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Abstract

We review the basic properties of gravitational scattering at high energies. We discuss to what ex-
tent they are compatible with the basic principles of S-matrix theory. Spoiler: they look consistent,
but black hole physics is not really used.
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1 Introduction

“There is no S-matrix for the process of black-hole formation and evaporation.”
S. Hawking [1]

“We have found no evidence for a lack of harmony between gravity and the basic S-matrix
properties.”

S. Giddings and R. Porto, “The gravitational S-matrix.” [2]

In these notes we consider gravitational theories in asymptotically flat spacetime. In real exper-
iments at particle colliders gravity is not relevant.1 The reason is that gravitational coupling is too
weak. Compared to other couplings however gravitational coupling grows with energy very fast.
Therefore in a thought experiment of scattering at ultra-Planckian energies gravity will inevitably
become important. We therefore will consider a thought experiment where scattering takes place
at very high energies and gravity is important.

Famously there is a tension between gravity and quantum mechanics. In the context of high-
energy collisions by ‘quantum mechanics’ we understand the existence of a unitary S-matrix acting
on multi-particle states of gravitons. We assume D > 4 here, in D = 4 asymptotic states are
not multi-particle states and a more general framework should be used. By ‘gravitational EFT’
we mean general relativity plus possibly higher derivative corrections. It is probably the most
successful classical theory in physics and we will use it again below.

As we review below gravitational EFT allows us to make nontrivial predictions about scattering
amplitudes [4, 5], which are not obviously consistent with the basic principles of S-matrix theory:
analyticity, unitarity and crossing. These principles are well-established in the context of QFT,
but we assume that they hold for gravity as well. There is therefore a nontrivial cross-check to be
made: can we accomodate the expected properties of the gravitational S-matrix into the framework
of S-matrix theory?

As of 2024, we believe the answer to this question is ‘yes’. No problems have been identified to
the best of our knowledge. In fact, at the level of 2 → 2 scattering amplitude gravity obeys the
usual logic of low-energy EFTs [6] (heavy states decouple, producing higher derivative operators
controlled by the mass of states that were integrated out whether these are electrons, strings or
black holes).

On the other hand, it is not a very satisfactory ’yes’ because in classical GR black holes play
a central role and generate tension with quantum mechanics [1]. At present, black holes have not
been incorporated in the S-matrix bootstrap approach to gravitational scattering in any substantial
way. One concrete proposal of doing that was given in [7], but implementing it seems beyond the
current technology.

Why do we believe that basic principles hold in quantum gravity? The main evidence comes
from string theory. In the AdS/CFT correspondence a harmony between gravity and quantum
mechanics is clearly achieved. Similarly, our knowledge of perturbative string theory amplitudes
is fully consistent with the basic principles. Nonperturbatively, the situation is less clear. Known
ways to define the gravitational S-matrix holographically involve taking a subtle large N limit [8]:

1See [3] for the discussion of high-energy collisions in scenarios with large extra dimensions where gravity is relevant.

Recall that in the presence of large extra dimensions we have for the Planck lengths ℓd−2
d = ℓd−2

D

(
ℓD

ℓKK

)D−d

, where

D − d dimensions are compactified. Given ℓKK ≫ ℓD, we have ℓd ≪ ℓD.
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either the flat space limit of the AdS/CFT correspondence, or the decompactification limit in the
BFSS matrix model or matrix string theory

Ŝ = lim
N→∞

SN , (1.1)

where the limit is taken at the level of matrix elements. Either way, unitarity ŜŜ† = 1 is not
manifest in the limit, therefore the information paradox cannot be really addressed. Interesting
new results however can be derived [9]. Finally, black holes violate global symmetries and fuel the
swampland program [10], but quantitative derivation of such effects from first principles is missing,
see [11] for the recent discussion.

2 Gravitational features

We will be interested in 2 → 2 scattering of mass m scalars in D > 4. The scattering amplitude is
a function of two variables. One will always be the overall energy of the process s > 0. The other
one is conveniently chosen to be:

• transferred momentum t < 0;

• scattering angle θ defined through t = − s−4m2

2 (1− cos θ);

• impact parameter b, which is the Fourier dual of
√
−t and controls separation of wavepackets

in the transverse space.2 Equivalently, this corresponds to large J partial waves: to leading

order in sb2 ≫ 1, we have J =
√
sb
2 .

It is important to keep in mind that physics looks quite different if we study T (s, t), T (s, θ), or
T (s, b). We will be mostly interested in high-energy scattering so m will not play much role in the
discussion and we can as well set it to zero.

Famously, there are situations where the limit m → 0 is subtle [12] but we will not consider
those. Secondly, for the collisions of black holes in nature mass is very important [13].

2.1 Schwarzschild radius and impact parameters

We will be performing various thought experiments and it is useful to keep in mind what are
the relevant physical parameters. By default, we set c = ℏ = 1. The Planck scale is defined as
GN = 1

MD−2
P

= ℓD−2
P .

Probably the most important one is the Schwarzschild radius corresponding to the center-of-
mass collision energy

RD−3
S =

16πGN
√
s

(D − 2)ΩD−2
, (2.1)

where Ωn = 2π(n+1)/2

Γ(n+1
2

)
. The basic physical picture about gravity states that if energy is confined

within the Schwarzschild radius a black hole is formed (gravity is strong) [14,15].3 Let us also quote

2This only makes sense if b ≫ ℏ√
s
(Compton wavelength).

3An O(1) amount of energy escapes to infinity in the form of gravity waves in the black hole formation process.
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the black hole entropy

SBH =
Area

4GN
=

ΩD−2R
D−2
S

4GN
=

4π

D − 2

√
sRS ∼ (

√
s)1+

1
D−3 . (2.2)

This suggests that a natural space to think about gravity is the impact parameter space T (s, b)
(in this process energy

√
s is confined within the region of size b), and it is the space where most

easily the predictions based on gravitational EFT are made. This is not where crossing symmetry of
the amplitude acts naturally, and therefore we can already sense a possibility of interesting interplay
between gravitational EFT and basic principles!

To meaningfully talk about impact parameter we want it to be bigger than the Compton wave-
length b > ℏ√

s
, or sb2 ≫ 1. The same applies if we have some non-locality in the theory, e.g. a

string scale ℓs.

2.2 Massless pole

Probably the most familiar feature of gravity is a pull at large distances. This is encoded in the
massless pole as t→ 0 so that (we dropped terms O(m2/s))

Ttree(s, t) ≃ −8πGNs
2

t
+ ... , (2.3)

This is a non-perturbative statement as t→ 0 at fixed s.4

A reader might be puzzled by what has just happened: is not gravity strongly coupled when
s ≫ M2

P and we cannot make any predictions? Quantum corrections come in integer powers of
GN ∼ 1

MD−2
P

and by simple reasoning that spin two particles run in the loop we can only get one

extra power of s per loop. Therefore to construct a dimensionless parameter we need something
else and this is the role taken by t. We can therefore construct a dimensionless parameter

Λ = GNs(−t)
D−4
2 . (2.4)

The statement of (2.3) is then that the regime Λ → 0 is controlled by the IR physics in gravity
even when s≫M2

P .

