)
16 −0.1704(12) 1.6(5) 15.4/50 1.971(25)

0.8 ≈ 0.73Tc

2 −0.210(8) 1.7(10) 13.9/32 1.98(9)
4 −0.212(7) 2.8(12) 11.1/32 2.00(8)
8 −0.208(7) 3.0(14) 10.8/32 1.96(8)

16 −0.205(6) 3.0(18) 8.43/32 1.93(7)

Table 10.2: Result of fitting the thermoremanent magnetisation to (10.34), for our three
subcritical temperatures. We give the temperatures in terms of Tc, to facilitate compar-
ison with the experimental results of (10.35). For each fit we give the two parameters
and the diagonal chi-square per d.o.f. The last column shows the result of computing
d = −cz, in order to consider the scaling of equation (10.37). The fits are computed for
106 < t < tmax

w (T) (cf. Table 10.1), which accounts for the different number of d.o.f. at
each temperature.

The asymptote A0(tw) is in all cases of about 10−3, small compared to the
the smallest value of C(t, tw) that we reach for our finite t, of about 10−2. The
decay exponent is very small, T -dependent and exhibits a slight, but systematic
dependence on tw (a tendency that was already observed in [kis96]).

The experimental values for c are, from [gra87],4

c(0.55Tc) ≈ −0.12, c(0.67Tc) ≈ −0.14, c(0.75Tc) ≈ −0.17, (10.35)

These values are slightly higher than our results of Table 10.2. The reason may be
that our values of c have been computed in fits where t and tw differ by as many
as 10 orders of magnitude, while in experimental work t/tw . 104.

We can recall here our study of full aging in Section 10.2, where we considered
a fit in a narrower window of tw ≤ t ≤ 10tw. We can extrapolate our α(tw) to an
experimental time of 100 s with a quadratic fit, such as we showed in Figure b.2.
We thus obtain

−1/α(tw = 100 s) ≈ −0.11, T = 0.6 ≈ 0.55Tc, (10.36a)

−1/α(tw = 100 s) ≈ −0.12, T = 0.7 ≈ 0.64Tc, (10.36b)

−1/α(tw = 100 s) ≈ −0.14, T = 0.8 ≈ 0.73Tc. (10.36c)

4The errors are small, about the size of the plotted data points in Figure 3b of [gra87].
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These values still do not match the experimental values of (10.35). However, the
difference between both sets seems to be roughly independent of temperature
(this is best seen by plotting the parabolas defined by each of the sets of expo-
nents). We believe this is due to an extrapolation error, with a similar bias for all
temperatures.

Recall now that the coherence length ξ(tw) was also well represented by a
power law. It follows that C(t, tw) should be a power of ξ(t + tw), at least for the
small tw of Table 10.2. In particular we write

C(t, tw) ∼
[
ξ1,2(t + tw)

]−d. (10.37)

We could perform a fit to (10.37) to find d, but we would have to contend with
errors in both the x and y coordinates (see Section b.3.2). Rather, we combine
equations (10.26) and (10.34) to find

d = cz. (10.38)

Since both for C(t, tw) and for ξ1,2(tw) we are computing one fit for each jackknife
block, we can apply this relation block by block to obtain d and its error estimate,
without fitting for it directly. The result can be seen in Table 10.2. We obtain
d ≈ 2, with a temperature dependence at the limit of significance.

This is a potentially useful observation for experimental work since, as we said
before, the thermoremanent magnetisation is relatively easy to measure (com-
pared with the coherence length, in any case [joh99]). Therefore, Eq. (10.37) could
potentially be used as a definition of ξ(tw) for experimental work.

As we have seen, there are several systematic effects in our results, mainly the
incompatibility of (10.35) and (10.36) and the need for a finite asymptote A0(tw)
in (10.34). This suggests that (10.34) is perhaps not the best parameterisation. We
can consider the alternative description

C(t, tw) = B(tw) exp
[
e(tw)(log t)f(tw)

]
. (10.39)

This would reproduce a power law if f(tw) = 1. Notice the difference of this
functional form with a stretched exponential, discarded in [gra87] for our tem-
perature range. The results of fits to (10.39) for several tw and fitting ranges can
be seen in Table 10.3. We observe that the fit parameters are very stable to vari-
ations in the fitting window. The value of f(tw) is incompatible with 1, at least
for T = 0.6,0.7. However, from the point of view of the χ2

d/d.o.f., both (10.34)
and (10.39) are equally good.

Finally, let us go back to (10.34) and Table 10.2. We see that the exponent c(tw)
is roughly linear in T . This suggests that the thermoremanent magnetisation
could be a temperature-independent function of T log(t). We have tested this
conjecture in Figure 10.14 and found it to be only approximate.
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T tw tmin e(tw) f (tw) χ2/d.o.f.

0.6

2
103 −0.236(7) 0.873(9) 52.2/104
106 −0.30(6) 0.82(5) 13.9/64

4
103 −0.203(6) 0.909(8) 47.9/104
106 −0.25(4) 0.85(4) 13.5/64

8
103 −0.176(4) 0.943(7) 41.5/104
106 −0.21(3) 0.90(4) 13.9/64

16
103 −0.158(4) 0.968(7) 38.1/104
106 −0.19(3) 0.92(4) 15.3/64

0.7

2
103 −0.263(4) 0.890(4) 43.0/90
106 −0.32(3) 0.84(3) 14.4/50

4
103 −0.230(3) 0.921(4) 71.9/90
106 −0.29(3) 0.862(25) 12.8/50

8
103 −0.2003(23) 0.955(3) 94.1/90
106 −0.253(23) 0.895(23) 13.0/50

16
103 −0.1768(20) 0.985(3) 138/90
106 −0.226(19) 0.921(22) 10.6/50

0.8

2
103 −0.302(16) 0.891(16) 45.1/72
106 −0.5(3) 0.77(15) 14.3/32

4
103 −0.257(12) 0.934(14) 63.6/72
106 −0.6(4) 0.71(17) 11.4/32

8
103 −0.223(10) 0.970(13) 69.8/72
106 −0.49(24) 0.76(12) 11.1/32

16
103 −0.192(8) 1.008(12) 65.9/72
106 −0.40(19) 0.81(12) 8.49/32

Table 10.3: Parameters of a fit to Eq. (10.39), offering an alternative description of the
thermoremanent magnetisation. For each temperature, we present fits in the range
tmin ≤ t ≤ tmax

w (T), where tmin = 103,106 and tmax
w (T) is given in Table 10.1.
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Figure 10.14: Coherence length ξ1,2(tw) as a function of T log tw, for three subcritical
temperatures. Even if the three curves are not equal within errors, the overall scaling is
suggestive.

10.5

Dynamical heterogeneities

Thus far, we have characterised the spin-glass dynamics globally through the two-
time correlation function. We have found this dynamics to be extremely slow and
we have used a growing coherence length to monitor the evolution.

However, the dynamics is actually heterogeneous across the system, with local
regions behaving differently from the bulk. As we said in Section 9.1.3, the study
of these dynamical heterogeneities is a potential point of contact between studies
of spin glasses and of general glassy behaviour.

The traditional numerical approach to dynamic heterogeneities has been the
computation of coarse-grained correlation functions. These are defined as an
average over a cell of size `D, with ` � L. The characteristic length scale for
dynamical heterogeneities can then be assessed through the probability distribu-
tion of these coarse-grained correlations. For ` much larger than the correlation
length, one would expect the fluctuations to be averaged out, and the resulting
coarse-grained correlation would resemble the global one. For small `, however,
strong deviations from a Gaussian behaviour are present [jau07]. One defines,
then, the correlation length as the crossover length.

Here we follow a different approach, consisting in the study of the two-time
spatial correlation C2+2(r, t, tw) of Eq. (10.16). This observable was introduced
in [jau07], but the time scales accessible to that work did not permit the mea-
surement of correlation lengths greater than a couple of lattice spacings.
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Figure 10.15: The two-time spatial correlation function C2+2(r , t, tw) defined in (10.16)
as a function of r , for several values of t. We consider a long waiting time of tw = 235,
for our 63-sample simulations at T = 0.7.

We have plotted the correlation length C2+2(r , t, tw) (we use the same conven-
tion for axially oriented correlations as for C4) in Figure 10.15, for a large waiting
time. From this plot we can see, qualitatively, that the correlation reaches several
lattice spacings for large times.

Recalling the one-to-one nature of C(t, tw) as a function of t for fixed tw, we
eliminate t as independent variable in favour of C2, using a cubic spline as our
interpolating method. We consider, then, a correlation length ζ(C2, tw) from the
long-distance behaviour of C2+2(r , t(tw, C2), tw), in complete analogy with the case
of ξ(tw) and C4(r , tw), recall Eq. (10.17). This correlation length is computed with
the methods of Section 10.3.1.

We have plotted ζ(C2, tw) as a function of C2 for several tw at T = 0.7,0.8 in
Figure 10.16. We observe that the evolution in tw distinguishes two regimes. For
large C2 the correlation length approaches a tw-independent enveloping curve.
This corresponds with the low-t regime, which quickly approaches the transla-
tionally invariant sector of the dynamics. When C2 drops below q2

EA, however, we
are in an aging regime, where the correlation length diverges in the large-tw limit.

Since one would expect the divergence in the aging limit to behave as ξ(tw), it
is useful to consider the scaling variable

R(C2, tw) = ζ(C
2, tw)

ξ(tw)
. (10.40)
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Figure 10.16: Correlation length ζ(C2, tw) as a function of C2 for several waiting times.
We plot our results for T = 0.7 with 63 samples and for T = 0.8 (96 samples).

T C2 zζ χ2
ζ/d.o.f. z

0.6 0.200 13.4(6) 0.01/2 14.06(25)
0.7 0.200 11.14(20) 0.69/3 11.56(13)
0.8 0.100 9.56(17) 3.73/5 9.42(15)

Table 10.4: Value of the dynamic exponent zζ of Eq. (10.43) for three subcritical tem-
peratures. We also give our best determination of the dynamic critical exponent z from
Table 10.1.

We expect

lim
tw→∞

R(C2 < q2
EA) > 0. (10.41)

lim
tw→∞

R(C2 > q2
EA) = 0. (10.42)

We show this quantity for our three subcritical temperatures in Figure 10.17. For
T = 0.7 we show both our longer simulations with 63 samples and our more
precise set with 768.

Clearly, there is a crossover, which is best observed for T = 0.6. However, we
face a dilemma: for low T the growth of the coherence length is very slow and
we do not see the large-C2 behaviour as clearly, while for high T the value of qEA

is too low for us to appreciate the crossover at low C2 (notice that the spin glass
undergoes a second-order transition, so qEA(Tc) = 0).

In short, while our data include long enough times to appreciate the behaviour
qualitatively, they are not sufficiently clean for us to characterise the scaling be-
haviour at the crossover point. In Section 10.8 we shall take on this problem again
with equilibrium methods. We shall show how the crossover in the behaviour of
dynamical heterogeneities can be interpreted as a proper phase transition and
how its critical parameters, computed in equilibrium, can be used to characterise
the dynamics.



190 The statics-dynamics correspondence and finite-time scaling

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.3  0.4  0.5  0.6  0.7

ζ
(C

2
,t

w
) 

/ 
ξ(
t w

)

C2

T = 0.6
(96 samples)

tw=28

tw=212

tw=216

tw=220

tw=224

tw=226

tw=228

tw=230  0.2

 0.4

 0.6

 0.8

 1

 0.2  0.3  0.4  0.5  0.6  0.7

ζ
(C

2
,t

w
) 

/ 
ξ(
t w

)

C2

T = 0.8
(96 samples)

tw=28

tw=212

tw=216

tw=220

tw=224

tw=226

tw=228

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.3  0.4  0.5  0.6  0.7

ζ
(C

2
,t

w
) 

/ 
ξ(
t w

)

C2

T = 0.7
(63 samples)

tw=28 
tw=212

tw=216

tw=220

tw=224

tw=226

tw=228

tw=230  0.2

 0.4

 0.6

 0.8

 1

 0.2  0.3  0.4  0.5  0.6  0.7

ζ
(C

2
,t

w
) 

/ 
ξ(
t w

)

C2

T = 0.7
(768 samples)

tw=28 
tw=212

tw=216

tw=220

tw=224

tw=226

tw=228

tw=230

Figure 10.17: Behaviour of the ratio ζ1,2(C2, tw)/ξ1,2(tw) as a function of C2 for several
values of tw. We observe a crossover behaviour from a finite limit at small C2 to a
vanishing limit for large C2. Notice that for T = 0.7 we plot both our set with 63 longer
samples and our set with 768 shorter ones.

For now we address the simpler problem of the scaling of ζ(C2, tw) in the low-
C2 sector. Since in this situation ζ and ξ differ only in a constant factor close to
one, we consider the following ansatz

ζ(C2 < q2
EA, tw) = Aζt

1/zζ
w , (10.43)

where zζ is expected to be similar to z. For each T , we have performed fits
to (10.43) for a value of C2 expected to be below qEA. We note that the value of
qEA has consistently been overestimated in the literature, as we shall show in the
following sections. In fact, in order to be safe we have simply fitted the lowest
value of C2 for which we could obtain an acceptable number of degrees of freedom
in the fits.

The results are shown in Table 10.4, where we can see that zζ(T) is indeed
similar to z(T), although we can measure it with much worse precision.



10.6 — The translationally invariant sector and a first look at qEA 191

10.6

The translationally invariant sector

In Section 10.2 we left pending the question of computing the stationary part of
the temporal correlation function. As we noted there, a naive extrapolation is
complicated, because we have to consider the limit tw →∞, which is also strongly
t-dependent.

Here we address this problem, taking advantage of the characteristic lengths
we have computed. In particular, we study the following dynamical variable

x(t, tw) =
(
ζ(t, tw)
ξ(tw)

)2

. (10.44)

Following the discussion of the previous section, the translationally invariant sec-
tor is recovered in the limit x → 0 (where x is essentially ξ−2(tw) in its natural
units for each t). However, this limit is much easier to compute in a controlled
way than tw →∞.

We have plotted C(t, tw) against x(t, tw) for our simulations at T = 0.7 in Fig-
ure 10.18. We see that, indeed, the curve is very smooth in the small-x limit, and
an extrapolation seems feasible (see Inset). Furthermore, the curves for different t
become parallel as t grows, which suggests the existence of a smooth scaling func-
tion C(t, tw) = C∞(t) + f(x). In particular, we consider the following functional
form

C(t,x) = C∞(t)+ a1(t)x + a2(t)x2. (10.45)

However, a naive extrapolation using (10.45) is still problematic. The reason is that
we have errors both for C and for x (i.e., for both the x and y coordinates in the
fit). Luckily, however, the errors were similar in both directions and for all points.
Therefore, we can use the method explained in Section b.3.2. We compute the fits
for x ≤ 0.5, using ξ1,2 and ζ1,2 as our estimates of the characteristic lengths.

This method has allowed us to compute C∞(t) with remarkable accuracy for
t . 108 (Figure 10.19). Now that we have this function, we could try a second
extrapolation to find qEA,

lim
t→∞

C∞(t) = qEA. (10.46)

However, this second extrapolation turns out to be very difficult, because now we
cannot avoid the issue of considering the infinite limit explicitly. Furthermore, we
lack a convincing theoretical expectation as to the functional form of C∞(t).

The simplest option is a power law decay,

C∞(t) = qEA +At−B. (10.47)

This equation yielded very good fits for T = 0.6,0.8 (Table 10.5, but the values of
the exponents were very small, B ∼ 0.05. The smallness of B makes the extrapola-
tion extremely risky, since it means that qEA is going to be much smaller than our
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T Fitting
range

Logarithm Power law

qEA χ2
d/d.o.f qEA B × 102 χ2

d/d.o.f

0.6
[102,108] 0.607(16) 34.1/17 0.730(8) 5.7(4) 31.2/17
[103,108] 0.62(3) 7.23/14 0.733(14) 5.8(7) 7.59/14
[104,108] 0.62(5) 6.25/10 0.726(24) 5.4(12) 6.32/10

0.7
[102,108] 0.497(10) 23.7/17 0.656(5) 6.16(18) 32.6/17
[103,108] 0.474(21) 18.9/14 0.637(11) 5.5(3) 18.5/14
[104,108] 0.49(5) 15.0/10 0.63(3) 5.4(9) 15.3/10

0.8
[102,108] 0.371(13) 6.50/17 0.568(7) 6.56(20) 9.39/17
[103,108] 0.368(24) 5.53/14 0.556(12) 6.2(4) 4.27/14
[104,108] 0.40(6) 4.31/10 0.56(3) 6.4(11) 3.82/10

Table 10.5: Estimate of qEA for three subcritical temperatures, using two different ex-
trapolating functions. For T = 0.6,0.8 both are very good, but at T = 0.7 (where we have
better statistics) they are somewhat forced. This suggests that the real qEA probably lies
in between our two estimates. For the power law extrapolation, Eq. (10.47), we also quote
the exponent B. Notice that this exponent is not proportional to T . See Section 10.8 for
a considerably more precise determination of this parameter.

range of values for C∞(t). We note that this slow evolution has led some authors
to overestimate qEA in the past (with larger errors, C∞ seems almost constant).

Perhaps more disquieting, it may seem that a low enough value of B would
allow for the possibility that qEA = 0. In order to dispel this notion, we have tried
a second fit to a logarithmic decay,

C∞(t) = qEA + A
B + log t

. (10.48)

We stress that this ansatz lacks theoretical basis, we merely take it as a lower
bound on the value of qEA. Numerically, it turns out, the logarithmic fit is as good
as the exponential one for T = 0.6,0.8, even if it produces incompatible values of
qEA (Table 10.5).

Furthermore, if we try both fitting functions for our T = 0.7 data, where we
have much better statistics, we find that they were somewhat forced. This leads
us to conclude that the real asymptotic behaviour of C∞(t) is probably something
in between (10.47) and (10.48). We can use the difference between both methods
with a fitting window of t ∈ [103,108] as our uncertainty interval,

0.62 ≤ qEA(T = 0.6) ≤ 0.733, (10.49a)

0.474 ≤ qEA(T = 0.7) ≤ 0.637, (10.49b)

0.368 ≤ qEA(T = 0.8) ≤ 0.556. (10.49c)

Even with our unprecedently long simulations, we are still at the threshold of be-
ing able to compute qEA with dynamical methods. In Section 10.8 we shall perform
an equilibrium computation of this quantity.
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10.7

Equilibrium analogues and the time-length dictionary

As we have seen, the non-equilibrium approach, while straightforward, is limited
when one needs to perform some delicate analyses, such as the estimation of qEA.
Therefore, one should complement it with equilibrium computations. Recall that
we are working in a framework where the equilibrium phase is unreachable for
experimental systems, yet conditions the non-equilibrium dynamics. Remember,
for instance, the relation between the fluctuation-dissipation ratio of Figure 9.4
and the equilibrium p(q) [fra98, fra99].

In this section we take the qualitative statics-dynamics relation one step far-
ther. Our proposal is that the equilibrium correlation functions computed for
systems of finite size should reproduce their non-equilibrium counterparts in the
thermodynamical limit for finite time. An infinite system with a finite coherence
length ξ(tw) can, very roughly, be considered as a collection of systems of size
L ∼ ξ(tw) in equilibrium, with some reservations. This relation should establish a
time-length dictionary tw ↔ L, which is our objective in this section.

In particular, we shall consider the equilibrium spatial autocorrelation,

C4(r) = 1
N

∑
x
〈qxqx+r〉. (10.50)

We want to relate C4(r) to C2+2(r, t, tw). As we have said, the waiting time
tw can be related to L, but what of t? The answer lies in the, already exploited,
one-to-one relation between t and the two-time overlap C(t, tw) at fixed tw. In
equilibrium, the dependence on C is replaced by the computation of correlation
functions conditioned to a fixed value of q. Finally, we note that (10.50) is non-
connected, unlike C2+2, as we defined it in (10.16). Therefore, we shall consider
here a non-connected version of C2+2,

C′2+2(r, t, tw) =
1
N

∑
x
cx(t, tw)cx+r(t, tw) . (10.51)

Our objective, then, for this section, is finding a relation between

C′2+2

(
r, t(C(t, tw)), tw

)←→ C4(r|q). (10.52)

We still have to provide a workable definition of the q-conditioned C4(r|q). In
order to do this, let us step back for a moment and consider the pdf of the spin
overlap,

p1(q) =
〈
δ
(
q − 1

N

∑
x
qx
)�
. (10.53)

This definition is completely analogous to the p1(m) of (4.8) we considered in
Chapter 3. Like in that case, the p1(q) is not smooth for finite systems, but rather
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the sum of N+1 Dirac deltas. Even if we are not considering a tethered formalism
here, we can borrow the cure to this problem. In particular, we define our smooth
p(q) as the convolution of p1(q) with a Gaussian of width 1/

√
N

p(q = c) =
∫∞
−∞

dq′ p1(q′)GN(c − q′) =
〈
GN
(
c − 1

N

∑
x
qx
)�
, (10.54)

GN(x) =
√
N
2π

e−Nx
2/2. (10.55)

The pdf p(q) is an interesting observable in its own right, since, as we saw in
Chapter 9, its thermodynamical limit is very different in the droplet and RSB pic-
tures. We shall study it in detail in Section 11.1.

Now, we can generalise our treatment of p(q) to define conditional expectation
values at fixed q

E(O|q = c) =

〈
OGN

(
c − 1

N

∑
x qx

)�
〈
GN
(
c − 1

N

∑
x qx

)� . (10.56)

Of course, the standard expectation values can be recovered from the E(O|q),

〈O〉 =
∫∞
−∞

dq p(q)E(O|q). (10.57)

Finally, we define the fixed-q correlation function as

C4(r|q) = E

(
1
N

∑
x
qxqx+r

∣∣∣∣∣q
)
. (10.58)

In [jan08c] we compared our non-equilibrium C′2+2(r = 1, t, tw) with the equi-
librium C4(r = 1|q), using equilibrium data from [con06, con07a], at T = 0.7.
The result is plotted in Figure 10.20. We can see, how, indeed, the equilibrium
correlation functions reproduce the non-equilibrium ones through a consistent
time-length correspondence. More precisely, the non-equilibrium correlations at
time tw can be matched to the equilibrium ones with the time-length dictionary

L(tw) ≈ 3.7ξ1,2(tw). (10.59)

In [jan08c] we used this equivalence to predict that tw = 232 would correspond
to an L = 33 system. We note that, due to our discretisation of measuring times,
we have only established this dictionary up to the nearest power of 2.

In the previous analysis, we were limited by the equilibrium data, which only
reached L = 20 and did not consider correlations for r > 1. We afterwards ran
our own equilibrium simulations with Janus, reaching L = 32 and taking more
thorough measurements (see Appendix E for details on these simulations and
thermalisation checks). Our lowest temperature for our largest lattices was pre-
cisely T = 0.7. We simulated L = 8,12,16,24,32. We can now use this much more
precise equilibrium simulation to improve on the conclusions of Figure 10.20.
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According to the time-length dictionary, then, our L = 32 simulations would
correspond to tw ≈ 231 and our L = 24 ones would correspond to tw ≈ 226. We
have plotted both cases in Figure 10.21, this time for several values of r , corrob-
orating our prediction of [jan08c]. Notice that in a finite lattice C4(r |q) can only
be computed up to r = L/2, while the non-equilibrium C′2+2(r , t, tw) is defined
for arbitrary distance. However, we find a very good matching even for relatively
large values of r .

10.7.1 The experimental length scale

As we can see, even relatively long times 232 MCS ∼ 1010 MCS ∼ 0.01 seconds,
correspond to the equilibrium behaviour for quite small systems. This raises the
question of the relevance of the thermodynamical limit for experimental physics.
Indeed, for a typical experimental scale of 1 hour, that is, for a tw ≈ 3.6×1015 MCS,
we can extrapolate the expected coherence length with equation (10.26) and the
data in Table 10.1. We conclude that

L(tw) ≈ 3.7ξ1,2(tw) =⇒ 1 hour←→ L = 110 (10.60)

That is, the equilibrium length scale relevant to the non-equilibrium experiments
is not the thermodynamical limit, but rather L ∼ 100.

This concept of experimental length scale will be extremely relevant in the
next Chapter, where we try to elucidate the nature of the spin-glass phase. We
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shall find there that making extrapolations to L → ∞ is very difficult, but that
extrapolating to L = 110 is safe.

As a final comment, we point out that some authors have proposed a modified
scaling for the coherence length, substituting the power law with a more complex
functional form [bou01]. This was studied in Section 6 of [jan09a] and found to
fit our non-equilibrium simulations (the underlying reason being that 1/z is very
small and it is very difficult to distinguish a small power from a logarithm with
numerical data). If this modified scaling were to hold instead of the power-law
behaviour, the length scale equivalent to one hour would be smaller than L = 110.

10.8

The phase transition in the dynamical heterogeneities

The previous section presented one of our most important results: the statics-
dynamics equivalence can be made quantitative. We shall now take this observa-
tion one step further and use the equilibrium correlation functions to understand
the crossover in the behaviour of the dynamical heterogeneities. Recall that, for
large C , the two-time correlation length ζ(C, tw) reached a tw-independent value,
while for small C it grew as the coherence length ξ(tw).

Our dynamical study was precise enough for us to observe this phenomenon,
but not to study it quantitatively. One of the major limiting factors was that the
crossover value, qEA, was very low, so even with our long simulations we did not
have enough statistics in the low-C sector. However, one of the advantages of an
equilibrium study is that we can cover the whole range of q. To this end we can
consider the behaviour of the connected correlation function at fixed q. Below qEA

(and for T < Tc), one expects

C4(r|q)− q2 = Aq
rθ(q)

+ . . . , |q| < qEA. (10.61)

(10.62)

The droplet and RSB pictures have very different predictions for the structure
exponent θ(q), which we shall study in detail in Section 11.3. For the moment, we
only need that 0 ≤ θ(q) < D, on which both theories agree. In order to study these
connected correlations in position space, one has to perform a subtraction that
complicates the analysis (Section 11.3 and cf. [con09]). Instead, in this Section we
work in Fourier space. The scaling behaviour is now

Ĉ4(k|q)∝ kθ(q)−D + . . . , |q| < qEA. (10.63)
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a Kosterlitz-Thouless transition), but we cannot distinguish the critical point with much
precision.

On the other hand [dom98, con09],

Ĉ4(k|q)∝ 1
k2 + ξ−2

q
, |q| > qEA. (10.64)

This equation defines a correlation length ξq —cf. Eq. (5.6)— which diverges when
|q| → qEA from above.

In what follows we shall use the notation:

F (n)q = Ĉ4(nkmin|q), Fq = F (1)q . (10.65)

The two scalings (10.63) and (10.64) for Ĉ4 reproduce the crossover behaviour
that we found when studying ζ(C, tw): Fq ∼ LD−θ(q) for |q| < qEA but Fq ∼ 1 for
|q| > qEA. In the large-L limit, the crossover becomes a phase transition where

ξ(∞)q ∝ 1
(q − qEA)ν̂

. (10.66)

Here ν̂ is a critical exponent, in principle different from the thermal critical expo-
nent at Tc. This concept of a phase transition at T < Tc as we vary q may seem
unorthodox for spin glasses. However, a very similar picture appears in the study
of the equation of state for Heisenberg ferromagnets [bre73].

We can study this phase transition using finite-size scaling, as we did for the
Ising model and the DAFF. Up to scaling corrections, we have

F (n)q = LD−θ(qEA)Gn
(
L1/ν̂(q − qEA)

)
. (10.67)
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Notice that this approach also has close parallels with the condensation transition,
which can be studied with Ising ferromagnets.5 In what follows, just as in the
previous section, we shall work at T = 0.703.

As in previous chapters, we want to exploit (10.67) using phenomenological
renormalisation. The first step in those analyses was finding some suitable dimen-
sionless quantity and studying the intersections of its curves for different L. The
only obvious such quantity that we have here is F (n)q /F (m)q . Unfortunately, these
ratios do not show clear intersections. Indeed, in the case where θ(|q| < qEA) > 0
the whole phase |q| < qEA will be critical and we will be in a situation analogous
to a Kosterlitz-Thouless transition [kos73], where the curves merge, rather than
intersect, at the critical point. Figure 10.22 suggests that this may be the case, but
it is not possible to get a clear determination of qEA from these data.

We have therefore adopted an alternative approach. Rather than looking for
dimensionless quantities we consider the ratios Fq/Ly , where y is a continuous
parameter,

Fq/Ly = Lε−yG1
(
L1/ν̂(q − qEA)

)
, ε = D − θ(qEA). (10.68)

Now, as long as y < D − θ(0), it follows that, in the large-L limit, Fq/Ly vanishes
for |q| > qEA and diverges for |q| < qEA. Therefore, the curves for these quantities
as a function of q for different L will also intersect. We show two values of y in
Figure 10.23.

Now we can once again analyse these intersections with the quotients method.
We consider pairs of lattices (L, sL). Then, operating with (10.68) we see that the

5In this case, the magnetisation density plays the role of q, the spontaneous magnetisation
that of qEA. Finally, θ(qEA) = D and ν = (D + 1)/D [bis02]. The scaling function G1(x) has, for
this system, a discontinuity at finite x.
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crossing points q(s)L,y scale as

q(s)L,y = qEA +A(s)y L1/ν + . . . , A(s)y =
G1(0)
G′1(0)

sε−y − 1
s1/ν − sε−y , (10.69)

where the dots denote corrections to leading scaling. A fit to this equation could
produce the values of qEA and of ν̂ . Recall that we tried, in vain, to estimate the
former parameter using non-equilibrium methods. Notice that for an exponent
y = ε = D − θ(qEA) the intersection point is constant in L (neglecting scaling
corrections, of course).

Since we have simulated L = 8,12,16,24,32, our best option is to choose s = 2.
In this case, for a fixed y , there will be three intersection points: (8,16), (12,24),
(16,32). However, there are also three fit parameters (qEA, A(2)y and ν̂), so we would
be left with no degrees of freedom.

We can get around this problem by considering n values of y at the same
time. This way, we can make a joint fit of all the resulting intersections, with fit
parameters {qEA, ν̂, A

(2)
y1 , . . . , A

(2)
yn} (that is, forcing the intersections for different y

to extrapolate to the same qEA and with the same exponent). Such a procedure
may (should) raise an alarm: we are taking two internally correlated curves and
extracting many crossing points between them by varying a free parameter. For-
tunately, the potentially dangerous effects of correlations can in this case be fully
controlled by considering the complete covariance matrix.