To make it less mysterious, it is useful to Fourier transform the result above and define (this is
what is called the Breit frame)

Ttree(s, b) ≡
1

2s

∫
dD−2q⃗eiq⃗⃗bTtree(s,−q⃗2) =

Γ(D−4
2 )

π(D−4)/2

GNs

bD−4
, (2.5)

which is nothing but (2.4) with t → 1
b2
. Therefore the statement simply becomes the one of

clustering at large enough impact parameters as b → ∞: we effectively get weakly coupled scat-
tering at arbitrary high energies. This is the physical meaning of the statement that (2.3) is true
nonperturbatively.5 We can also rewrite the result as follows

Ttree(s, b) ∼ (
√
sb)
(RS
b

)D−3
. (2.6)

We thus see that we can have at the same time Ttree(s, b) ≫ 1, while RS
b ≪ 1. This will be relevant

for the eikonal scattering that we discuss next.

4In D > 4.
5In D = 4 things do not cluster because Ttree(s, b) ∼ log b → ∞ and similarly (2.3) fails and one gets instead

(
µ2
IR
−t

)1−iGNs [4].
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Figure 1: From weak to strong coupling in the impact parameter plane

2.3 Eikonal scattering

The eikonal approximation is a relativistic version of the WKB approximation. The scattering phase
shift in this regime is large and dynamics is semi-classical. The leading order effect is exponentiation
of the tree-level result.

We consider the following ansatz for the amplitude

Teik(s, t) = 2is

∫
dd−2⃗be−iq⃗⃗b

(
1− e2iδtree(s,|⃗b|)

)
, (2.7)

where we take

2δtree(s, |⃗b|) = Ttree(s, b), (2.8)

from the previous section. The key point is that the number of gravitons exchanged is ∼ δtree, a
typical momentum of each graviton is 1

b which is very small. Finally, the UV divergencies are short
distance effects and we do not expect them to play any role at large impact parameters. We expect
this to be true in any theory of gravity and this is true in string theory.

There are various ways to motivate this result [12]. Perhaps, the simplest one is to notice that it
describes a very universal dynamical process. We consider a Lorentz frame where we can take one
particle to be so energetic that it backreacts on the geometry. A gravitational field of a relativistic
particle is given by the Aichelburg-Sexl shockwave

ds2AS = −dx+dx− − 4
Γ(D−4

2 )GNP−

π(D−4)/2bD−4
δ(x−)(dx−)2 +

D−2∑
i=1

(dxi)2, b =

√√√√D−2∑
i=1

(xi)2 , (2.9)

which corresponds to the stress tensor T−− = −P−δ(x
−)δD−2(x⃗).

We then consider a probe particle that propagates through the shockwave [16]. We can solve
the classical dynamics in this background. The leading order effect is the Shapiro time delay
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∆x+ = 4
Γ(D−4

2
)GNP−

π(D−4)/2bD−4 which acts on the wavefunction as a phase ψ → e−i∆x
+p+ . As a result one

gets (2.8) using s = 4P−p+.

We therefore see that the Born result of the previous section can be extended using simple semi-
classical computation. It is instructive to compute the integral above in the Regge limit s → ∞
and t - fixed. This was done in [17] and after some trivial manipulations one gets at large s the
following integral

Teik(s, t) ≃ 2e−i(D−1)π/4s(−t)
2−D
2 λ(D−1)/2

∫ ∞

0
duu(D−3)/2

(
eiλ(u+

uD−4

D−4
) − 1

)
, (2.10)

where the dimensionless parameter λ is given by

λD−3 =
2Γ(D−2

2 )

π(D−4)/2
Λ, Λ = GNs(−t)

D−4
2 . (2.11)

The Regge limit thus corresponds to taking the dimensionless constant Λ → ∞. The integral can
be evaluated using the saddle point approximation, which gives u0 = 1. Let us notice for future
reference that in terms of the impact parameters the location of the saddle, we will call it the ACV
saddle, corresponds to

bD−3
0 ∼ GNs√

−t
. (2.12)

The leading result for the Regge limit s→ ∞, t < 0 and fixed is thus

Teik(s, t) ≃
2

D
2 e−

1
4
iπ(D−2)s(−t)

2−D
2

(
2π

D−2
2 GNs(−t)

D−4
2 Γ

(
D
2 − 2

)) D−2
2(D−3)

√
D − 3

eiλ
D−3
D−4

(
1 +O(1/

√
λ)
)
.

(2.13)

Notice that

|Teik(s, t)| ∼ s
2− D−4

2(D−3) , (2.14)

which in particular means that it grows strictly slower than s2, something that we will discuss again
later.

As we take D → 4 the phase of the amplitude develops a pole 1
D−4 which we can substitute to

an IR regulator − logµIR. We then get

Teik(s, t) ≃ i
8πGNs

2

t

( −t
µ2IR

)iGNs
e−2iGNs(log(GNs)−1). (2.15)

Let us emphasize again the difference between the formulas in this section and the universal
1/t pole (2.3). We get the universal pole as we take t → 0 with s fixed, so that the dimensionless
coupling Λ → 0. Here we instead keep t fixed and send s → ∞ so that Λ → ∞. Curiously both
regimes are controlled by the leading term in the gravitational EFT (or general relativity) as we
argue next.

Similar formulas arise very naturally in CFTs when doing the OPE and focusing on the contri-
bution of double trace operators [18].

Problem: Use CFT eikonal representation to derive a CFT analog of (2.13) and see what is the
Regge intercept that it produces.
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It is interesting to discuss the expected regime of validity of the eikonal computation. The
average number of exchanged gravitons is ⟨N⟩ ∼ δtree ≫ 1 required for the validity of the semi-
classical approximation. It is also interesting to compute the curvature invariant in the region
where particles collide. We would like to impose

RµνρσR
µνρσ ≪ 1

ℓ4Pl
. (2.16)

A simple estimate ℓ4Pl

(
GNs
bD−2

)2
1

∆u∆v , where ∆u∆v is the shock width which we take using quantum

uncertainty to be minimal ∼ s, gives, see [15,19],

δ
D/2
tree

sb2
≪ 1 , (2.17)

which in particular implies that

b≫ RS . (2.18)

2.4 Further corrections: tidal excitations, KK modes, gravity waves and all that

An obvious question is: what does the eikonal computation tell us about the behavior of the actual
amplitude T (s, t), or in other words what is the regime of validity of the eikonal computation. This
question has been famously analyzed in [5].

First type of correction is the so-called tidal excitations. Imagine that a particle has inner degrees
of freedom (it could be hydrogen energy levels, string excitation modes, etc) of characteristic size
δl ∼ 1

m∗
. We then expect that as a probe passes through the shockwave, it experiences a tidal

force and it will get excited when m∗ ∼ δlF , where F is the tidal force. For the shockwave
above F ∼ Riemann ∼ ∂2b δtree therefore we expect tidal inelastic effects to be controlled by the
dimensionless parameter (i stands for inelastic effects because it reduces the amplitude when plugged
in (2.8))

δtidal(s, b) = i
GNs

m2
∗b
D−2

. (2.19)

This is indeed confirmed by an explicit computation in string theory [5], but we expect this result
to be very general and does not depend on the nature of compositeness of the scattered particles.
Notice that plugging (2.19) into the curvature estimate we get

RµνρσR
µνρσ ∼ m4

∗ . (2.20)

For example, if we scatter protons there will be hadronic diffractive excitations when RµνρσR
µνρσ ∼

(ΛQCD)
4.

Second universal effect is production of gravity waves. As particle pass each other and get
deflected they emit gravity waves. The leading effect has been again computed by ACV in [5] with
the following result

δGW (s, b) = i
G3
Ns

2

b3D−10
. (2.21)
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If we take b ∼ (G3
Ns

2)1/(3D−10), we get that the curvature invariant in the previous section becomes
large as s→ ∞ in D > 6.6

Therefore this regime is not under good theoretical control at asymptotically high energies [19].
However, following [15] we can introduce a smeared amplitude

T∆s(s, b) =

∫ ∞

0

ds′√
2π∆s

e−(s′−s)2/(∆s)2T (s′, b). (2.22)

The estimate of the curvature in the collision region then changes to ℓ4Pl

(
GNs
bD−2

)2
∆s.

An important comment: The actual computation contains an extra log s. This will not be
relevant in the Regge limit, but it is important if we want to go to fixed angles. The ACV conjecture
states that all such corrections get dressed into the ratios of the type we considered above, e.g.
logRS/b, and therefore do not cause any problem.

Finally, we could have a KK scale bKK , however, compared to other scales discussed so far
it does not grow with energy and thus does not affect the discussion. The basic picture of the
high-energy scattering in gravity therefore takes the following form.

#↓
2(D-3)

logs

STRONG

(inelastic)

logs

Figure 2: From weak to strong coupling in the impact parameter plane: eikonal, tidal, gravity waves.

From this we see that the eikonal saddle point lies in the regime which is still well controlled
by the tree-level phase shift and all inelastic effects go to zero at large s → ∞. It motivates the
following conjecture about the Regge limit of gravitational amplitudes.

Quantum Regge growth conjecture: In the UV completions of Einstein gravity the Regge limit
of the amplitude is given by (2.13)

lim
s→∞

T (s, t)

Teik(s, t)
= 1. (2.23)

Notice that on the ACV saddle RµνρσR
µνρσ|ACV → 0 at large s. In other words, the Regge limit is

an IR limit in gravity.

6This is also related to what is called the D’Eath bound which predicts a breakdown of the PM expansion
(perturbation theory in RS/b) in the certain regimes. This conjecture has been tested in the soft limit.
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Finally, if we consider the collapse region b ∼ RS we get the following bound on smearing [15]
(to keep curvatures small and make semi-classical reasoning applicable)

∆s

R2
SM

4
P

≪ 1 . (2.24)

The conclusion is that smearing is essential to apply the semi-classical approximation in the collapse
region.

logb
atlogs glogs

Mpe =Ms/

·
=

Bu

STRONG

(inelastic)

logs
·

logmg/g2

Figure 3: From weak to strong coupling in the impact parameter plane: eikonal, tidal, gravity waves, stringy
gravity.

2.5 Fixed angles

As we do the Fourier transform we get the ACV saddle

q = −∂2δtree
∂b

, t = −q2, (2.25)

which becomes at high energies and using θ ≃ 2q√
s

θ =

√
πΓ
(
D
2

)
Γ
(
D−1
2

) ( RS
bACV

)D−3

. (2.26)

The key point is that if we take θ ≪ 1 and fixed we get that the dominant scattering comes from
very large impact parameters at high energies. As we increase the energy this bACV (s, θ) grows
with energy as

√
s and eventually we enter into the regime where the amplitude is very inelastic

and is controlled by the gravity waves emission.

We can therefore estimate the behavior of the amplitude in this regime as follows

|T (s, θ)| ∼ e−δGW = e−G
3
Ns

2b3D−10
ACV = e−SBH(s)c0θ

3D−10
D−3

, θ ≪ 1. (2.27)

As we increase the scattering angle inelasticity grows.
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High-energy fixed-angle suppression hypothesis: In gravitational theories the amplitude at high
energies decays exponentially fast

|T (s, cos θ)| ≃ e−SBH(s)f(θ), (2.28)

where f(θ) ∼ θ
3D−10
D−3 → 0 at small angles (modulo log θ). For spherical shells in AdS a version of

this was confirmed in [11].

Notice that at small θ the physics of this formula has nothing to do with black holes. It is
however expected that when we enter the collapse region θ = O(1), and b ∼ RS it does.7

Problem: Derive the small angle asymptotic of f(θ) in gravity exaclty. This requires under-
standing log s in the LO computation and how it becomes something like log θ.

3 Bootstrap Test: graviton pole from dispersion relations

In the previous section we reviewed very general properties of the gravitational scattering amplitude
T (s, t) and ended up concluding that the Regge limit of the amplitude is controlled by simple
physics. It is interesting next to put this conclusion to test.

3.1 Unitarity

We can consider scattering of identical particles A,A → A,A in which case the partial wave
expansion takes the form

T (s, t) =
∞∑

J=0,J−even

n
(d)
J fJ(s)P

(d)
J

(
1 +

2t

s− 4m2

)
, (3.1)

or of non-identical scalars A,B → A,B in which case we get

T (s, t) =
1

2

∞∑
J=0

n
(d)
J fJ(s)P

(d)
J

(
1 +

2t

s− 4m2

)
, (3.2)

where the conventions can be found in [20]. Convergence properties of the partial wave expansion
are the following [21]:

• in D > 7 it converges absolutely;

• in D = 6, 7 it is convergent in the sense that the limit limJmax→∞
∑Jmax

J=0 exists;

• in D = 4, 5 it converges in the sense of distributions, see [22].

In particular, it means that we can consider smeared amplitudes [23]

Tψ(s) ≡
∫ q0

0
dq q[ψ(q)T (s,−q2)]. (3.3)

7To the best of my knowledge this is not everyone’s expectation in the community. For example, D. Gross argues
that scattering amplitudes never decay faster than e−#

√
s log s even in gravity (private communication).
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such that

ψa,b(q)
q→0∼ qa, a > 0,

ψa,b(q)
q→q0∼ (q0 − q)b, b ≥ 0, (3.4)

And apply the partial wave expansion to them.8 The swapping property should be checked, as
in [25], but the result is that it holds.