In particular, we have a set of measured data points {q(2)La,yi}, labelled by their
L and their y . The sizes La are L1 = 8, L2 = 12 and L3 = 16, while the yj go from
y1 to yn. Then, the appropriate chi-square estimator is

χ2 =
n∑

i,j=1

3∑
a,b=1

(
q(2)La,yi − qEA −A(2)yi L−1/ν̂

a
)
σ−1
(ia)(jb)

(
q(2)Lb,yj − qEA −A(2)yj L−1/ν̂

a
)
. (10.70)

In this equation, σ(ia)(jb) is the covariance matrix of the data (we need two coor-
dinates to identify each point: its L and its y). In this case, unlike in our non-
equilibrium analysis, the full covariance matrix is treatable.

Figure 10.24 shows the result of this fitting procedure. The selection of the
number of y is arbitrary: the more y we add, the more degrees of freedom (in-
formation) we have, but at the cost of increasing the effects of correlations and
endangering the conditioning of the covariance matrix. Fortunately, what seems a
delicate choice turns out to be arbitrary, both the fit parameters and their errors
being remarkably resilient to changes in the yj . For our choice of yj (shown in
Figure 10.24), the final results are

qEA = 0.52(3), 1/ν̂ = 0.39(5), (10.71)

with χ2/d.o.f. = 18.9/16. Notice that our value of qEA is consistent with the
(wide) bounds that we obtained in our preliminary non-equilibrium analysis in
Section 10.6.
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As pointed out above, the result is very stable to changes in the values of y .
For instance, removing the L = 8 data for y = 2.3,2.4 (the outliers) shifts our final
values by one fifth of the error bar. Notice that, from Figure 10.24, A(2)y changes
sign at y ≈ 2.35, so θ(qEA) ≈ 0.65. We shall return to this exponent in the next
Chapter.

As a test of these critical parameters, we can attempt to produce a scaling
plot of the ratio Rq that we had plotted in Figure 10.25. This is represented in
Figure 10.25, which shows that, indeed, a good collapse is obtained.

Let us finally note that our value of 1/ν̂ = 0.39(5) is compatible with the best
known result for the thermal critical exponent 1/ν = 0.408(25) [has08b], so it
may be that the two are equal after all. We shall consider other conjectures for
1/ν̂ and, in particular, its relation with θ(q), in Section 11.3.

10.9

The finite-time scaling paradigm

In the previous section we obtained an important result: the spin-glass order
parameter qEA. This had eluded us in our previous non-equilibrium study (Sec-
tion 10.6) and had also never been done in a controlled way in equilibrium.6

We also saw how the critical parameters thus obtained could produce scaling
plots of dimensionless observables in equilibrium.

We can now consider a complementary problem. Given the equivalence be-
tween L and ξ(tw) through the time-length dictionary, should it not be possible to
produce a dynamical scaling plot? The answer turns out to be yes. In Figure 10.26
we have plotted the dimensionless ratio ζ(C, tw)/ξ(tw) as a function of the scal-
ing variable (C2 − q2

EA)ξ(tw)1/ν̂ . The values of ν̂ and qEA used were directly those
of (10.71). As we can see, we obtain a collapse of the curves for large tw.

Figure 10.26 suggests that the correct manner to treat the statics-dynamics
equivalence in a fully quantitative way is to adopt a ‘finite-time scaling’ (FTS) for-
malism.

The FTS approach provides a natural explanation for the extremely small ex-
ponents found in our power-law extrapolation of C∞(t) (Section 10.6). Indeed, FTS
implies that

C∞(t)− qEA ∝ ζ∞(t)−1/ν̂ , ζ∞(t) = lim
tw→∞

ζ(t, tw). (10.72)

Finally, we expect

ζ∞(t)∝ tzζ , (10.73)

6One naive way to estimate qEA is to consider the evolution of the peaks in the p(q) as L
grows. However, not knowing the exponent ν̂ that controls this finite-size evolution we would
not have enough degrees of freedom for a reasonable fit.
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and, in fact, (see Table 10.4) the evidence suggests that zζ is equal to the dynamic
critical exponent z. Therefore, the exponent B of Section 10.6,

C∞(t) = qEA +At−B, (10.47)

is

B = 1
zν̂
≈ 0.0325. (10.74)

We have used the value of z(T = 0.7) = 12.03(27) from Table 10.1. This agrees at
least in order of magnitude with the results of Table 10.5 (which is about as much
as we could have hoped for, given the problems in estimating B from dynamical
data).

We finally note that recent improvements in the experimental measurement of
response function with space-time resolution suggest that ζ(t, tw) may soon be
experimentally accessible [ouk10]. Therefore, our finite-time scaling framework
has potential implications for experimental work.



CHAPTER XI

The structure of the D = 3 spin-glass phase

In this chapter we consider the finer details of the structure of the D = 3 spin-
glass phase. In particular, we try to decide which of the competing theories (RSB,
droplet, TNT) offers a best description. To this end, we begin by examining the
would-be triviality in the spin and link overlaps which, as we explained in Chap-
ter 9, is the main differentiating characteristic between the three pictures.

This analysis is carried out on the light of our previous results for the statics-
dynamics equivalence. In particular, we stress the fact that the theory with most
experimental relevance is the effective one at L ∼ 100, rather than the one that
best describes the thermodynamical limit. In this sense, we shall conclude that
the RSB framework provides the best picture of the experimental spin glass. Still,
this large-L limit is also interesting from a theoretical point of view. Therefore,
we also attempt infinite-volume extrapolations, carefully checking for finite-size
effects.

We conclude this chapter (and our study of spin glasses) with a detailed anal-
ysis of the structure of correlations in the spin-glass phase.

11.1

The spin overlap

We begin our study by considering the most straightforward observable: the spin
overlap q. As we explained in Chapter 9, the behaviour of this quantity is one
of the clearest markers to distinguish the droplet picture from the RSB one.1 In
particular, droplet predicts a trivial p(q) in the thermodynamical limit (two deltas
at ±qEA), while RSB predicts a non-trivial behaviour (non-zero probability density
for all |q| ≤ qEA).

1The TNT picture coincides with RSB in the predictions for this observable, but we shall not
mention it explicitly in this Section.

205
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Figure 11.1: Overlap probability density function p(q), Eq. (10.54), at T = 0.625 and
T = 0.703. Notice that for the central sector of q ∼ 0 the curves for the different system
sizes quickly reach a plateau with p(q) > 0.
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Figure 11.2: Overlap density distribution function at zero overlap as a function of tem-
perature. We observe an enveloping curve with a linear behaviour, as expected in an RSB
setting.

We have plotted the p(q) of Eq. (10.54), in Figure 11.1 for T = 0.703 (the lowest
temperature for L = 32) and for T = 0.625 (the lowest for L = 24). The curves
are very smooth, thanks to the Gaussian convolution of (10.54). According to the
previously mentioned theoretical predictions, one would expect the peaks to get
narrower and closer together as L grows. The shift in position is very clear (recall
from the previous Chapter that qEA at T = 0.703 is ≈ 0.52) but a more careful
analysis is needed to assess the change in width (Section 11.1.2).

In addition, the probability density at q = 0 shows no evolution, favouring the
RSB scenario. In order to see it more clearly we have plotted p(q = 0) at T = 0.703
in Figure 11.2 for all our lattices. We can see a clear non-zero enveloping curve.
More precisely, in a mean-field setting one expects this probability density to be
linear in T below Tc [méz87]. This expectation is checked in the right panel of
Figure 11.2. The seemingly out of control value of p(0) at the lowest temperature
for L = 8 is an artifact of the binary nature of the couplings (a finite system always
has a finite energy gap). The fact that finite-size effects in p(0) are stronger close
to T = 0 than at finite temperature has been studied in [pal01].

From a droplet model point of view, Moore et al. [moo98] have argued that the
apparent lack of a vanishing limit for p(0) in numerical work in the 1990s was an
artifact of critical fluctuations. In fact, at Tc, p(0) diverges as Lβ/ν while droplet
theory predicts that, for very large lattices, it vanishes with the stiffness exponent
y ≈ 0.2 as L−y , for all T < Tc. These authors rationalise the numerical findings as
a crossover between these two limiting behaviours. However, a numerical study
at very low temperatures (so the critical regime is avoided) found for moderate
system sizes a non-vanishing p(0) [kat01]. Furthermore, we shall compute in
Section 11.1.2 a characteristic length for finite-size effects in the spin-glass phase,
which turns out to be small at T = 0.703.

In any case, the behaviour at the experimentally relevant scale of L ∼ 100
seems without a doubt to be non-trivial (there is no room for a change of regime
between our simulations and L ∼ 100).
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T Droplet fit RSB fit

χ2/d.o.f. a y χ2/d.o.f. c d

0.703 3.78/3 0.312(17) 0.110(17) 3.44/3 1.165(12)[34] 0.186(34)[03]
0.625 2.00/2 0.289(16) 0.134(21) 2.73/2 1.128(11)[33] 0.193(28)[03]

Table 11.1: Scaling of the Binder parameter and fit to the behaviour expected in the
droplet, Eq. (11.3a), and RSB pictures, Eq. (11.3b).

11.1.1 The Binder cumulant

We can define the Binder ratio for spin glasses just as we did for the Ising ferro-
magnet in (5.10)

B(T) = 〈q4〉
〈q2〉2

. (11.1)

Notice that we compute these moments from the original p1(q), not from our
smoothed version. Above Tc the fluctuations of q are expected to be Gaussian in
the large-L limit, hence

lim
L→∞

B(T) = 3, T > Tc. (11.2)

Below Tc the situation of course depends on whether the droplet or the RSB pic-
tures are correct. In the former, B(T < Tc) should approach 1 in the large-L limit
(as in a ferromagnet). In the latter, one expects 1 < B < 3.

Therefore, we have the following expectations

Droplet : B(T ;L) = 1+ aL−y , (11.3a)

RSB : B(T ;L) = c + dL−1/ν̂ . (11.3b)



11.1 — The spin overlap 209

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4  0.8  1.2  1.6

q E
A
(L

)

T

L = 8
L = 12
L = 16
L = 24
L = 32
ν̂  extrapolation
Critical extrapolation

 0

 0.1

 0.2

 0  0.4  0.8

(σ
(–

) +
σ

(+
) )/

2

T

L = 32
L = 24
L = 16
L = 12
L = 8

Figure 11.4: Left: qEA(L) as a function of the temperature. We include two different
infinite-volume extrapolations. The first uses the dynamical heterogeneities exponent
1/ν̂ , cf. (11.5) and (11.3). The second is obtained from finite-size scaling arguments in the
critical region, Eqs. (11.10) and (11.13). Right: Width of the peaks of p(q), Eq. (11.4), as a
function of T for all our lattice sizes.

The droplet prediction (11.3a) depends on the stiffness exponent y , while in the
RSB picture the finite-size evolution is controlled by the exponent 1/ν̂ = 0.39(5),
which we computed in the previous Chapter.

We have plotted the Binder ratio for T = 0.703 and T = 0.625 in Figure 11.3,
along with fits to (11.3). The resulting parameters are gathered in Table 11.1. For
the RSB fit we include two error bars: the number enclosed in (·) comes from the
statistical error in a fit with fixed ν̂ and the one in [·] is the systematic error due
to our uncertainty in ν̂ .

As it turns out, both fits have acceptable values of χ2/d.o.f.. However, the evo-
lution of B with L is very slow, so in order to accommodate the droplet behaviour
we have needed a very small exponent y ≈ 0.12, smaller than the usual droplet
prediction of y ≈ 0.2 [bra87].

Let us finally note that, again, the extrapolation at L ∼ 100 is well above one
even with the droplet scaling.

11.1.2 The peaks of p(q)

As we have seen, the droplet and RSB pictures have very different predictions for
p(q) as a whole. However, they both agree in that the two symmetric peaks ob-
served at finite L should eventually become two Dirac deltas at ±qEA, a prediction
that we can check.

Let us begin by defining qEA(L) as the position of the maximum of p(q;L) (in
the remainder of this section, we consider all overlaps positive and the pdf sym-
metrised). Again, our Gaussian smoothing procedure makes this quantity easy to
compute (we fit the neighbourhood of the peak to a third-order polynomial, since
the peak is very asymmetric).

In order to test that the peak not only tends to qEA, but also gets infinitely



210 The structure of the D = 3 spin-glass phase

L T = 0.703 T = 0.805

σ σp
(
qEA(L)

)
σ σp

(
qEA(L)

)
8 0.117 7(20) 0.178 4(10) 0.139 1(25) 0.183 3(10)
12 0.096 3(21) 0.174 0(12) 0.116 5(25) 0.180 9(12)
16 0.081 7(16) 0.169 6(11) 0.100 1(22) 0.175 6(11)
24 0.073 5(16) 0.169 0(12) 0.086 0(19) 0.172 8(12)
32 0.066 8(29) 0.163 1(23) 0.079 8(34) 0.166 9(22)

Lmin 16 16
χ2/d.o.f. 0.43/1 1.13/1
B −0.278(28) −0.346(30)

Table 11.2: Width σ = (
σ (+) + σ (−))/2 of the peaks in p(q) and fit to a power law

σ(L) = ALB in the range [Lmin,32]. We also include the product σp
(
qEA(L)

)
.

narrow, we can employ the half-widths at half height. Defining q(±) through
p(q(±)) = p(qEA(L)

)
/2, we have

σ (±) = ∣∣q(±) − qEA(L)
∣∣. (11.4)

Notice that, since we are considering the positive peak, q(−) < qEA(L) < q(+) (that
is, q(−) is the inner width and q(+) the outer).

We have plotted qEA(L) and σ (±) in the left and right panels of Figure 11.4,
respectively. We see that the width of the peaks does decrease slowly with L.
However, the product σp

(
qEA(L)

)
has a small dependence on L (Table 11.2).

We can now consider the actual value of qEA. Following Section 10.8, we expect

qEA(L, T) = qEA(T)
[

1+ A(T)
L1/ν̂

]
. (11.5)

We cannot perform a three-parameter fit to (11.5), due to the lack of degrees of
freedom, but we need to use our previously computed value of 1/ν̂ = 0.39(5).
Similar extrapolations were attempted in [iñi96], but with less control on 1/ν̂
(and smaller sizes, L ≤ 16).

We present the values of qEA(L) and the result of a fit to Eq. (11.5) in Table 11.3.
As we can see, the errors due to the uncertainty in the exponent, denoted by
[ · ], are greater than those caused by the statistical error in the individual points,
( · ). In fact, our data admit good fits for a very wide range of values in 1/ν̂ . For
instance, if we try to input the value of the stiffness exponent obtained in the
droplet-like extrapolation of the Binder parameter, y ∼ 0.12 (see Eq. (11.3a) and
Table 11.1), we still obtain a good fit, even though the extrapolated value for qEA is
almost zero at T = 0.703 and negative at T = 0.805. Therefore, using the droplet
exponent y the spin-glass phase would be non-existent.

Also included in Table 11.3 is the confidence interval for this observable com-
puted from non-equilibrium considerations in Section 10.6. Notice that the equi-
librium values are much more precise, but consistent. The extrapolations included
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L T = 0.703 T = 0.805

8 0.824 61(83) 0.781 8(11)
12 0.793 33(85) 0.741 2(11)
16 0.773 00(75) 0.716 81(95)
24 0.740 27(71) 0.679 05(83)
32 0.717 4(14) 0.65 35(16)

Lmin 16 16
χ2/d.o.f. 1.83/1 0.98/1
qEA 0.538[22](6) 0.447[24](6)

Section 10.6 0.474 ≤ qEA ≤ 0.637 0.368 ≤ qEA ≤ 0.556

Table 11.3: Extrapolation to infinite volume of qEA(L, T) using the replicon exponent,
Eq. (11.5). We also include the confidence interval previously obtained in the non-
equilibrium study of Section 10.6. The resulting estimate for T = 0.703 is compatible
with our previous determination from the phase transition in the dynamical hetero-
geneities in Section 10.8.

T L1/ν̂
c Lc Lc(Tc − T)ν

0.703 1.253[20](32) 1.78[8](11) 0.197[8](13)
0.75 1.448[24](34) 2.58[12](16) 0.210[8](13)
0.805 1.731[28](44) 4.08[18](27) 0.221[10](15)
0.85 2.023[32](54) 6.09[26](42) 0.222[10](15)
0.90 2.514[41](66) 10.63[44](71) 0.230[10](15)

Table 11.4: Determination of Lc from the fits to Eq. (11.5), using (11.8), for several tem-
peratures below Tc. Errors are given as in Table 11.3. The characteristic length Lc(T)
scales as a correlation length when T approaches Tc (ν ≈ 2.45 from [has08b]). We warn
the reader that the χ2/d.o.f. for the fits at T = 0.85 and 0.90 are, respectively, 2.6/1 and
2.7/1.

in this table (and analogous ones for other values of T ) are plotted in Figure 11.4.
Finally, notice that the estimate of qEA(T = 0.703) in Table 11.3 is compatible with
our value of qEA(T = 0.703) = 0.52(3), obtained in Section 10.8 with a completely
different method.

11.1.3 Critical and finite-size effects

In order for our extrapolations to the thermodynamical limit to be meaningful,
we have to check that we are not in a preasymptotic regime dominated by critical
fluctuations. This is best done through a finite-size scaling analysis of the p(q).

Let us first show that our estimate of qEA provides a determination of the cor-
relation length in the spin-glass phase. Notice that we are in a situation were
the correlations decay algebraically, so the concept of correlation length is deli-
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cate [jos66]. In particular, finite-size effects are ruled by a crossover length Lc(T),
scaling as a correlation length: Lc ∝ (Tc − T)−ν . In fact, one would expect

qEA(T , L)
qEA(T)

= 1+ h[L/Lc(T)]. (11.6)

We do not know the complete crossover function h, but we do know that for large
x it should behave as h(x) ∼ x−1/ν̂ , so we make the simplest ansatz,

h(x) = x−1/ν̂ . (11.7)

Then, if we compare (11.6) with (11.5), we see that the amplitude of the finite-size
corrections in the latter can be written as

A(T) = [Lc(T)]1/ν̂ . (11.8)

The resulting values of Lc can be seen in Table 11.4. Notice that this crossover
length does scale with temperature as expected for the bulk behaviour, which
constitutes a weighty argument for the asymptotic nature of our results.

In order for our previous extrapolations for qEA to be valid, we need to stay in
a temperature regime where L� Lc(T), a condition that is amply satisfied for our
working temperatures of T = 0.703 and T = 0.805.

In the region close to Tc, where L becomes smaller than Lc(T), we can use
finite-size scaling to extrapolate qEA(T). This somewhat unconventional use of
finite-size scaling was started in [lue91, kim93, car95a, car95b] and has also
been used in the spin-glass context [pal99, jör06]. Most of the times, these ideas
are used in the paramagnetic phase, but we show below how to implement them
in the low-temperature phase.

Close to Tc, we know that

q∞EA(T) = λ(Tc − T)β[1+ µ(Tc − T)ων + . . .] . (11.9)

We have excellent determinations of Tc and β from the work in [has08b], so we
need only estimate the amplitude λ. In fact, Wegner’s confluent corrections (Tc −
T)ων are small close to Tc. To proceed, we note that finite-size scaling tells us
that

qEA(L, T) = L−β/νF(x)[1+ L−ωG(x)+ . . .], x = L1/ν(Tc − T), (11.10)

where the critical exponents are (from [has08b]),

ν = 2.45(15), β = 0.77(5), ω = 1.0(1). (11.11)

In order to connect Eq. (11.10) with the infinite-volume limit in Eq. (11.9) the asymp-
totic behaviour of the scaling functions F(x) and G(x) must be for large x

F(x) ∼ xβ, G(x) ∼ xων . (11.12)
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The resulting scaling plot is represented in Figure 11.5. Varying the values of
Tc and the critical exponents inside their error margins does not make significant
changes in the plot. Notice how the curves collapse for small values of the scaling
variable x and large L, but how for our lowest temperatures scaling corrections
become important. In fact, Eq. (11.10) implies that when the temperature is low-
ered away from Tc the amplitude for scaling corrections grows as xων ≈ x2.45.

In order to estimate the amplitude λ we shall concentrate on the small-x region
where finite-size scaling corrections are smallest. Disregarding scaling corrections
in (11.10), (

qEA(L, T)Lβ/ν
)1/β = F(x)1/β −→

x→∞ x. (11.13)

The inset of Figure 11.5 shows that we reach this asymptotic behaviour for L ≥ 24.
Then, using the simplest parameterisation, F(x) = (λ1/βx + B)β,

qEA(L, T) = λ(Tc − T)β
[

1+ βB
λ1/β(Tc − T)L1/ν + . . .

]
. (11.14)

We can fit our L = 32 data for x < 0.4 (where the curves for L = 24 and L = 32 are
compatible) and use the resulting value of λ to extrapolate in Eq. (11.14) to infinite
volume. This extrapolation is represented as a function of T in Figure 11.4. It is
clear that this critical extrapolation differs with the extrapolation from (11.5) at
most by two standard deviations. The difference, if any, could be explained as
Wegner’s confluent corrections. However, to make any strong claim on confluent
corrections, one would need to estimate the error in the critical extrapolation.
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Unfortunately, we have found that this error estimate is quite sensitive to the
statistical correlation between Tc, ν , and β (as far as we know, the corresponding
covariance matrix has not been published).

One could be tempted to compare Eq. (11.14) with Eq. (11.5) and conclude
ν̂ = ν . In the previous Chapter we observed that, at the numerical level, ν =
2.45(15) [has08b] and ν̂ = 2.6(3). However, we do not regard this as fire-
proof. Indeed, it is a consequence of our somewhat arbitrary parameterisation
F(x) = (λ1/βx + B)β. To investigate this issue further, the small-x region is not
enough. One is interested in the asymptotic behaviour of F(x) for large x where
unfortunately corrections to scaling are crucial. A careful study of the crossover
region can be done only by considering corrections to scaling both at the critical
temperature (at q = 0) and below the critical temperature (at q = qEA).

Finally, the reader could worry about the applicability of (11.9) well below Tc.
The issue has been considered recently within the framework of droplet the-
ory [moo10]. It was found that (11.9) is adequate for all T < Tc (actually, no
Wegner’s scaling corrections were discussed in [moo10]). Thus, the fact that our
data are describable as scaling behaviour with leading Wegner’s correction does
not imply that they are not representative of the low-temperature phase.

11.2

The link overlap and overlap equivalence

In the previous section we showed that our numerical simulations favour a non-
trivial scenario for the spin overlap, at least for experimentally relevant scales.
This is strong evidence against the droplet picture of the spin-glass phase, but
still leaves undecided the issue of TNT vs. RSB.

The difference between these two theoretical descriptions is best examined
through the link overlap, introduced in Section 9.2.3. In the notation of real repli-
cas {s(1)x } and {s(2)x }, this is

Qlink = 1
Nl

∑
〈x,y〉

s(1)x s(1)y s(2)x s(2)y . (11.15)

Notice that in a system of D spatial dimensions, the number of links is Nl = ND.
Also,

C4(r =1) = 〈Qlink〉. (11.16)

The link overlap is arguably a better fundamental quantity to describe the
spin-glass phase in D = 3 than q [mar99, con05a, con06]. First, as was ex-
plained in Section 9.2.3, it is more sensitive than q to the differences between
RSB and the other theoretical scenarios for the spin-glass phase (RSB expects a
non-trivial behaviour for Qlink, which is trivial in both the droplet and TNT pic-
tures). Second, while Qlink is just q2 in the mean-field model, the link overlap is
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actually more amenable than q to an analytical treatment in D = 3 (within the
RSB framework) [con03, con05b, con07a]. In particular, Qlink is a more conve-
nient quantity to study some properties of the spin-glass phase such as replica
equivalence [par98, par00] or ultrametricity [con07b].2

In short, for RSB system we expect to have overlap equivalence: fixing q2

should also fix Qlink, even if the relation between these two observables in D = 3
is something other than an identity.3

In this section we shall study the issue of overlap equivalence using both a
non-equilibrium and an equilibrium approach.

11.2.1 Non-equilibrium study

From a non-equilibrium point of view, we can consider the two-time link overlap

Clink(t, tw) = 1
DN

∑
〈x,y〉

cx(t, tw)cy(t, tw), (11.17)

where cx(t, tw) was defined in (10.7). Using the usual substitution of C2 for t
as independent variable, we can explore the would-be differences in the aging of
the spin and link overlap with this equations and, hence, distinguish between the
coarsening dynamics of droplet and TNT and the non-coarsening evolution of RSB.
The analogue to Eq. (10.10) is now

〈Qlink〉 = lim
t→∞

lim
tw→∞

Clink(t, tw) = lim
C2→0

lim
tw→∞

Clink
(
t(C2, tw), tw

)
. (11.18)

In particular, for a coarsening system, Clink(C2, tw) should be independent of
C2 for C2 < q2

EA and large tw. Indeed, in this regime, the relevant system excita-
tions are the reversal of coherent domains where the overlap is already qEA (as low
as it can get, since there are no states for smaller |q|). Since these domains have
a vanishing surface-to-volume ratio (cf. Section 9.2.3), these excitations do not in-
duce a finite change in Clink, even if they do modify C2. Therefore, in the large-tw
limit, Clink should reach its equilibrium value 〈Qlink〉 at C2 = q2

EA and not decrease
any further. This behaviour is illustrated in Figure 11.6, showing the Clink(C2, tw)
of the D = 2 Ising model (the most straightforward coarsening system).

On the other hand, the overlap equivalence property of the RSB picture trans-
lates into an equal aging for C and Clink. Here, when C2 decreases below q2

EA it is
because new states are constantly being found, involving a change of a domain
with a volume-filling surface and, hence, changing Clink. Therefore, Clink is a non-
constant function of C2 for the whole range (again, for the Sherrington-Kirkpatrick
model, Clink = C2).

2We note that the replica equivalence property is studied in Section 7.2 of [jan10a] us-
ing Janus’ equilibrium simulations. We plan to study the issue of ultrametricity in a future
work [janxx]

3In this respect we recall a computation in a finite-connectivity mean-field model that yielded
Qlink = aq2 + b [fer10].
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Let us see where our simulations stand. We have plotted the Clink(C2, tw) of
the Edwards-Anderson spin glass at T = 0.6 in Figure 11.7. The behaviour at our
finite times seems to reproduce the RSB prediction. Still, the slope of the curve
decreases (slowly) when tw increases.

In order to analyse this behaviour more quantitatively, we have interpolated
the link correlation function at fixed tw with the lowest-order polynomial that
allowed a fair fit (seventh order for tw . 235, sixth for longer times, where we
cover a smaller C2 range). We then computed dClink/d(C2) by differentiating the
interpolating polynomial (Figure 11.8).

Notice that for small C2 the derivative seems to reach a plateau for a widening
C2 range (suggesting that the relation between Clink and C2 becomes linear, as in
the mean-field model).4

Now, we would like to extrapolate these correlation functions and their deriva-
tives to an experimentally relevant time scale, to see whether or not they reach the
coarsening behaviour. In order to do this, we consider C(rtw, tw) and Clink(rtw, tw)
for r = 8,4, . . . , 1

16 and fit each of these functions to ar + br t−crw . The parameters
are stable to variations in the fitting range, as long as tw > 105 and cr ≈ 0.5.
We then use the fits to extrapolate both the link and spin correlation functions
to tw = 1014 ∼ 100 s. Additionally, recalling (11.18), the limiting behaviour for
C2 = 0 is estimated by extrapolating Qlink(tw) to the same experimental time.5

4For T = 0.6 we lack a good determination of qEA but, using the logarithmic extrapolation of
Section 10.6 as a lower bound, we expect q2

EA & 0.4.
5We did not include this point in the original study in [jan08c].
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The resulting Clink(C2, tw = 1014) is plotted with black crosses in Figure 11.7. The
computed points fall on a straight line, whose slope we can use to estimate the
derivative dClink/d(C2)|tw=1014 . This is plotted in Figure 11.8 with a thick grey line
(the width of the line represents our error interval).

In short, the behaviour at a typical experimental time is still far from that
of a coarsening system. One could be tempted to use the same procedure to
extrapolate to tw → ∞, but the resulting errors are so large as to permit any kind
of behaviour.

We need some more theoretical input on the scaling of Clink in the coarsening
scenario in order to consider the infinite-time extrapolation.

We consider a large droplet of size ξ(t + tw) at time t + tw that, at time tw,
was made of NC smaller droplets of size ξ(tw). The number of spins in the
droplet’s boundary scales as ξ(tw)Ds . In a simple coarsening system (such as a
ferromagnet), Ds = D − 1, but we can actually have D − 1 ≤ Ds < D [fis88a,
mcm84, bra87, fis86b, fis88b]. In fact, the numerical simulations carried out in
the TNT framework expect D −Ds ≈ 0.44 [pal00, pal03] in D = 3.

The scaling of NC is straightforward: NC ∼ [ξ(t + tw)/ξ(tw)]D. The overlap
of each of the droplets at time tw with the combined droplet at t+ tw is randomly
±qEA. Therefore, one expects

C(t, tw) ∼
√
NC

(
ξ(tw)
ξ(t + tw)

)D
∼
(
ξ(tw)
ξ(t + tw)

)D/2
. (11.19)

This equation is intuitively evident, but we note that for an Ising ferromagnet
(the paragon of coarsening models) it can be actually obtained with an explicit
computation. Indeed, for an Ising model, it is shown in [cug94b] can be written
as a series in a parameter y , where

y = ξ(t + tw)D/2ξ(tw)D/2[
ξ(t + tw)2 + ξ(tw)

]D/2 . (11.20)

Equation (11.19) then follows in the ξ(t + tw)� ξ(tw) limit.
As to the link overlap, we expect

Clink(t, tw) = C0
link +NC

ξ(tw)Ds

ξ(t + tw)D . (11.21)

That is, Clink cannot decrease below some finite value C0
link, which is nothing but

the equilibrium value 〈Qlink〉. The excess over this value at finite t comes from the
probability that a link belong to the surface of a droplet at time tw.

We can now rewrite (11.19) in the form

NC ∼ g(C)C2
, (11.22)

where g(x) is some continuous positive function, not necessarily differentiable at
x = 0. Combining the previous expressions we can rewrite (11.21) as

Clink(t, tw) = C0
link + C1

linkg(C)ξ(tw)
Ds−D. (11.23)
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This equation explains the behaviour observed in Figure 11.6 for the Ising fer-
romagnet. For this system, the D−Ds = 1, so we would expect Clink(C2, tw)−C0

link

to scale with ξ−1. In Figure 11.9 we can see that this is indeed the case —notice
that for the Ising model the coherence length scales as t1/2

w see, e.g., [bra94].
Equation (11.23) suggests plotting dClink/d(C2)|C=C∗ against ξ−1(tw) and against

ξ−0.44(tw) (see Figure 11.10). It is important to choose a value C2∗ below qEA but
not too small, because otherwise the numerical derivative would be unreliable for
lack of data. Therefore, we have chosen values smaller than, but close to, our
lower bound for qEA in Section 10.6. The two representations are linear within
our errors. However, while a ξ−1(tw) scaling compatible with standard coarsen-
ing seems falsified (i.e., its extrapolation is well above zero), the TNT scaling of
ξ−0.44(tw) does extrapolate close to zero with our data.