Let us define the full partial wave scattering amplitude

SJ(s) ≡ 1 + i
(s− 4m2)

d−3
2

√
s

fJ(s). (3.5)

Unitarity states that
|SJ(s)| ≤ 1, s ≥ 4m2. (3.6)

Equivalently, we can rewrite it as follows

2ImfJ(s) ≥
(s− 4m2)

d−3
2

√
s

|fJ(s)|2 . (3.7)

This can be solved in terms of the phase shifts δJ(s)

SJ(s) = e2iδJ (s), fJ(s) =

√
s

(s− 4m2)
d−3
2

i(1− e2iδJ (s)) , (3.8)

with the unitarity constraint being Im[δJ(s)] ≥ 0.

To relate to the semi-classical discussion in the impact parameter space we notice that the
classical relation is

J =

√
sb

2
≫ 1 . (3.9)

Recall that this definition of b (sometimes called bJ) is different from the one used in the previous
section in the Breit frame

bJ = b cos
θ

2
. (3.10)

We then get

δ
J=

√
sb
2

(s) ≃ δ(s, b),
√
sb≫ 1. (3.11)

We therefore see that the amplitude (2.10) describes purely elastic scattering Imδ(s, b) = 0.

One can also project it to partial waves using the following formula [26]

SJ(s) =
√
s

∫ ∞

0
Jd−3+2J(b̃

√
s)e2iδ(s,b̃)db̃ , (3.12)

and check that unitarity is satisfied at large but finite s and J . This computation was erroneously
done in [17] with the opposite conclusion.

8Curiously, smeared amplitudes were considered by Martin in 1966 [24] for precise the same reason they are used
in the modern S-matrix bootstrap.
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3.2 Dispersion relations and the graviton pole

One can carefully carry out the arguments above together with the assumption of subexponentiality
in the upper half-plane in s

|T (s, t)| ≤ eCs
β
, β < 1 (3.13)

to conclude that [21]

lim
|s|→∞

T (s, t)

s2
= 0. (3.14)

S

↑ subexponentiality

N

/y +

ic;x
J

EFT

-=- crossing +unidarity 8 unitarity1-
·

Figure 4: Basic principle of ACU imply the twice-subtracted dispersion relation.

This means that we can write down twice-subtracted dispersion relations which have been
explored meticulously in the recent years. In particular, we can write the following relationship
between the graviton pole (2.3) and the nonperturbative Regge limit that we conjectured so far

8πGN
q2

=
2

π

∞∫
s0

ds′

(s′)3
Ts(s

′, t = −q2), q → 0, (3.15)

where an important factor of 2 in the RHS comes from crossing. The factors of s canceled on both
sides because we are doing two subtractions.

Indeed, it is clear that any finite energy integral cannot reproduce the pole through the dispersion
relations. Therefore dispersion relations (derived using bootstrap constraints) provide a nontrivial
relationship between the two facts that we argued for using gravitational EFT (graviton pole, and
the Regge limit).

Let us therefore test if the relationship above holds. We plug for the imaginary part

Ts(s, t = −q2) = 2s(2π)
D−2
2

∫ ∞

0
dbbD−3(qb)

4−D
2 JD−4

2
(bq)2 sin2 δtree(s, b). (3.16)
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Model Pointwise Smeared

Born |s|2−
d−7

2(d−4) |s|2−min(1, a
d−4

,
b+ d−5

2
d−4

)

Eikonal+tidal
∣∣
d>5 |s|2−

d−4
2(d−3) |s|2−min(1, a

d−4
,
b+ d−1

2
d−2

)

Eikonal+GW
∣∣
d=5 |s|2−

1
5 |s|2−min(1,a, 2b+3

5
)

Table 1: Summary of the asymptotic Regge bounds derived in this paper for the elastic 2 → 2 scattering
amplitudes in a gravitational theory in D > 4. Pointwise bounds refer to lim|s|→∞ |T (s, t)| ≲ s# for t < 0.

Smeared bounds refer to the Regge bound lim|s|→∞ |Tψa,b
(s)| ≲ s# on the scattering amplitude smeared over

the transferred momenta (3.3), where the smearing function ψa,b(q) satisfies (3.4). Different models refer to
the different large impact parameter ansätze that have been used to estimate the amplitude.

The relevant integral takes the form

2

∞∫
s0

ds′

s′2
sin2

(
Γ
(
D−4
2

)
2π

D−4
2

GNs
′

bD−4

)
≃ 2

Γ
(
D−4
2

)
2π

D−4
2

GNb
4−D

∞∫
0

dx̃

x̃2
sin2 (x̃) (3.17)

= π
Γ
(
D−4
2

)
2π

D−4
2

GNb
4−D . (3.18)

where we changed variable to x̃ =
Γ(D−4

2 )

2π
D−4
2

GNs
′

bD−4 and the finite energy s0-dependent correction is

subleading at large b and does not contribute to the 1/t pole. We therefore get

8πGN
q2

= 4(2π)
D−2
2

∫ ∞

0
dbbD−3(qb)

4−D
2 JD−4

2
(bq)

(
Γ
(
D−4
2

)
2π

D−4
2

GNb
4−D

)
. (3.19)

This is indeed a true identity. The integral converges for D > 5 and one can repeat the whole
argument in a careful tauberian manner [27] by smearing in q and making the RHS non-negative
such that D > 4 works.

It would be interesting to explore in the same way universal gravitational loop corrections.
Recently this has been done for stringy amplitudes [28].

3.3 Crossing symmetry

These arguments suggest that there exists a class of amplitudes that on one hand satisfy dispersion
relations and crossing symmetry, and, on the other hand, reproduce the eikonal behavior of the
amplitude.

Problem: Construct such amplitudes. Only the full crossing-symmetry is nontrivial, the s− u
crossing symmetry is manifest in the dispersion relations (and in fact has been used by ACV).
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In the current implementation of the primal bootstrap the eikonal physics is not correctly
reproduced.

3.4 Eikonal in CFTs

In principle we can try repeating the same exercise in a gravitational CFT [18]. It would be
interesting to see if plugging the CFT eikonal result of [18] into the CFT dispersion relations [29]
correctly reproduced the graviton pole.

4 Lower bound on the scattering amplitude at fixed angles in gravity

Recall that SBH(s) ∼ (
√
s)1+

1
D−3 >

√
s which means that it violates the Cerulus-Martin bound [30].

A simple argument, see [31], then shows that if there is maximal analyticity in gravity then there
is no Mandelstam representation (equivalently, the amplitude is not polynomially bounded for
unphysical t).

The old argument of Cerulus and Martin [30] relates polynomial boundedness of the amplitude
for unphysical values of t to certain properties of the amplitudes in the Regge limit and high energy
scattering at fixed angles.9 While the original argument was done for gapped theories, it is a
straightforward exercise to relax this assumption.

Consider the scattering amplitude as a function of fixed angle z ≡ cos θ, namely T (s, z) ≡
T
(
s, t = − s

2(1 − z)
)
. We fix s to be real and positive,10 and we consider T (s, z) in the complex

z-plane. Maximal analyticity implies that T (s, z) is analytic, modulo the two cuts z ∈ (−∞,−1] ∪
[1,∞) which correspond to scattering in the u- and t-channel correspondingly.

We take three real z’s such that 0 < z1 < z2 < z3 < 1 and we map the z-plane to the τ -plane.
We first transform

w(z) =
1

z
(1−

√
1− z2), (4.1)

which maps the cut z-plane inside the unit circle in the w-plane. We then consider the following
map

τ(w) =
1

w(z1)
(w +

√
w2 − w(z1)2). (4.2)

This mapping maps the region −z1 ≤ z ≤ z1 in the z-plane to the unit circle |τ | = 1.

Consider now another pair of circles in the τ -plane of radii r2 = τ(w(z2)) and r3 = τ(w(z3)).
In the original z-plane the circles map in the oval shape region, see Figure 5.

By assumption, maximal analyticity implies that the scattering amplitude is analytic in the
annulus 1 ≤ |τ | ≤ r3. Let us introduce the maximal value of the amplitude on a given circle

Mr ≡ max|τ |=r|T (s, z)|. (4.3)

9Recently, this argument was generalized to rely on the axiomatic QFT analyticity only [32]. The resulting
Epstein-Martin bound however is very (ridiculously) weak.

10We approach the real axis from above as usual.
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Figure 5: Here we depict regions in the z-plane which map to the concentric circles in the τ -plane. Here we
consider z1 = 1

4 so that the region (magenta) − 1
4 ≤ z ≤ 1

4 is mapped to the unit circle in the τ -plane. The
blue region corresponds to z2 = 0.9 and the red region comes from z3 = 0.99 in the argument.

We then apply the Hadamard three-circle theorem, see e.g. chapter 23 in [33], that states that for
1 < r2 < r3 we have the following inequality

Mr2 ≤M
1− log r2

log r3
1 M

log r2
log r3
r3 . (4.4)

This constraint becomes particularly interesting if we choose z2,3 = 1+
2t2,3
s , where t2 < t3 < 0 are

fixed momenta and we take s→ ∞.

Let us introduce, following Cerulus and Martin, the upper bound on the fixed angle scattering
amplitude at high energies

|T (s, z)| ≤ e−ϕ(s), −a ≤ z ≤ a < 1. (4.5)

We can then rewrite (4.4) as follows

|T (s, t2)| ≤ e
−C(a)ϕ(s)

√
−t2−

√
−t3√

s max|τ |=r(s,t3)|T (s, z)|, s→ ∞, (4.6)

where C(a) > 0 and we used that Mr2 ≥ |T (s, t2)|. This equation bounds the Regge limit of the
amplitude, the LHS, in terms of the fixed angle scattering, and the value of the amplitude in certain
sub-domain of the z-plane, the RHS.

The validity of the Mandelstam representation implies that there should exist an integer N ,
such that

max|τ |=r(s,t3)|T (s, z)| ≤ |s|N , |s| → ∞. (4.7)
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Assuming that |T (s, t2)| is polynomially bounded from below (it cannot decay too fast), we then
get the Cerulus-Martin bound on the fixed angle scattering for amplitudes that admit Mandelstam
representation

ϕ(s) ≤ c0
√
s log s, s→ ∞. (4.8)

In other words, maximal analyticity implies the following schematic Cerulus-Martin relation

Regge ≤ Fixed angle×Mandelstam. (4.9)

As we reviewed, the Regge limit for gravitational amplitudes is controlled by the large impact
parameter scattering and its absolute value behaves polynomially in s. The fixed angle scattering,
on the other hand, is believed to be entropically suppressed

ϕQG ∼ (
√
s)1+

1
D−3 , (4.10)

which clearly violates (4.8).

Our conclusion is that the expected properties of the scattering amplitude in gravitational theo-
ries for physical t (polynomial behavior in the Regge limit and exponentially faster than

√
s decay

for fixed angle scattering) are not compatible with polynomial boundedness needed for the Man-
delstam representation.

5 Stringy features

The only available UV completion of gravity in flat space is string theory. It comes with a new
scale Ms =

1
ℓs

which we assume to be Ms ≪MPl (or gs ≪ 1). It is also characterized by the string
coupling gs such that

16πGN = 2−
D−10

2 (2π)D−3 g2s
MD−2
s

. (5.1)

In other words, g2s ∼
(
Ms
MPl

)d−2
, or in other words MPl =

Ms

g
2/(D−2)
s

. Stringy effects were discussed

in [5, 34,35].

An interesting scale to consider is the so-called correspondence point s∗ defined by the condition
RS(s∗) = ℓs,

11 which gives

√
s∗ ≃

Ms

g2s
. (5.2)

For a recent discussion of this regime see e.g. [36].

For scattering at energies s < s∗ we do not expect that black holes play any role, in other words
gravity is stringy. A proposal is that in this region the expansion RS

b becomes RS
ℓs

and therefore we
can explore stringy effects while neglecting radiative corrections.

Another important scale is

√
sstr ≃

Ms

gs
, (5.3)

11There could be other interesting scales, e.g. RS(s∗) = ℓKK .
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at this energies stringy corrections to the tree-level phase shift acquire sizable imaginary part.

There are two main effects to consider: tidal excitation of the string due to the leading Regge
trajectory exchange in the t-channel; string production in the s-channel. The key point about the
first one is that it becomes important for b ≫ ℓs. On the other hand, the second effect only kicks
in for b ≤ ℓs logα

′s.

5.1 Correction to the phase shift

In the formula above we used the phase shift computed in general relativity. It receives stringy
corrections as well. To compute them let us consider four dilaton amplitude in string theory

T (s, t) = 8πGN

(su
t

+
tu

s
+
st

u

)Γ(1− s/2)Γ(1− t/2)Γ(1− u/2)

Γ(1 + s/2)Γ(1 + t/2)Γ(1 + u/2)
. (5.4)

In the Regge limit s→ ∞(1 + i0) we get

T (s, t) = TRegge(s, t)
(
1 +

t(t+ 2)

2s
+
t
(
3t3 + 8t2 + 48t− 8

)
24s2

+ ...
)
, (5.5)

where

TRegge(s, t) = −8πGN
s2+t

t

2−tΓ(1− t/2)

Γ(1 + t/2)
e−

1
2
iπt (5.6)

= −8πGN
s2

t
etY (1 + γEt+ ...) , Y = α′ log(−iα′s/2) . (5.7)

We can encode various correction by noticing that we can do the following substitution t→ ∂Y .