It is also interesting to attempt a similar representation to Figure 11.9 for the
Edwards-Anderson model. Unlike the Ising case, now we do not know the exact
value of C0

link. However, by definition,

lim
tw→∞

Qlink(tw) = 〈Qlink〉 = C0
link. (11.24)

Of course, Qlink(tw) = C4(r =1, tw). Then, following (11.23), in a coarsening system

Clink(C2
∗, tw)− C4(r =1, tw) ∼ ξ(tw)Ds−D, C2

∗ < q2
EA. (11.25)

We have plotted this difference in Figure 11.11 for a value of C∗ below our lower
bound for qEA in Section 10.6. Again, we represent both the standard ξ−1 scaling
and the TNT scaling of ξ−0.44. From the first one, it is easy to find a smooth
extrapolation to a positive difference. However, now the data are more precise
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than in Figure 11.10 and the TNT scaling of ξ−0.44 does not fit our data and would
only be possible if the whole of our simulation were in a preasymptotic regime.

There is another problem with the TNT scaling and it is that (11.23) relies
on (11.19), an equation that is disproved by our computation of exponent d in
Section 10.4 —we obtained d ≈ 2, rather the d = 3/2 compatible with (11.19).

In short, the infinite-time extrapolations remain inconclusive, leaving room for
a TNT-like coarsening behaviour. However, in all cases the extrapolations to the
experimentally relevant time scale, much safer, show that the dynamics is cer-
tainly non-coarsening there (thick line in Figure 11.8 and crosses in Figure 11.10).

11.2.2 Equilibrium study

We can attempt an analogous study with our equilibrium simulations. The role of
Clink(C2, tw) is now played by E(Qlink|q), where the conditional expectation value
was defined in (10.56).

Just as in the non-equilibrium case, we expect Qlink to be a strictly increasing
function of q2 below q2

EA for an RSB system, and to be constant for a TNT system.
Now the large-tw limit is of course replaced by a large-L limit and the experimental
scale is, as always, L ∼ 100.

In Table 11.5 we give C4(r = 1|q = 0) and C4(r = 1|q = 0.523) for our sim-
ulations at T = 0.7 (where qEA = 0.523(32), from Section 10.8).6 According to
the TNT picture, these two quantities should scale as L−0.44 and have the same
extrapolation to infinite L. As the reader can check, however, the data do not fit
the L−0.44 behaviour, let alone extrapolate to the same large-L limit. The same
conclusion holds if we replace L by

` = π/ sin(π/L), (11.26)

more natural for lattice systems. Yet, it could be argued that our data are preasymp-
totic, so we may try a TNT extrapolation with corrections to scaling

C4(r =1|q) = C∞ +AqL−0.44(1+ BqL−x). (11.27)

We have performed a joint fit of the data from Table 11.5 to this equation, using a
chi-square estimator analogous to that of (10.70). The fit parameters are the four
amplitudes A0, B0, A0.523, B0.523, the common scaling corrections exponent x and
the common extrapolation C∞. In this case the correlation of the data for q = 0
and q = 0.523 at the same L is very small —see Table 11.5— and, of course, there
is no correlation between data at different L. The result is

C∞ = 0.677+0.012
−0.005, x = 0.57+0.26

−0.08, χ2/d.o.f. = 9.1/4. (11.28)

Notice the highly asymmetric errors. The fit is not a very good one, its P-value (cf.
Appendix B) is of only 6 %.

6Remember that C4(r = 1|q) = E(Qlink|q).
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L C(1|0) C(1|qEA) R
8 0.46138(82) 0.57253(33) 0.134
12 0.51649(71) 0.60390(28) 0.051
16 0.54552(60) 0.62089(22) 0.060
24 0.57573(77) 0.63742(17) −0.119
32 0.59131(94) 0.64579(24) 0.063

Table 11.5: C(r = 1|q) for q = 0 and q = qEA for all our system sizes at T = 0.703. For
each L, we include the correlation coefficient between both values of q.

Therefore, the TNT behaviour is seen to be, at best, very forced with our nu-
merical data. In the RSB setting, however, we expect C4(r =1|q) to scale as ∼ L−1,
with a q-dependent infinite volume value C∞(q). Indeed, if we fit the data in Ta-
ble 11.5 to C(1|q) = C∞(q)+A/` we obtain

C∞(0) = 0.634 9(8), χ2/d.o.f. = 3.63/3, (11.29)

C∞(qEA) = 0.671 1(2), χ2/d.o.f. = 2.86/3. (11.30)

Using L instead of `, we would have had to restrict the fit to the largest lattices,
but the results would be similar (if with larger errors), as the reader can easily
check.

11.2.2.1 The variance of the link overlap

We have seen that Qlink is a strictly increasing function of q2. However, in order
for these two variables to be interchangeable, we need a second condition. That
is, the conditional variance of Qlink at fixed q must vanish in the large-L limit. In
this way, fixing q would unambiguously fix Qlink also.

In general, we define the conditional variance of O at fixed q = c as

Var(O|q = c) = E(O2|c)− E(O|c)2. (11.31)

Notice that

〈O2〉 − 〈O〉2 =
∫∞
−∞

dq p(q)
[
Var(O|q)+ (E(O|q)− 〈O〉)2]. (11.32)

In Figure 11.12 we plot Var(Qlink|q) for all our lattice sizes at T = 0.703. We
find a very clear decay of the variance. The decay exponent Var(Qlink|q) ∼ L−c
is compatible with c = D/2, although we lack a theoretical argument for this
particular value.
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11.3

The structure of correlations in the spin-glass phase

In the previous sections we examined two of the most straightforward character-
istics of the spin-glass phase: the question of (non)-triviality in the spin and link
overlaps. We interpreted our study as a way of distinguishing between the three
competing pictures of the spin-glass phase: droplet, TNT and RSB.

Of the three, RSB fit our finite-size data better and also produced more con-
sistent extrapolations to the thermodynamical limit (assuming our data are repre-
sentative of the asymptotic behaviour, a possibility supported by Section 10.3.2).
In any case, even accepting the possibility of a crossover at very large sizes that
would completely change the behaviour in the thermodynamical limit, the con-
clusion that the RSB picture describes the spin-glass phase at the experimentally
relevant scale of L ∼ 100 seems safe.

Still, stating that the RSB framework seems more faithful to the physics of the
Edwards-Anderson model would not end the discussion. Recall that this theory
was introduced as the solution of the mean-field version of the Edwards-Anderson
model. In D = 3 its more general points (such as the non-triviality of the spin and
link overlaps studied thus far) are expected to remain valid, but many fine details
are certain to change.

Among these we have the issue of the structure of the correlations in the spin-
glass phase. In Section 10.8 we said that the connected correlation function of
an RSB system was expected to decay as C4(r|q2 ≤ q2

EA) − q2 ∼ r−θ(q), where the
structure exponent θ(q) is positive for 0 ≤ |q| ≤ qEA. This clustering property
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is a consequence of the existence of the replicon, a critical Goldstone mode. In
particular, the RSB result above the upper critical dimension (D > 6) is [dom98,
dom99]

θ(q = 0) = D − 4, (11.33a)

θ(0 < |q| < qEA) = D − 3. (11.33b)

θ(|q| = qEA) = D − 2. (11.33c)

These results are expected to renormalise in lower dimensions [dom06]. In partic-
ular, if we want the spin-glass phase to have the clustering property, these values
are inconsistent in D < 4 (because then the correlation function would grow with
distance). On the other hand, some authors [con09] expect the mean-field pre-
diction for q = qEA not to change in D = 3 (so the singularity in Fourier space
remains k−2, as for Goldstone bosons). Notice that the mean-field study predicts
a discontinuity at q = 0, which may or may not be present for D = 3. A theo-
retical conjecture [dom06], suggests that θ(0) = (D − 2 + η)/2, which, using the
anomalous dimension from [has08b], would give θ(0) = 0.313(5) in D = 3.

Using our numerical data, we can try to estimate θ(q) directly for D = 3 and,
therefore, increase our knowledge of the RSB spin-glass phase. At the same time,
a study of the connected correlations provides an additional way of distinguish-
ing between the RSB and droplet pictures. In particular, a droplet system is not
expected to have the clustering property. Rather, it expects

C4(r|q) = q2
EAfr/r (r/L), |q| < qEA,1� r � L, (11.34)

where fr/r is a direction-dependent scaling function with fr/r (0) = 1. On the
other hand, for |q| = qEA, the connected correlation is expected to vanish in the
large-r limit, decaying with the stiffness exponent y [bra87]. We could, then,
summarise the droplet expectation as

θ(|q| < qEA) = 0, (11.35)

θ(|q| = qEA) = y. (11.36)

The exponent θ(q) is actually closely related with the critical exponent 1/ν̂
that we introduced in Section 10.8. Indeed, we can prove the following hyperscal-
ing law

θ(qEA) = 2/ν̂. (11.37)

In order to do this, let us consider a similar scaling argument as we used for the
DAFF in Section 7.2.1. We start by adding an interaction hqLD to the Hamiltonian.
Then,

ξ(h) ∼ h−νh = h−β̂δ̂/ν̂ . (11.38)

On the other hand, from the decay of the correlation function at the transition
point

C4(r|qEA)− q2
EA ∼ r−θ(qEA), (11.39)
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combined with the definition (2.17), we immediately read off

θ(qEA) = D − 2+ η̂. (11.40)

Now, from (11.38) and (11.40) and the hyperscaling relation (2.19d) we have

θ(qEA) = 2(D − ν−1
h ). (11.41)

The field h has the effect of changing qEA,

dqEA

dh
∼ ξD−θ(qEA), (11.42)

so
[qEA(h)− qEA(0)] ∼ h1−νh

(
D−θ(qEA)

)
∼ ξ(1−νhD)/νh , (11.43)

where we have used (11.38) and (11.41). Finally, by definition of ν̂ ,

[qEA(h)− qEA(0)] ∼ ξ−1/ν̂ . (11.44)

Comparing these last two equations we get

1
νh
+ 1
ν̂
= D, (11.45)

which, when plugged into (11.41), produces our sought relation (11.37). Notice
that the combination of this hyperscaling law and our result 1/ν̂ = 0.39(5) gives
θ(qEA) = 0.78(10). Recall that in Section 10.8 we obtained a very rough estimate
of θ(qEA) ≈ 0.65, which is therefore compatible with this scaling law.

However, both of the above values for θ(qEA) are incompatible with the droplet
prediction of θ(qEA) = y . Remember that the values of y in the literature are
typically close to y ≈ 0.25 [car02, boe04, boe05]. Furthermore, by forcing our
data to follow the droplet scaling in Section 11.1.1 we obtained an even lower
y ≈ 0.12.

Aside from this exact scaling law, we can formulate some additional conjec-
tures. Indeed, assume that θ(0+) = θ(0 < |q| < qEA) < θ(qEA). Then, we can
write

C4(r |q)− q2 = A(q)
Lθ(0+)

+ . . . , 0 < |q| < qEA. (11.46)

On the other hand,

C4(r |q)− q2 = B(q)
Lθ(qEA)

+ . . . , q ' qEA. (11.47)

Notice that the decay in (11.46) is slower than that of (11.47). Therefore, A(qEA)
must be zero. Close to qEA we can consider, then the expansion

C4(r |q)− q2 = (q − qEA)
Lθ(0)

+ . . . (11.48)
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If (q − qEA) is of order L−1/ν̂ , one expects both (11.47) and (11.48) to hold and,
therefore

θ(0 < |q| < qEA) = θ(0+) < θ(qEA) =⇒ θ(0+)+ 1
ν̂
= θ(qEA). (11.49)

Notice that the combination of this conjecture and the scaling law (11.37) gives the
additional conjecture

θ(0+) = 1/ν̂. (11.50)

In the previous equations, we have written θ(0+) to accommodate the possibility
of a discontinuity at q = 0.

Let us finally note that, at the critical temperature,

θ(0) = 1+ η = 0.625(10), (11.51)

where we have used the value of η from [has08b].
In this section we shall use our spin-glass simulations to compute the exponent

θ(q) and decide between the RSB and droplet expectations.

11.3.1 Non-equilibrium study

As we have mentioned before, in the RSB scenario, the non-equilibrium spatial
correlation gives us access to the q = 0 physics (we start with q = 0 at tw = 0 and
remain there, since there are equilibrium states with vanishing order parameter).
Therefore, one expects the following long-distance behaviour of C4(r , tw),

C4(r, tw)
r→∞−−−−−→ 1

rθ(0)
f
(
r/ξ(tw)

)
. (11.52)

Notice that this is just (10.13), but now we have reinterpreted the decay exponent
a as a = θ(0).

The statement that θ(0) = 0 for droplet systems then translates in that the
spatial correlation at fixed r/ξ(tw) should not vanish in the large-tw limit. This is,
of course, just the behaviour that one expects in a coarsening system.

Recalling the integrals Ik(tw), defined in (10.22), and our choice of ξ1,2(tw) for
estimating the coherence length, we have

I1(tw)∝ [ξ1,2(tw)]2−θ(0). (11.53)

We have plotted I1 against ξ(tw) in Figure 11.13 for T = 0.6,0.7,0.8, Tc. We also
include, as a comparison, the same plot for the D = 2 site-diluted Ising model, a
system that we know follows the θ(0) = 0 coarsening behaviour.7 From this plot
we see that the value of θ(0) for our subcritical temperatures is clearly different

7We could simply have used the ferromagnetic Ising model, but this slightly less trivial model
serves to illustrate the issue of superuniversality. The simulations are for an L = 4096 lattice
with a 25% dilution, averaged over 20 samples at T = 0.64T Ising

c .
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Figure 11.13: Plot of ξ1,2(tw) as a function of I1(tw) for our three subcritical spin-glass
runs and for our run at T = 1.1 ≈ Tc. We also include, as a comparison, the analogous

plot for a D = 2 site-diluted Ising model. We expect a behaviour ξ2−θ(0)
1,2 ∝ I1, with a

different θ(0) in each case. The diluted Ising is a coarsening system, so θ(0) = 0 and
ξ1,2 ∝ I1/21 . The critical simulation is well represented by θ(0) = 1 + η (full line, taking
the anomalous dimension from [has08b]). On the other hand, the subcritical spin-glass
simulations show an intermediate value of θ(0), different both from the critical and the
coarsening predictions.

T Nsamples [ξmin, ξmax] z θ(0) χ2
ξ/d.o.f. χ2

I1/d.o.f.

0.6 96 [3,10] 14.06(25) 0.359(13) 41.7/82 49.0/82
0.7 768 [4,10] 11.64(15) 0.397(12) 40.1/58 60.4/58
0.8 96 [3,10] 9.42(15) 0.442(11) 17.1/63 12.2/63
1.1 32 [3,10] 6.86(16) 0.585(12) 18.7/46 26.1/46

Table 11.6: Computation of the replicon exponent θ(0) with non-equilibrium methods.
For each temperature, we include the range of ξ1,2 in which we computed the separate
fits for I1 and ξ1,2 and the χ2

d/d.o.f. for each fit. Notice that the fits for ξ1,2 are the same
ones reported in Table 10.1.



228 The structure of the D = 3 spin-glass phase

both from the coarsening behaviour and from the critical value. On the other
hand, the curve at T = Tc seems to follow the expected θ(0) = 1 + η behaviour.
Notice also that θ(0) is at least very similar for all the subcritical temperatures,
in accordance with our theoretical expectation (but in clear contrast with the be-
haviour of the dynamic critical exponent z, which was inversely proportional to
T ).

In order to compute the actual value of θ(0)we could in principle fit I1 to (11.53)
as a function of ξ1,2. Notice that these variables are highly correlated, which
should reduce the statistical errors in θ(0). However, we would face the compli-
cated problem of fitting strongly correlated data to a functional form y = f(x)
with errors in both the x and y coordinates. We faced quite the same difficulty
when estimating the exponent d measuring the decay of the thermoremanent
magnetisation in Section 10.4 and we can adopt the same solution. In particular,
we fit I1(tw) to a power law,

I1(tw) = Btcw (11.54)

and recall that ξ1,2(tw) = At1/z
w , Eq. (10.26). Therefore

θ(0) = 2− cz, (11.55)

a relation that we can apply for each jackknife block.
The results of following this procedure are quoted in Table 11.6.8 As we can

see, the values of θ(0) below Tc are not actually compatible. However, the value at
T = 0.8 is probably affected by critical effects, while the values at T = 0.6,0.7 are
actually very close (see also Section b.3.3.1 for some technical issues with these
fits). Therefore, we use the interval between the computations at T = 0.6 and
T = 0.7 as our confidence interval for the replicon exponent,

θ(0) = 0.38(2), T < Tc. (11.56)

This value is in good agreement with a previous (but much less precise) ground-
state computation giving θ(0) ≈ 0.4 at T = 0 [mar01]. On the other hand, at
T = Tc we have

θ(0) = 0.585(12), T = Tc. (11.57)

This value is a couple of standard deviations away from the estimate we quoted
in (11.51). This difference is at the limit of statistical significance and could be due
either to corrections to scaling or to a small cutoff error in our computations of
the coherence length and I1 (we have fewer samples at Tc, see Section b.3.3.1 for a
discussion of this issue).

8For T = 0.7 we use our simulations with 768 samples. See Section 10.3.2 for our choice for
the fitting range.
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Figure 11.14: Spatial correlation function C4(r |q = 0) at T = 0.703. We show on the
right panel a rescaled version using the replicon exponent θ(0) = 0.38 and the scaling
variable r/L.

11.3.2 Equilibrium study

Let us now examine the scaling of the equilibrium connected correlations. We
shall first carry out a study in real space, using the previously computed θ(0)
as a starting point. Then, as in Section 10.8, we change into Fourier space, more
convenient for a fully quantitative analysis.

11.3.2.1 Real space

We first concentrate on q = 0, the region where the droplet and RSB prediction
are most different. Here, see Figure 11.14, the correlation function is seen to
go to zero for large distances. Furthermore, in order for the droplet scaling as
r/L of (11.34) to work, we need to rescale our data by a factor Lθ(0), using our
previously computed value of θ(0) = 0.38(2).

For |q| > 0, in principle we have to compute explicitly the connected correla-
tion C4(r |q) − q2. This subtraction is problematic for finite lattices [con09], so
instead we take care of the large-r background by considering the differences

C4(r = L/4|q)− C4(r = L/2|q) ∼ L−θ(q), (11.58)

We see in Figure 11.15 that the above differences scale with L−θ(0) in a finite q
range (approximately for q2 < 0.2). This is a new piece of evidence in favour of
the clustering property, that is, of the algebraic decay of connected correlations.

On the other hand, for q2 = q2
EA ≈ 0.3 the exponent is clearly larger than θ(0).

The fact that the scaling with θ(0) holds for a finite range and that, in particular,
there seems to be no discontinuity at q = 0 suggests the following scenario

θ(0 ≤ |q| < qEA) = θ(0) < θ(qEA). (11.59)
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Figure 11.15: Subtracted correlation functions in units of L−θ(0) as a function of q. We
used θ(0) = 0.38(2) from (11.56).

Therefore, we are in the conditions for the scaling law (11.49) to hold and we
should have θ(0) = 1/ν̂ . In fact, our results are

θ(0) = 0.38(2), (11.60)

1/ν̂ = 0.39(5), (11.61)

compatible with this expectation. We still lack, however, one final piece in the
puzzle: the actual value of θ(qEA). We shall attempt to compute it in Fourier
space in the next section.

Let us conclude the real-space study by examining the conditional variance of
the correlation function. We shall write Var

(
C4(r)|q

)
in an abuse of language (C4

is already defined as an averaged quantity, not a random variable) that we hope
will create no confusion. Notice that, while E(Qlink|q) = C4(r = 1|q) the vari-
ance Var(Qlink|q) is different than Var

(
C4(1)|q

)
. These variances are plotted in

Figure 11.16, where they are seen to decrease with L even faster than Var(Qlink|q).

11.3.2.2 Fourier space

In the previous section we saw that the equilibrium spatial correlations scaled
well at q = 0 with the θ(0) computed out of equilibrium and that, indeed, this
same exponent seemed to rule the scaling for a finite q range.

Here we want to make a more quantitative study, using the correlations in
Fourier space (more convenient at q ≠ 0, since they do not require a subtraction).
In particular, we shall obtain independent estimates of θ(0) and θ(qEA) and test
the hypothesis of constant θ(q) in the range 0 ≤ q < qEA.



11.3 — The structure of correlations in the spin-glass phase 231

 0

 0.01

 0.02

 0.03

 0.04

 0  0.5  1

V
ar

(Q
li

n
k
 | 
q)

 L
1

.5

q/qEA(L)

L = 8
L = 12
L = 16
L = 24
L = 32

 0

 0.04

 0.08

 0.12

 0  0.5  1

V
ar

(C
4
(1

) 
| q

) 
L1

.7
5

q/qEA(L)

L = 8
L = 12
L = 16
L = 24
L = 32

 0

 0.08

 0.16

 0.24

 0.32

 0  0.5  1

V
ar

(C
4
(2

) 
| q

) 
L1

.7
5

q/qEA(L)

L = 8
L = 12
L = 16
L = 24
L = 32

0

0.30

0.60

0.90

 0  0.5  1

V
ar

(C
4
(4

) 
| q

) 
L1

.7
5

q/qEA(L)

L = 8
L = 12
L = 16
L = 24
L = 32

Figure 11.16: Conditional variance of the spatial correlation functions at T = 0.703,
which is seen to scale as ∼ L−1.75, faster than the L−1.5 scaling of Var(Qlink|q).

To this end, let us recall definition (10.65) and perform fits to

Fq = Aq`D−θ(q), (11.62)

where ` was defined in (11.26). We have done this for q = 0 and q = qEA at
T = 0.703 in Table 11.7. The scaling at q = 0 is very good and we obtain

θ(0) = 0.377(14), (11.63)

in excellent agreement with our non-equilibrium estimate (11.56). For q = qEA,
however, we need to restrict our fitting range to L ≥ 16. Furthermore, the uncer-
tainty in qEA = 0.52(3) induces a systematic error, which we denote with square
brackets. Our final estimate is

θ(qEA) = 0.611(16)[60]. (11.64)

This estimate is compatible with the scaling law θ(qEA) = 2/ν̂ —recall that 1/ν̂ =
0.39(5).

For the sake of completeness, and as a check of our procedure, we have also
computed θ(0) at Tc. Our result, θ(0) = 0.638(4), is very different from the
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L T = 1.109 T = 0.703

F0 F0 FqEA

8 16.126(64) 19.46(18) 10.373(48)
12 40.59(18) 53.65(62) 25.79(15)
16 79.07(31) 112.5(13) 51.60(29)
24 204.05(83) 327.3(43) 134.54(80)
32 404.4(29) 699(23) 267.9(30)

Lmin 8 8 16
χ2/dof 0.90/3 1.38/3 0.13/1
θ 0.638 2(44) 0.377(14) 0.611(16)[60]

Table 11.7: Fq=0 for our different system sizes and temperatures T = 1.109 ≈ Tc and
T = 0.703. We report at the bottom power-law fits Fq =A`D−θ(q) in the range L≥ Lmin.
At T = 0.703 we also consider Fq at q = 0.523 ≈ qEA. The second error bar, in square
brackets, accounts for the uncertainty induced by the determination of qEA (a larger qEA

produces a larger θ).

L a2

8 35.6(18)
12 110.4(58)
16 254(12)
24 816(40)
32 1823(216)

Table 11.8: Coefficient a2 in a fit to (11.65) for for q2 < 0.5 at T = 0.703.

value at T = 0.703 and compatible with the best result in the literature [has08b],
θ(0) = 0.625(10) (our error bar is deceptively small, because we have not taken
scaling corrections into account, unlike [has08b]).

Finally, let us test the hypothesis of constant θ(q) for |q| < qEA. To this end,
we show in Figure 11.17 the analogous plot to Figure 11.15 in Fourier space. Not
only do we see a good scaling with θ(0) for a finite range, as in Figure 11.15, but
now in our Fourier-space representation each of the curves is linear in q2 below
q2

EA. Therefore, we have performed the following fit

Fq − F0 = −a2q2 + a4q4. (11.65)

Notice that, since the data at different q are correlated, subtracting the q = 0
value yields a significant error reduction. The quadratic term is only included to
control systematic effects in the computation of a2 (and it probably causes us to
overestimate errors). We report the resulting vales of a2 in Table 11.8.

Now, in the case of discontinuous θ(q), one would expect a behaviour

a2(L) = b`c, (11.66)
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with c > D − θ(0). If we perform this fit from the data in Table 11.8, we obtain
c = 2.91(6), with χ2/d.o.f. = 0.08/3. Yet, the extremely small χ2 is an indication
that we have probably overestimated the errors in a2. Therefore, let us take the
value of c seriously and consider the scaling of Fq∗ with q∗ = 0.1 < qEA. Then, in
order for the would-be different scaling at q∗ to be noticeable, we need a lattice
size large enough so that

F0 − Fq ≈ a2q2
∗ ∼ F0. (11.67)

The reader can check that this results in an enormous L ∼ 3× 106. Therefore, we
do not find any numerical evidence in favour of the perturbative prediction of a
discontinuity at q = 0.

Let us go back our favoured scenario of constant θ(q) in |q| < qEA. Then, the
linear behaviour of Fq with q2 suggests a scaling

a2(L) = e`D−θ(0)(1− d`θ(0)−θ(qEA)). (11.68)

In addition, in this hypothesis of constant θ(q) we have θ(0) = 1/ν̂ = θ(qEA)/2
from (11.37) and (11.49). Therefore, we can write

a2(L) = e`D−θ(0)(1− d`−θ(0)). (11.69)

Fitting the data in Table 11.8 to this expression, fixing θ(0) = 0.38(2) and varying
only the amplitudes, we obtain an excellent χ2/d.o.f. = 0.35/3. Therefore, the
simplest scenario consistent with the data is

θ(|q| < qEA) = θ(0) = 1/ν̂ = 0.38(2), (11.70)

θ(qEA) = 2θ(0). (11.71)





CHAPTER XII

Conclusions and outlook

In this dissertation we have explored two main themes in the context of the sta-
tistical mechanics of disordered systems,

1. It is worthwhile (and feasible) to consider a statistical ensemble tailored to
the problem at hand, both from the point of view of achieving thermalisation
and in order to obtain the maximum amount of physical information about
the system.

2. When working with disordered systems, one cannot help dealing with non-
equilibrium phenomena. In this sense, a quantitative relation between the
equilibrium phase and the non-equilibrium evolution can, and should, be
established.

We took a Monte Carlo simulation approach to both issues, carrying out simula-
tions in a variety of computing systems (conventional computing clusters, super-
computing facilities and grid resources) for a combined total of several millions
of CPU hours. In addition, we analysed the data from about one year of non-stop
production of Janus, a special-purpose machine equivalent to many thousands of
conventional computers.

In regards to the first point we introduced the Tethered Monte Carlo method,
a general formalism to reconstruct the Helmholtz effective potential associated to
an arbitrary reaction coordinate. The method consists in performing individual
Monte Carlo simulations at fixed values of the reaction coordinate, which are then
combined to construct the Helmholtz potential from a fluctuation-dissipation for-
malism. By choosing an appropriate reaction coordinate (i.e., one that labels the
different relevant metastable states) it is possible to use this method to obtain a
comprehensive picture of the system’s physics.

We demonstrated that this approach is indeed workable in physically relevant
situations by tackling a classic ‘hard’ problem in the field of disordered systems:
the phase transition of the diluted antiferromagnet in a field. We found that the
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tethered approach unlocked much information that remains hidden to a tradi-
tional method and we were able to obtain a comprehensive and consistent picture
of the critical behaviour in this model.

We explored our second point, the statics-dynamics relation, in the field of spin
glasses. There we analysed large-scale simulations performed on Janus. These
were carried out both in and out of equilibrium and in both cases constituted
a jump of several orders of magnitude with respect to the state of the art. We
were able to use these high-quality data, combined with some novel analysis tech-
niques, to establish a quantitative statics-dynamics equivalence and to determine
the nature of the spin-glass phase up to the experimental scale.

In the following subsections we detail our conclusions and outlook for each of
our three lines: Tethered Monte Carlo, the DAFF and the Edwards-Anderson spin
glass.

12.1

The Tethered Monte Carlo method

We started by demonstrating our Tethered Monte Carlo method in the context of
Ising ferromagnets. In this comparatively simple problem we found that our for-
malism, coupled to a local update algorithm, was able to reconstruct the effective
potential without critical slowing down. We then showed that the method can be
combined with sophisticated update schemes (cluster algorithms), in which case
the critical slowing down disappeared even for non-magnetic observables.

We then applied Tethered Monte Carlo to a system with a rugged free-energy
landscape: the DAFF (see below for the physical results). We found that the
method was able to eliminate the exponential slowing down caused by the free-
energy barriers associated to our reaction coordinates (the magnetisation and
staggered magnetisation).

Thus, we were able to thermalise safely much larger systems that are possible
with conventional methods, such as parallel tempering in the canonical ensemble.
However, for our largest systems we started to see metastable behaviour caused
by new free-energy barriers. In this sense, the onset of exponential slowing down
was delayed, rather than outright eliminated.

Dealing with these new free-energy barriers will probably require the intro-
duction of additional reaction coordinates, capable of a further classification of
metastable states. Our method is in principle equipped to carry out this plan, but
a practical implementation requires some work.

A different avenue for further work with Tethered Monte Carlo is extending
its application to new systems. One interesting possibility is the study of the
condensation transition [bis02, bin03, mac04, nuß06, nuß08], which can be
modelled with Ising systems. We finally note that the tethered formalism has
already been applied to the study of hard-spheres crystallisation [fer11a].
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12.2

The diluted antiferromagnet in a field

The use of the tethered formalism allowed us to obtain a consistent picture of
the critical behaviour in the DAFF. We obtained clear evidence in favour of the
second-order nature of the transition and computed the three independent critical
exponents. In particular, we obtained a precise determination, θ = 1.469(20), for
the elusive hyperscaling violations exponent. We also observed a clear divergence
of the specific heat, in accordance with experimental work.

Still, there is much work still to do. In particular, our data for the ν critical
exponent was affected by finite-size effects. Also, even if we determined that the
specific-heat exponent α is positive, we could not estimate its precise value very
precisely. To this end, the simulation of even larger systems would be required.

Finally, it would be very interesting to achieve a closer connection to experi-
mental work. The obvious contact point would be obtaining a precise numerical
determination of the scattering line shape, which is the basic quantity explored in
experiments to characterise the critical behaviour. Our methods are well suited to
carry out this programme in the future.

12.3

The Edwards-Anderson spin glass

We studied the D = 3 Edwards-Anderson spin glass in and out of equilibrium and
were able to establish a time-length dictionary, relating the equilibrium phase of
a system of size L and the non-equilibrium state at time tw of a system in the
thermodynamical limit. In particular, we reached the conclusion that the equilib-
rium phase of a system of size L ∼ 100, and not the thermodynamical limit, is the
relevant one for understanding experimental work on spin glasses.