We next transform to the impact parameter space. To do it is useful to rewrite the basic
amplitude as follows

8πGN
s2

(−t)
etY = 8πGNs

2Y

∫ 1

0

dρ

ρ2
e

tY
ρ . (5.8)

After this the transform becomes a simple Gaussian integral and we get

Tstring−tree(s, b) ≡
1

2s

∫
dD−2q⃗eiq⃗⃗b

(
8πGN

s2

q⃗2
e−q⃗

2Y

)
= 4πGN

(4π)1−
d
2 s

Y
d−4
2

∫ 1

0
dρρd/2−3e−

b2ρ
4Y (5.9)

=
(
Γ

(
D − 4

2

)
− Γ

(
D − 4

2
,
b2

4Y

)) 1

π(D−4)/2

GNs

bD−4
. (5.10)

We can now consider the large b≫ Y ∼ logα′s expansion of this formula we get

Tstring−tree(s, b) ≃ Ttree(s, b)− 26−Dπ2−
D
2
GNs

bD−4
e−

b2

4Y

(
b2

Y

)D
2
−3

. (5.11)

The phase shift therefore develops an imaginary part

Im2δstring−tree(s, b) ≃ 2π2e−
b2

4Y
GNs

(4πY )
D−2
2

, (5.12)

18



and we observe the transverse spreading of the string b2s ∼ α′ logα′s at high energies. At small
impact parameters b≪ Y instead we have

2δstring−tree(s, b) ≃
2GNs

(4πY )
D−4
2

( 1

D − 4
− 1

D − 2

b2

4Y
+ ...

)
. (5.13)

This imaginary part is related to production of strings in the s-channel.

5.2 Propagation through the shock wave

First let us consider string propagation through a shock wave. The problem was first solved in [37]
(and many papers followed). Recall that the string mode operators obey

[αin, α
j
m] = nδn+m,0δ

ij , (5.14)

where negative modes n < 0 create string excitations, while positive modes n > 0 annihilate the
vacuum

αn>0|0⟩ = 0. (5.15)

We choose the conformal gauge for the worldsheet metric hαβ = ηαβ, and fix the light-cone gauge

u(σ, τ) = P uτ. (5.16)

The closed string mode expansion takes the form

Xi(σ, τ) = xi + piτ +
i

2

√
α′
∑
n̸=0

[
α̃ine

−2inτ − αi†n e
2inτ

]
e−2inσ, (i = 2, . . . , D − 1), (5.17)

where αi†n = αi−n.

Before and after a shock, the string propagates freely. If the shock geometry has the metric

ds2 = −dudv + δ(u)f(x⃗)du2 + dx⃗2 , (5.18)

the transition through the shock is described by the S-matrix [37],

Sshock = e
i
2
Pu

∫ π
0 f(X⃗(σ,0)) dσ

π . (5.19)

As an example, consider a shock created by a fast-moving particle at position x⃗a,

fa(X⃗(σ, 0)) =
Γ(D−4

2 )

π
D−2
2

2GNp
v

((X⃗(σ, 0)− x⃗a)2)
D−4
2

(5.20)

In writing fa above, there is an ambiguity in the ordering of operators Xi(σ, 0). However, this
ambiguity is proportional to q⃗21 and is localized at zero impact parameter upon doing the Fourier
transform. It is therefore irrelevant for our purposes.

Note that the the operator Sshock is diagonal in the position basis Xi(σ, 0) for the transverse
oscillators. Thus, it instantaneously changes the momenta of the oscillators without affecting their
positions. Overall, the effect of the shock on the string is the same as in the geodesic calculation:
the center of mass of the string moves in the v direction (Shapiro time delay), and the transverse
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modes receive an instantaneous kick that depends on the profile fa(X⃗). Essentially, each part of
the string individually follows a geodesic through the shock.

Let us then compute the leading order stringy correction to the propagation through the shock
at large impact parameters. We can do it by expanding fa in powers of X⃗(σ, 0) with the leading
contribution coming the quadratic term

δ̂ = δ(s, b) +
1

2

∂2δ

∂bi∂bj
(X̂uX̂u + X̂dX̂d) + . . . . (5.21)

The quartic term is eventually suppressed by ℓ2s log s
b2

≪ 1 for b > ℓs
√
log s and by 1/Y in the

opposite regime b≪ ℓs
√
log s. We can write

∂2δ

∂bi∂bj
= ∆⊥(δij −

bibj
b2

) + ∆||
bibj
b2

. (5.22)

which for b≫ ℓs becomes

⟨0|Sshock|0⟩ =
( π∆

sinhπ∆

)D−3 π(D − 3)∆

sinhπ(D − 3)∆
∼ e−2π(D−3)∆, (5.23)

and we have ∆|| = (D − 3)∆⊥ ≡ (D − 3)∆ with

∆ = π2−
D
2 Γ

(
D

2
− 1

)
GNsα

′

bD−2
, (5.24)

where α′ = ℓ2s. This is the promised tidal effect on a string propagating through the shock wave.

In the treatment above we treated the background and the probe asymetrically. A more sym-
metric formula takes the form

SACV = e
∫ π
0

dσudσd
π2 :δ̂tree(s,Xi

u(σu)−Xi
d(σu)):, (5.25)

which is indeed what comes out from doing the stringy eikonal. This is a manifestly unitary S-
matrix that acts on the two-string Hilbert state. Evaluating the S-matrix in the oscillator vacuum
we then get [5]

⟨0|Sshock|0⟩ = e2iδ [Γ(1− i∆⊥)]
2(D−3) Γ2(1− i∆||) (5.26)

For small impact parameters we get instead

S(s, b) ∼ e
− GNs

(ℓs
√
Y )D−2 , (5.27)

at the correspondence point this matches ∼ e−SBH .

5.3 Partial waves

It is interesting to contrast the high-energy behavior of partial waves and the fixed-angle scattering
in this case. Consider next the partial wave integral SJ = 1 + iaJ

aJ(s) =
√
s

∫ ∞

0
dbJD−3+2J(b

√
s)T (s, b). (5.28)
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Figure 6: Stringy features of the phase shift.

This integral has a saddle point which is exponentially suppressed and which is related to the
exponential suppression of the amplitude at fixed angles. Plugging the small b expansion (5.13)
into the integral (5.28) we get

aJ(s) =
(4π)1−

D
2 sY 2−D

2

D
2 − 2

(
1− (D − 4)(D + 2J − 4)(D + 2J − 2)

4(D − 2)sY
+ ...

)
. (5.29)

We see that the small b expansion becomes the large s expansion of the partial waves. This
reproduces the result of Muzinich and Soldate [17]. There are also non-perturbative correction
to this related to the usual saddle. From the naive saddle point analysis another saddle at fixed
distance emerges when considering extrema of eα log beib

√
se−c0b

2
.