We later took this quantitative statics-dynamics connection one step further by
establishing a finite-time scaling framework. This last result, in which dynamical
heterogeneity played a major role, has implications for experimental work.

The above studies were carried out in a neutral formalism, without assuming
the validity of any particular theory for the spin-glass phase. A more detailed
analysis of the spin-glass phase showed clear evidence in favour of the RSB pic-
ture, at least for experimentally relevant scales. We based this conclusion on three
main observations: (i) non-triviality of the spin overlap, (ii) overlap equivalence
and (iii) the existence of a non-zero replicon exponent.

When trying to decide which is the relevant theory in the thermodynamical
limit (equivalent to the limit of infinite experimental time), we found that our
data still supported the RSB picture, but here our results are not as conclusive (in
principle, there can always appear a change of regime for much larger sizes or
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much longer times, even if we see no trace of it with our data).
There are several promising avenues for future work in this field. First, decid-

ing in favour of RSB for the nature of the spin-glass phase does not automatically
grant one full knowledge of its characteristics. Much work is needed in order to
work out some very important details, such as the nature of temperature chaos.

Perhaps the most interesting prospect for future work is trying to reproduce,
as realistically as possible, an actual spin-glass experiment. Our non-equilibrium
simulations only considered the simplest protocol of isothermal aging, but many
interesting effects (memory, rejuvenation, etc.) can only be observed by vary-
ing the temperature. In this sense, our current simulations were limited by the
onset of finite-size effects. Indeed, for temperatures close to the critical point,
our simulated size L = 80 is not large enough to be representative of the non-
equilibrium physics for experimentally relevant times, since the coherence length
grows too quickly. Let us stress that although this effect is restricted to the vicin-
ity of the critical temperature, any experimental cooling protocol should expend
a time close to Tc which is very long in the microscopic scale.1

Simulating even larger lattices is, therefore, a must if one wants to reproduce
sophisticated experimental protocols. We are very optimistic in this sense: we are
already testing a code that allows us to simulate lattices of size L = 256 and we
also have funding for Janus II, which will not only allow us to simulate even larger
systems, but also to probe longer times, taking us fully into the experimental
regime.

1Recall that 1 MCS is roughly equivalent to one picosecond and that our L = 80 simulations
at T = Tc showed finite-size effects from about 106 MCS.



APPENDIX A

Thermalisation in Monte Carlo simulations

This appendix is intended as a reference on thermalisation in Monte Carlo simula-
tions, providing some definitions that are used throughout this thesis. Most of the
definitions are standard, but subsection a.3.1 contains some methods developed
in part during this thesis.

a.1

Markov chain Monte Carlo

Let us begin by recalling some definitions and results relevant to the theory of
dynamic Monte Carlo methods (this is not meant to be a rigorous or self-contained
account, just a quick reference, cf. [sok97, rub07]). In general, we are interested
in extracting configurations from some probability distribution p({sx}), often of
the kind p({sx}) ∝ e−βE({sx}). In order to simplify the notation, we denote the
system configuration by a single random variable X and our target probability
distribution by Px = P(X = x).

Then we define our Monte Carlo method as a random walk in configuration
space, that is, a sequence Xt of random variables. The first one —the starting
configuration— will follow some simple probability distribution P (0)x (completely
random spins, for instance). We need the random walk to reach a stationary state
such that limt→∞ P

(t)
x = Px.

We consider a Markov chain: the probability distribution of Xt+1 depends only
on Xt and not on the whole previous history. Then, we can specify the whole
process by giving the initial distribution P (0)x and a transition matrix Uxy . The
latter is defined as

Uxy = P(Xt+1 = y|Xt = x), (a.1)

that is, the probability that the system will be in the configuration y at time t + 1
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if it was at x at time t. Of course, we can iterate this definition

[Un]xy = P(Xt+n = y|Xt = x). (a.2)

The objective is that, no matter the initial distribution P (0)x , after a sufficiently
long number of iterations we obtain configurations distributed according to Px.
In other words

lim
n→∞[U

n]xy = Px. (a.3)

We need two ingredients for this

• First, we need our method to be capable of exploring the whole configuration
space. To this end, we require the transition matrix to be irreducible: for all
x,y there exists an n such that [Un]xy > 0.

• Naively, we could think of requiring that, once we have reached the station-
ary distribution Px, the Markov process should lose all sense of direction
and be reversible. We should not be able to tell if it is running backwards or
forwards. That is

PxUxy = PyUyx. (a.4)

This is called the detailed balance condition. Actually, it turns out that this
is too restrictive. We only need that the stationary distribution of the Markov
chain correspond to Px, that is

Py =
∑
x
PxUxy . (a.5)

This is the balance condition.

If Uxy satisfies these two conditions, then (a.3) can be proved and we have a
legitimate Monte Carlo method. Notice that the balance condition is easier to
check than it seems, since it does not depend on the normalisation of the Px
(typically given by the unknown partition function Z).

Perhaps the easiest example of Monte Carlo dynamics is the heat bath. Let
us consider the update of a single Ising spin at site x, sx → s′x, where all the
remaining spins in the lattice are kept fixed. Then, we consider the following
update probability

P(Xt+1 = {s′}|Xt = {s}) = e−βE({s
′})∑

s′′x=±1 e−βE({s′′})
, (a.6)

Notice that all the terms in the energy that do not involve site x factor out. There-
fore, it is obvious that the update of a single spin satisfies the detailed balance
condition. In order to define a full Monte Carlo method we need to update all the
spins. We can do this by randomly choosing one spin each time and defining each
Monte Carlo step as N spin updates (so that each spin in the lattice is updated
once, on average). In this case the whole transition matrix would also satisfy de-
tailed balance. We can also consider a scheme where we run through the lattice
sequentially, visiting all the sites in order. In this case, the process would clearly
not be reversible, and the transition matrix would only satisfy balance.
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a.2

The autocorrelation times

As a general rule, the thermalisation of a Monte Carlo simulation (i.e., how long it
takes to reach the stationary distribution) should be assessed through the tempo-
ral autocorrelation functions [sok97]. Let O be an observable, defined as always
as a real-valued function on the configuration space, and assume we have equili-
brated the system for a very long time, so we have reached the stationary regime.
Then, we consider the equilibrium (stationary) evolution O(t) and define the equi-
librium autocorrelation functions

CO(t) =
〈
[O(0)− 〈O〉][O(t)− 〈O〉]〉, ρO(t) = CO(t)CO(0)

. (a.7)

The angle brackets here denote any kind of thermal average (e.g., canonical or
tethered). The autocorrelation function decays as an exponential for long times,

ρO(t)
t→∞−−−−−→ A exp[−t/τ]. (a.8)

This asymptotic behaviour suggests the definition of the exponential autocorrela-
tion time,

τexp,O = lim
t→∞

sup
t

− log |ρO(t)| , (a.9)

τexp = sup
O
τexp,O. (a.10)

In general, we express the autocorrelation as a sum of exponentials1

ρO(t) =
∑
i

Aie−t/τi . (a.11)

The exponential time, then, is the largest of the τi and characterises the relax-
ation time of a certain observable. Actually, barring symmetry considerations, the
exponential time is the same for all observables.

Another useful concept is that of integrated autocorrelation time

τint,O = 1
2
+

∞∑
t=1

ρO(t), (a.12)

The integrated time indicates the minimum time difference so that two measure-
ments of some observable O can be considered independent (i.e., uncorrelated).

1Actually, this is only strictly true if the dynamics fulfils detailed balance and is not only
irreducible but aperiodic. Otherwise, there can be some modes in the form of damped oscilla-
tions. However, these are never observed, within errors, in the applications we consider in this
dissertation.
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In particular, if Var(O) is the variance of a single measurement of O (after we have
reached equilibrium) and we average over N successive such measurements, the
resulting variance is

Var
(
O(N )

) = Var(O)
N /(2τint,O)

, (a.13)

as opposed to the value Var(O)/N that we would obtain forN statistically inde-
pendent measurements.

The integrated time is less useful as a measure of thermalisation than the ex-
ponential. In fact, notwithstanding the previous discussion, the determination of
τint,O is not even always needed to estimate statistical errors (see Appendix B).
It has, however, the considerable advantage of being much easier to measure
safely. Notice as well that, if the decomposition (a.11) contains a single expo-
nential, τexp,O = τint,O , This approximation can often be employed. Alternatively,
if we do not take measurements for every single MCS or, better, if we make bins
of consecutive measurements, we can neutralise the faster modes in (a.11) and ap-
proach the single-exponential limit. By ‘binning’ we understand averaging groups
of n consecutive measurements. In this case, all the components with τi � n
dissappear. The same approach is taken in a different context, that of random
variables strongly correlated in space, close to a critical point (Kadanoff-Wilson
blocks).

a.2.1 Some computational recipes

For a large-scale MC simulation, where we have to handle very long time series
(millions of time steps even after the binning procedure mentioned above), the
computation of ρO(t) can be time-consuming. Indeed, a naive implementation of
definition (a.7) requires O(N 2) operations.

We can do better. For simplicity, and without loss of generality, let us consider
an observable such that 〈O〉 = 0, for which we take N measurements O(t), t =
0, . . . ,N−1. We also assume all this measurements have already been taken in the
equilibrium regime (i.e., we have discarded a sufficient number of measurements
for thermalisation). Then we could estimate CO as2

[CO(t)] = 1
N − t

N−1−t∑
s=0

O(s)O(s + t). (a.14)

Let us define
SO(t) = (N − t)CO(t) (a.15)

and

O′(t) =
O(t), 0 ≤ t <N ,

0, N ≤ t < 2N , (a.16)

2We use the notation [O] for the numerical estimator of some thermal average 〈O〉.
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and we consider O′(t) to be extended periodically.
Then we can write our numerical estimate for the unnormalised correlation of

O′ as

[SO′(t)] =
2N−1∑
s=0

O′(s)O′(s + t) (a.17)

Notice that

[SO′(t)] = [SO(t)]. (a.18)

Now consider the Fourier transform of SO′(t),

[ŜO′(q)] =
2N−1∑
t=0

2N−1∑
s=0

O′(s)O′(s + t)e−iqt (a.19)

Notice that, since we are summing t over a whole period of the function, we can
change s + t → t′ in the second sum

[ŜO′(q)] =
2N−1∑
s=0

O′(s)
2N−1∑
t′=0

O′(t′)eiqse−iqt′ (a.20)

=
(2N−1∑
s=0

O′(s)eiqs
)(2N−1∑

t′=0

O′(t′)e−iqt′
)
= |Ô(q)|2. (a.21)

That is, the Fourier transform of the autocorrelation is equal to the modulus of
the Fourier transform of O′ (we have needed a periodic O′ to get this result). This
is the Wiener-Khinchin theorem.

Therefore, we can obtain SO′(t) = SO(t) = (N − t)CO(t) by computing the
Fourier transform of O(t), evaluating its complex modulus and then comput-
ing the inverse Fourier transform of |Ô(q)|2. It may seem that we have gained
nothing. However, the computation of discrete Fourier transforms, seemingly
an O(N 2) task, can actually be done in O(N logN ) operations using the Fast
Fourier Transform algorithm (see, e.g., [pre92]). In the work reported herein we
have always followed this method to evaluate temporal autocorrelation functions.
We use the FFTW implementation reported in [fri05].

Notice that an analogous method can be followed to evaluate spatial correla-
tions, as we will have ample occasion to do (especially in Part IV). In this case,
even if the functions are three-dimensional, the procedure is even simpler, as the
periodic boundary conditions are already built in. Therefore, we do not have to
pad our observables with zeros, as in (a.16).

Once we have computed the ρO(t) we need to estimate the autocorrelation
times. For the exponential ones our only recourse is a fit to one or more expo-
nential modes (see below). The integrated time must, in principle, be computed
from the sum of our numerical estimate [ρO(t)] extended to all our values of t.
However, as is clear from our definition (a.14), the final times have much smaller
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statistics, so their contribution is nothing but a white noise. Therefore, τint,O is
best evaluated using a self-consistent window [sok97]

τint,O = 1
2
+

Λ∑
t=1

[ρO(t)], (a.22)

where Λ is chosen as Λ = Wτint,O , withW a tunable parameter (W = 6 works well).

a.3

Thermalisation in disordered systems

The safe computation of the autocorrelation times described in the previous sec-
tion requires a simulation time orders of magnitude larger than τexp. This is not a
problem when simulating ordered systems, because extending the simulation re-
duces the statistical error of the final results. With disordered systems, however,
the main source of statistical error is the sample-to-sample fluctuation. Reducing
the thermal error for each sample beyond a certain, easily reachable, threshold is
useless.

Therefore, given a fixed computational budget, we would like to simulate each
sample for the shortest possible time that ensures thermalisation.3 Since so short
a run time does not permit a computation of the τO for physical observables,
researchers have traditionally employed less rigorous methods to check thermal-
isation.

In general, the typical method is to study the time evolution of the disorder-
averaged physical observables. In particular, one of the most widespread practical
recipes is the so-called log2-binning. One divides the simulation time N in loga-
rithmic intervals In:

In = (2−n+1N , 2−nN ], (a.23)

Notice that with this definition time decreases with increasing n, so I0 corre-
sponds to the second half of the run, I1 to the second quarter, etc. Then, one
evaluates the thermal average for each sample and the disorder average, for each
of the time intervals. If the last few In show no evolution, the simulations are
considered to be thermalised.

This procedure is not optimal, because in many situations the thermalisation
time is wildly dependent on the sample (see Figures 8.5 and 8.6 on page 123 for
the DAFF or Figures e.1 and e.2 on page 287 for the Edwards-Anderson spin glass).
Thus, if we choose a simulation time that would thermalise even the slowest sam-
ples, we will spend most of our time extending already well thermalised runs for
no benefit. Worse, a stationary average over many samples may hide the fact that

3Notice that this not only would allow us to maximise the number of samples we can average
for a fixed total CPU time, but, assuming we can run many samples at the same time, would also
minimise the wall-clock time (the physical time we have to wait for the results).



A.3 — Thermalisation in disordered systems 245

a few samples are still quite far from equilibrium (the thermalisation time can
vary along several orders of magnitude from one sample to another).

One could toughen the log2-binning test by taking the correlations into ac-
count [fer07]. Indeed, since the samples considered for each In are always the
same, the difference between the resulting averages (even assuming complete tem-
poral decorrelation) will typically be much smaller than their statistical errors.
This is because, as we said earlier, the thermal fluctuations account for an almost
negligible part of the total statistical error. We can take this into account by com-
puting for each sample the differences between the average for I0 and each of
the In and considering the evolution of these correlated differences, which have
a much smaller error (see Figure 8.9). To be sure, this is a more stringent test,
but ultimately an unphysical one (because it considers much smaller errors than
those of the physical results). Furthermore, it does not address the important
problem of efficiency.

In the next section we shall see how we can provide a more rigorous method,
taking advantage of the parallel tempering algorithm used to accelerate the ther-
malisation.

a.3.1 Parallel tempering

Parallel tempering [huk96, mar98] is one of the most common methods to accel-
erate thermalisation. Its motivation is the rugged free-energy landscape picture
described in the General Introduction. Let us consider a system described in the
canonical ensemble by the following partition function

Z(β) =
∑
{sx}

e−βE. (a.24)

At a physically interesting low temperature the system is trapped in deep free-
energy valleys, with extremely long escape times. At a higher temperature, how-
ever, the energy fluctuations are enough to overcome these barriers quickly.

We can take advantage of this by simulating NT copies of the system (in our
case, NT starting configurations with the same disorder realisation). Each copy
starts the simulation at a different temperature, with T1 < T2 < . . . < TNT . We
assume that T1 is such that our chosen Monte Carlo dynamics would need an
impossibly long time to thermalise the system, while TNT is high enough for the
same dynamics to achieve thermalisation very quickly. After updating each copy
independently for one or more MCS we perform the parallel tempering update.

Then, we consider a configuration space with NT (V + 1) degrees of freedom,
{T (i), {s(i)x }}. The temperature associated to copy i of the system can change, but
the ensemble of temperatures {β(i)} must always be a permutation of

{β1, . . . , βNT } = {1/T1, . . . ,1/TNT }. (a.25)
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Now, the partition function of the whole ensemble of systems is

ZNT =
1
NT !

NT∏
i=1

Z(β(i)). (a.26)

We can compute the marginal distributions for the β(i). Summing over the spins,
we find that the marginal probability density of the temperature configuration
{β(i)} is uniform,

p({β(i)}) = 1/(NT !). (a.27)

Moreover, the marginal probability for a single temperature is also uniform,

p(β(i)) = 1/NT . (a.28)

The partition function (a.26) allows us to consider a Monte Carlo dynamics
where we simply try to exchange copies i and j of the system, initially at neigh-
bouring temperatures Tk and Tk+1,

{β(i) = βk, {s(i)x }} × {β(j) = βk+1, {s(j)x }} −→
−→ {β(i) = βk+1, {s(i)x }} × {β(j) = βk, {s(j)x }}.

(a.29)

The Metropolis acceptance probability (see Section 3.2) for this dynamics is

P =min{1,ωnew/ωold} =min
{
1, exp

[−(βk+1 − βk)(E(j) − E(i))
]}
. (a.30)

In order for this dynamics to be irreducible, a full parallel temperature update
consists in attempting one exchange per temperature, going sequentially from the
lowest to the highest (so one configuration can actually jump several temperatures
in a single update).

This way, the temperature of each copy performs a random walk in tempera-
ture space. Once the system reaches a high enough temperature, a few MCS are
enough to make it cross the free-energy barriers so when it eventually returns to
its original temperature it has been decorrelated from the starting configuration.

Notice that for this algorithm to work, we need to choose the participating tem-
peratures close enough for their energy histograms to overlap, so the acceptance
probability (a.30) is high enough.

a.3.2 The temperature random walk

In equilibrium, each copy should spend the same time at each temperature (re-
call (a.27)), so studying the temperature random walk can give information about
the thermalisation. In particular, several round trips from lowest to highest tem-
perature are needed for a system to be considered thermalised.
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Figure a.1: Temperature random walk of a single configuration in one of our spin-glass
simulations of Appendix E. We plot the temperature index i(t) against the time measured
in heat bath updates. The critical temperature corresponds to ic = 17 (in the middle of
the range).

We can promote this idea to a fully quantitative and physically meaningful
level.4 Let us assume that our range of temperatures crosses the critical point
and let us define ic such that

Tic−1 < Tc < Tic . (a.31)

Now, for one of theNT copies of the system, we consider its temperature random
walk mapped to the range of the temperature index i(t) ∈ {1, . . . ,NT}. Figure a.1
shows one example, taken from our spin-glass simulations. Notice that the ran-
dom walk is clearly not Markovian, as evinced by the long plateaux, since the
system retains for a long time a memory that it started in the high (or low) tem-
perature phase.

Our goal is to construct a quantity that is both representative of the random
walk and amenable to the computation of autocorrelation times described in the
previous section. To this end, we consider a mapping f(i) such that

f(i) ≥ 0, ∀i ≥ ic, (a.32)

f(i) < 0, ∀i < ic, (a.33)
NT∑
i=1

f(i) = 0. (a.34)

4The method described herein was first introduced in [fer09b] and we later refined it
in [jan10a].
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Recalling (a.28), we see that the last condition is just 〈f 〉 = 0. It is also convenient
that f be monotonic. Generally, one chooses the temperatures so that ic is in the
middle of the range, so a simple linear f suffices.

Now we can compute the autocorrelation Cf (t) with Eq. (a.14). Notice that f
has an advantage over the CO of the physical observables: we can average the cor-
relations over the NT copies in the parallel tempering. These are not, of course,
completely independent (the most obvious constraint being that each must be at a
different temperature), but still the averaged correlation has a much smaller vari-
ance. Furthermore, in the case of spin glasses one simulates several statistically
independent replicas, which provide an additional averaging layer and allow an
estimate of the statistical error.

As explained in Section a.2, the thermalisation of the system is characterised
by the exponential autocorrelation time. Recall that, barring symmetry consider-
ations, the exponential time should be the same for all random variables in the
simulation, including the physical observables. In general, the exponential auto-
correlation time must be computed from a fit to an equation such as (a.11), with
an appropriate number of exponential modes. This is not a problem for ordered
systems simulations, where one can simply select the fitting range and functional
form manually. When simulating disordered systems, however, one would have
to do thousands of such fits, each with a different fitting range (in our study of
the DAFF, for instance, we performed several hundred thousands independent
parallel tempering simulations).

Clearly, an automated system must be found. The first step is making the
Cf (t) as simple as possible. In this respect we notice that the choice of f should
not modify the exponential autocorrelation time, but will affect the relative sizes
of the Ai. Our criteria (a.32) and (a.33) hopefully select a family of functions that
reduce the amplitude of the irrelevant fast modes. A second simplification is
afforded by the sheer length of the simulations in practical cases. From a look at
Tables 8.1 and e.2 we see that the runs can be as long as 1012 MCS. In this situation,
averaging the f

(
i(t)

)
over a large number of consecutive measurements implies

no real information loss (as long as the bins are much smaller than τexp). This
binning procedure also has the welcome side effect of suppressing the fastest
modes.

With these considerations in mind, in practice it turns out that the ρf (t) can
be adequately described by considering just two exponential modes. As an exam-
ple of this, we have plotted in Figure a.2 several autocorrelation functions from
our spin-glass simulations. The depicted correlation functions have been chosen
randomly, with the only condition that they represent samples with very different
exponential autocorrelation times.

a.3.3 Thermalisation protocol for parallel tempering simulations

We can summarise the previous discussion in the following three-step thermali-
sation procedure
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Figure a.2: Autocorrelation functions for some of our equilibrium spin-glass simulations
of Appendix E, showing samples with τexp across several orders of magnitude, plotted
against the simulation time in units of 106 MCS. We have plotted the range [0,6τexp]
and also show the result of the automated fitting procedure described in Section a.3.3.
In order to avoid cluttering the graphs we have only plotted a few times (the actual
correlation functions have many more points). In the last panel the correlation function
has a strong downwards fluctuation. Our fitting code takes this into account by choosing
a restricted range and fitting to a single exponential.
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1. Simulate for a minimum length of Nmin MCS, chosen to be enough to ther-
malise most samples. Notice that most published parallel tempering studies
stop here, assessing thermalisation only through the evolution of disorder-
averaged observables.

2. Discard the first sixth of the measurements and compute the ρf (t) from
the remainder. Compute the integrated autocorrelation time with the self-
consistent window method of Eq. (a.22), using W = 6. Using this first es-
timate of the integrated time, we extend the simulation until N > Aintτint,
always discarding the first sixth. This criterion was introduced in [fer09b].

3. Now that the simulation is reasonably dimensioned, estimate τexp (typically
of the same order of magnitude as τint, but always bigger). Extend the simu-
lations untilN > Aexpτexp.

The actual thresholds Aint and Aexp are somewhat arbitrary and should be tuned
to the system at hand (especially Aint, since the integrated time, unlike the expo-
nential one, depends on the choice of f and the frequency of its measurements).

We introduced the third step in this protocol for our spin-glass simulations
in [jan10a], choosing Aint = 22, Aexp = 12 (see a.3.3.2 for our criteria for the
DAFF). Notice that this implied performing non-linear fits with custom ranges for
some 104 autocorrelation functions. The first step was parameterising ρf (t) by
a double exponential decay (an assumption empirically justified by the shape of
these correlation functions, cf. Figure a.2).

ρf (t) ' A1e−t/τ1 +A2e−t/τ2 , τ1 = τexp > τ2. (a.35)

The choice of fitting range of course depends on the values of the τi, which vary
across several orders of magnitude from one sample to another. However, notice
that, if A2 = 0, then τexp = τint. Therefore, τint is a good starting assumption for
τexp, so we took the following steps:

(i) Perform a first fit to a single exponential in the range [2τint,3τint], yielding
an amplitude A and a time τ .

(ii) Using τ1 = τ , τ2 = τ/10, A1 = A and A2 = 1−A as a starting point, perform
a non-linear fit to (a.35), with the fitting range [τint/10,10τint].

In most cases we can stop here. Sometimes, however, the second fit fails —
typically because one of the amplitudes is very small, so ρf (t) is indistinguishable
from a single exponential. This can be detected, and solved, in a number of ways:

(iii.a) One of the Ai is Ai � 1, τ1 has an absurdly large value (indicating a fit to a
short plateau in a noisy range) or the iterative fitting method breaks down.
In these cases, a single exponential fits the data better. We perform a fit to a
single exponential in the range [5τint,10τint].

(iii.b) One of the Ai is negative, indicating an unphysical downwards fluctuation in
the ρf (t) for large times (cf. bottom-left panel of Figure a.2). We perform a
fit to a single exponential in the reduced range [2.5τint,3.5τint].



A.3 — Thermalisation in disordered systems 251

a.3.3.1 Fail-safe mechanisms
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Figure a.3: Time spent above the critical temperature against total simulation time for
two spin-glass samples. In each case we plot theNT copies of the system. The left panel
shows an ‘easy’ sample, where the random walk is relatively fluid and all configurations
progress gradually. The right panel shows a ‘hard’ sample, where the configurations get
trapped in local minima at low temperatures, producing long plateaux (notice the scales
in both plots). In a very short run time (inset), only one of the copies of the second
system would betray its hard character.

This automatic and fully quantitative procedure works for most samples, but
there are some potential pitfalls that can lead to our underestimating τexp. For
instance, the exponential time may sometimes be much larger than τint. In these
situations, A1 is very small and it is very difficult to fit the data properly. There-
fore, if our fitting method detects τexp > 10τint, we increase the measurement bins
by a factor of 10, making both τint and A1 grow and easing the fitting procedure.

More generally, we have assumed that our ρf (t) has been measured in equilib-
rium, or close to it (i.e., that our simulation is at least a couple of τexp long). In a
very short run, however, some of the configurations may not even have had time
to visit the relevant minima, and get trapped in them, producing a misleadingly
fluid random walk. In particular, this happens when some of the copies have not
crossed the critical temperature in the parallel tempering dynamics. To prevent
this from happening, we also measure thot, defined as the time that each copy has
spent above the critical temperature. In case one of the copies has a thot smaller
than a third of the median one, we consider that the simulation time is woefully
underestimated and we simply double it. Notice that, unlike our other criteria,
this is not completely quantitative. As a general rule, if many samples only raise
the alarm because of the thot check, we must conclude that ourNmin is too short
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and extend all the runs to a larger minimum run time. We show two examples of
thot as a function of simulation time in Figure a.3.

a.3.3.2 The criteria for the DAFF simulations

The procedure described above for the computation of the τexp must be tuned
for the physical system we want to study. For example, consider the case of the
DAFF simulations discussed in Chapter 8. In contrast with our spin-glass simula-
tions, which probed deep into the low-temperature region, these were restricted
to the neighbourhood of the critical point. As a consequence, the resulting ρf (t)
were generally simpler than those of the spin glass. Indeed, most of the time we
could only see one exponential mode, so τint ' τexp. On the other hand, we only
simulated one replica, so we could not easily estimate the error in ρf (t). This
complicates the evaluation of τexp (making it difficult to distinguish fluctuations
from real effects), especially for the shorter runs, which have smaller statistics.

To take this into account, we modified our criteria to give more weight to the
integrated time. We required a minimum run length of 100τint (i.e., we chose
Aint = 100 in step ii above). In this way, even if τexp ' 10τint, an upper bound in
our experience, we would still have a run length of about 10τexp.



APPENDIX B

Analysing strongly correlated data

In a Monte Carlo computation, one has to deal both with systematic and a statisti-
cal error sources. Furthermore, the strong correlation between the data makes the
estimation of this latter error delicate. In this Appendix we present some recipes
to handle correlated data.

b.1

Computing thermal averages from correlated data

We start by resuming an issue introduced in Appendix A: how to estimate the
error in the average of correlated measurements. The methods contained in this
section are well known, to the point of being included in textbooks [ami05]. It
is, however, convenient to present a summarised account here, if only to fix the
notation for the more sophisticated methods of succeeding sections.

Let us suppose we have N independent measurements Oi of some random
variable (observable) O. We want to use them to estimate the thermal average
〈O〉, for which our estimator [O] is naturally

[O] = 1
N

N∑
i=1

Oi. (b.1)

This estimator is unbiased, meaning that 〈[O]〉 = 〈O〉. More than that, by virtue
of the central limit theorem we can expect it to behave as

[O] = 〈O〉 + η σ√N = 〈O〉 + η∆O , σ =
√

Var(O), (b.2)

where η is a standard Gaussian random variable. We can likewise estimate the

253
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error ∆O as

[∆2
O] =

1
N − 1

 1
N

∑
i

O2
i −

 1
N

∑
i

Oi

2
 . (b.3)

Again, [∆2
O] is an unbiased estimator for ∆2

O . It can be further shown that

[∆O]−∆O ∼ ∆O√
2N . (b.4)

So, in order to get a reliable error estimate, we need to average at least 50 inde-
pendent measurements. Now consider that our Oi are the values O(t) that the
observable O takes along a Monte Carlo simulation. The former formulas are
no longer valid, because the O(t) are no longer independent. In particular, it is
straightforward to show that〈

([O]− 〈O〉)2〉 = 2τint,O

N
(〈O2〉 − 〈O〉2)+O(N −2). (b.5)

Therefore, the effective number of independent measurements when estimating
errors is notN , butN /2τint,O . The computation of the τint,O is costly and usually
not very precise, so we need a more robust method to estimate errors. One obvi-
ous possibility is to consider M independent runs O(i)(t). Then we can compute
the individual [O(i)] and do

[O] =
M∑
i=1

[O(i)], (b.6)

[∆O]2 = 1
N − 1

 1
N

∑
i

[O(i)]2 −
 1
N

∑
i

[O(i)]

2
 . (b.7)

This strategy guarantees us independent data, but it is very cumbersome, since we
need many runs in order to get an acceptable error estimate. It contains, however,
the germ of a workable system: data binning. Indeed, let us combine our N
measurements of O along a simulation into B blocks of sizeN /B = n:

Õi = 1
n

ni∑
t=(i−1)n+1

O(t). (b.8)

Notice that

[Õi] = 1
B
∑
i

Õi = 1
nB

∑
i

ni∑
t=(i−1)n+1

O(t) = [O]. (b.9)

Now let us assume that the block length n is n� τint,O , so the Õi can be consid-
ered independent from one another.1 We have, then

[∆2
O] =

1
B− 1

 1
B
∑
i

Õ2
i −

 1
B
∑
i

Õi

2
 . (b.10)

1There are boundary effects, but they are only O(n−1).
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Of course, if we do not know τint,O we cannot know whether n� τint,O . However,
we can just evaluate [∆O] for increasing block lengths n. For small n the error
will be underestimated, but we will eventually reach a stationary regime. Once
this is achieved, we should not let n grow much more, in order to maximise the
number of blocks B and, with it, the precision of our error estimate.

b.2

Non-linear functions and the jackknife method

Often, the interesting physical quantities are not restricted to thermal averages
of observables, but include functions of these thermal averages (susceptibilities,
correlation lengths, etc.). In general, we estimate f(〈O〉) by f([O]). However,
now f([O]) is a biased estimator for f(〈O〉) (unless f is linear). Fortunately, this
bias is O(N −1), much smaller than the statistical error which, as we have seen,
goes as O(N −1/2) (yet, see Section b.2.1). However, we still have the problem of
providing an error estimate for our f([O]). Naively, we would do this with a linear
error propagation but here the correlations actually play in our favour, reducing
the errors.

Throughout this thesis we have always employed the jackknife method. This
is simple and robust but not, we must say, the only possible choice (the other
main alternative is the bootstrap, cf. Section b.3.3.1). We consider a function f of
one or several thermal averages and we define the following procedure

1. Estimate the central value f(〈A〉 , 〈B〉 , . . . , 〈Z〉) by f([A], [B], . . . , [Z]).

2. Bin each of the observables, as in (b.8), with large enough n and B. Then
form the jackknife blocks,

OJK,i = 1
B− 1

∑
j≠i

Õi. (b.11)

3. Evaluate the function for each jackknife block,

fJK,i = f
(
AJK,i, BJK,i, . . . , ZJK,i

)
. (b.12)

4. Compute the jackknife error estimate

[∆2
f ] = (B− 1)

 1
B
∑
i

f 2
JK,i −

 1
B
∑
i

fJK,i

2
 . (b.13)

This error estimate coincides exactly with (b.10) for linear functions. For non-
linear ones, it takes the correlations into account and provides a reliable estimate,
since the blocks are allowed to fluctuate jointly.
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b.2.1 Disordered systems

In this thesis, we are mainly concerned with disordered systems, where one has
to compute double averages of the type 〈O〉. In these cases, the application of
the data binning procedure is even easier. Since each thermal average 〈O〉 comes
from a different, independent sample we do not have to concern ourselves with
the block length. We simply consider one block for each sample, so Õi is replaced
by our estimate [Oi] for the thermal average of the i-th sample. We can then form
jackknife blocks with these [Oi] as usual.

However, not all is simple. Sometimes we wish to compute disorder averages of
non-linear functions of thermal averages, that is, quantities of the type f(〈O〉). In
these cases, the bias produced by mocking f(〈O〉) by f([O]) can have dangerous
effects. There are general cures for this problem (see, for instance, [bal97]). A
particularly elegant solution is afforded by the simulation of several real replicas
for each sample (for systems such as spin glasses, this is something we have to
do anyway).

For instance, let us consider a simple quadratic function, 〈O〉2. We already saw
in (b.5) that [O]2 is a biased estimator of 〈O〉2, with a bias of O(N −1). Instead, if
we run two independent simulations, resulting in time series Oα and Oβ we have

〈OαOβ〉 = 〈Oα〉 〈Oβ〉 = 〈O〉2 . (b.14)

However, the numerical estimate [OαOβ] can be computed without considering
the square of an averaged quantity (just as if OαOβ where a single observable).
Therefore,

〈[OαOβ]〉 = 〈OαOβ〉 = 〈O〉2 (b.15)

b.3

Computing fits of correlated data

Let us suppose we have a series of N points (xi, yi), which we want to fit to a
functional form y = y(x;a1, . . . , an), depending on some unknown parameters
ai. For each point we have an estimate ∆i of the statistical error (standard de-
viation). Then, the maximum likelihood estimator for the ai can be obtained by
minimising the ‘chi-square’

χ2 =
N∑
i=1

(
yi − f(xi;a1, . . . , an)

∆i

)2

. (b.16)

If our model function is linear in the ai, and each of the yi are Gaussianly dis-
tributed, it can be shown that the values of the minimum χ2 follow the chi-square
distribution forN −n degrees of freedom. This distribution has meanN −n and
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standard deviation
√

2(N −n). Because of the central limit theorem it tends to a
Gaussian distribution in the limit of largeN −n. Notice that this also guarantees
that it will not be too wrong to treat a non-linear function of the ai in the same
way, as is usually done.

The above results mean that not only can we use the χ2 to obtain the best fit
parameters for a given functional form, but also to test whether this function is
a good model for the data. Indeed, for a ‘good’ fit, the value of χ2 per degree of
freedom should be χ2/d.o.f. ≈ 1. Too large a value of χ2/d.o.f. would mean that
the function is not a good fit for the data (too low a value usually means that the
∆i are overestimated, yet see below). To be more precise, the probability that χ2

should exceed a particular value µ by chance in a fit with ν = N − n degrees of
freedom is given by the incomplete gamma function,

P(χ2 > µ,ν) = 1
Γ (ν/2)

∫∞
µ/2

e−ttν/2−1 dt. (b.17)

Notice that giving the value of χ2/d.o.f. is not enough, we need to know χ2 and ν
separately. For example, a fit with 2 degrees of freedom and χ2 = 4 would have
χ2/d.o.f. = 2 and P ≈ 0.135 (not a very good fit, but still acceptable). However, a
fit with 10 degrees of freedom and χ2 = 20 would also have χ2/d.o.f. = 2, yet now
the P-value would be P ≈ 0.029, indicating a bad fit.

We can also use the χ2 test to estimate the errors in the fit parameters. Let
us denote by χ2

min and by amin
i the best fit parameters and the resulting χ2 value.

Then, finding the error in ai is a matter of perturbing this parameter and not-
ing the change in χ2. The traditional recipe, followed here, is to modify amin

i to
amin
i + ∆ai and perform a new fit where the other parameters are varied, but ai

is kept fixed. This new fit will have a χ2 = χ2
min + ∆χ2. Since we are considering

the fluctuations in χ2 caused by a single (assumed to be) Gaussian variable ai, a
variation of one standard deviation in ai is equivalent to ∆χ2 = 1.

We have hitherto considered the simplifying assumption that the yi are un-
correlated. This is sometimes the case, a typical example being fits where the x
coordinate is the lattice size, so each yi comes from a completely independent
simulation. Very often, however, the data are strongly correlated. The rigorous
way to take this into account is to consider the full covariance matrix of the re-
sults. We define

σij = Cov(yi, yj), δi = yi − f(xi;a1, . . . , an). (b.18)

Let us mention in passing that the covariance Cov(A, B) can be estimated from
our jackknife blocks as follows:

[Cov(A, B)] = (B− 1)

 1
B
∑
i

(AJK,i − [A])(BJK,i − [B])
 . (b.19)

Then, the complete χ2 estimator is

χ2 =
∑
i,j

δiσ−1
ij δj, (b.20)
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which, of course, if the data are not correlated is the same as (b.16), since σii = ∆2
i .

The errors in the parameters are then estimated just as in the uncorrelated case.
The actual minimisation of χ2 can be performed in a number of ways. Let us

first note that, if f is linear in the ai, then (b.20) is just a quadratic form in the ai,
whose minimisation yields a set of linear equations. If f is non-linear, however,
we must usually employ an iterative method. In this thesis we have used the
Levenberg-Marquardt algorithm [pre92].

b.3.1 Singularities in the covariance matrix

Sometimes the data correlation is so extreme that the covariance matrix turns
out to be singular. This is the case, for instance, where we include Ny random
variables yi in a fit where we only have Nsamples < Ny samples (or jackknife
blocks). In order to prove this, let us denote each random variable with a Latin
index i = 1, . . . ,Ny and each sample with a Greek index µ = 1, . . . ,Nsamples. We
now define the matrix

Tiν = yνi −
1

Nsamples

Nsamples∑
µ=1

yµi . (b.21)

Now, since Nsamples < Ny , it is clear that Tiµ has at most rank Nsamples. On the
other hand, the covariance matrix is just

σij = 1
Nsamples(Nsamples − 1)

TT †. (b.22)

Therefore,
rk(σ) = rk(TT †) = rk(T) ≤Nsamples <Ny (b.23)

and the matrix σ is singular. The most obvious example of this are the fits of tem-
poral correlations in Part IV, where we must consider some 104 random variables
extracted from a set of a few hundred samples.

Throughout this thesis, we have followed an empirical procedure to address
this issue. We find the best fit parameters using only the diagonal part of the
covariance matrix, i.e., minimising the so-called diagonal chi-square

χ2
d =

∑
i

δ2
i

σii
. (b.24)

In order to take the correlations into account, we perform an independent fit for
each jackknife block and use their fluctuations to compute the errors in the ai.
We have found this method to be reliable (see Section b.3.3.1, below), even if it
complicates the interpretation of the χ2

d values. Indeed, since the fitting func-
tion fluctuates coherently with the data, the values of χ2

d/d.o.f. are typically much
smaller than 1. In effect, χ2 behaves as if there were fewer degrees of freedom, so
we cannot readily compute the P values.
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Throughout this thesis, we shall use χ2 to denote either the full χ2 estimator
of (b.20) or the χ2 of a fit of uncorrelated data and we shall denote by χ2

d the
diagonal chi-square of (b.24).

b.3.2 Errors in the x and y coordinates

Thus far we have assumed that there are only errors in the y coordinate of the
data, which is often the case. If this is not true, we would have to estimate the
chi-square as (assuming no data correlation, for simplicity)

χ2 =
N∑
i=1

(
yi − f(xi;a1, . . . , an)

)2

Var
(
yi − f(xi;a1, . . . , an)

) . (b.25)

Notice that now the ai, which we must change during our iterative procedure to
perform the fit, appear also in the denominator. For non-linear f the correspond-
ing expressions rapidly get intractable with our usual numerical methods.

Sometimes one can skirt the issue by performing separate fits for the xi and
yi and relating the resulting fit parameters with those of the real fit to y = f(x)
(see, for instance, Section 10.4). If this is not possible, one can often consider a
simplified procedure for minimising (b.25). Suppose that the errors in (xi, yi) are
similar for both coordinates and for all values of i. Then the denominator in (b.25)
is almost constant in i and the values of the ai that minimise

χ̃2 =
N∑
i=1

(
yi − f(xi;a1, . . . , an)

)2
(b.26)

should be very similar to those that minimise the real χ2 estimator. Now, this
would give us an approximation to the values of the best-fit parameters, but not
an idea of the fit’s goodness. But the latter can be estimated by an a posteriori χ2

test with (b.25), where we no longer vary any parameter.

b.3.3 Case studies

In the remainder of this section we present two examples of the previous methods,
taken from our work.

b.3.3.1 Estimating the error in the replicon exponent

In this section we perform a detailed test of our technique for coping with singular
covariance matrices. We have chosen the computation of the replicon exponent a,
detailed in Section 11.3.1. There are two reasons for this: first, it is a particularly
tricky case, with both statistical and systematic error sources for the yi. Second,
we actually have two independent determinations, one with ten times more data,
so we can check the reliability of the method.
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Let us recall the steps of the computation. We want to estimate the exponent
a in an equation

I1(tw) = Aξ2−a(tw). (b.27)

The quantities I1 and ξ are estimated from integrals of the spatial correlation
function for each time, using a dynamical cutoff procedure:

[Ik(tw)] =
∫ Λ

0
dr r k[C4(r , tw)], (b.28)

where the cutoff Λ is chosen as the point where the relative error in [C4(r , tw)]
becomes larger than 50%. The coherence length is estimated as

[ξ(tw)] = [I2(tw)]/[I1(tw)]. (b.29)

We then perform two independent fits, using the diagonal chi-square method,

I1(tw) = Btcw, ξ(tw) = Ct1/z
w , (b.30)

and we finally estimate a as
a = 2− cz, (b.31)

a relation that is used, of course, for each jackknife block in order to estimate
errors.

We first performed this procedure in [jan08c], for simulations at T = 0.7 with
63 samples, obtaining the result

a = 0.355(15). (b.32)

The computation was then repeated in [jan09a], this time with 768 samples, pro-
ducing

a = 0.397(12). (b.33)

The discrepancy in the results could be due to a simple statistical fluctuation, but
they are different enough to make this unlikely. Another hint that something may
be amiss is that the error has not decreased nearly the factor

√
768/63 that one

would expect from the increase in statistics.
Therefore, we may have underestimated our errors, or there may be some bias

in our methods (or in our statistics). The first source of systematic error is the
dynamic cutoff method. Naturally, for the simulations with 768 samples the cutoff
point Λ is larger. This has the effect of trading statistical uncertainty (including
more noisy data at the tails) for a reduction of systematic errors, and is probably
at the core of the small decrease in our error estimate.

However, the effect is large enough to merit a more detailed study, which we
shall carry out with a bootstrap procedure (see, e.g., [efr94]). Our objective is to
estimate the probability distribution of a(63), defined as the result of computing
a from a statistic of 63 samples. This can be easily done, since from our second
set of simulations we have 768 samples. Therefore, we can pick random sets
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Figure b.1: Left: Probability density function of a(63), the estimate of exponent a as
obtained from a set of 63 samples. The dots with horizontal error bars are, from top to
bottom: our best estimate with 768 samples, the value with the 63 samples of [jan08c]
and the mean and standard deviation of a(63). The continuous line is a Gaussian distri-
bution with the same mean and variance. Centre: As in left panel, for the jackknife errors

∆(63)
a . The vertical line marks the standard deviation of a(63). Right: Histogram of the
χ2

d/d.o.f. for the ξ fit, which had 80 degrees of freedom. We see that there is a very large
variance, indicating that the effective number of degrees of freedom is much smaller. As
a comparison, we have plotted with a continuous line the chi-square distribution (per
d.o.f.) for only 8 degrees of freedom.

of 63 samples and determine for each set the estimate of a(63) and of its error
∆(63)
a . There are

(
768
63

)
∼ 1093 possible combinations, so our distribution of a(63)

computed from a set of 768 samples can be considered the ‘real’ one.
We have used 10 000 random sets, with which we have computed normalised

histograms of a(63) and its errors, plotted in Figure b.1. From the first histogram
we can take several conclusions:

1. The distribution of a(63) is Gaussian, with a very good approximation. We
denote its mean by E(a(63)).

2. We were unfortunate in [jan08c], in that the 63 samples used therein are
‘atypical’. More precisely, the samples of [jan08c] produce an estimate of
[a(63)] that is 2.2 standard deviations away from its true expectation value
E(a(63)) (there is only a 3% probability to obtain a larger fluctuation in Gaus-
sianly distributed results).

3. The random variable a(63) seems to be a slightly biased estimator of a,
E(a(63)) showing a small deviation from our estimate of a with 768 sam-
ples. This is probably due from the cutoff effects discussed earlier, although
the fact that a is obtained from a non-linear operation may also produce a
small bias in the fitting procedure.

From the second histogram, representing the pdf of ∆(63)
a , we see that the jack-
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Figure b.2: Exponent α(tw) for our T = 0.6 simulations, with a fit to a quadratic polyno-
mial in log tw. We show on the left panel the same data as in Figure 10.2 and on the right
one the result of binning the data in blocks of 5 consecutive times.

knife method tends to underestimate the errors somewhat (compare the mean
of this distribution with the vertical line, marking the true standard deviation of
a(63)).

As a final result, we can look at the histogram of the χ2
d/d.o.f. obtained in the

10 000 fits during the bootstrapping procedure. Each of these had 80 degrees
of freedom, yet the standard deviation of the distribution is much larger than
that of a chi-square distribution with 80 degrees of freedom. This supports our
initial claim that fits with the diagonal chi-square procedure have a small effective
number of degrees of freedom.

b.3.3.2 The full-aging exponent

Let us now consider our analysis of full aging in Section 10.2. The α(tw) that we
plotted in Figure 10.2 on page 172 showed suspicious fluctuations (this is espe-
cially noticeable for T = 0.6). This may lead the reader to think we have underes-
timated our errors when computing fits to (10.19).

We can check that the errors are actually correctly estimated by performing
a fit of α(tw) to a very smooth function. We have done this in the worst case
(T = 0.6, Figure b.2—left) with a quadratic fit

α(tw) = α0 +α1 log tw +α2 log2 tw. (b.34)

For tw > 105 we have

α0 = 6.4(6), α1 = 0.19(8), α2 = −0.003 5(20), (b.35)

with a diagonal chi-square of χ2
d/d.o.f. = 66.26/63.

As an additional check we show in Figure b.2—right the same plot, but now
binning the data in blocks of 5 consecutive times. The resulting parameters are

α(5)0 = 6.2(6), α(5)1 = 0.20(8), α(5)2 = −0.003 9(24), (b.36)
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Figure b.3: Left: Estimate of α(tw) in (10.19) for our T = 0.7 simulations with 63 and
768 samples. Right: Values of χ2

d/d.o.f. for both series.

with χ2
d/d.o.f. = 11.58/10. Therefore, neither the parameters nor the value of

χ2
d/d.o.f. are affected by the binning procedure. Notice that in Figure b.2—right

the wiggles in the curve seem just what they are: random fluctuations.
A second check is provided by our simulations for T = 0.7. For this tem-

perature, we performed two series of runs (cf. Appendix E). The first, reaching
tw = 1011, included 63 samples. The second, for 768 samples, reached tw = 1010.
We have plotted α(tw) for both sets in Figure b.3. We see that, increasing the num-
ber of samples, the period of the oscillations does not change, but their amplitude
decreases proportionally to the error. However, see right panel, the χ2

d/d.o.f.,
which is reasonable from tw ∼ 104 for 63 samples, is not good with 768 until
tw ∼ 108. This indicates that there probably is a systematic deviation from (10.19).
Nevertheless, the estimates for α(tw) are compatible in a much wider range.

b.4

Using correlations to improve the statistics: control vari-
ates

In the above section, we have discussed the difficulties posed by data correlation.
However, sometimes correlations can be exploited to our advantage. A good ex-
ample is the use of control variates (see [rub07] and [fer09a] for a review, applied
to Monte Carlo simulations).

The idea is the following, assume we want to compute some parameter A and
that we have a random variable A such that E(A) = A (that is, A is an unbiased
estimator for A). Here E denotes the mathematical expectation, which in a Monte
Carlo context can be either a thermal or a disorder average. In addition, we have
an estimator B (the control variate) whose expectation value B = E(B) is known in
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advance. Then A′ = A+ α(B− B) is another unbiased estimator for A, E(A′) =
E(A) = A. Furthermore,

Var(A′) = Var(A)+α2Var(B)+ 2αCov(A,B), (b.37)

where Var denotes the variance and Cov(A,B) the covariance of A and B. It is
easy to show that choosing

α = −Cov(A,B)
Var(B) (b.38)

minimises the variance ofA′, so that

Var(A′) = (1−R2
A,B)Var(A), RA,B = Cov(A,B)√

Var(A)Var(B), (b.39)

where RA,B is the correlation coefficient ofA and B. Notice that this process not
only reduces statistical errors in the sought parameter, but also corrects finite-
statistics biases.

We have applied this method in order to minimise the variance in the disorder
average of physical quantities in our DAFF simulations of Chapter 8. For potential
control variates we can consider the distribution of the vacancies εx in the lattice.
Indeed, we know that, for instance, the average value of spins in the lattice is

Nspins = pN. (b.40)

More generally, the distribution of empty nodes on the lattice should be com-
pletely random, with no periodicity or correlation. We can, therefore, consider the
Fourier transform of the εx,

F(k) =
∑
x
εxe−ix·k. (b.41)

We have, then,

F(0) =Nspins = pN, F(k) = 0, k ≠ 0. (b.42)

Once we have found viable candidates for control variates, we have to check
whether they are correlated with any physical quantity. Let us start with Nspins,
for which we show scatter plots in the first three panels of Figure b.4. This quan-
tity has a strong correlation with the energy of the sample (top left) and a slight
correlation with the regular component of the tethered field (top right), but no cor-
relation at all with b̂s (bottom left). However, see bottom right panel, this latter
quantity does show a correlation with Fπ = F

(
k = (π,π,π)).

Therefore, we have used Nspins as a control variate for the energy and b̂ and
Fπ as a control variate for b̂s. The correlation coefficients for an L = 24 system at
β = 0.625, m̂ = 0.12 and m̂s = 0.5 are2

Ru,Nspins = −0.85, Rb̂,Nspins
= 0.47, Rb̂s,Fπ = −0.62. (b.43)

2The numbers are similar for other lattice sizes and magnetisations.
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Figure b.4: Scatter plots of the energy and tethered field of individual samples against
the number of spins (top panels and bottom left panel). The bottom right panel plots
the staggered component of the tethered magnetic field against the F(k) of Eq. (b.41) for
k = (π,π,π). All panels show our 1000 samples for L = 24 at β = 0.625, m̂ = 0.12 and
m̂s = 0.5.

For the energy, the resulting reduction, Eq. (b.39), is of about 50%. Even for b̂s

the error reduction is of about 20%. Recalling that the statistical error otherwise

goes as ∼ 1/
√
Nsamples, we see that using control variates for b̂s is equivalent to an

increase of ≈ 65% in the number of samples (and, hence, in the simulation time).





APPENDIX C

Fine tuning Tethered Monte Carlo

This chapter contains some technical details on our tethered simulations, as well
as some practical recipes for the correct usage of TMC. We use the example of
the D = 2 Ising model, as in Chapter 5, except for Section c.4, which explains our
numerical implementation for the DAFF.

c.1

Numerical implementation of the Metropolis scheme for
the D = 2 Ising model

We have used the Metropolis algorithm explained in Section 3.2.1. A naive imple-
mentation is completely straightforward and no different than that of canonical
Metropolis (see [ami05], for instance, for a complete working example). We can,
however, significantly enhance the performance in a simple way. Indeed, using
the explicit form (4.17) of the tethered weight, the spin reversal probability is

P(sx → −sx) =
0, M ′ > M̂,

min{1, e∆S}, M ′ ≤ M, (c.1)

where

∆S = −β(U ′ −U)+ (M ′ −M)−
(
N
2
− 1

)
log

(
1− M

′ −M
M̂ −M

)
. (c.2)

Now, in a Metropolis simulation, most of the CPU time is going to be dedicated to
evaluating exp[∆S], which includes computing a logarithm, and therefore needs
a large number of elementary operations. However, there are only a finite number
of possible values for ∆S.
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• (U ′ − U) = −Hsx, where H is the local field around x and can only take 5
different values for this model, H = −4,−2,0,2,4.

• M ′ = M − 2sx and M can only take (N + 1) values.

• The spin sx itself can take only two values.

In all, we have 10(N + 1) possible values of the Metropolis update probability
(many of which are going to be zero or one, because of the constraints). This is
a manageable number, so we can compute them all and store them in memory in
a look-up table before starting the simulation. This way, we remove the need for
computing logarithms on the fly and greatly accelerate the code.

A second note concerns the choice of the pseudorandom number generator.
We originally used a 64-bit congruential generator reported in [oss04b]. We ran
through the lattice sequentially, extracting one random number per site (although,
in principle, we would only need one when ∆S < 0 and M̂ ≥ M ′). This reproduces
the conditions studied in [oss04b, oss04a], where significant deviations from the
expected values where found using the same generator in a D = 3 Ising model for
N ≥ 1283. Perhaps unsurprisingly, we also obtained wrong results for our larger
lattices (N = 10242). We solved the problem by repeating all our simulations
with a more sophisticated generator, computed as the sum (modulo 264) of the
congruential generator and a 64-bit version of the shift-register method reported
in [par85].

c.2

Sampling the m̂ space

The first practical decision in a TMC computation is the sampling of the coordi-
nate space, that is, how many values of m̂ to simulate and where to put them.
This is an important matter because the reconstruction of the canonical parti-
tion function (and of the canonical expectation values) involves an integral over
exp[−NΩN], where ΩN is itself an integral of the discretised 〈b̂〉m̂. A good sam-
pling should make the discretisation errors negligible, as well as minimise the
statistical ones.

Recalling the definition (4.9) of M̂ , we see that this parameter can, in princi-
ple take values in the interval [−1,∞). In practice, though, m̂ ' m + 1/2, so
the pdf p(m̂) is going to be completely negligible outside a finite range (roughly
[−1/2,3/2], except for very small lattices, where we need a broader scope). In
addition, see Figure 5.1, p(m̂) is a two-peaked distribution, so values of m̂ close
to the probability maxima contribute more towards the canonical average. The
peaks get narrower and closer together as L grows (notice that ΩN has to be a
convex function in the thermodynamical limit). It may seem that the choice of
m̂ is quite delicate (especially considering we do not know the pdf until we have
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run the simulation). Finally, given a fixed computational budget, is it better to
compute 〈b̂〉m̂ at more points or more precisely at each point with a coarser grid?

Let us assume we have measured 〈b̂〉m̂ at K points in a grid. Our numerical
estimator [b̂]m̂ at point k is

[b̂]k = 〈b̂〉k + ηk, k = 1, . . . , K. (c.3)

Here ηk are the statistical errors, expected to follow a Gaussian distribution and to
be of similar size and statistically uncorrelated. Therefore, our numerical estimate
for ΩN will be given by some quadrature formula

ΩN ' [ΩN] =
N∑
k=1

gk 〈b̂〉k +
K∑
k=1

gkηk. (c.4)

The first term in this equation is subject to systematical error while the second
one represents the statistical fluctuations. Naively, the quadrature coefficients
gk scale as 1/N , so the error will scale as 1/

√
N . This suggests that doubling

the number of points is equivalent to doubling the simulation time in each one.
The analysis of canonical expectation values is, however, more involved, since
the errors in ΩN are going to be highly correlated for different m̂. Therefore, we
perform a numerical experiment.

We report in Table c.1 the values for the energy density 〈u〉 at the critical
temperature for an L = 128 lattice, obtained in two different series of runs. In the
first column, we take 106 Monte Carlo sweeps (MCS) on each point, while in the
second we perform 107 such updates. In both cases the points are evenly spaced.
In the third and fourth columns we report analogous simulations, but now with a
greater density of points inside the peaks. We can reach several conclusions from
this table:

• If we use to low a number of points we will see a significant systematic error,
no matter how precise they are.

• Once the systematic error is under control, increasing the number of evenly

distributed points has an effect of 1/
√
Npoints in the statistical error. This

is best seen in the leftmost column. The effect is roughly the same if we
increase the number of MCS in each point by the same factor (the errors of
the first column are ∼ √10 times greater than the corresponding ones of the
second).

• If we add more points inside the peaks, the error may decrease faster than
1/
√
Npoints. The errors with Npoints and uniform sampling are only slightly

smaller than those withNpoints/2 and improved sampling.

We can summarise this analysis with the following prescription for the choice of
m̂:
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Npoints
Uniform sampling Improved sampling

106 MCS 107 MCS 106 MCS 107 MCS

12 1.437 28(33) 1.437 38(11)
23 1.419 25(22) 1.419 117(6)
46 1.419 21(13) 1.419 117(43) 1.419 08(11) 1.419 107(38)
91 1.419 14(10) 1.419 093(36) 1.419 13(8) 1.419 128(31)
181 1.419 14(7) 1.419 095(28) 1.419 03(5)
451 1.419 06(5) 1.419 073(39)
901 1.419 065(33) 1.419 077(26)
1801 1.419 062(24)
Exact 1.419 076 272 086. . .

Table c.1: Final value for −〈û〉 as we change the number of points for the reconstruc-
tion of ΩN and their precision. MCS = Monte Carlo Sweeps for each point. The runs la-
belled ‘uniform sampling’ consist of Npoints values of m̂ evenly distributed in the range
[−0.4,1.4]. The runs labelled ‘improved sampling’ have 2/3Npoints points evenly dis-
tributed in the same range, plus and additional Npoints/3 inside the peaks, effectively
doubling the density in the dominant regions. The last results of each column have a
similar precision, but those computed with uniform sampling required twice the simula-
tion time. The exact value has been computed from the results of [fer69].

1. Run a first simulation with enough uniformly sampled m̂ so that the system-
atic error is small or unnoticeable (i.e., so that the peaks of the distribution
can be roughly reconstructed and the tails are reliably sampled). We have
used ∼ 50. This may seem a big number, but we must take into account that
we have only looked at the energy in Table c.1. Other quantities, such as
high moments of the magnetisation or observables at a nonzero magnetic
field, require that the tails of the distribution be reasonably well sampled.

2. Add a similar number of points inside the peaks of the pdf to eliminate the
systematic error and reduce the statistical error.

We have found that the second step is not always necessary. In fact, for lattices
up to L = 256 we have limited ourselves to computing 51 evenly distributed m̂.
For bigger lattices the peaks are steeper and we have added another 26 points
inside them.

This general prescription can be generalised to more complicated situations
(such as the DAFF studied in Chapter 8). The rule of thumb is that the final
results should not change, within the statistical errors, even if we remove several
points.

A final comment concerns computation time. Obviously, it takes as much total
CPU time to run 10 simulations of length T as one simulation of length 10T . The
wall-clock, defined as the physical time we have to wait for the results, is, however,
10 times smaller in the former case, since the different tethered simulations are
trivially parallelisable. Therefore, in a large-scale computation and so long as
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thermalisation has been ensured, it is generally better to add more points rather
than extend the original ones.

c.3

Integrating over m̂ space

The numerical implementation of (4.23) can be done in several different ways of
similar numerical accuracy. Here we briefly explain our choices. Once we have the
〈O〉m̂k we need to take three steps

1. Interpolate the tethered averages as a smooth function of m̂.

2. Integrate 〈b̂〉m̂ to get ΩN .

3. Use (4.4) to compute the canonical averages.

For the first step we have used a cubic spline interpolation (see, e.g., [pre92] for
an implementation). We have not used the so called natural spline, which imposes
vanishing curvature for 〈b̂〉m̂ at m̂max and m̂min. Instead, we have estimated the
derivative of this function at both ending points with a parabolic interpolation.

In order to compute the potential ΩN we have to integrate 〈b̂〉m̂ for our whole
m̂ range. In principle we could compute ΩN from

IN(m̂) =
∫ m̂
m̂min

dm̂′ 〈b̂〉m̂′ , (c.5)

IN defines ΩN up to an additive normalisation constant. This expression has the
disadvantage of not treating symmetrically the m̂ range. In particular, values of
m̂ close to m̂min will have smaller errors than those close to m̂max. In order to
avoid this problem, we use the average of the integral in both directions,

IN(m̂) = 1
2

(∫ m̂
m̂min

dm̂′ 〈b̂〉m̂′ −
∫ m̂max

m̂
dm̂′ 〈b̂〉m̂′

)
. (c.6)

Notice that, assuming m̂min and m̂max are far enough as to have negligible proba-
bility, both (c.5) and (c.6) are equivalent, considering the potential nature of ΩN .
It is only when we consider numerical issues that the second is preferable.