Note that in this model

T (s, θ)
s→∞≃ e−#s, (5.30)

whereas

T (s, b)
s→∞≃ s

Y
d−4
2

. (5.31)

The impact parameter integral can be written as∫ ∞

0
dbbd−3(bq)

4−d
2 J d−4

2
(bq)T (s, b) ∼ e−#s. (5.32)

This time we don’t get the contribution from the small b expansion thanks to the following identity∫ ∞

0
dbbd−3(bq)

4−d
2 J d−4

2
(bq)b2n = 0, n ∈ N. (5.33)

Note that ∫ ∞

0
dbbd−3(bq)

4−d
2 J d−4

2
(bq)b2n+1 ̸= 0, n ∈ N. (5.34)

Therefore the fact that we have exponential suppression in the fixed angle regime is tight to the
fact that in the small impact parameter expansion of the stringy amplitude the terms b2n+1 are
absent.
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5.4 The ACV S-matrix: fixed angles

We next combine the two last subsections and put the full tree-level phase shift into the exponent
[34]. First, it is interesting to see how the ACV saddle (2.26) gets corrected. Recall that the saddle
point is located at

q = −∂2δ
∂b

|b=b∗ . (5.35)

The scattering angle is θ ≃ 2q√
s
. There are two real saddles for θ ≤ θM

θM =

(
RS

ℓs
√
logα′s

)D−3

. (5.36)

Consider first 1 ≫ θM ≫ θ. The first saddle is the old one with b ≫ ℓs
√
logα′s, see (2.26). The

new saddle is for b≪ ℓs
√
logα′s and it takes the form

θ =
2GN

√
s

(4πY )
D−4
2

1

D − 2

b

Y
, (5.37)

which becomes

b ∼
√
Y

θ

θM
. (5.38)

The real saddle with b > ℓs
√
logα′s dominates the amplitude. Evaluating the tidal correction

on this saddle we get

|T (s, θ)| ∼ e
−c0 1

G
1/(D−3)
N

m2∗
(
√
s)

1− 1
D−3 θ

D−2
D−3

. (5.39)

This is expected to be valid for not too high energies
√
s

MP
θ(3D−10)/(D−2) ≪ 1 when gravity wave

production becomes important and the amplitude becomes even more damped.

Consider next angles 1 ≫ θ ≫ θM . This regime was analyzed using a complex saddle b∗ ∼
−iℓs

√
logα′s in [] with the result

|TACV (s, θ)| ∼ e
−
√
sℓsθ

√
log θ

θM
logα′s

. (5.40)

The fact that as we change θ the saddle never probes |b| < ℓs
√
logα′s was called generalized

uncertainty principle

∆X ≥ 1

∆P
+ α′∆P. (5.41)

The result above can be compared to the Borel-resummed saddle point analysis of Gross-Mende-
Ooguri which at small angles gives

|TGMO(s, θ)| ∼ e
−
√
sℓsθ

√
log 4

θ2
log g−2

s . (5.42)

As angle grows the amplitude becomes more damped.
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Further effects include production of strings in the s-channel which are encoded by the imaginary
part of the exponentiated phase shift, see [38]. In this case one can introduce a unitary operator

S = eiÎ , (5.43)

where Î acts on the extended Hilbert space which includes gravi-Reggeons (excited closed string
states)

Î = δ̂ + δ̂† +

√
−2i(δ̂ − δ̂†)(C + C†) , (5.44)

where

[C,C†] = 1 , (5.45)

and all other commutators are zero. This can be rewritten as

S = e2iδ̂ei
√

−2i(δ̂−δ̂†)C†
ei
√

−2i(δ̂−δ̂†)C . (5.46)

The exclusive amplitude corresponds to evaluating this in the vacuum for C which of course repro-

duces the expected S = e2iδ̂.
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Figure 7: Scattering angle as a function of the dominant impact parameter. For θ > θM the dominant saddle
becomes complex.

5.5 Graviton pole

Consider the string-like amplitude in the Regge limit

Ts(s,−q2) =
GN
α′ (sα

′)2−α
′q2 . (5.47)

It leads to the −8πGNs
2

t pole if we plug it in the twice-subtracted dispersion relation.
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For a given t, the relevant energy scale in the sum-rule is

log(s∗α
′)α′|t| = 1 , s∗ =

1

α′ exp

(
1

α′|t|

)
. (5.48)

We expect the tree-level approximation to be valid as long as GNs∗|t|
D−4
2 ≪ 1. This translates

into the following bound
1

log

(
α′D−2

2

GN

) ≪ α′t≪ 1 (5.49)

Recall that g2s =
GN

ℓD−2
s

and ℓs =
√
α′ we get

1

log
(

1
g2s

) ≪ α′t≪ 1. (5.50)

Therefore we see that the graviton pole has a universal origin (due to eikonal) in the limit t → 0.
In string theory, however, when gs ≪ 1 the tree-level amplitude reproduces the pole behavior at
intermediate t’s. If we take gs → 0 limit of twice-subtracted dispersion relations, we get that the
pole is reproduced by the stringy amplitude.

5.6 Local growth

Twice-subtracted dispersion relation implies a bound on the local growth of the amplitude [21].

Let us consider the four-dilaton scattering in type II superstring theory

T V S(s, t) = 8πGN

( tu
s

+
su

t
+
st

u

)Γ(1− s)Γ(1− t)Γ(1− u)

Γ(1 + s)Γ(1 + t)Γ(1 + u)
, s+ t+ u = 0, (5.51)

where we set α′ = 4 so that the gap in the spectrum is 1.

To apply the local growth bound we first need to subtract the contribution of the residues at
s, u = 0 which gives

T̂ V S(s, t) = T V S(s, t) + 8πGN
t(2s+ t)2

s(s+ t)
. (5.52)

Note that the subtraction term behaves as s0 at large s and is therefore highly sub-leading in the
Regge limit. With this explicit example, we checked that indeed the local bound on scattering is
satisfied for (5.52), see Figure 8,

y∂y log Im
[
T̂ V Sψ1

(x+ iy)
]
≤ 1. (5.53)

This example was built using the functional ψ1(q) = q(1− q2)(1− q)2, valid in d = 10. We observe
that the local growth of the Virasoro-Shapiro amplitude is consistent with our bound in its region
of validity.

To better understand its implication, let us imagine again that the amplitude locally takes the
form Ttree(s, t) ∼ f(t)(−is)j(t), f(t) ∈ R. Considering y ≫ s0 and taking j(t) ∈ R, the bound (5.53)
becomes
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Figure 8: Comparison of the region where the bound on the local growth of the amplitude applies (black
dashed line) using the functional ψ1(q) = q(1− q2)(1− q)2 with the explicit example of the Virasoro-Shapiro

amplitude. We observe that y∂y log Im
[
T̂V Sψ1

(x+ iy)
]
≤ 1 in the region enclosed by the red line which

includes the region predicted by the local growth bound. Recall that the bound is saturated if the amplitude
behaves as T (s, t) ∼ λ(t)s2.

|⟨j(t)⟩ψ| =

∣∣∣∣∣∣
∫ 0
−M2

gap
dt ψ(t)j(t)f(t)yj(t)−1∫ 0

−M2
gap
dt ψ(t)f(t)yj(t)−1

∣∣∣∣∣∣ ≤ 2, (5.54)

where we used that Im(y − is0)
j(t) ≃ −yj(t)−1s0. The saturation of this bound is possibly also

excluded (but it requires further checking) with the departure from 2 controlled by MUV where the
dispersive states enter.