We now normalise the pdf,

C =
∫ m̂max

m̂min

dm̂ exp[−NIN(m̂)], (c.7)

so that

ΩN(m̂) = IN(m̂)− 1
N

logC. (c.8)
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Some comments are in order. First of all, naively applying this interpolation
scheme for the exponential, p(m̂) = exp[−NΩN(m̂)], could introduce strong in-
tegration errors. Fortunately, this can be easily solved by accurately representing
ΩN , which is a smooth function (recall the curve in logarithmic scale of Figure 3.1).

In particular, since we have represented the tethered field with a cubic spline,
ΩN is a fourth order polynomial between each pair of simulated points, which
can be exactly computed. To avoid losing precision, we evaluate ΩN(m̂) in an
extended grid that includes 3 equally spaced intermediate points between each
pair of simulated values of m̂. This way the Lagrange interpolating polynomial for
each segment of the extended lattice (two original points plus three intermediate
ones) represents the exact integral of our spline.

Of course, the pdf, exp[−NΩN(m̂)], is not a polynomial anymore. It is, how-
ever, a smooth function, so a self consistent Romberg method [pre92] provides
an estimate of the integral (4.4) with any required numerical accuracy. Notice
that this yields the basically exact results for a given interpolation of 〈b̂〉m̂, but it
does not cure any discretisation errors introduced by the spline, which should be
minimised with the prescription of the previous section.

Throughout this process, we estimate errors with the jackknife method (see
Appendix B). For instance, we compute and integrate a different cubic spline for
each jackknife block. This way, data correlation is safely taken into account when
estimating the statistical errors.

Typically, even with a very moderate effort, the Romberg integration error
has been much smaller than the statistical one. There is one exception: the
fluctuation-dissipation formulas, such as (5.2), because of the large cancellations
between the two terms. To solve this problem, we have computed the fluctuation-
dissipation formula as a sum of two squares:

N−1C = 〈û2〉 − 〈û〉2 =
∫

dm̂ p(m̂)
[
〈û2〉m̂ − 〈û〉2m̂ + 〈û〉2m̂ − 〈û〉2

]
=
∫

dm̂ p(m̂)
[
〈(û− 〈û〉m̂)2〉m̂ + (〈û〉m̂ − 〈û〉)2

]
. (c.9)

In spite of this, as a consistency check, we have also employed the original equa-
tion and forced the Romberg integral to yield the same value, by reducing its
tolerance.

It is sometimes interesting to compute high moments of the magnetisation.
One obvious possibility is to measure the instantaneous values for m`(m̂; {σx})
during the simulation and then compute the tethered and canonical averages as
usual. But TMC provides an alternative way of calculating 〈m`〉. Indeed, we have
the whole pdf p(m̂) and we know that M̂ = M + R. Now, the moments for R can
be easily obtained analytically, so it suffices to compute 〈m̂`〉 to reconstruct 〈m`〉
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without any need for individual measurements of m`. For example,

〈m2〉 = 〈(m̂− 1/2)2〉 − 1
2N

. (c.10)

〈m4〉 = 〈(m̂− 1/2)4〉 − 3
N
〈m2〉 − 3

4N2
+ 3
N3
. (c.11)

These formulas are valid for the symmetric phase, where 〈m〉 = 0. We have
computed the moments of the magnetisation up to 〈m8〉, both from individual
measurements and with this procedure, and the results are identical. This will not
be at all surprising once we see Section 5.5, where it is shown that the correlation
time for 〈m〉m̂ is < 1 (which means that the uncertainty in p(m̂) is going to
determine the total error).

c.4

Numerical implementation of TMC for the DAFF

The tethered simulations of the DAFF were also carried out with a Metropolis
algorithm. In principle we could have used the, potentially more efficient, cluster
method studied in detail in Appendix 6. Indeed, the formulation for the DAFF
follows the same steps as that for the Ising model , with the exceptions that the
clusters are now of constant staggered spin and that we now have two tethered
quantities, so now the cluster flipping weight is

ω({Si})∝ γ(m̂,m)γ(m̂s,ms), (c.12)

where γ(x̂, x) was defined in (4.33). Unfortunately, for the relevant temperature
and magnetisation regimes for the DAFF, the spin configurations are not well
suited to cluster methods. In particular (see Section 8.6), the whole configuration
is dominated by two very large clusters of opposite staggered spin, of similar
size for m̂s = 0.5 and with one dominant cluster in magnetised regions. What
few spins remain outside them are scattered in a few very small clusters and a
large number of single-spin ones. In these conditions, and given the stringent
constraints on (m,ms) imposed by (c.12), the cluster flipping would only invert
loose spins and leave the large clusters untouched.

We must, therefore, stick with the Metropolis scheme. Still, there are a few
things we can do to optimise the simulation. First of all, we avoid computing
logarithms when evaluating the Metropolis acceptance probability with the prepa-
ration of look-up tables, as discussed in Section c.1. Now we have to consider
O(N2) values for (M,Ms), so we cannot fit all the possibilities in a single array.
However, since the contributions of U , M and Ms to the update probability are
factorised, we can simply prepare one look-up table for each of these quantities
and evaluate the whole Metropolis probability with a simple multiplication.
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The peculiarities of the DAFF in the tethered formalism afford us an additional
possible optimisation. It turns out that the Metropolis acceptance is very low, of
about 10% in most cases (this is mainly due to the regular magnetisation, which
is in a very constrained regime due to the high applied fields that we consider).
In addition, with the look-up table method, the computation of the acceptance
probability is faster than the generation of a single pseudorandom number.1

With this in mind, let us suppose we are performing a sweep of the whole
lattice, updating nodes 0 to N − 1.2 Let us call pi the probability of flipping spin
i and qi = 1− pi the probability of rejecting the change. Then, the probability of
leaving the spins from i = k to i = s unchanged

Qk,s =
s∏
j=k
qj = Qk,s−1qs . (c.13)

Therefore, we can define a ‘survival’ Metropolis scheme in the following way:

• For k = 0, . . . ,N − 1 do

1. Generate a single pseudorandom number R ∈ [0,1).
2. Compute Qk,s until Qk,s−1 >R ≥ Qk,s . Then flip spin s.

3. Set k = s + 1.

This algorithm obviously satisfies the balance condition for a Monte Carlo method
and should be more efficient than the standard Metropolis for low acceptance
probabilities. In practice, modern compilers make this a strongly device-dependent
optimisation. We have found that for modern Intel processors, using the Intel C
compiler icc, the gain is negligible for the acceptance of 10% found in our DAFF
simulations. However, more than half of our simulations (over 3.5 million CPU
hours) were carried out on the Mare Nostrum supercomputer, of different design,
where the survival version of the Metropolis scheme nets us a 30 to 40% accelera-
tion.

Finally, we take one parallel tempering (Section a.3.1) step for each lattice up-
date, attempting to exchange configurations for the same (m̂, m̂s) but different
β. In the tethered weight (4.17), the factors that depend on the magnetisation are
independent of β, so the parallel tempering acceptance probability is exactly the
same as that for a canonical simulation, given by (a.30). For our longest simu-
lations, we use a parallel version of our code that runs the Metropolis update of
each of the participating configurations in a different processor. When the whole
lattice has been updated, the energies and temperatures of each configuration are
sent to the master process (with MPI, Message Passing Interface), which performs
the parallel tempering update and sends back the new temperatures. In this way
the total CPU time is of course unchanged, but the wall-clock is reduced by a
factorNT .

1We use the same combination of congruential and shift-register generator as in Section c.1.
2Empty nodes are simply skipped, we run through the lattice sequentially



APPENDIX D

The Janus computer

The Monte Carlo simulation of complex disordered systems has an unquenchable
thirst for computing power. Any acceleration due to innovations in computer
design is immediately exhausted. In addition, the terrible scaling properties of the
characteristic times (often exponential, as we pointed out in Chapter 3) mean that,
in order to obtain a qualitative improvement in the data, one needs an acceleration
of orders of magnitude.

In these conditions, the investigation on new, optimised, Monte Carlo methods
in not only necessary but also rewarding, as we saw with our examination of
the Tethered Monte Carlo method during Part II of this dissertation. Sometimes,
however, devising ingenious dynamical algorithms is not an option.

A prime example of this issue is the non-equilibrium dynamics of spin glasses.
Here, we face the following constraints

• The interesting physical phenomena occur at macroscopic times, with the
typical experimental scale ranging from a few seconds to a few hours.

• The physical dynamics can be faithfully simulated with heat bath or Metropo-
lis dynamics, but each MCS is equivalent to only ∼ 10−12 s [myd93].

• One has to simulate very large lattices, to keep the system in a truly off-
equilibrium regime, free of finite-size effects. Therefore, each MCS takes
some time.

Notice that it is not easy to see how one could improve this situation with a clever
update algorithm, since we want to reproduce the physical dynamics.

Thankfully, the physics of the spin glass provide a different avenue for accel-
eration: parallelisation. Indeed, the nearest-neighbours nature of the interaction
means that we can divide each plane of the lattice in a checkerboard scheme (Fig-
ure d.1), with sites of the same colour being statistically independent from one
another. That is, one could in principle update the whole lattice in two steps: first
all the black sites at once and then all the white sites at once.
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Figure d.1: Division of the spin-glass lattice in a checkerboard scheme. The first neigh-
bours are always the opposite colour of the site, so sites of the same colour can be
updated at the same time.

The problem with this idealised scheme is that conventional computers (CPUs)
are simply not equipped to handle it:

• CPUs are optimised for operations on long data words, but we need (i) op-
erations on single bits (the spins) (ii) variables that only appear in a small
number of states (the local field needed to compute the update probability).

• The memory architecture does not permit the processor to gather all the
necessary information quickly enough.

• We need one random number for each node that we update, so random-
number generation is another bottleneck.

Sharing the computation across several CPUs (making each handle one portion of
the lattice) does not work due to communication limitations: even if we only need
small chunks of data, they have to be accessed extremely often.

One possible answer to this problem is designing a special-purpose computer,
whose architecture is optimised for simulations of spin systems. We note that this
idea is not new, custom computers have been used in statistical mechanics for
some time [ogi85, cru01]. The Janus computer, fruit of a collaboration between
physicists and engineers in the universities of Zaragoza, Complutense de Madrid
and Extremadura (in Spain) and Ferrara and Rome 1 ‘La Sapienza’ (in Italy), is one
such custom machine.

Since the author was not involved in the hardware design or the low-level pro-
gramming of the machine, just in the physical analysis of the simulations, this is
not the place to give a detailed account of the machine. We shall only consider
some brief notions to understand why Janus can outperform conventional com-
puters. The interested reader is referred to [jan06, jan09b] for details on the ar-
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chitecture and to [jan08b] for an explanation of the implementation of the Monte
Carlo simulation. See also the doctoral dissertation of F. Mantovani [man08].

The solution adopted by Janus consists in replacing the conventional CPUs
by Field Programmable Gate Arrays (FPGAs) as computing nodes. These devices
offer a large number of reconfigurable logic resources, so they can be divided into
many update engines, each taking care of the update of one spin.

The FPGAs are grouped in 4 × 4 arrays, forming boards (Figure d.2). Each
board includes data links among nearest neighbours and an input/output proces-
sor (IOP), whose job is to distribute work among the computing nodes and gather
the results. There is a standard PC (called host) for each two boards, which acts
as the interface and storage element. The whole Janus computer consists of 16
boards (a total of 256 processors) in one rack (Figure d.3).

In the basic implementation for non-equilibrium dynamics, each FPGA sim-
ulates two replicas of one sample, divided in the checkerboard scheme.1 The
implementation seeks to maximise the number of spins that can be updated in
each clock cycle. In particular, each FPGA can be divided in 1024 update engines.
Each of them takes the following steps

1. Reads as input 6 nearest neighbours and the corresponding 6 couplings.

2. Computes the local field and addresses a pre-computed look-up table (cf.
Section c.1).

3. Compares the result with a freshly generated random number.

4. Sets the new value for the spin.

This whole process is pipelineable so that each of the 1024 update engine updates
one spin per clock cycle (notice that this requires a clever memory architecture,
so the needed information can be accessed with no latency).

Another potential bottleneck is the generation of random numbers. As we
indicated above, we need one random number for each spin of the 1024 spins that
we update in each clock cycle. For these, we use the Parisi-Rapuano shift-register
generator [par85]. We have a wheel I(k) of 62 numbers (32-bit integers). Then, in
order to generate a random number R(K) we perform the following operation

R(k) = (I(k− 24)+ I(k− 55)
)⊗ I(k− 61). (d.1)

Then, the wheel is shifted (we increase k) and update the k position with the
previously computed sum

I(k) = I(k− 24)+ I(k− 55). (d.2)

The value of k is, of course, always taken modulo 62.

1Actually, for optimisation purposes, two mixed lattices are formed, one containing the white
nodes of replica 1 and the black ones of replica 2 and the other containing the complementary
sites. Then all the spins within the same mixed lattice can be updated at the same time.
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Figure d.2: Board of the Janus computer. Each of the 16 scientific processors (SPs)
is an FPGA. These are connected along nearest-neighbour links, with periodic boundary
conditions. The board includes an input/output processor.

Figure d.3: The complete Janus computer.
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Figure d.4: Left: One step of the Parisi-Rapuano generator, implemented through a
logical circuit. Right: Nested generation of three random numbers at once with the same
Parisi-Rapuano wheel. At the cost of complicating this circuit, Janus generates up to 96
random numbers per wheel per clock cycle.
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Figure d.5: Comparison of the time scales accessible to Janus and to conventional com-
puters.

The interesting feature of this generator is that it can be easily implemented
through a logic circuit (Figure d.4—left). More than that, at the cost of compli-
cating the circuit, we can consider the simultaneous generation of many random
numbers from the same wheel —several iterations of (d.1) and (d.2)— by setting
up a cascade-structured combinatorial logic. This is represented for the simulta-
neous generation of three random numbers in Figure d.4—right. In the actual im-
plementation, Janus is capable of generating 96 random numbers for each wheel
in each clock cycle (we still need to keep several wheels turning at the same time
to keep up with the needs of the update engines).

d.1

Performance

Janus is capable of simulating a system of size up to L = 96 in each FPGA.2 The
above-outlined implementation is capable of exhausting 88% of the available logic
resources. The clock frequency of the machine is of 62.5 MHz, so the performance
of each FPGA is

16 ns
1 cycle

× 1 cycle
1024 spins

≈ 16 ps/spin (d.3)

This number is, however, too abstract. One can update many spins per second
by simply running many independent simulations at once, without accelerating
any of them. The real measure of the performance of a computer (or an imple-
mentation) is the new physics to which it grants us access. In this sense, in the
above implementation Janus is capable of simulating 256 samples of an L = 80
Edwards-Anderson spin glass for 1011 MCS in less than a month, a time long
enough to understand what happens at the experimental scale, as we see in Chap-
ter 10 (see Figure d.5). We also note that one can simulate even larger systems
by sharing the workload among several FPGAs. For instance, a Janus board can
simulate an L = 256 lattice for 1010 MCS in less than ten days. Notice that this
means that fewer samples can be simulated at once, but this is of no consequence

2The FPGAs are Xilinx Virtex4-LX200.
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due to the self-averaging nature of the physical observables.3

Let us stress that Janus is optimised for accelerating the simulation of a single
sample. If all one needs is to run many samples for a comparatively short time
each —as is commonly the case for critical-point studies— Janus is also going to
be very efficient, but there are simpler alternatives (the most popular being asyn-
chronous multi-spin coding in CPUs or even graphic cards). In this dissertation,
we consider also equilibrium simulation with Janus, but these are in the low-
temperature regime where the thermalisation time for each sample is exceedingly
long (cf. Appendix E).

We finally note that, aside from the simulations for the Edwards-Anderson spin
glass with Ising spins reported in Appendix E, Janus has been used to simulate
the Potts spin glass (where the spins can take several values, not just ±1) [jan09c,
jan10c]. In this case, the gain factor with respect to conventional PCs is even
greater.

3At the time of running our non-equilibrium simulations, the code for the distributed simu-
lation of an L = 256 system was still not ready, so we ran L = 80 systems instead.



APPENDIX E

Our spin-glass simulations: parameters and
thermalisation

We report in this Appendix the parameters of our spin-glass simulations and give
some technical details on our logistics and (in the case of the ones in equilibrium)
thermalisation tests.

e.1

Non-equilibrium simulations

We have simulated the direct quench protocol explained in Chapter 9 for several
temperatures. We have used heat bath dynamics, in the highly parallelised imple-
mentation described in Appendix D. The parameters of these runs are included in
Table e.1.

We have used lattices of linear size L = 80, simulating two real replicas for
each sample. In a first simulation campaign, originally reported in [jan08c], we
ran one sample in each of our 256 FPGAs for just under one month, resulting in

L T NHB Nsamples

80 0.6 1011 96
80 0.7 1011 63
80 0.7 1010 768
80 0.8 1011 96
80 1.1 4.2× 109 32
40 0.8 2.2× 108 2218

Table e.1: Parameters the non-equilibrium simulations studied in this dissertation. The
overall wall-clock time needed was less than six weeks.
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96 samples for T = 0.6,0.8, 63 samples for T = 0.7 and 32 for T = 1.1 ≈ Tc.1

Our wall-clock time of 24 days was enough to reach 1011 MCS for our subcritical
simulations. At the critical point we only ran for 4.2 × 109 MCS, using the freed-
up time to run some shorter simulations for smaller lattices. These were used
exclusively to check for finite-size effects (cf. Section 10.3.2).

We were interested in two kinds of dynamics: those at the critical tempera-
ture and those representative of the low-temperature phase. In the latter, one is
interested in a temperature low enough not to be dominated by critical effects.
However, the lower the temperature, the slower the dynamics (where the speed
is measured by the growth rate of the coherence length). Since one is interested
in seeing as large a coherence length as possible, one should try to find a mid-
dle ground. After analysing the results of this first batch of runs in [jan08c], we
decided that T = 0.7 provided the best compromise. Therefore, we carried out a
new set of simulations at this temperature, increasing the number of simulated
samples by an order of magnitude. In these new runs, first reported in [jan09a],
we took only 1010 MCS, because after that time we could begin to resolve some
finite-size effects in the coherence length growth at that temperature. When giv-
ing non-equilibrium results at T = 0.7, we shall always refer to this larger set of
runs, unless we say otherwise.

We note that T = 0.7 is also the lowest temperature at which we could safely
thermalise our largest samples in our equilibrium simulations (cf. Section e.2,
below). Therefore, this should be considered as our main working temperature
and will, in particular, be the one we consider when establishing the quantitative
statics-dynamics equivalence, one of our main results.

Finally, let us give some logistical notes. Some of the physical quantities we
study are time-consuming to measure and some are even functions of the config-
urations at different times. Therefore, rather than taking complex measurements
during the simulation (online) we saved to disk the spin configurations at log-
arithmically spaced times. In particular, we stored all the information at times
[2i/4] + [2j/4], with integer i and j (the square brackets denote the integer part).
This choice was made so that our t and tw (cf. Chapter 9) could be both studied
in a logarithmic scale.

e.2

Equilibrium simulations

e.2.1 Set-up of the simulations

For our equilibrium simulations we used the parallel tempering algorithm de-
scribed in Appendix A. In this case we simulated four real replicas for each sample

1One of the FPGAs was faulty (it has since been replaced), so the total number of samples was
actually 255.
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(in order to have better statistics for some fine analyses, as well as for construct-
ing unbiased estimators for some sophisticated observables).

The parallel tempering was coupled to heat bath dynamics. The implementa-
tion in this case was a little different than that explained for the non-equilibrium
dynamics in Appendix D. In particular, since we had to run many temperatures
for each replica, each FPGA simulated just one replica, so each sample was spread
across four computing cores. Due to the special architecture of Janus, the par-
allel tempering step is not costless, as was the case for the DAFF. This is because
the FPGAs first have to compute the total energy for each temperature. We thus
equilibrate the computational cost of both updates by performing 10 heat bath
steps for each parallel tempering update. This hardly affects the efficiency of the
parallel tempering scheme.

As was the case in our off-equilibrium dynamics simulations, most of the anal-
yses were performed offline. In particular, for the shortest simulations (the sam-
ples that do not need extending after applying our thermalisation criteria) we
stored on disk about ∼ 100 evenly spaced configurations. This number grew pro-
portionally to the length in the case of extended runs. Notice that this is in stark
contrast with the DAFF, where we just saved the last configuration to act as a
checkpoint for possible extensions.2

In particular, we needed many configurations on disk to perform the analysis
of fixed-q correlation functions, as we explain in Section e.2.3.

Finally, for a few specific samples (one for L = 24 and four for L = 32) the
wall-clock time required to fulfil our thermalisation criteria (cf. Appendix A) was
exceedingly long, more than six months. For these cases we used a special low-
level code that spread the different temperatures for each replica across several
FPGAs, thus speeding up the simulation (recall that Janus has very fast connec-
tions between the FPGAs on the same board).

For the smaller lattices (L ≤ 12) we ran the simulations on Terminus, the com-
puting cluster of the BIFI. Even if these were very small systems, we thermalised
them down to extremely low temperatures, so the simulation time was far from
negligible.

e.2.2 Parameters of our simulations

In our DAFF simulations, we set-up our parallel tempering scheme with a very high
maximum temperature, where the copies of the system achieved decorrelation
very fast.

Here, however, we are not interested in the critical point, but rather in the
low-temperature physics, which makes thermalisation all the more difficult. For
that reason, the simulations are several orders of magnitude longer than in the
DAFF’s case and, hence, for the same ratio of autocorrelation time at Tmax over
total simulation time we do not need to reach such high temperatures. Still, we

2Actually, these configurations were also used for the geometrical study of Section 8.6.
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L Tmin Tmax NT Nmes Nmin
HB Nmax

HB Nmed
HB Ns System

8 0.150 1.575 10 103 5.0×106 8.30×108 7.82×106 4000 PC
8 0.245 1.575 8 103 1.0×106 6.48×108 2.30×106 4000 PC
12 0.414 1.575 12 5×103 1.0×107 1.53×1010 3.13×107 4000 PC
16 0.479 1.575 16 105 4.0×108 2.79×1011 9.71×108 4000 Janus
24 0.625 1.600 28 105 1.0×109 1.81×1012 4.02×109 4000 Janus
32 0.703 1.549 34 2×105 4.0×109 7.68×1011 1.90×1010 1000 Janus
32 0.985 1.574 24 2×105 1.0×108 4.40×109 1.16×108 1000 Janus

Table e.2: Parameters of our spin-glass parallel tempering simulations. In all cases we
have simulated four independent real replicas per sample. The NT temperatures are
uniformly distributed between Tmin and Tmax (except for the runs of the first row, which
have all the temperatures of the second one plus T = 0.150 and T = 0.340). In this table
Nmes is the number of Monte Carlo Steps between measurements (one MCS consists
of 10 heat-bath updates and 1 parallel-tempering update). The simulation length was
adapted to the thermalisation time of each sample, using the methods of Appendix A.
The table shows the minimum, maximum and medium simulation times (NHB) for each
lattice, in heat-bath steps. Lattice sizes L = 8,12 were simulated on conventional PCs,
while sizes L = 16,24,32 were simulated on Janus. Whenever we have two runs with
different Tmin for the same L the sets of simulated samples are the same for both. The
total spin updates for all lattice sizes sum 1.1 × 1020. It is interesting to compare the
length of these simulations with the ones for the DAFF in Table 8.1.

can perform a quantitative analysis in order to justify our parameters (which can
be seen in Table e.2).

Following Ogielski [ogi85], the equilibrium autocorrelation time in the thermo-
dynamic limit is taken from a power law to a critical divergence

τHB(T) ∼ (T − Tc)−zν . (e.1)

For instance, for the maximum temperature used in our largest lattice, Ogielski
found τHB ∼ 105. This is several orders of magnitude shorter than our shortest
simulations in Table e.2.

We chose the minimum temperature so that the whole simulation campaign
took about 200 days of the whole Janus machine and so that the lowest temper-
ature scaled as Tc − Tmin ∼ L−1/ν . With 4000 samples for L = 16,24 and 1000 for
L = 32, this resulted in Tmin = 0.479,0.625,0.703, respectively.

As we cautioned in Appendix A, trying to optimise the choice of the remain-
ing parameters (number and distribution of the intermediate temperatures) is an
unrewarding task. We dedicated several weeks to testing several combinations,
mainly by modifying the number NT of temperatures so that the acceptance of
the parallel tempering exchanges varied between 7% and 30%. Perhaps against
conventional wisdom, taking into account that the computational effort at fixed
NHB is proportional to NT , we found that the efficiency hardly changed. Eventu-
ally, we settled for a spacing of temperatures that produced acceptances of ≈ 20%.
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This both avoided unconventionally low acceptances and saved disk space.

e.2.3 Offline evaluation of observables

As we indicated before, most of our analyses were performed offline, on previ-
ously stored spin-glass configurations. In particular, the computation of condi-
tional correlation functions C4(r|q) —Eq. 10.58— was not only time-consuming
but also required a lot of unrefined data. This was a problem, due to the scarcity
of stored configurations. In fact, for the samples that were simulated only for
the minimum simulation time, we had only Nconf ∼ 100 configurations stored on
disk (ranging from Nconf = 10 for L = 12 to Nconf = 200 in the case L = 32).
We regard the second half (in a Monte Carlo time sense) of these configurations
as well thermalised. Yet, when forming the overlap field, one needs only that
the two spin configurations, {s(1)x } and {s(2)x }, be thermalised and independent.
Clearly enough, as long as the two configurations belong to different real replicas
and belong to the second half of the Monte Carlo history they will be suitable.
There is no need that the two configurations were obtained at the same Monte
Carlo time (as it is done for the online analyses). Furthermore, the four real repli-
cas offer us 6 pair combinations. Hence, we had at least 6 × (Nconf/2)2 ∼ 10000
(60000 for L = 32) measurements to estimate the overlaps and the correlation
functions. We used the Fast Fourier Transform to speed up the computation of
the spatial correlations. For those samples that had more configurations (because
their total simulation time exceeded N HB

min), we considered nevertheless Nconf/2
configurations evenly spaced along the full second half of the simulation.

For some quantities, such as the spin overlaps, we did have a large number
of online measurements. Therefore, When some quantity, for instance the p(q),
could be computed in either way, online or offline, we have compared them. The
two ways turn out to be not only compatible, but also equivalent from the point of
view of the statistical errors. As an example of this let us compute the following
quantity:

σ 2
link = 〈Q2

link〉 − 〈Qlink〉2. (e.2)

For L = 32, T = 0.703, the value of σ 2
link computed from online measurements of

Qlink and Q2
link is

Nσ 2
link,online = 50.88(90). (e.3)

We could now recompute this value from offline measurements of Qlink and Q2
link.

Instead, we are going to use (11.32), which involves the intermediate step of com-
puting conditional expectation values and variances at fixed q and then integrat-
ing with p(q). This will serve as a test both of the offline measurements’ precision
and of our Gaussian convolution method for the definition of fixed-q quantities.
The result is

Nσ 2
link,conf = 50.81(90), (e.4)

The precision of σ 2
link,online and σ 2

link,conf is the same and the difference less than
10% of the error bar, even though we only analysed 100 configurations per sample
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Figure e.1: Histogram of exponential autocorrelation times for our simulations of the
L = 32 lattice (1000 samples).

for the second one. Of course, both determinations are very highly correlated, so
the uncertainty in their difference is actually much smaller than their individual
errors. Computing the difference for each jackknife block we see that

N[σ 2
link,conf − σ 2

link,online] = −0.065(79), (e.5)

which is indeed compatible with zero.
A final issue is the comparison of data computed in different system sizes at

the same temperatures. Unfortunately the grids of temperatures that we used for
the different L differ. Hence we have interpolated our data by means of a cubic
spline.

e.2.4 Thermalisation

We have followed the thermalisation protocol detailed in Section a.3.3. Figure e.1
shows the histogram of exponential autocorrelation times for our L = 32 simu-
lations. As with the DAFF, we need to use logarithmic bins. Notice the dramatic
increase of the τexp when decreasing the minimum temperature of the simulation.
In Figure e.2 we plot the logarithm of the histogram to show the exponential be-
haviour of the long-times tail. This result gives confidence that rare events with
extremely large correlation times are at least exponentially suppressed.

e.2.4.1 Thermalisation tests

We consider in this section thermalisation tests directly based on physically mean-
ingful quantities.
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Figure e.2: Logarithm of the histogram of exponential autocorrelation times for our
simulations of the L = 24 lattice (4000 samples). Mind the behaviour of the long-times
tail.
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Figure e.3: Evolution of the Binder parameter for L = 32, T = 0.703 using log2 binning.
The blue curve (circles) is the result of stopping at step 1 of our thermalisation protocol
(i.e., all samples simulated for a fixed time of 4×109 heat-bath updates). The red curve
(squares) is the result of completing all the steps, which implies an increase of roughly
150% in simulation time.
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Figure e.4: Binder ratio as a function of the temperature for L = 32. The good overlap
between two different simulations (one of them in the much easier critical region) is a
further thermalisation check. We use the same set of 1000 samples.

We start by the traditional log2-binning procedure of Section a.3, illustrated
in Figure e.3 for the Binder ratio of Eq. (11.1), which is especially sensitive to rare
events and, therefore, to possible thermalisation biases. In the figure we show
two curves, both for L = 32 and T = Tmin = 0.703. The blue one, with circles, is
the result of stopping at step one in our thermalisation protocol of Section a.3.3
and shows a poorly thermalised ensemble. The situation improves dramatically
if we follow the simulation protocol to the end, simulating each sample for a
time proportional to its autocorrelation time. Notice that, thanks to our choice of
Nmin

HB , the simulation time for most samples has not increased. If we first rescale
the data according to total simulation length and average for equal rescaled time,
the log2-binning gives four steps of stability within errors. That is to say: we
obtain the Binder parameter without thermalisation bias just discarding 1/16 of
the history. Regarding B, then, our requirement of 12τexp has been excessive.

In retrospect, shorter simulations would have produced indistinguishable phys-
ical results for most observables. We do not regret our choices, however, as we
plan to use these thermalised configurations in the future [janxx] for very delicate
analyses (such as temperature chaos), which are probably much more sensitive to
thermalisation effects.

A different test can be performed by comparing the difficult low-temperature
simulations of our largest lattice with simulations of the same samples in the
much easier critical region. A faulty thermalisation (for instance, a configuration
remains trapped at low temperatures) could be observable as inconsistencies in
the values of quantities in common temperatures. In Figure e.4 we show the
Binder parameter as a function of temperature for the two simulations with L = 32
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Figure e.5: Left: Scatter plot of the exponential autocorrelation time against the prob-
ability that the overlap be less than a small quantity at T = 0.703, for all our L = 32
samples. Right: Scatter plot of the autocorrelation time and the energy at T = 0.703 for
the same samples. The thermalisation time does not seem to be correlated with these
physically relevant quantities.