6 Black holes

At high energies and small impact parameters a black hole is expected to be produced in high
energy collisions of particles (together with radiation). With time it evaporates and therefore
typical outcome of the experiment is a multi-particle state made out of many soft quanta (Hawking
radiation).

For the two-to-two scattering it means that scattering is mostly inelastic and we expect that
(possibly upon a bit of smearing in s?)

SJ(s) = 0, s→ ∞, J − fixed . (6.1)

This agrees with the expected suppression due to many other effects discussed earlier that have
nothing to do with black holes. As well as the picture of strong suppression due to black holes
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at small impact parameters (remember the string theory example). In particular we expect the
condition above to hold for

J ≤ JBD(s), (6.2)

which is the black disc model of scattering.

This black disc behavior holds for spins which are not too high. Recall that J ∼
√
sb and when

b ∼ s1/(D−3) we expect instead

lim
s→∞

|SJ(s)| = 1, J ≥ (
√
s)1+2/(D−3), (6.3)

whereas the b ∼ RS corresponds to J ≲ (
√
s)1+/(D−3). Therefore we see that partial waves transition

from ‘transparent’ to ‘opaque’ behavior as we decrease spin.

6.1 Violations of symmetries

We expect that there is a lower bound on global symmetry violations due to black holes. Imagine
four free scalars minimally coupled to gravity and consider 1, 2 → 3, 4. To all orders in GN this
amplitude is zero. We would like to understand if it is also zero non-perturbatively. This argument
in a slightly different context (which we find actually much harder to justify) has been presented
in [39–41].

Using unitarity we get

Imf1,2→3,4
J (s) =

∑
n

⟨1, 2|n⟩⟨n|3, 4⟩. (6.4)

Given that perturbatively the amplitude is zero, we next model intermediate states as black holes
BHI to get

Imf1,2→3,4
J (s) =

eSBH∑
I=1

⟨1, 2|BHI⟩⟨BHI |3, 4⟩, (6.5)

and we impose

eSBH∑
I=1

|⟨1, 2|BHI⟩|2 ≃ 1, (6.6)

which is we say that ‘black hole is formed with probability one’. The solution to this ansatz is

⟨1, 2|BHI⟩ = e−SBH/2eiϕ
1,2
I , (6.7)

where ϕ1,2I is a pseudo-random phase. We know can estimate the symmetry violating amplitude
(6.5) to be

Imf1,2→3,4
J (s) = e−SBH(s)

eSBH (s)∑
I=1

ei(ϕ
1,2
I −ϕ3,4I ) ≃ e−SBH(s)/2. (6.8)
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We know write down twice-subtracted dispersion relations. The discontinuity of the amplitude is
given by the formula above and we get for the symmetry violating Wilson coefficients

cn ≳ e−SBH(MS)/2, (6.9)

whereMS is the mass of the lightest semi-classical black hole (given by the correspondence point in
string theory). The formula above is not rigorous because the discontinuity is not positive-definite
and there could be some extra cancelations. It would be interesting to test it in string theory.

Let’s consider string scale to be 1016 GeV then at the correspondence point S ∼ ( ℓsℓP )
2 ∼ 106,

therefore the effect is ∼ e−106 which seems to be completely irrelevant phenomenologically.

A more refined computation was done in [11]. One considers a two-point function of shell
operators in AdS. More precisely, the observbale of interest is

Tt,E,∆E =

∫
dt′eit

′Ee−∆E2(t−t′)2⟨B(t)A(0)⟩ (6.10)

which is a symmetry violating process that is zero to all orders in perturbation theory. The following
regime is studied t≫ 1

∆E ≫ β(E).

The idea is that there is a wormhole geometry that computes |Tt,E,∆E |2 in ‘a suitable averaged
sense’. Finite ∆E and large t guarantee projection to the Hartling-Hawking state on the bow-tie
geometry (all excitations decay controlled by QNMs). The result is that

|Tt,E,∆E |2 ≃ e−SBH(E), (6.11)

where bar stands for some kind of further averaging over (t, E,∆E).

6.2 Black hole ansatz

A more refined version of the black disc statement is called the black hole ansatz [42], which (up to
smearing) takes the form

|SJ(s)| ≃ e−SBH(s)/2, (6.12)

with some possible corrections due to spin. In our opinion it is very hard to test or justify it. In
particular, to have the collapse argument under control we needed to have wavepackets of finite
size and this increases the wavepacket tail effects. So this is something that needs to be explored
using bootstrap and smearing.

Perhaps an interesting scenario is to explore ‘maximal blackness’ above the correspondence
point in the collapse region?

One way to get this result is to try using

SJ(s) =
√
s

∫ ∞

0
Jd−3+2J(b̃

√
s)e2iδ(s,b̃)db̃ , (6.13)

and model δ(s, b) as we discussed in the previous sections.
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6.3 Fixed angles and chaos

Another conjecture that has been often stated in various degrees of vagueness is [39–41]

T (s, θ) ≃ e−
1
2
SBH(s)f(θ)eiϕ(s,θ), (6.14)

where ϕ(s, θ) is a pseudorandom phase and f(θ) ∼ O(1). We think this is also hard to justify as
opposed to violations of symmetries, where we are talking about leading effects.

In the context of quantum mechanics the randomness of phase is related to chaos [43]. It would
be very interesting to explore the properties of the scattering amplitude phase in QFT and gravity
as suggested in [44].

7 Conclusions
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Figure 9: Map of gravitational scattering in the (s, J)-plane.

The basic conclusion is that gravity looks consistent with the basic principles of S-matrix theory,
but black hole physics (or gravity waves for that matter) has not been really used so far.

A big challenge is to turn the statements in these notes into interesting, quantitative predictions
about low-energy physics accessible to reasonable observers. To some extent the twice-subtracted
dispersion relations has been the most useful in this regard so far.

The challenge is that many of the statements involve high energies which to the best of our
knowledge decouple from low-energy dynamics (e.g. crossing does not introduce nontrivial UV/IR
mixing). For example, the expected symmetry violations due to nonperturbative effects look neg-
ligibly small. It would be still interesting to use bootstrap methods and explicit constructions in
string theory to put the basic picture outlined in this note under scrutiny and sharpen it further.

Perhaps the picture of collapse invites us to explore what is the size and intensity of black discs
in the S-matrix bootstrap? Can we use the bootstrap methods to get some further quantitative
insights into the gravitational scattering in the inelastic regime? What is the maximal inelasticity
consistent with the basic principles of S-matrix theory?
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We also discussed here only scattering of light strings. It is very interesting to understand
physics of high-energy scattering of other objects in string theory, e.g. excited strings, D0 branes,
string-brane systems.

Finally, understanding better the implications of chaos for the S-matrix bootstrap seems like
an interesting open problem.
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