(see Table e.2). The agreement between both simulations is excellent.
We carefully avoided making decisions during thermalisation based on the

values of physical quantities. However, one could worry about the possibility
of important statistical correlations between the temperature random walk and
interesting quantities. Such correlation could originate some small biases that
would be difficult to eliminate. Fortunately, we have not found any correlation of
this type. In Figure e.5 we show the correlation between τexp and two important
quantities: probability of the overlap being small and the energy.





APÉNDICE F

Resumen de la tesis

En este apéndice se presenta un amplio resumen de la tesis, que incluye su in-
troducción, objetivos y resultados fundamentales. Se ha hecho hincapié en la
metodología, pues gran parte del trabajo realizado consiste en la introducción de
nuevos métodos de análisis y simulación.

Dado que la lengua de trabajo en este campo es invariablemente el inglés, se
ha optado en ocasiones por dejar sin traducir ciertos vocablos con un significado
muy específico (como coarsening o finite-size scaling), así como otros que se re-
fieren a teorías o métodos concretos (modelo droplet, formalismo tethered, etc.).
Consideramos que la sustitución en estos casos por una palabra española, pero
no utilizada normalmente, podría hacer menos reconocible el concepto referido y
dificultar la lectura.

f.1

Introducción

La física moderna está ampliando continuamente sus miras y tratando sistemas
cada vez más complejos, cuyo comportamiento colectivo no es fácilmente inferi-
ble a partir de la, a menudo simple, naturaleza de sus componentes. De este
modo, se está haciendo un gran esfuerzo por comprender, desde un punto de
vista fundamental, una clase de problemas extremadamente diversa que abarca
desde vórtices en superconductores de alta temperatura hasta macromoléculas
biológicas. Los fenómenos estudiados pueden ser tan exóticos como la magneto-
rresistencia colosal presente en algunas manganitas [dag01, coe09, lev02] o tan
comunes como la formación de vidrio [ang95, deb97, deb01]. Este último consti-
tuye, en palabras de P. W. Anderson [and95], «quizás el problema pendiente más
profundo y más interesante en la teoría del estado sólido». Por otro lado, el es-
tudio de sistemas físicos complejos está estrechamente relacionado con el campo
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Figura f.1: Izquierda: Angell plot, que representa la viscosidad de muchos líquidos
frente a T/Tg, donde Tg es la temperatura vítrea (apud [ang95]). Derecha: Imagen ide-
alizada de un sistema complejo. El perfil de energía libre contiene muchos mínimos
locales, que definen estados metaestables con largos tiempos de escape.

de la complejidad computacional y la completitud NP [méz02, zec06].
Esta enorme variedad de problemas, frecuentemente a caballo entre la física,

química y biología, parece sugerir que la etiqueta de «sistema complejo» encierra
poco o ningún significado, pues parecería que cada clase de sistemas debe ser
estudiada separadamente. En realidad, bajo la diversidad podemos encontrar ca-
racterísticas unificadoras de gran importancia, lo que ha motivado un gran interés
en establecer un estudio conjunto de la complejidad.

En este sentido, la mayor esperanza para el físico fundamental radica en la
noción de universalidad [car96, ami05, zj05]. En general, una descripción mi-
croscópica estricta de un sistema complejo es una tarea hercúlea: es necesario dar
cuenta de muchísimos grados de libertad, cuyas interacciones siguen a menudo
leyes complicadas. Afortunadamente, suele ser posible identificar unas pocas va-
riables de scaling cruciales, cuya evolución codifica el comportamiento del sistema
completo. Más aún, al expresar todas las cantidades más complejas en términos
de aquéllas, sistemas muy diferentes resultan tener el mismo comportamiento
cualitativo. Por lo tanto, todos ellos pueden ser entendidos mediante el estudio
de su representante más simple.

Probablemente el ejemplo más deslumbrante de este comportamiento univer-
sal es el Angell plot, del que mostramos un ejemplo en la Figura f.1—izquierda.
En él, líquidos con muy diversas composiciones y dependencias térmicas del flujo
viscoso cualitativamente diferentes se clasifican conforme a su «fragilidad». Ésta
se define como la derivada logarítmica de la viscosidad a la temperatura de transi-
ción vítrea y permite caracterizar la desviación del material de la ley de Arrhenius,
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a lo largo de 15 órdenes de magnitud. No sólo hay poquísimas magnitudes físicas
que se hayan podido medir en un intervalo de variación tan grande, sino que esta
representación encierra un profundo significado físico.

En primer lugar, las relaciones de fluctuación-disipación [kub57] permiten tra-
ducir viscosidad en tiempo. Por lo tanto, la gráfica nos está mostrando una
situación en la que los tiempos de relajación pasan del ámbito microscópico al
macroscópico (el parámetro de scaling Tg se define como la temperatura a la que
la viscosidad alcanza 1013 P, equivalente a tiempos de relajación de una hora).

En el contexto de los sistemas magnéticos —donde, al contrario que con los
vidrios, estamos seguros de estar por debajo de una verdadera transición de
fase— el régimen de fuera del equilibrio es, desde hace tiempo, un entorno expe-
rimental totalmente natural. Una aplicación clásica es el estudio del coarsening,
un tipo de dinámica que se caracteriza por el crecimiento de dominios coherentes
compactos. En este caso opera una versión especialmente poderosa de la univer-
salidad, la llamada superuniversalidad [fis86b]. De acuerdo con ella, todas las
escalas espaciales y temporales durante la dinámica están codificadas en el creci-
miento de una longitud de coherencia, que determina el tamaño de los dominios.

En general, podemos decir que la característica más común de los sistemas
complejos es una evolución dinámica increíblemente lenta, o aging (envejecimien-
to) [str78, bou98]. El estudio de la relajación fuera del equilibrio es, por tanto,
muy importante y a menudo el único régimen experimental accesible.

Para explicar este comportamiento, la imagen más recurrida es el llamado
«paisaje rugoso de energía libre» [fra97, jan08a]. Se considera que el espacio
de configuración presenta muchos valles, los cuales definen estados metaesta-
bles donde la configuración es mucho más favorable que sus vecinas (Figura f.1—
derecha). El sistema debe, durante su evolución, saltar de un mínimo local a otro
a través de estados raros, lo que genera una dinámica muy lenta.

Las causas de esta «rugosidad» son diversas. En algunos materiales, puede de-
berse a la presencia de impurezas u otros defectos, que obstaculizan la evolución
física. Para otros se ha propuesto un tipo de dinámica jerárquicamente constre-
ñida, consistente en la relajación secuencial de diferentes grados de libertad, del
más rápido al más lento [pal84].

A veces uno de los valles domina y el perfil de energía libre tiene forma de
embudo. Éste es el caso, por ejemplo, del plegamiento de proteínas, donde la con-
figuración nativa define un mínimo absoluto. Para otros sistemas, sin embargo,
puede haber muchas configuraciones igualmente favorables, por lo que se deben
tener en cuenta varios estados metaestables incluso al definir el equilibrio. La
diferencia entre ambos casos no es baladí: las proteínas son (obviamente) capaces
de plegarse en su configuración de equilibrio muy rápidamente (en términos hu-
manos), mientras que los sistemas vítreos están siempre fuera del equilibro. Dado
que en este último caso la fase de equilibrio es experimentalmente inalcanzable,
determinar hasta qué punto influye en la dinámica es un problema no trivial.

Llegados a este punto, hemos de advertir al lector de que la imagen pintada
en la Figura f.1—derecha es, como mucho, una metáfora. Para poder darle ver-
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dadero significado físico debemos, al menos, identificar una (o varias) coorde-
nadas de reacción capaces de etiquetar los diferentes mínimos. Esto requiere
cierto conocimiento de la física del sistema y todavía deja sin resolver el paso no
trivial de realmente calcular la energía libre.

La investigación cuantitativa de estos dos temas (estática-dinámica y el paisaje
de energía libre) constituye los temas principales de esta tesis. Trabajaremos en
el contexto de los sistemas magnéticos desordenados, ampliamente considerados
como excelentes ejemplos de complejidad. Uno de los mecanismos más simples
responsables de la complejidad de estos sistemas es la frustración [tou77]. Con-
sideremos por ejemplo el caso de los vidrios de espín. Éstos son aleaciones mag-
néticas en las que las interacciones de los espines se encuentran en oposición,
pues el desorden se manifiesta en una mezcla de enlaces ferromagnéticos y anti-
ferromagnéticos. Por lo tanto, incluso para la configuración de menor energía, al-
gunos de los enlaces están necesariamente frustrados (una interacción ferromag-
nética uniendo espines antiparalelos o una antiferromagnética uniendo espines
paralelos). Como consecuencia, al sistema le resulta extremadamente difícil en-
contrar el estado de equilibrio. Es más, muchas configuraciones pueden tener un
grado comparable de frustración y ser por lo tanto igualmente favorables, lo que
genera un paisaje de energía libre con muchos estados metaestables relevantes.

La elección de los sistemas magnéticos como paradigmas de complejidad obe-
dece a varios motivos. Por un lado, permiten en general estudios experimentales
más precisos y controlados que otros sistemas [myd93, bel98]. Desde un punto
de vista teórico, resultan al menos fáciles de representar con modelos simples,
basados en retículos. Por supuesto, que estos modelos sean sencillos de plantear
no implica que sean fáciles de resolver. De hecho, los sistemas desordenados han
desafiado constantemente herramientas analíticas tan poderosas como la teoría
de perturbaciones [dom06].

En las últimas décadas, se ha abierto una tercería vía para la investigación
básica: el enfoque computacional, en donde destaca la simulación de Monte Carlo
(MC) [lan05, rub07]. Desafortunadamente, en el caso de sistemas desordenados
los métodos de MC tradicionales adolecen de los mismos problemas que los ex-
perimentos, en mayor medida si cabe. Una simulación de un paisaje rugoso de
energía libre para un retículo finito caerá en los mínimos locales, igual que un
experimento, con un tiempo de escape que crece exponencialmente con la barrera
de energía a superar (que a su vez crece como una potencia del tamaño del sis-
tema). Se han propuesto muchos algoritmos de simulación para atajar este pro-
blema. Sin embargo, como regla general, para introducir innovaciones eficientes
es necesario tener algún conocimiento previo (o alguna hipótesis de trabajo) de
la física subyacente. Por lo tanto, la investigación de nuevos métodos de MC no
se debe emprender en abstracto, sino paralelamente a un estudio concienzudo de
los problemas físicos correspondientes.

Hay otra alternativa: abandonar el estudio del equilibrio y simplemente inten-
tar reproducir con una simulación de MC una dinámica experimental. Esto es, en
principio, sencillo, ya que las dinámicas de MC más directas reproducen bastante
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bien la evolución física, y tiene la ventaja de considerar el sistema en condiciones
más controladas que las que se puedan conseguir en un laboratorio. Desgracia-
damente, los ordenadores actuales son varios órdenes de magnitud demasiado
lentos como para alcanzar las escalas experimentalmente relevantes.

En resumen, el estudio de los sistemas complejos se enfrenta a serios obstácu-
los, tanto experimentales como teóricos. Sin embargo, éstos no hacen sino incre-
mentar el interés de estos problemas, ya que nos recuerdan que las herramientas
de la mecánica estadística deben ser continuamente complementadas y refinadas.
Además, la etiqueta de «sistemas complejos» engloba materiales tan comunes
como los vidrios, así como sistemas con gran relevancia tecnológica o médica
(óxidos de magnetorresistencia colosal, proteínas, etc.).

f.1.1 Objetivos de esta tesis

Esta tesis es un intento de proporcionar un nuevo punto de vista para el estudio
de los sistemas complejos, con un enfoque computacional. Nos hemos centrado
en dos modelos desordenados paradigmáticos en tres dimensiones: el vidrio de
espín de Edwards-Anderson y el el antiferromagneto diluido en un campo ex-
terno. Estos sistemas se han estudiado por medio de simulaciones de MC. Éstas
se han llevado a cabo a gran escala, utilizando clusters de cálculo, instalaciones
de supercomputación, sistemas grid e incluso un ordenador dedicado diseñado a
medida. De acuerdo con la discusión anterior, el estudio físico ha ido de la mano
del desarrollo de nuevos métodos de MC.

En efecto, en la base de este trabajo se encuentra el desarrollo del método
Tethered Monte Carlo (TMC), una estrategia general para el análisis de paisajes
rugosos de energía libre. Este formalismo proporciona un método para guiar la
exploración del espacio de configuración imponiendo restricciones a uno o va-
rios parámetros. El objetivo final es la reconstrucción del potencial de Helmholtz
asociado a dichos parámetros, que encierra toda la información sobre el sistema.

Esta filosofía se ha aplicado primero a sistemas ferromagnéticos (no precisa-
mente complejos, pero extraordinarios bancos de pruebas) y a continuación al an-
tiferromagneto diluido en un campo externo. Mostraremos que el enfoque tether-
ed, lejos de ser un mero algoritmo optimizado de simulación, permite obtener
información muy valiosa que estaría oculta a métodos tradicionales. Como ejem-
plo destacado, representaciones como la de la Figura f.1—derecha han pasado de
ser ayudas conceptuales a ser verdaderos cálculos de perfiles de energía libre.

La siguiente parte de esta tesis se dedica al modelo de Edwards-Anderson. Para
este sistema, nuestros conocimientos no son lo suficientemente completos como
para permitir un tratamiento tethered completo (aunque tomaremos varias ideas
de la filosofía tethered, sobre todo en cuanto al análisis de resultados). En lu-
gar de ello, hemos seguido una estrategia de pura fuerza bruta en la simulación.
Nuestro trabajo en vidrios de espín se ha llevado a cabo dentro de la Janus Col-
laboration, una iniciativa conjunta de investigadores en cinco universidades en
España e Italia. Este proyecto ha tenido como objetivo primordial la construcción
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y explotación de Janus, un ordenador dedicado diseñado a medida para optimizar
la simulación de sistemas de espines, para los que es varios órdenes de magnitud
más rápido que un ordenador convencional.

Nuestro estudio de los vidrios de espín es complementario al resto de la tesis
de una forma adicional, ya que hace un gran hincapié en la dinámica fuera del
equilibrio. En efecto, como adelantamos en la discusión anterior, los experimen-
tos sobre vidrios de espín (y muchos otros sistemas) se realizan siempre fuera
del equilibrio. En este contexto, uno de nuestros objetivos más importantes
será establecer una relación cuantitativa entre la fase de equilibrio y la evolución
dinámica, considerando que las estructuras de equilibrio, aunque inalcanzables,
condicionan la relajación del sistema. Esta relación se establecerá mediante un
diccionario tiempo-tamaño y un formalismo de finite-time scaling.

En lo que sigue resumimos nuestros métodos y resultados más importantes en
cada uno de los tres bloque mencionados (formalismo tethered, antiferromagneto
diluido y modelo de Edwards-Anderson). Se ha evitado hacer referencia a otras
partes de la tesis, recurriendo en su lugar a citas a nuestros artículos originales. En
cada caso incluimos una breve introducción resumiendo el estado de la cuestión
antes de nuestro trabajo.

f.2

Tethered Monte Carlo

Esta sección proporciona un esbozo del método Tethered Monte Carlo (TMC), in-
cluyendo los pasos necesarios para su aplicación (cf. [fer09c, mm11] para los de-
talles de la construcción). Esencialmente, un cálculo con TMC consiste en llevar a
cabo varias simulaciones de MC independientes para diferentes valores de algún
parámetro relevante, que a continuación se promedian mediante una integración
sobre este parámetro.

Consideremos un sistema cuyo espacio de configuración incluye varios estados
metaestables, separados por barreras de energía libre. El primer paso en un estu-
dio con TMC es identificar un parámetro x que sirva para etiquetar las diferentes
fases relevantes (típicamente, pero no siempre, x es un parámetro de orden). En
lo que sigue consideraremos sistemas ferromagnéticos, para fijar ideas, por lo que
el parámetro adecuado será la densidad de magnetización m.

El objetivo de un cálculo con TMC es construir el potencial de Helmholtz aso-
ciado a m, ΩN(β,m), que contiene toda la información sobre el sistema a la tem-
peratura β. Esto implica trabajar en una colectividad estadística relacionada con
la habitual colectividad canónica mediante una transformación de Legendre,

ZN(β,h) = eNFN(β,h) =
∫

dm eN[βhm−ΩN(β,m)]. (f.1)

En esta ecuación, ZN es la función de partición y FN la energía libre.
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Como trabajamos con sistemas en un retículo,m es una variable discreta para
sistemas finitos y no permite definir un ΩN suave. Por lo tanto, acoplamos m a
un baño gaussiano para construir una magnetización suavizada m̂. En las expre-
siones finales el efecto del baño gaussiano está promediado y todo se escribirá en
términos de m̂ y m.

Supongamos un sistema de espines, cuya configuración se denota por {sx}.
La magnetización m es un observable, es decir, una función de {sx}. Queremos
simular para un valor fijo de m̂, un parámetro estrechamente relacionado con el
valor medio de m.

El peso de una configuración determinada en la colectividad canónica, en ausen-
cia de un campo externo (h = 0), es exp[−βU({sx})], donde U es la energía de
interacción. El peso en la colectividad tethered, en cambio, es

ωN(β, m̂; {sx}) = e−βU+N(m−m̂)(m̂−m)(N−2)/2Θ(m̂−m) . (f.2)

La función de Heaviside Θ(m̂−m) impone la ligadura m̂ ≥m({sx}).
Una simulación tethered (es decir, a m̂ fija) se desarrolla exactamente igual

que una simulación canónica (véase, por ejemplo, [lan05, rub07]). Simplemente
hay que reemplazar el peso exp[−βU] por (f.2).

Durante la simulación vamos tomando medidas de los diferentes observables
y obtenemos como resultado los promedios tethered, denotados por 〈O〉m̂ para
un observable arbitrario O. Recordemos que la magnetizaciónm está constreñida
(tethered), pero no fija, en la simulación. De hecho, sus fluctuaciones son cruciales
para definir un observable muy importante, el campo tethered b̂,

b̂ = − 1
N
∂ logωN(β, m̂; {sx})

∂m̂
= 1− N − 2

2N[m̂−m({sx})] . (f.3)

La importancia de b̂ radica en su estrecha relación con el potencial de Helmholtz
ΩN(m̂, β). En concreto, se demuestra que

∂ΩN
∂m̂

= 〈b̂〉m̂ . (f.4)

De este modo, la obtención de 〈b̂〉m̂ como función de m̂ (combinando muchas
simulaciones tethered e interpolando) permite reconstruir ΩN .

Los pasos de una simulación TMC son, por lo tanto, (cf. Figura f.2)

1. Identificar el intervalo de valores de m̂ que cubre la región relevante del
espacio de fases y seleccionarNm̂ puntos equiespaciados m̂i.

2. Para cada m̂i, llevar a cabo una simulación tethered con m̂ fija a m̂ = m̂i.

3. Ahora se tienen todos los promedios tethered relevantes como funciones
discretizadas de m̂, denotadas por 〈O〉m̂. Estas funciones son muy suaves y
se pueden interpolar fácilmente.
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Figura f.2: Cálculo del potencial de Helmholtz ΩN y de los promedios canónicos a
partir de promedios tethered para el modelo de Ising a Tc en D = 3 para un retículo
de lado L = 64. El panel superior muestra el campo tethered 〈b̂〉m̂. La integral de esta
cantidad define el potencial de Helmholtz ΩN(m̂) y éste a su vez define la densidad de
probabilidad p(m̂) = exp[−NΩN(m̂)] (representada en el panel central en escala lineal
y logarítmica). Finalmente, en el panel inferior mostramos los promedios tethered de la
densidad de energía u. Su integral, ponderada con p(m̂), nos da el promedio canónico
con gran precisión 〈u〉 = −0.996 868(11). Datos de [mm09].

4. Los promedios canónicos, 〈O〉, se pueden recuperar mediante

〈O〉 =
∫ m̂máx

m̂mín

dm̂ p(m̂)〈O〉m̂. (f.5)

En esta ecuación la densidad de probabilidad p(m̂) es

p(m̂) = e−NΩN(m̂,β), ΩN(m̂, β) = ΩN(m̂mín)+
∫ m̂
m̂mín

dm̂′ 〈b̂〉m̂′ . (f.6)

La constante ΩN(m̂mín) se elige para normalizar la probabilidad.

5. Si se necesitan valores canónicos para un campo externo h no nulo, no es
preciso completar nuevas simulaciones. En efecto, los 〈O〉m̂ se pueden re-
utilizar y sólo hay que recalcular ΩN (es decir, sólo cambia el peso relativo
de los promedios tethered). Esto es tan sencillo como desplazar el campo
tethered mediante 〈b̂〉m̂ → 〈b̂〉m̂ − βh.

Este proceso está ilustrado en la Figura f.2, en la que se calcula la densidad de
energía a la temperatura crítica para el modelo de Ising en D = 3.
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f.2.1 Resultados para el modelo de Ising

Al introducir el método TMC en [fer09c], utilizamos como primera aplicación
el modelo de Ising en 2D. Este sistema es un banco de pruebas excepcional,
pues se conocen para él multitud de resultados exactos, incluso para sistemas
finitos. Además, es el escenario ideal para aplicar los llamados métodos de clus-
ter [swe87, edw88, wol89]. Éstos son algoritmos de MC que permiten, para unos
pocos sistemas, eliminar totalmente el critical slowing down (CSD) [hoh77, zj05]
y, de este modo, obtener resultados con gran precisión para grandes retículos.

En este trabajo implementamos el método TMC con una sencilla dinámica de
Metropolis. El resultado, quizás sorprendente, fue que el potencial efectivo (en
general, cualquier observable magnético) podía reconstruirse sin CSD, a pesar de
estar utilizando una dinámica local. Esto se debe probablemente a que la im-
posición de que m̂ esté fija se hace de forma no local. Para observables como
la energía sí se observaba un CSD con z ≈ 2, característico de las dinámicas lo-
cales en sistemas sencillos. Sin embargo, los tiempos de termalización eran lo
suficientemente pequeños como para termalizar retículos grandes (L = 1024) y
reconstruir sus correspondientes promedios canónicos con gran precisión.

El método demostró además su especial eficiencia en regímenes más difíciles,
como cálculos en la fase ferromagnética o con un campo aplicado. En estos casos,
el análisis resultaba aún más sencillo, al poder establecerse ecuaciones de punto
silla para relacionar los promedios canónico y tethered. Además, el uso de TMC
permite tratar la ruptura espontánea de simetría de forma muy elegante.

A continuación, en [mm09], presentamos una optimización considerable del
método al reemplazar la dinámica de Metropolis por una dinámica de cluster
basada en el algoritmo canónico de Swendsen-Wang [swe87]. Al utilizar este nuevo
algoritmo, logramos hacer desaparecer el CSD incluso de los observables no mag-
néticos. De hecho, el exponente crítico dinámico z del método resultó compatible
con el del método canónico de Swendsen-Wang, tanto en dos como en tres dimen-
siones. Esto nos permitió calcular promedios canónicos con aún mayor precisión
que en [fer09c] (cf. Figura f.2), así como dar una determinación competitiva de la
dimensión anómala del modelo en tres dimensiones: η = 0.036 0(7).

En resumen, aunque el método TMC está en principio pensado para sistemas
más complejos que los ferromagnetos, incluso en estos casos relativamente sen-
cillos ofrece un punto de vista complementario y competitivo (especialmente si
consideramos un campo externo o la fase de baja temperatura).

f.3

El antiferromagneto diluido en un campo externo

El primero de los dos sistemas desordenados estudiados en esta tesis es el an-
tiferromagneto diluido en un campo externo (DAFF), la realización experimental
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del modelo de Ising en un campo aleatorio (RFIM). Éste es uno de los modelos más
simples para estudiar fenómenos colectivos en presencia de desorden, por lo que
constituye un ejemplo paradigmático de sistema complejo, que ha sido estudiado
intensamente tanto de un modo teórico [nat98] como experimental [bel98].

Es bien sabido que el RFIM/DAFF en D = 3 experimenta una transición de fase,
pero los detalles siguen siendo controvertidos. Normalmente se trabaja en el con-
texto de una teoría de scaling en la que la dimensión D del sistema se reemplaza
por D−θ en la relación habitual de hyperscaling. Este tercer exponente crítico in-
dependiente es, sin embargo, inaccesible tanto a una medida experimental directa
como a los métodos de MC tradicionales.

La completa incertidumbre sobre el valor de θ ha permitido que los diferentes
estudios, tanto numéricos como experimentales, de este modelo defiendan va-
lores cualitativamente diferentes para los restantes exponentes críticos. Buenos
ejemplos de esto son la controversia sobre si el calor específico del modelo es o
no divergente en el punto crítico [bel83, bel98, har01, mal06, wu06], así como
la gran incertidumbre en el cálculo del exponente crítico ν de la longitud de cor-
relación [sla99, ye04, har99, mid02, wu06, mal06].

Por otro lado, la extrema pequeñez del exponente crítico magnético β, unida
a la observación numérica de metaestabilidad, ha llevado a algunos autores a
plantear la posibilidad de que la transición sea de primer orden [sou99, wu06,
mai07].

En el fondo de todas estas dificultades se encuentra el familiar problema de
las barreras de energía libre. Tanto en experimentos como en simulaciones, el
sistema se queda atrapado en mínimos locales, con tiempos de escape que crecen
como logτ ∼ ξθ. Esto no sólo hace que la termalización sea extremadamente
difícil, sino que asegura además que la estadística esté dominada por eventos
raros y provoca violaciones de la automediancia [par02, wu06, fyt11].

En [fer11b, mm11] utilizamos el formalismo TMC para tratar este problema. El
hamiltoniano es

H =
∑
〈x,y〉

εxsxεysy − h
∑
x
sx = U({sx})− hM({x}), (f.7)

donde h es el campo externo y los εx son las variables quenched de ocupación,
que tomamos igual a 1 con probabilidad p = 0.7 e igual a cero con probabilidad
1 − p. Como es habitual, denotaremos por 〈· · · 〉 el promedio de térmico y por
(· · · ) el posterior promedio sobre el desorden. En D = 3, el sistema experimenta
una transición de fase de un estado paramagnético a otro antiferromagnético en
la que el parámetro de orden es la magnetización alternada o staggered

Ms = Nms =
∑
x
εxsxeiπ

∑D
µ=1 xµ . (f.8)

En nuestra aplicación del formalismo tethered vamos a considerar dos coorde-
nadas de reacción conjuntamente, m y ms, de las que definimos versiones suavi-
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Figura f.3: Potencial efectivo ΩN(m̂ = 0.11, m̂s) para T = 1.6, L = 24. Los dos mínimos
antiferromagnéticos están separados por una gran barrera (el tiempo de escape es τ ∼
exp[N∆ΩN]).

zadas m̂ y m̂s. Esto supone generalizar el peso (f.2),

ω(m̂, m̂s; {sx})∝ e−βUγ(m̂,m)γ(m̂s,ms), (f.9)

γ(x̂, x) = eN(x−x̂)(x̂ − x)(N−2)/2Θ(x̂ − x). (f.10)

Del mismo modo, el potencial efectivo es ahora una función de dos variables,
ΩN(m̂, m̂s), y

∇ΩN(m̂, m̂s) =
(〈b̂〉m̂,m̂s , 〈b̂〉m̂,m̂s

)
, (f.11)

donde

b̂ = 1− 1/2− 1/N
m̂−m , b̂s = 1− 1/2− 1/N

m̂s −ms
. (f.12)

En principio habría que simular, para cada muestra (cada elección de {εx}),
una malla bidimensional de (m̂, m̂s). Seguidamente reconstruiríamos el ΩN de
la muestra y los promedios canónicos 〈O〉(h), que luego promediaríamos sobre
el desorden. Sin embargo, como demostramos en [mm11], se obtiene una enorme
mejora de la estadística (de hecho, se restaura la automediancia) si promedia-
mos los campos tethered sobre el desorden antes de reconstruir el potencial efec-
tivo. Esto es posible gracias a la propiedad de equivalencia de colectividades, que
garantiza que el promedio tethered en el mínimo absoluto del potencial efectivo
tiende al mismo límite termodinámico que el promedio canónico. En otras pala-
bras, aproximamos las integrales análogas a (f.1) por el método del punto silla.

Hemos simulado retículos de tamaños L = 8,12,16,24,32 hasta una temper-
atura de T = 1.6. Usamos la implementación de Metropolis del método TMC,
junto con el algoritmo de parallel tempering [huk96, mar98].

En la Figura f.3 mostramos un corte a m̂ fijo del potencial efectivo prome-
diado sobre el desorden, ΩN . Vemos que hay dos mínimos antiferromagnéticos,
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separados por una gran barrera de energía libre. Sin embargo, no hay ningún
mínimo en la zona paramagnética (m̂s ≈ 0.5). Esta figura es consistente con el
comportamiento metaestable observado en simulaciones anteriores —en una si-
mulación canónica el sistema saltaría de un mínimo a otro con tiempos de escape
de τ ∼ exp[N∆ΩN]— pero es inconsistente con el escenario de transición de fase
de primer orden.

Para caracterizar cuantitativamente la transición, hemos representado la lon-
gitud de correlación en función del campo aplicado en la Figura f.4. Como vemos,
las curvas para ξ/L se cortan en hc ≈ −2.13, lo que señala la existencia de inva-
riancia de escala en el sistema o, lo que es lo mismo, de una transición de fase de
segundo orden. Utilizando el método de los cocientes [bal96] podemos calcular
los exponentes críticos ν y β/ν ,

ν = 0.90(15), β/ν = 0.011 1(8). (f.13)

El valor de ν se ve afectado por grandes correcciones de escala, mientras que β/ν
se obtiene con gran precisión (nótese que es cercano al valor β = 0 de una tran-
sición de primer orden, pero incompatible con éste). Nuestro valor de ν coincide
bien con el intervalo de valores experimentales.

Necesitamos un tercer exponente independiente para terminar de describir la
transición de fase del DAFF. Éste es el exponente θ de violación de hyperscaling,
que se puede relacionar con la barrera de energía libre entre los estados paramag-
nético y antiferromagnético mediante ∆FN ∝ Lθ−D [vin10, fis11]. El cálculo de
estas barreras es extremadamente difícil con métodos tradicionales, pero resulta
muy sencilla y precisa con el formalismo tethered. Simplemente tenemos que
calcular la diferencia de potencial efectivo entre el mínimo antiferromagnético y
el punto de silla paramagnético. Esto equivale a evaluar la integral de línea de



F.4 — El modelo de Edwards-Anderson 303

(〈b̂〉m̂,m̂s − βh, 〈b̂s〉m̂,m̂s). De un ajuste a ∆ΩN = ALθ−D obtenemos

θ = 1.469(20). (f.14)

Este valor es un nuevo indicio de que la transición es continua, pues en una tran-
sición de primer orden θ = 2. Nótese que nuestros valores de θ y ν , unidos a la
ecuación de hyperscaling, implican un valor para α claramente positivo. Es decir,
no sólo habría una divergencia del calor específico, sino que ésta sería con una
potencia positiva y no logarítmica, como se había sugerido en trabajos previos.
Desafortunadamente, nuestros datos no nos permiten hacer un cálculo directo de
α con precisión para zanjar este tema. Por otro lado, los resultados son consis-
tentes con la conjetura θ = D/2− β/ν [sch86].

Finalmente, cabe mencionar que los trabajos experimentales se basan en el
estudio de un propagador S(k) con componentes conexas y no conexas. Una de
las razones por las que los experimentos han producido valores inconsistentes
de los exponentes críticos es la falta de una parametrización teórica precisa y
convincente para S(k). La relación θ = D/2−β/ν es un paso útil en este contexto,
pero todavía hay mucho trabajo por hacer. Creemos que nuestros métodos están
bien adaptados para realizar un cálculo directo de S(k) en el futuro.

f.4

El modelo de Edwards-Anderson

Por debajo de su temperatura crítica, los vidrios de espín [myd93, bin86] (SG)
están permanentemente fuera del equilibrio. Su comportamiento es extremada-
mente complejo e incluye, además del envejecimiento (aging) habitual en sistemas
complejos [vin97], fenómenos tan pintorescos como los efectos de memoria y re-
juvenecimiento [jon98].

En general, la evolución temporal a temperatura constante T < Tc se carac-
teriza por el crecimiento de dominios espaciales coherentes. Su tamaño permite
definir una longitud de coherencia dependiente del tiempo de espera tw, ξ(tw),
que resulta accesible a los experimentos mediante la medición de energías Zee-
man [joh99]. El crecimiento de ξ es extremadamente lento, con ξ ∼ 100 (en
unidades del parámetro de red) incluso para tiempos de espera de tw ∼ 104 s.

El origen termodinámico de esta dinámica tan lenta está hoy en día bien es-
tablecido, tanto experimental [gun91] como teóricamente [bal00, pal99]. Por
debajo de la temperatura crítica se forma una fase de SG, cuyo carácter es, sin
embargo, aún controvertido. En efecto, coexisten tres descripciones contradicto-
rias: el modelo de gotas (droplet model) [mcm84, bra87, fis86b, fis88b], la teoría
de replica symmetry breaking (RSB) [par79a, par80, mar00b] y la teoría Trivial-
Non-Trivial (TNT) [krz00, pal00].

El modelo droplet predice la existencia de únicamente dos estados de equili-
brio, relacionados por una inversión global de los espines. El parámetro de orden,
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el solapamiento de espín (spin overlap) q, toma sólo dos valores: q = ±qEA. En
la descripción RSB, por el contrario, existen infinitos estados puros y todos los
−qEA ≤ q ≤ qEA son alcanzables. Finalmente, TNT propone una descripción inter-
media. Coincide con RSB en una distribución no trivial para el parámetro q, pero
por otro lado está de acuerdo con droplet en que la relación superficie-volumen
de los dominios tiende a cero. Esto se traduce en una distribución trivial para el
solapamiento de enlace (link overlap), Qlink , mientras que en RSB este parámetro
también es no trivial. Más concretamente, en RSB se espera que q no sea un ob-
servable privilegiado, sino que Qlink tenga el mismo comportamiento de aging.

Estas teorías necesitan simulaciones numéricas para poder hacerse cuantitati-
vas. A temperatura finita hay esencialmente dos enfoques. El primero es simular
directamente la dinámica de fuera del equilibrio, utilizando un algoritmo que re-
produzca la evolución física, como el baño caliente o Metropolis. Mientras el
tamaño L del sistema simulado sea mucho mayor que ξ(tw), los resultados físi-
cos serán independientes de L y se podrán considerar representativos de la física
experimental. La segunda posibilidad consiste en intentar termalizar sistemas
pequeños con dinámicas optimizadas, como el parallel tempering, y utilizar ex-
trapolaciones a gran L para lograr una descripción de la fase de SG de equilibrio.

El problema principal con estos métodos consiste en que los ordenadores ac-
tuales están lejos de alcanzar los regímenes físicamente relevantes. En el caso de
simulaciones fuera del equilibrio, un paso de MC (un MCS) equivale solamente a
unos 10−12 s, de modo que sólo ha sido posible alcanzar tiempos de aproximada-
mente 10−4 s con ordenadores convencionales, frente a la escala experimental que
va de unos segundos a unas horas. En equilibrio, las barreras de energía libre del
sistema hacen que la termalización sea extremadamente difícil de alcanzar y que
sólo se puedan simular tamaños muy pequeños, que pueden no ser representa-
tivos del comportamiento asintótico, lo que complica las extrapolaciones. Hay
una dificultad adicional: ¿hasta qué punto es relevante esta fase de SG, dado que
la física experimental tiene lugar siempre en un régimen de no equilibrio?

En esta tesis hemos abordado el problema mediante el uso del ordenador de-
dicado Janus [jan06, jan08b, jan09b], diseñado a medida para optimizar las si-
mulaciones de este tipo de sistemas. En [jan08c, jan09a] utilizamos Janus para
simular la dinámica fuera del equilibrio del SG de Edwards-Anderson. En estos tra-
bajos, fuimos capaces de alcanzar tiempos de tw ∼ 0.1 s, lo suficientemente largos
como para entender lo que ocurre a la escala experimental. En [jan10a, jan10b]
realizamos simulaciones de equilibrio, en las que termalizamos retículos de hasta
L = 32 a temperaturas de T ≈ 0.64Tc. Estas simulaciones nos han permitido
obtener una nueva perspectiva sobre la física de los SG y, en concreto, relacionar
cuantitativamente la estática con la dinámica, así como determinar cuál es la
teoría más adecuada para la fase de SG (al menos hasta escalas experimentales).
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f.4.1 La equivalencia estática-dinámica

En esta sección abordaremos el segundo de los temas principales de esta tesis:
la relación estática-dinámica. Para ello consideramos el modelo de Edwards-
Anderson, con espines sx = ±1,

H = −
∑
〈x,y〉

Jxysxsy, (f.15)

donde los acoplamientos Jxy son ±1 con una probabilidad del 50%. Este modelo
tiene una transición de fase a temperatura T = 1.109(10) [has08b]. Análoga-
mente al caso del DAFF, cada selección de los {Jxy} constituirá una muestra y
será necesario realizar un promedio sobre el desorden para obtener resultados
físicamente relevantes. Además, en el caso de los vidrios de espín es necesario
utilizar las llamadas réplicas reales, para obtener observables invariantes gauge.
Éstas son dos sistemas {s(1)x } y {s(2)x } que evolucionan independientemente, pero
comparten las mismas Jxy. Con ellos podemos construir el campo de overlap

qx = s(1)x s(2)x , que a su vez se utiliza para definir el spin overlap q, el parámetro de
orden del sistema,

q = 1
N

∑
x
qx (f.16)

Empecemos considerando la evolución fuera del equilibrio del vidrio de espín
de EA en el protocolo experimental más sencillo: la evolución isoterma. El vidrio
de espín se enfría instantáneamente a la temperatura de trabajo T < Tc, se deja
equilibrar durante un tiempo de espera tw y sus propiedades se investigan en
un tiempo posterior t + tw. En concreto, uno de los observables más básicos es la
correlación temporal del sistema. Definimos cx(t, tw) = sx(tw)sx(t+tw) y tenemos

C(t, tw) = 1
N

∑
x
cx(t, tw). (f.17)
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Esta función, que indica la memoria a tiempo t+tw de la configuración que había a
tiempo tw, está representada en la Figura f.5—izquierda, donde se puede apreciar
la lenta evolución del sistema y su envejecimiento. Podemos ver que, para cada tw,
C(t, tw) es una función estrictamente decreciente de t y que limt→∞ C(t, tw) = 0.
Sin embargo, el decaimiento de esta función se ralentiza al aumentar tw, hasta tal
punto que se puede ver una curva envolvente C∞(t) = C(t, tw→∞). Ésta no tiende
a cero, sino que su límite define el valor del parámetro qEA, limt→∞ C∞(t) = qEA.

En [jan08c, jan09a] estudiamos en detalle la función C(t, tw), investigando
cuestiones como el full-aging o la magnetización termorremanente, ambas de gran
interés experimental. Asimismo, calculamos la curva límite C∞(t) hasta t ∼ 108.
La segunda extrapolación, a t infinito, para estimar qEA es, sin embargo, demasi-
ado difícil con métodos de fuera del equilibrio (más adelante veremos cómo se
resuelve este problema mediante simulaciones en equilibrio).

Como hemos indicado, la dinámica del SG se caracteriza por el lento crecimien-
to de dominios coherentes. Para estudiar este fenómeno, debemos considerar la
correlación espacial

C4(r, tw) = 1
N

∑
x
qx(tw)qx+r(tw). (f.18)

Estudiando el decaimiento con r de esta función a tw fijo, se puede definir una
longitud de coherencia ξ(tw) (para calcularla, hemos utilizado estimadores inte-
grales autoconsistentes, cf. [jan09a]). La evolución temporal de ξ(tw) está bien
representada por una ley de potencias, ξ(tw) = At1/z

w , donde el exponente z de-
pende de la temperatura. En concreto, nuestros resultados para las temperaturas
simuladas son

z(T = 0.6) = 14.06(25), z(T = 0.7) = 11.64(15),
z(T = 0.8) = 9.42(15), z(T = Tc) = 6.86(16).

(f.19)

Estos valores siguen aproximadamente la ley z(T) = z(Tc)Tc/T .
Hasta ahora hemos caracterizado la dinámica del SG globalmente pero, en re-

alidad, las diferentes porciones del sistema exhiben una amplia distribución de
tiempos de relajación. Estas heterogeneidades dinámicas han generado mucho
interés en los últimos años [wee00, ouk10, ber11] y pueden considerarse como
un muy prometedor puente entre los vidrios de espín y los estructurales. En el
campo de los SG, el estudio puede hacerse totalmente cuantitativo considerando
una longitud de correlación a dos tiempos [jau07, jan09a]. Para ello definimos
una nueva función de correlación

C2+2(r, t, tw) = 1
N

∑
x
[cx(t, tw)cx+r(t, tw)− C2(t, tw)]. (f.20)

Estudiando el decaimiento a (t, tw) fijo de esta función obtenemos la longitud de
correlación ζ(t, tw). Recordando, además, que C(t, tw) es invertible como función
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de t a tw fijo, reemplazamos t por C como variable independiente para estudiar
ζ(C, tw).

Esta función está representada en la Figura f.5—derecha. Claramente hay dos
regímenes diferentes: para C grande, ζ(C, tw) alcanza un valor finito independi-
ente de tw, que crece al decrecer C . Para C pequeño, sin embargo, ζ(C, tw) crece
fuertemente con el tiempo de espera tw (de hecho, sigue una ley de potencias con
un exponente 1/zζ que resulta compatible con 1/z, cf. [jan09a]). Este cambio de
régimen tiene lugar al atravesar el valor C2 = q2

EA pero, al igual que ocurría con
la extrapolación de C∞(t), los datos de simulaciones fuera del equilibrio no son
lo suficientemente precisos como para lograr una determinación precisa de qEA.
En lo que sigue veremos cómo al introducir resultados en equilibrio el análisis se
puede hacer mucho más preciso.

Para ello debemos plantear una de nuestras propuestas principales: las fun-
ciones de correlación calculadas en equilibrio para sistemas de tamaño finito
deben reproducir sus análogos dinámicos en el límite termodinámico a tiempo
finito. Un sistema infinito con una longitud de coherencia finita ξ(tw) puede,
grosso modo, considerarse como una colección de sistemas de tamaño L ∼ ξ(tw)
en equilibrio. Esta relación debería establecer un diccionario tiempo-tamaño, que
será nuestro siguiente objetivo.

Empezamos definiendo la función de autocorrelación espacial en equilibrio,
C4(r) = N−1

∑
x 〈qxqx+r〉. Queremos relacionar C4(r) con C2+2(r, C, tw). Como

hemos dicho, el tiempo de espera tw se puede relacionar con L. Para tener en
cuenta la dependencia en C debemos considerar funciones de correlación en equi-
librio condicionadas a un valor fijo de q, que denotaremos por C4(r|q). En prin-
cipio, estas correlaciones condicionadas podrían definirse como

C̃4(r|c) = 〈qxqx+rδ(q − c)〉〈δ(q − c)〉 . (f.21)

En realidad se obtienen resultados más limpios si consideramos las convoluciones
de numerador y denominador con gaussianas de ancho 1/

√
N (de un modo pare-

cido a como en el formalismo tethered se construye una magnetización suave m̂
a partir de m).

Utilizando estas definiciones, en [jan08c] comparamos nuestras funciones de
correlación C′2+2(r = 1, C, tw) con C4(r = 1|q) a T = 0.7.1 En [jan10a] extendimos
esta comparación a r > 1. El resultado fue que, efectivamente, las funciones de
correlación en equilibrio reproducen sus análogos dinámicos. Más concretamente,
las funciones de correlación fuera del equilibrio a tiempo tw reproducen las de
equilibrio según el diccionario tiempo-tamaño siguiente

L(tw) ≈ 3.7ξ(tw). (f.22)

Por ejemplo, encontramos que los resultados de equilibrio para L = 32 se cor-
responden con las funciones de correlación fuera del equilibrio para tw ≈ 231

1Nótese que hemos definido C4(r |q) como una función no conexa, mientras que C2+2 era
conexa. Con C′2+2 denotamos una versión no conexa de (f.20).
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(Figura f.6—izquierda).
Este análisis pone en duda la relevancia del límite termodinámico para el es-

tudio de los SG experimentales. En efecto, para un tiempo experimental típico de
una hora (que se corresponde con tw ∼ 1014) podemos extrapolar la longitud de
coherencia utilizando nuestro ajuste a una ley de potencias en 1/z. La conclusión
es que la física fuera del equilibrio observada en un experimento de una hora de
duración se corresponde con la de un vidrio de espín en equilibrio de tamaño
solamente L ∼ 100 y no con la de la fase de equilibrio en el límite termodinámico.

El diccionario tiempo-tamaño, expresado en (f.22), es uno de los resultados
más importantes de la presente tesis y demuestra que la equivalencia estática-
dinámica puede establecerse cuantitativamente. Podemos ahora dar un paso más
y utilizar las funciones de correlación en equilibrio para entender el cambio de
régimen de las heterogeneidades dinámicas al atravesar el punto C = qEA. Nues-
tro estudio se basa en el análisis de funciones de correlación conexas. En espacio
real, esto implica efectuar una substracción en C4(r |q) que complica el análi-
sis [con09]. Por ello, hemos optado por considerar las correlaciones en espacio
de Fourier, denotadas por Ĉ4(k|q).

Para estas funciones, esperamos el siguiente scaling [dom98, con09]

Ĉ4(k|q)∝ kθ(q)−D + . . . , |q| < qEA, (f.23a)

Ĉ4(k|q)∝ 1
k2 + ξ−2

q
|q| > qEA. (f.23b)

Esta última ecuación define una longitud de correlación ξq que diverge cuando
|q| → qEA desde arriba. Los dos scalings de (f.23) reproducen el comportamiento
de crossover observado en las heterogeneidades dinámicas al cruzar C = qEA. De
hecho, en el límite de gran L, el crossover se convierte en una transición de fase
en la que ξ(∞)q ∝ (q − qEA)−ν̂ . Es importante mencionar que las diversas teorías
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para la fase de SG difieren en las predicciones concretas para θ(|q| < qEA), como
veremos en la sección f.4.2, pero coinciden en la existencia de esta transición.

En [jan10b] estudiamos esta transición mediante FSS. Para ello, consideramos
la función de correlación al momento no nulo más pequeño, Fq = Ĉ(kmin|q), para
la que se espera un comportamiento (salvo correcciones de scaling)

Fq ' LD−θ(qEA)G
(
L1/ν̂(q − qEA)

)
. (f.24)

En este caso, a diferencia de nuestro estudio del DAFF, no es sencillo definir can-
tidades adimensionales para estudiar los cortes. En su lugar, analizamos los co-
cientes Fq/Ly , donde y < D − θ(0) es un exponente arbitrario. Las gráficas de
estas cantidades para tamaños (L,2L) se cortan en un punto

qL,y = qEA +AyL1/ν̂ + . . . (f.25)

En principio, podrían estimarse qEA y 1/ν̂ con ajustes a esta expresión. Desafor-
tunadamente, dados los tamaños simulados, para y fijo sólo tenemos tres cortes,
con lo que no habría suficientes grados de libertad. El problema se resuelve con-
siderando los cortes qL,y para varios valores de y a la vez y forzándolos a extra-
polar al mismo valor de qEA con el mismo 1/ν̂ mediante un ajuste conjunto. Para
que este análisis sea estadísticamente sensato, basta con considerar la matriz de
covarianza completa de los datos. Los resultados a T = 0.7 son

qEA = 0.52(3), 1/ν̂ = 0.39(5). (f.26)

Este análisis constituye la primera ocasión de la que tenemos noticia en la que el
importante parámetro qEA se calcula de forma controlada.

Podemos finalmente considerar la relevancia de estos parámetros para inter-
pretar nuestros resultados fuera del equilibrio de la Figura f.5. Para ello hemos
representado en la Figura f.6—derecha el cociente adimensional ζ(C, tw)/ξ(tw) en
función de la variable de scaling (C2 − q2

EA)ξ1/ν̂ . Vemos que las curvas muestran
un colapso para tiempos grandes, a pesar de que los parámetros ν̂ y qEA se han
tomado sin modificación de (f.26). Esto sugiere que la forma correcta de tratar
la equivalencia estática-dinámica es mediante un formalismo de «finite-time scal-
ing». Este resultado tiene implicaciones para el trabajo experimental, puesto que
estudios recientes sugieren que ζ(t, tw) puede ser pronto medible experimental-
mente [ouk10].

f.4.2 La fase de baja temperatura

En esta sección intentaremos determinar cuál de las teorías para la fase de SG
(RSB, droplet, TNT) ofrece una mejor descripción. Este análisis se realizará a la
luz de nuestros resultados anteriores para la equivalencia estática-dinámica. En
particular, haremos hincapié en que la teoría con más relevancia experimental
será aquélla que resulte más efectiva a la escala L ∼ 100 y no la que reproduzca
el comportamiento en el límite termodinámico. Aun así, este límite tiene también
un gran interés teórico, por lo que trataremos de realizar también extrapolaciones
a tamaño infinito.
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f.4.2.1 La distribución de q

El primer observable que permite distinguir entre una y otra teoría es el spin over-
lap q. Recordemos que RSB y TNT esperan que q tenga una distribución no trivial,
mientras que el modelo droplet espera que sólo haya dos estados, con q = ±qEA.
La manera más sencilla de poner a prueba estas predicciones consiste en estu-
diar la función densidad de probabilidad p(q) para todos los retículos simulados
(Figura f.7—izquierda). Como podemos ver, aparecen dos picos simétricos res-
pecto a q = 0 (cuya posición tiende a ±qEA). Además, la densidad de probabilidad
en q = 0 parece no mostrar evolución alguna con L. Esto apoya la hipótesis,
consistente con TNT y RSB, de una distribución no trivial para este observable.

En [jan10a] realizamos un análisis más cuantitativo de esta distribución. En
primer lugar, representamos p(q = 0) en función de T para todos nuestros retícu-
los. Las curvas resultantes presentaban una clara envolvente no nula, consistente
con un comportamiento p(0) ∝ T , como espera la teoría RSB. Por otro lado, ex-

trapolamos el valor del cociente de Binder B = 〈q4〉/〈q2〉2 como función de L para
varias temperaturas. La teoría droplet espera un comportamiento B = 1+ L−y , en
donde y es el exponente de rigidez de las gotas. En RSB, por el contrario, se es-
pera que B tienda a un valor superior a 1 en el límite termodinámico. Encontramos
que la extrapolación RSB describía bien los datos (utilizando un decaimiento en
ley de potencias con el exponente 1/ν̂). La extrapolación a B = 1 compatible con
el modelo droplet también resultaba posible, pero exigía un valor de y ≈ 0.12,
mucho menor que los cálculos habituales de y ≈ 0.2 [bra87].

De mayor importancia es la extrapolación a L ∼ 100. Para ella, tanto el ansatz
RSB de evolución con 1/ν̂ como el scaling del modelo droplet con y producían
valores de B claramente superiores a 1. En otras palabras, mientras que en el
límite termodinámico no se puede cerrar la cuestión, el comportamiento en la
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escala experimentalmente relevante de L ∼ 100 es claramente no trivial.
Por supuesto nada de esto resultaría válido si nos encontrásemos en un régi-

men preasintótico, dominado por fluctuaciones críticas. En [jan10a] realizamos
un detallado estudio de estos posibles efectos. Encontramos una longitud carac-
terística Lc � L que escalaba como una longitud de correlación: Lc ∝ (Tc − T)−ν .
Éste y otros análisis nos hacen confiar en que nuestros datos son representativos
del comportamiento asintótico del sistema.

f.4.2.2 La distribución de Qlink

En la sección anterior mostramos que nuestras simulaciones favorecen la hipóte-
sis de distribución no trivial para q, al menos para escalas experimentalmente
relevantes. Esto constituye un fuerte indicio en contra de la teoría droplet, pero
deja en el aire el dilema TNT vs. RSB. Para dilucidarlo, consideraremos el sola-
pamiento de enlaces o link overlap Qlink,

Qlink = 1
DN

∑
〈x,y〉

s(1)x s(1)y s(2)x s(2)y . (f.27)

Según el modelo TNT (y droplet), este parámetro debe seguir una distribución
trivial, mientras que RSB espera un comportamiento no trivial. Es más, en RSB
se espera encontrar la propiedad de overlap equivalence, según la cual fijar q2

también debería fijar Qlink.
En [jan08c, jan09a, jan10a] estudiamos concienzudamente Qlink, tanto en

equilibrio como en la dinámica, y concluimos que a la escala experimentalmente
relevante este parámetro tiene sin duda un comportamiento no trivial. La extra-
polación al límite termodinámico (o, lo que es lo mismo, a tiempo infinito) es más
difícil. En este caso encontramos que las predicciones de RSB describían muy bien
nuestros datos, mientras que la extrapolación consistente con TNT estaba mucho
más forzada, pero no se podía descartar.

Nos conformaremos en este resumen con dar un ejemplo de estos estudios,
tomado de nuestras simulaciones fuera del equilibrio. Empezamos introduciendo
la siguiente función de correlación temporal:

Clink(t, tw) = 1
DN

∑
〈x,y〉

cx(t, tw)cy(t.tw). (f.28)

Esta función tiene la misma relación con Qlink que C(t, tw) con q. Por ejemplo,
limt→∞ Clink(t, tw) = 0 (para tw finito) pero limt→∞ limtw→∞ Clink(t, tw) = 〈Qlink〉. De
nuevo eliminamos la variable t y consideramos Clink(C2, tw). Para tw fijo, RSB
espera que esta función sea estrictamente creciente en C2, mientras que TNT es-
pera que sea independiente de C2 para C2 < q2

EA. La correlación Clink(C2, tw) está
representada en la Figura f.7—derecha, junto con una extrapolación a un tiempo
experimental típico. Claramente, el resultado reproduce la predicción de RSB. Es
posible obtener un análisis más cuantitativo calculando la derivada y estudiando
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su scaling con la longitud de coherencia (véase [jan08c, jan09a]). En [jan10a]
realizamos un estudio similar con datos de equilibrio.

Hemos visto que Qlink es una función estrictamente creciente de q2. Sin em-
bargo, para completar la predicción de RSB de overlap equivalence es necesaria
una segunda condición. Esto es, la varianza de Qlink condicionada a q fijo debe
tender a cero en el límite de gran L. En [jan10a] comprobamos que, en efecto, esta
cantidad decrece muy rápidamente al aumentar el tamaño del sistema (aproxima-
damente como L−1.5).

f.4.2.3 La estructura de las correlaciones y θ(q)

En las anteriores secciones examinamos dos de las características más directas
de la fase de SG: la cuestión de la posible trivialidad de q y Qlink. Interpretamos
nuestro estudio como una forma de distinguir entre las tres teorías rivales para
la fase de SG: droplet, TNT y RSB. De las tres, RSB era la que mejor se ajustaba
a nuestras simulaciones de tamaño (o tiempo) finito y también la que producía
extrapolaciones más consistentes al límite termodinámico.

De todos modos, afirmar que RSB es la teoría más adecuada para describir la
física del modelo de Edwards-Anderson no es el final de la discusión. Recordemos
que esta teoría se introdujo como la solución de la versión de campo medio del
modelo de Edwards-Anderson. EnD = 3 se espera que sus rasgos generales (como
la no trivialidad de q y Qlink) sigan siendo válidos, pero muchos detalles deben ser
modificados.

Entre ellos se encuentra la descripción de la estructura de las funciones de
correlación en la fase de SG, caracterizada por el comportamiento del exponente
θ(q) que introdujimos en la ecuación (f.23). En la teoría RSB, las funciones de
correlación conexas deben decaer como C4(r |q2 ≤ q2

EA) − q2 ∼ r−θ(q), donde el
exponente de estructura θ(q) es positivo para 0 ≤ |q| ≤ qEA (la llamada propiedad
de clustering). En la descripción droplet, sin embargo, θ(|q| < qEA) = 0, mientras
que θ(qEA) = y , el exponente de rigidez de las gotas [bra87]. En cualquier caso,
es posible demostrar la siguiente relación de hyperscaling

θ(qEA) = 2/ν̂. (f.29)

En [jan08c, jan09a] estudiamos el exponente θ(q) fuera del equilibrio. En
ese caso, sólo es accesible el sector q = 0, y se espera el siguiente compor-
tamiento: C4(r , tw) ∼ r−θ(0)f

(
r/ξ(tw)

)
, para 1 � r � L. Obtuvimos un valor

θ(0) = 0.38(2), claramente incompatible con la predicción droplet de θ(0) = 0.
En [jan10a] y [jan10b] retomamos el estudio de este exponente con métodos

de equilibrio (en espacio real y de Fourier, respectivamente). En este caso, todos
los valores de q son accesibles. Para el sector q = 0 obtuvimos θ(0) = 0.377(14),
compatible con nuestra determinación fuera del equilibrio. El cálculo de θ(qEA)
es más difícil (en gran parte por la incertidumbre en qEA). Nuestro resultado fue
de θ(qEA) = 0.61(6), que resulta compatible con (f.26) y (f.29).
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Además, observamos que θ(q) es constante (dentro de nuestra precisión nu-
mérica), para todo el intervalo |q| < qEA. En este supuesto es posible justificar una
ley de escala adicional: θ(0) + 1/ν̂ = θ(qEA). Este resultado, unido a (f.29), nos
lleva finalmente a la relación θ(0) = 1/ν̂ . En resumen, el escenario más simple
compatible con nuestros datos es

θ(|q| < qEA) = θ(0) = 1/ν̂ = θ(qEA)/2 = 0.38(2). (f.30)

f.5

Conclusiones

En esta tesis hemos explorado dos temas principales en el contexto de la mecánica
estadística de sistemas desordenados:

1. Resulta provechoso (y factible) considerar una colectividad estadística adap-
tada al problema en cuestión, tanto desde el punto de vista de la termaliza-
ción como para obtener la máxima cantidad de información física.

2. Al estudiar con sistemas desordenados, no es posible evitar trabajar fuera
del equilibrio. En este sentido, se puede (y debe) establecer una relación
cuantitativa entre la evolución dinámica y la fase de equilibrio.

En ambos casos nos basamos en simulaciones de MC (un total de varios millones
de horas de CPU). Además, analizamos los datos procedentes de aproximada-
mente un año de producción continuada de Janus, un superordenador dedicado
equivalente a muchos miles de ordenadores convencionales.

En lo que respecta al primer punto, presentamos el método Tethered Monte
Carlo, un formalismo general para reconstruir el potencial de Helmholtz asociado
a una coordenada de reacción arbitraria. Si ésta se elige adecuadamente (es decir,
si es capaz de distinguir los diferentes estados metaestables), es posible utilizar
el método para obtener una visión global de la física del sistema. Demostramos
que este enfoque es viable mediante el estudio de un problema clásico (y espe-
cialmente duro) en el campo de los sistemas desordenados: la transición de fase
del antiferromagneto diluido en un campo externo. Encontramos que un estudio
tethered da acceso a mucha información que permanecería oculta a un método
tradicional y nos fue posible obtener una visión detallada del comportamiento
crítico de este modelo.

Exploramos el segundo punto, la equivalencia estática-dinámica, en el campo
de los vidrios de espín, analizando simulaciones masivas tanto de la dinámica
como del equilibrio. En ambos casos la calidad estadística de nuestros datos
supone un salto de varios órdenes de magnitud respecto a la situación ante-
rior. Esto nos permitió establecer una relación cuantitativa entre el equilibrio
y la dinámica, mediante un diccionario tamaño-tiempo y un formalismo de finite-
time scaling. Asimismo, nos fue posible determinar que la teoría de RSB es la
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más adecuada para describir la naturaleza de la fase de SG, al menos a las escalas
experimentalmente relevantes.

El trabajo aquí presentado ofrece muchas oportunidades para posibles conti-
nuaciones. En primer lugar, será interesante aplicar el método tethered a nuevos
sistemas, como el estudio de la transición de condensación [bis02, bin03, mac04,
nuß06, nuß08], que puede modelarse con sistemas tipo Ising. Cabe mencionar
que este método se ha aplicado ya con gran éxito a la cristalización de esferas
duras [fer11a].

En cuanto al DAFF, si bien nuestro trabajo despeja bastantes incógnitas y pro-
porciona estimaciones precisas de varios parámetros, como el exponente de viola-
ción de hyperscaling θ = 1.469(20), aún queda mucho trabajo por hacer. En con-
creto, es necesario obtener mejores valores de los exponentes ν y α, así como lo-
grar una mejor conexión con los experimentos. En este sentido debemos extender
nuestros resultados a retículos mayores. Para ello será necesario perfeccionar el
método TMC, probablemente introduciendo coordenadas de reacción adicionales,
para poder clasificar más finamente los diferentes estados metaestables.

Finalmente, en el campo de los vidrios de espín hay varias posibilidades obvias
para trabajos futuros. En cuanto al equilibrio, aunque nuestro estudio favorece la
teoría RSB, quedan todavía muchos detalles por estudiar, como el caos en tempe-
ratura. En la dinámica será muy interesante tratar de reproducir, con la máxima
fidelidad posible, un experimento real. Para ello habrá que considerar protocolos
más complicados que la evolución isoterma, pues muchos efectos interesantes
(memoria, rejuvenecimiento) sólo se pueden observar al variar la temperatura.
Esto requerirá simulaciones aún más largas de lo que estamos habituados. En
este sentido, ya está en marcha el proyecto Janus II, que debería permitirnos dar
un nuevo salto en los regímenes numéricamente accesibles.
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